- Methodology
- Open Access
Teaching programming skills to finance students: how to design and teach a great course
- Yuxing Yan^{1}Email author
Received: 11 March 2016
Accepted: 7 November 2017
Published: 8 December 2017
Abstract
A motivated finance-major student should master at least one programming language. This is especially true for students from quantitative finance, business analytics, those attending a Master of Science in Finance or other financial engineering programs. Among the preferred languages, R holds one of the first places. This paper explains seven critical factors for designing and teaching a programming course: strong motivation, a good textbook, hands-on learning environment, being data intensive, a challenging term project, multiple supporting R datasets, and an easy way to upload such R datasets.
Keywords
JEL
Background
Nowadays, we are overwhelmed by large amounts of information (e.g., see Shi et al. (2017), Fang and Zhang (2016)), the catchphrase being “big data.” However, defining it is still controversial, since many explanations are available. Simply, college students should have one or two memory sticks, each with a capacity of 4 GB, and the simple answer is that if the student can generate and process 4 GB of data, he/she has the ability of dealing with “big data.”^{1} Obviously, this is not an accurate definition. Nevertheless, it is a start and a practical one at that. In this context, the question is how could instructors arm their students with the ability of processing 4 GB of data. The answer is teaching them one programming language.
This is not an isolated exception. Actually, 2017 is a turning point, since keywords such as “big data” and “data analytics” are prevalent in the job advertisements for assistant or associate professors in finance. Below is part of the job advertisement for an assistant or associate professor in finance by Wake Forest University (2017):The Department of Finance in the School of Management at the University of San Francisco is seeking to fill a position at the Assistant or Associate Professor level in derivatives, fixed income, and mathematical finance with a subfield in an area of corporate finance and investments. Applicants should have mastery of Stata. Familiarity with MATLAB, R, SAS, and Python is desirable. The position is anticipated to begin in fall 2018.
Additionally, the title of a job advertisement by the University of California at Riverside (2017) is “Associate/Full professors in Finance/Business Analytics Cluster,” and that for an assistant professor in finance by the University of Central Florida (2017) specifically mentions that “Preference will be given to candidates with strong skills in quantitative and empirical methods. A computer science background with demonstrated skills such as fluency in R, Python, and data visualization is highly desirable.” Another advertisement, from the SUNY Polytechnic Institute New York (2017) looking for an assistant/associate professor in finance, states that “Areas such as data analytics (‘big data’), financial analytics, financial innovation, regulatory policy, and other emergent and interdisciplinary finance areas are favored.” A similar trend or turning point is also encountered in other subject areas in business schools, such as economics and marketing.The Wake Forest University School of Business is seeking qualified candidates for a Tenure-Track Assistant (senior) or Associate Professor in Finance starting Fall 2018. This individual will be expected to teach introductory and advanced quantitative methods courses in Finance. Candidates should have a Ph.D. (or its equivalent) in Finance or a related field and should have a strong grasp of the roles and tools of big data and analytics in the practice of contemporary financial management.
Two other examples come from finance professors. In 2015, finance Prof. Sheng Xiao, from Westminster College, taught a course titled Financial Analytics and used the textbook “Python for Finance” by Yan (2014). In 2016, another finance professor, Premal Vora, at Penn State University, also adopted “Python for Finance” (Yan 2014) as a textbook. The textbook “Financial Modeling using R,” by Yan (2016), was adopted as a textbook by finance professors at Loyola University Maryland (2011–2013), Canisius College (2015–2016), University at Buffalo (2014–2017), and Rowan University (2016).
Since 2010, the author has spent a significant amount of time and effort applying R to finance. When teaching at Loyola University of Maryland, R was applied to financial modeling for the first time, and numerous students adopted R as a computational tool. However, some students still preferred Excel. Here is a typical example: one student complained that Excel was not used and his answer was stunning when asked why he preferred Excel: “Because I am good at Excel.” As such, if a student is not motivated, then he/she has no incentive to learn R and apply it to finance.^{2}
To help a potential instructor design and teach such a course, this brief paper summarizes the numerous determinants into seven unique and significant ones: strong motivation, good textbook, hands-on environment, being data intensive, challenging term project, making supporting R datasets available, and an easy way to upload those R datasets quickly. Some factors are easy to recognize, such as a good textbook. Moreover, strong motivation is vital for a finance-major student to learn a programming language, while interesting term projects could be an ideal indicator of an instructor teaching a course successfully (i.e., a performance measure). An example is presented in the following, where three factors related to data: being data intensive, making numerous datasets available, and uploading data efficiently, are shown to be closely related to the core of any course using R to process financial/economic and accounting data toward a specific set of goals. We thus elaborate each factor in more detail below.
Strong motivation (factor #1)
Comparisons between R, SAS and Python (5 being the best)
Language | SAS | R | Python |
---|---|---|---|
Availability | 2 | 5 | 5 |
Ease of learning | 4.5 | 2.5 | 3.5 |
Data handling capability | 4 | 4 | 4 |
Graphical capability | 3 | 4.5 | 4 |
Advancements in tool | 4 | 4.5 | 4 |
Job opportunities | 4.5 | 3.5 | 2.5 |
Customer services support and community | 4 | 3.5 | 3 |
Most scores are reasonable such as cost (availability), with only a few problematic. For example, SAS is superior to R in terms of its data handling capacity, while the most critical disadvantage for both R and Python is their lack of support. This should however be tolerable when compared with expensive software, such as SAS and MATLAB. The second way to motivate students is to mention that many prestigious schools, such as New York University and Harvard, have also adopted R.^{3}
> pv_f< ^{ – } function (fv, r, n) fv/(1+r) ^{ ^ } n |
> pv_f(100,0.1, 1) [1] 90.90909 > pv_f(100,0.08,2) [1] 85.73388 > |
> x<-read.csv(" http://canisius.edu/~yany/data/ibm.csv ") |
> head(x) | |||||||
Date | Open | High | Low | Close | Adj.Close | Volume | |
1 | 1962-01-01 | 7.71333 | 7.71333 | 7.00333 | 7.22667 | 2.077532 | 8760000 |
2 | 1962-02-01 | 7.30000 | 7.48000 | 7.09333 | 7.16000 | 2.058365 | 5737600 |
3 | 1962-03-01 | 7.18667 | 7.41333 | 7.07000 | 7.10333 | 2.042351 | 5344000 |
4 | 1962-04-01 | 7.10000 | 7.10000 | 6.00000 | 6.05333 | 1.740457 | 12851200 |
5 | 1962-05-01 | 6.05333 | 6.53000 | 4.73333 | 5.23333 | 1.504688 | 49307200 |
6 | 1962-06-01 | 5.21333 | 5.21333 | 4.00000 | 4.52333 | 1.300755 | 68451200 |
> tail(x) | |||||||
Date | Open | High | Low | Close | Adj.Close | Volume | |
665 | 2017-05-01 | 160.05 | 160.42 | 149.79 | 152.63 | 149.5731 | 103329100 |
666 | 2017-06-01 | 152.80 | 157.20 | 150.80 | 153.83 | 152.2217 | 83977000 |
667 | 2017-07-01 | 153.58 | 156.03 | 143.64 | 144.67 | 143.1575 | 93293500 |
668 | 2017-08-01 | 145.00 | 145.67 | 139.13 | 143.03 | 141.5346 | 80268700 |
669 | 2017-09-01 | 142.98 | 147.42 | 141.64 | 145.08 | 145.0800 | 78296700 |
670 | 2017-10-01 | 145.35 | 148.95 | 145.21 | 146.54 | 146.5400 | 37011700 |
> load("c:/temp/ffMonthly.RData") |
> load("c:/temp/stockMonthly.RData") |
> library(png) |
> install.packages ('png') |
> source(" http://canisius.edu/~yany/randomCall.R ") |
The second moment to motivating students is when discussing the two chapters related to R packages.^{6} Anything taught before this moment provides students with basic concepts and skills, such as R being case-sensitive, writing simple programs, calling various pre-written R programs, running various loops and if- else- if conditions, and so on. This is similar to training new soldiers in basic skills: when they are good enough, the commander will lead them to a warehouse with all types of advanced weaponry, such as missiles and helicopters. Similarly, students become excited to find out about the many finance-related R packages at their disposal. As a result, they will be motivated.
The final opportunity to motivate students is when discussing potential topics for their term projects. The major purpose of a term project is to help students apply what they have learnt to a real-world, challenging task. After the mid-term, students are given about 40 potential topics. For example, “Does the January effect exist,” “Which party, Democratic or Republican, could manage the economy better,” and “What is the momentum trading strategy?” After finishing Chapter 8: T-test, F-test, Durbin-Watson, Normality, and Granger Causality Tests, students are shown how to test the January effect by randomly choosing one stock. However, for a good term project, students have to use all stocks. For this reason, for schools with (CRSP 2018) subscription, students are offered several hundreds of R datasets from (CRSP 2018) and Compustat.
Good textbook (factor #2)
bs_call<–function(s,x,T,r,sigma){ d1 = (log(s/x)+(r+sigma*sigma/2.)*T)/(sigma*sqrt(T)) d2 = d1-sigma*sqrt(T) s*pnorm(d1)–x*exp(–r*T)*pnorm(d2) } |
Calling the function is easy as well (see below). Using just five lines of R code for.
> bs_call(40,42,0.5,0.1,0.2) [1] 2.27778 |
Hands-on learning environment (factor #3)
Since hands-on is critical, all lectures should be conducted in a computer lab. The first few weeks are crucial. After giving the students a task by showing them code lines, an instructor should walk around to help individual students with their code. To prevent the students from copying and pasting from slides, the R codes shown on PowerPoint slides are images. Coding should not be that difficult if students spend enough time on it.^{7} Again, overcoming intimidation is the first priority. Consequently, teaching speed should be controlled for the first several weeks. Additionally, since it is hands-on approach we are targeting, the ideal class size should be below 15.
In-class exercises also play an important role. During each lecture, students do at least one in-class exercise. Over the first several weeks, the exercises are rather simple: an instructor could discuss the tasks and type code, with the students simply typing those codes to complete the task. Gradually, students are given basic steps or a flow chart and asked to write their own codes. Since term-projects play a big role in this course, after the mid-term, most of the in-class exercises should be around subjects related to the term projects. For example, if students need to estimate equal- or value-weighted portfolio returns, an in-class exercise is designed to replicate S&P 500 monthly returns.
Another practice is to encourage students to generate one text file, which they constantly add new programs to over the entire semester. By the end of the semester, such a file should contain around 50 to 100 short programs. There are several advantages of doing this. First, students could use old programs for their homework without “reinventing the wheel.” Second, they save time during the mid-term and final. Finally, they could use many of their own programs in the future. The text format is also beneficial, in that anyone can open it without difficulty.
Being data intensive, especially when using public data (factor #4)
Open data sources^{a}
Name | Web page | Data types | Related topics |
---|---|---|---|
Yahoo Finance | Current and historical pricing, analyst forecast, options, balance sheet, income statement | CAPM, portfolio theory, liquidity measure, momentum strategy, VaR, options | |
Google Finance | Current, historical trading prices | Stock trading data | |
Federal Reserve | interest rates, rates for AAA, AA rated bonds | fixed income, bond, term structure | |
Marketwatch | Financial statements | Corporate finance, investment | |
SEC filing | Balance sheet, income statement, holdings | Ratio analysis, fundamental analysis | |
Oanda | Foreign Exchange rates, price for precious metals | International finance, commodity trading | |
Prof. French data library | http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html | Fama-French factors, market index, risk-free rate, industry classification | Factor models, CAPM |
Census Bureau | Census data | Real income, trading strategy | |
US. Dept. Treasury | US. Treasury yield | Fixed income | |
FINRA | Bond price and yield | Fixed income | |
Bureau of Labor Statistics | Inflation, Employment, unemployment, pay and benefits | Macro economics | |
Bureau of Economic Analysis | GDP (Gross Domestic Product) and others . | Macro economics | |
National Bureau of Economic Research | Business cycles,vital statistics, report of Presidents | Macroeconomics, financial stability |
Using publicly available data has several advantages: they are free and we can obtain recent data, such as yesterday’s closing stock price, while this is not possible for expensive financial databases, such as (CRSP 2018). From the SEC (Securities and Exchange Commission) platform, students could download a public company’s latest filings. It is also relatively easy to write an R program to access such public data. Finally, students from teaching schools could learn R effectively even if their schools have no subscription to expensive financial databases.
Challenging term-project (factor #5)
A partial list of potential topics for term projects
Using CRSP or TAQ | 31 | Estimate spread using CRSP daily data (Chung and Zhang 2014) |
32 | Is liquidity factor priced? (Amihud 2002) | |
33 | What is the color of your firm, blue or red? (Yan 2014) | |
34 | Which model is the best, CAPM, FF3, FFC4, or FF5? | |
35 | Estimate spread, relative spread, expected spread etc. by using TAQ | |
36 | Process TAQ efficiently, how to process 30 year MTAQ data efficiently? | |
37 | Replicate momentum trading strategy (Jegadeesh and Titman 1993) | |
38 | Replicate industry momentum trading strategy (Moskowitz and Grinblatt 1999) | |
39 | Replicate 52-week high trading strategy (George and Huang 2004) | |
40 | Replicate max- trading strategy (Bali et al. 2011) | |
41 | Impact of business cycle on the above four trading strategies, (Yan and Zhang 2015) |
Finally, completing a good term project would benefit a student who is job hunting, as during a job interview, the student can talk about his/her term-project by explaining why the topic is interesting, what types of data he/she used, and how to retrieve and process data, as well as the conclusions reached.^{9} To successfully complete many challenging topics, instructor’s strong support is critical, especially in terms of data. Oral presentations are also an integral part of term projects. Students have benefited greatly from other groups’ presentations because of the variety of topics and their depth. For presentations, each group has 15 min for the presentation and five minutes of Q&A. Before the presentation, each student is given a “peer-evaluation” sheet. Based on the feedback, this is a good practice to help students sharpen their presentation and critical thinking skills.^{10}
Making several supporting R datasets available (factor #6)
Making several good R datasets available is a necessary condition for completing a challenging term project. There are two types of datasets: from public sources and from expensive financial databases, such as (CRSP 2018). In the US, most schools with a quantitative-finance program have subscribed to (CRSP 2018). Whenever possible, it is a good idea to use (CRSP 2018) to finish many challenging term projects. In 2015, the author first introduced (CRSP 2018) during the course “Financial Analysis with R” at University at Buffalo and, surprisingly, nine of the 10 term projects used (CRSP 2018). This further supports the use of (CRSP 2018) for teaching.
Easy and quick uploading of R datasets (factor #7)
>source(" http://canisius.edu/~yany/ff.R ") |
Conclusions
This brief paper shows potential finance instructors how to design a course for teaching finance-major students a programming language such as R and apply it to finance. There are seven important determinants: 1) strong motivation, 2) a good textbook, 3) hands-on learning environment, 4) being data intensive, 5) challenging term project plus oral presentation, 6) making available several supporting R datasets for term projects, and 7) an easy and quick way to upload those R datasets. For a finance major student, programming skills will become a necessity in the foreseeable future. Moreover, once a user masters one computer language, it is much easier/quicker for him/her to learn a second one. This holds true for other languages such as SAS, MATLAB, or Python. As such, instructors from various finance departments might find this short paper helpful. The syllabi, slides, and various R datasets are available upon request. However, since the sample size is quite small, there might exist systematic bias.
Some researchers find that each company has, on average, about 30 T of data. Therefore, another way to define “big data” is the ability to store and process data at such a scale.
See the links at http://www.nyu.edu/projects/politicsdatalab/learning_students.html, http://online-learning.harvard.edu/course/data-analysis-life-sciences-1-statistics-and-r-0
Chapter 31: Introduction to R packages and Chapter 16: Two dozen R packages related to Finance, from Yan (2016).
Usually, students are required to spend at least one hour per day, including weekends, outside the classroom working on R.
When students use the CRSP for R datasets, they are using over 30,000 stocks for their term projects.
Actually, this indeed happened. One of my students told me that during his job interview with Goldman Sachs, he was talking about this course plus one of my working paper related to PIN (Probability of Informed Trading). I was extremely thrilled after hearing that.
Declarations
Acknowledgements
I thank Karyl Leggio, Qiyu Zhang, Lisa Fairchild and Kee Chung for their helps when I was teaching at Loyola University and University at Buffalo. I think James Yan for his editorial efforts.
Authors’ contributions
I have contributed 100%.
Competing interests
The author declares that he has no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Authors’ Affiliations
References
- Amihud, Yakov, 2002, Illiquidity and Stock returns, Journal of Financial Markets 5, 31–56.View ArticleGoogle Scholar
- Bali, Turan G., Nusret Cakici, and Robert F. Whitelaw, 2011, Maxing Out: Stocks as Lotteries and the Cross-Section of Expected Returns, J Financ Econ 99 427-446Google Scholar
- Chung, Kee H. and Hao Zhang, 2014, A Simple Approximation of Intraday Spreads Using Daily Data, Journal of Financial Markets 17, 94–120.View ArticleGoogle Scholar
- CrowdFlower, 2016, Data Scientist Report, http://visit.crowdflower.com/rs/416-ZBE-142/images/Crowdflower_Data_Scientist_Survey2015.pdf
- CRSP 2018, http://crsp.com/
- Data Science salary review,2015 https://www.analyticsvidhya.com/blog/2017/09/sas-vs-vs-python-tool-learn/
- Fang, Bing and Peng Zhang, Big Data in Finance, in Big Data Concepts, Theories, and Applications, S. Yu and S. Guo, Eds., ed Cham: Springer, 2016, pp. 391-412Google Scholar
- Jain, Kunal, 2017, SAS vs. R (vs. Python) – which tool should I learn?, https://www.analyticsvidhya.com/blog/2017/09/sas-vs-vs-python-tool-learn/
- Jegadeesh N, Titman S (1993) Returns to buying winners and selling losers: implications for stock market efficiency. J Financ 48:65–91View ArticleGoogle Scholar
- KDnuggets Home, Polls, 2014, Languages for analytics/data mining (2014), https://www.kdnuggets.com/polls/2014/languages-analytics-data-mining-data-science.html
- Moskowitz, Tobias, and Mark Grinblatt, 1999, Do industries explain momentum? Journal of Finance 54, 2017–2069.View ArticleGoogle Scholar
- Pointer, Ian, 2016, Which freaking big data programming language should I use? http://www.infoworld.com/article/3049672/application-development/which-freaking-big-data-programming-language-should-i-use.html
- Shi, Xiang, Peng Zhang and Samee U. Khan, 2017, Quantitative Data Analysis in Finance,in Handbook of Big Data Technologies, A. Y. Zomaya and S. Sakr, Eds., Springer, 2017Google Scholar
- SUNY Polytechnic Institute in New York job ad for Assistant/Associate Professor of Finance (Tenure Track Position), (2017)https://chroniclevitae.com/jobs/0000370015-01
- University of California at Riverside job ad for associate or full professor in finance/ business analytics cluster (2017), https://aprecruit.ucr.edu/apply/JPF00833
- University of Central Florida job ad for assistant professor (2017), https://www.jobswithucf.com/postings/51058
- Wake Forest University job ad for assistant/associate professor in finance (2017), http://careers.afajof.org/job/305049/tenure-track-assistant-or-associate-professor-in-finance/
- Yan, Yuxing, 2014, Python for finance, 1st edition, Packt PublishingGoogle Scholar
- Yan Y (2016) Financial Modeling using R. Publishing, Tate ISBN: 978-1-68187-530-9Google Scholar
- Yan, Yuxing and Shaojun Zhang, 2016, Business cycle, investors’ preferences and trading strategies, Frontiers of Business Research in China, Vol. 10, Issue (4) : 525–547.Google Scholar