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Introduction
While machine learning (ML) algorithms seem to outperform traditional quantitative 
models in terms of predictive capabilities, especially from the supervisors’ perspective, 
they also pose new risks. Some of them, as cited in the supervisory and regulatory lit-
erature (see European Banking Authority 2017a; 2020; Dupont et al. 2020), are associ-
ated with interpretability, biases or discrimination, prediction stability, governance or 
changes in the technological risk profile due to exposure to cyber risk, and dependence 
on external providers of technological infrastructure. Supervisors face the challenge of 
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allowing financial institutions and clients to maximize the opportunities stemming from 
technological progress and financial innovation, while observing the principles of tech-
nological neutrality, regulatory compliance, and consumer protection.

According to the International Institute of Finance (2019b), given the steep learning 
curve of ML as a technology, supervisors struggle to keep up with its fast-moving pace 
(Wall 2018). Therefore, it is appropriate to continue refining their knowledge about how 
financial institutions use ML to monitor new model risks as they arise and understand 
how they might be mitigated.

To overcome this challenge, we suggest a framework that allows the establishment of 
a bridge between the qualitative list of risk factors usually associated with ML and how 
to obtain a risk score for each model. As stated in Jung et al. (2019), regulation is not 
seen as an unjustified barrier, but some firms stress the need for additional guidance on 
how to interpret it. To the best of our knowledge, this is the first study to evaluate ML 
algorithms used for credit default prediction via their model risk-adjusted performance.

To build our framework, we must first identify the key components of model risk from 
the supervisor’s perspective. For this purpose, we study the compatibility of ML tech-
niques with the validation process of internal ratings-based (IRB) models to calculate 
the minimum regulatory capital requirements. Although the IRB approach is restricted 
to capital requirements, it has an impact beyond this use, considering that the risk com-
ponents estimated using IRB models (e.g., probability of default) must be aligned with 
those used internally for any other purpose. We identify 13 components that we refer to 
as risk factors and classify them into 3 different risk categories, namely, statistics, tech-
nology, and market conduct issues. Of these risk factors, we focus on a subset of them 
to represent the overall risk of the model. For instance, in our exercise, in the statistics 
category, the risk score is computed only on the basis of the stability of the predictions, 
measured as the standard deviation of the predictions of the models when using differ-
ent sample sizes, as well as the number of nonzero hyperparameters. For the technology 
category, the score depends on the transparency of the algorithm and the latency (num-
ber of seconds) of the training as a proxy for the carbon footprint (Strubell et al. 2019). 
For the market conduct category, the score depends on the latency (number of seconds) 
of the computation of the SHapley Additive exPlanations (SHAP) for the interpretability 
of the results. The final risk associated with a particular ML model will depend on the 
final score of each risk category weighted by the importance or intensity of the regula-
tory requirements of each category, subject to each use case of the model (capital, credit 
scoring, or provisioning). To compute these weights, we propose a novel approach based 
on natural language processing (NLP). First, we collect a series of regulatory texts for 
each use case, and we calculate the importance of each risk category according to the 
intensity of mentions in the documents, using our own risk terminology based on expert 
knowledge, representative of the universe of each risk category. For instance, we find 
that statistical risks are more important for regulatory capital, while technology and 
market conduct risks are more important for credit scoring.

We test our framework with five of the most used ML models in the credit risk litera-
ture: penalized logistic regression using least absolute shrinkage and selection operator 
(LASSO), decision tree (CART), random forest, Extreme gradient boosting (XGBoost), 
and deep learning. Using a public database available on Kaggle.com for credit default 
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prediction, we compute the potential model risks from validating these models and their 
potential predictive performance. We find that, for this particular database, XGBoost 
and random forest are the most efficient risk-adjusted models.

The remainder of this paper is organized as follows. in “Literature review” section, 
we review the literature on the use of ML for credit default prediction. In “Identifying 
the risks: compatibility of ML with the IRB validation process” section, we identify the 
potential limitations of using ML in credit default prediction by reviewing the IRB sys-
tem under the Basel Accords. In “Quantifying the model risk” section, we demonstrate 
how our framework measures the potential model risks and benefits from the use of ML 
by credit institutions from the supervisor’s perspective. In “An empirical example” sec-
tion, we show an empirical example of our framework, and the conclusion is presented 
in “Conclusion” section.

Literature review
The emerging use of ML in financial systems is transforming society and industry. 
From hedge funds and commercial banks to contemporary financial technology ser-
vice providers (Lynn et al. 2019; Kou et al. 2021b), many financial firms today are heav-
ily investing in the acquisition of data science and ML expertise (Wall 2018; Institute of 
International Finance [IIF] 2019a).

Financial risk analysis is an area where ML is mainly applied by financial intermedi-
aries (see, e.g., Jung et al. 2019 for a survey on UK financial services; Kou et al. (2014) 
regarding the evaluation of clustering algorithms using credit risk datasets; or Li et al. 
2021 for fraud detection). However, within this field, the application with the greatest 
potential for this technology is credit default prediction (Königstorfer and Thalmann 
2020). There is an extensive review of the literature on the predictive gains of ML on 
this topic. We collect a series of papers that use ML algorithms to predict the impair-
ment of loans, mortgages, retail exposures, corporate loans, or a mixture thereof. In all 
the studies analyzed, the target variable to predict is the probability of default (PD). To 
robustly assess the results obtained from different models and samples, we focus on the 
classification power using the area under the curve—receiver operating characteristic 
(AUC-ROC) metric, out-of-sample.1 The ROC curve shows the relationship between the 
true and false positive rates for all possible classification thresholds. The area below the 
AUC-ROC curve measures the predictive power of the classifier. Figure 1 presents all the 
papers included in our literature review in an orderly manner. On the horizontal axis, we 
divide the papers based on the ML technique used and the a priori algorithmic com-
plexity.2 First, we distinguish between parametric and nonparametric models. Among 
the nonparametric models, we consider that deep learning models are more complex 
than tree-based models because the number of parameters to estimate is higher and 
their interpretability requires post hoc techniques. Finally, we consider reinforcement 

1  In Butaru et  al. (2016) predictive power is measured with the Recall, which represents the percentage of defaulted 
loans correctly predicted as such. In the case of Cheng and Xiang (2017), predictive power is measured by means of the 
Kolmogorov–Smirnov statistic, a metric similar to AUC-ROC that measures the degree of separation between the dis-
tributions of positives (default) and negatives (non-default).
2  Similarly, in Gu et al. (2020) the authors estimate the time varying complexity within each ML model by reporting the 
number of selected components in each model, like for instance, the number of features selected to have nonzero coef-
ficients for Lasso regressions; or the average tree depth for Random forest.
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learning and convolutional nets as the most complex models because the former 
requires a complicated state/action/reward architecture, while the latter entails a time 
dimension and thus an extra layer of complexity with respect to deep neural networks.3 
On the vertical axis, we measure the gain in predictive power in terms of AUC-ROC 
relative to the discriminatory power obtained using a logit model on the same sample.4 
While the sample sizes and the nature of the underlying exposures and ML models dif-
fer between studies, they all find that more advanced ML techniques (e.g., random for-
est and deep learning) give better predictions than traditional statistical models. The 
predictive gains are very heterogeneous, reaching up to 20%, and do not behave mono-
tonically as we advance toward more algorithmically complex models. We contribute to 
this literature by providing, in “An empirical example” section, our own estimates of the 
predictive gains from the use of ML in our empirical example. To the best of our knowl-
edge, we adjust the statistical performance for the first time by measuring the model risk 
embedded in each algorithm. Our results are consistent with the main findings in the 
literature. We find gross gains of up to 5% in the AUC-ROC metric from the use of ML, 
while deep learning models do not necessarily outperform tree-based models, such as 
random forest or XGBoost, which also turn out to be the most efficient in risk-adjusted 
terms. The framework we propose in this study aims to measure the performance and 
risks (i.e., to measure risk-adjusted performance) of different ML models depending on 
the use case. We do not aim to indicate how to overcome or mitigate their intrinsic risk 
factors. We include a table in the Appendix Table  13, that summarizes all the papers 
based on the ML model that they use.
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Fig. 1  The dilemma between prediction gains and algorithmic complexity

3  Metrics like the VC dimension (see Vapnik–Chervonenkis 2015) could be used to account for the capacity of the algo-
rithms, when a particular architecture is taken into account. However, for comparison reasons we solely aimed to illus-
trate the changes in the “structural” algorithmic complexity, in terms of ability to adapt to non-linear, highly dimensional 
problems. Therefore, changes to this rank could be considered depending on the set of parameters and hyper-parame-
ters considered in each model.
4  In Butaru et  al. (2016) predictive power is measured with the Recall, which represents the percentage of defaulted 
loans correctly predicted as such. In the case of Cheng and Xiang (2017), predictive power is measured by means of the 
Kolmogorov–Smirnov statistic, a metric similar to AUC-ROC that measures the degree of separation between the dis-
tributions of positives (default) and negatives (non-default).
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On the one hand, in the literature on the performance of ML in credit default predic-
tion, there are other potential gains mentioned from the use of this technology. These 
include positive spillover, such as increasing the financial inclusion of underserved pop-
ulation segments owing to the possibility of using ML together with massive amounts of 
information, including alternative data, such as the digital footprint of prospective cli-
ents, thereby allowing new individuals with little to no financial history to access new 
credit (Bartlett et al. 2022; Barruetabeña 2020; Dobbie et al. 2021; Huang et al. 2020; Kou 
et al. 2021a; Fuster et al. 2022).

On the other hand, the literature on the potential model risk from the use of ML for 
credit scoring is more limited. Several studies have reported negative spillovers if credit 
scoring models are over-reliant on digital data, which could discriminate against other 
individuals that lack or decide not to share this sort of personal data (Bazarbash 2019; 
Jagtiani and Lemieux 2019). Little attention has been paid to the risks and costs that the 
use of ML by institutions may pose to supervisors. There are studies in the literature that 
try to explain which factors matter for the governance of ML algorithms on a qualitative 
basis, such as Dupont et al. (2020) and IIF (2020). However, these articles mention risk 
factors out of order and do not comprehensively discuss how the risk associated with 
each model should be classified or measured. Our contribution is that we endeavor to 
identify the factors that may constitute a component of model risk when validating or 
evaluating ML models, thus presenting a consistent approach to measure the resulting 
risk-adjusted performance.

Finally, because we measure how the interpretations of ML model differ, our work 
is also related to the literature on explainable ML. Notwithstanding that ML models 
are sometimes considered black box models, a growing and recent field that attempts 
to elucidate their explanations exists. One of the main approaches toward interpreting 
an ML model consists of applying post hoc evaluation techniques (or model-agnostic 
techniques) that explain which features are more relevant to the prediction of a par-
ticular model. If we are interested in how they influence a particular prediction, these 
techniques provide local explainability. Among local explainability techniques, the most 
popular is probably LIME, as propounded by Ribeiro et al. (2016). However, if we are 
interested in the relevance of the features for all predictions on a dataset, we use global 
interpretability techniques. The most important ones are permutation feature impor-
tance (Breiman 2001; Fisher et al. 2019) and SHAP (Lundberg and Lee 2017; Lundberg 
et al. 2020).5 These two global techniques are based on measuring how the prediction 
(SHAP) or accuracy (permutation feature importance) of an ML model changes when 
we permute the values of the input features. The manner in which we permute the val-
ues of the features differs depending on the technique used. There is an ongoing debate 
on the efficacy of these techniques as ML interpretation tools. On the one hand, there 
are papers that argue that the level of explanation obtained by SHAP could be compa-
rable to that of parametric models such as LASSO and logit (Ariza-Garzón et al. 2020). 
Furthermore, Albanesi and Vamossy (2019) demonstrates the effectiveness of SHAP for 
explaining the outcome of ML algorithms in a credit scoring context. Another example 

5  Shap can be used as well as local interpretability technique.
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is Moscato et al. (2021), who apply a wide range of interpretability techniques (LIME, 
Anchors, SHAP, BEEF, and LORE) to random forest and multilayer perceptron models 
for loan default prediction. They find that LORE has better results, while SHAP is more 
stable than LIME. On the other hand, other studies affirm that the explanation of the 
outcome of an ML model by SHAP could be biased or seriously affected by the correla-
tions of the features of the dataset (Mittelstadt et al. 2019; Barr et al. 2020). Arguably, 
SHAP is still an evolving method, and many authors are making extensions based on this 
theory (Frye et al. 2019; Heskes et al. 2020; Lundberg et al. 2020).

Identifying the risks: compatibility of ML with the IRB validation process
Our goal is to establish a methodology that allows supervisors to quantify the model 
risk-adjustment of any given ML method. To do this, we first need to identify and clas-
sify all the factors that might constitute a source of model risk from the supervisors’ per-
spective. We do so by harnessing the validation process of IRB systems. Although the 
IRB approach is restricted to the calculation of minimum capital requirements, it has an 
impact beyond this use, as the risk components estimated using IRB models (e.g., PD) 
must be aligned with those used internally for any other purpose.6 We first identify up 
to 13 factors that could represent risk from the supervisor’s perspective. Thereafter, we 
classify them into three different categories, namely, statistics, technology, and market 
conduct.

Credit institutions are responsible for evaluating the performance of IRB systems. 
However, there are explicit requirements in the Basel Accords vis-à-vis how this pro-
cess should be undertaken (Heitfield 2005). In this regard, the supervisor’s tasks include 
ensuring that the models are correctly validated. When using the foundation IRB 
approach, as a general rule, institutions will only have to estimate the PD, while the 
remaining risk components will be predetermined by the regulation.7 Once the design 
of the statistical model has been approved and the estimation is aligned with the super-
visor’s requirements, the result will be entered into an economic model for computing 
regulatory capital. This part of the validation is primarily quantitative. In parallel, IRB 
systems also involve certain issues, such as data privacy and quality, internal reporting, 
governance, and how to solve problems while operating in a business-as-usual mode. 
The last part of the validation is mostly qualitative, and it is more dependent on the 
supervisor’s expertise, skills, and preferences. The importance of both issues depends on 
the purpose of the model (e.g., credit scoring, pricing, or regulatory capital calculation).8

In Fig.  2, we list the key risk factors usually mentioned in the regulatory literature, 
placing them within the IRB validation process and discovering a total of 13 factors.

6  Article CRE36.60 of the Basel general framework requires that models under the IRB approach be used in the manage-
ment of the institution’s business, requiring alignment between IRB systems and the risk factors used internally in any 
other field, such as credit scoring, internal risk management or corporate governance.
7  All the remaining risk factors (e.g.: loss given default or maturity adjustments and credit conversion factors) are 
defined in the regulation, depending on the type of underlying credit exposure.
8  In “Quantifying the model risk” section we will quantify both the systemic or common risk factors that matter to the 
supervisor given any purpose of the predictive model and the idiosyncratic or local factors that refer specifically to each 
use involving credit default prediction.



Page 7 of 35Alonso Robisco and Carbó Martínez ﻿Financial Innovation            (2022) 8:70 	

The risk factors: a tale of statistics, technology, and market conduct

Having identified these risk factors, we proceed to map them into the scheme of the vali-
dation process of IRB systems, as shown in Fig. 2.

Statistics

Statistical model risk may be categorized into different components. Assuming that 
models rely on usual econometric methods, it allows us to distinguish between estima-
tion risk, associated with the inaccurate estimation of parameters,9 and misspecification 
risk. In the banking supervision field, Kerkhof et al. (2010) propose an additional com-
ponent of statistical model risk, in particular, identification risk that arises when obser-
vationally indistinguishable models have different consequences for capital reserves.

To account for this uncertainty, the European Banking Authority (2013) states that 
“Institutions should include the impact of valuation model risk when assessing the 
prudent value of its balance sheet. [..] Where possible an institution should quantify 
model risk by comparing the valuations produced from the full spectrum of modelling 
and calibration approaches.” In this sense, the model risk concept that is considered 
in this study includes a holistic approach to all the above-mentioned components that 
affect the uncertainty of pointwise estimations, as is usually carried out following the 
IRB approach. Specifically, there are a series of factors that could affect the model’s 
estimation and are commonly associated with the use of ML;10 these include the pres-
ence of hyperparameters, the need to preprocess the input data (feature engineering), 
or the complexity of performing back testing when dynamic calibration is required (for 
instance, in reinforcement learning models), as it would be infeasible to “freeze” the 
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Fig. 2  Validation of IRB systems and its compatibility with ML

9  See Tarashev (2010) for an application of parameter uncertainty on measuring portfolio credit risk correctly, or Farkas 
et al. (2020) who derive confidence intervals for the metric Value-at-Risk and evaluate its impact on capital requirements 
for market risk.
10  See Babel et al. (2019).
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model and evaluate its performance outside the sample, as proposed in Basel.11 Sim-
ilarly, the concern about overfitting is always present in the use of ML because of its 
high flexibility as well as the stability of the classifications (European Banking Author-
ity 2017a) aiming to prevent the procyclicality of the estimates and following the pos-
sible migrations observed between credit ratings, such that the robustness of the model 
throughout an economic cycle can be demonstrated.

Technology

One of the areas associated with algorithmic complexity is the technological require-
ments necessary for its implementation and maintenance in production while operat-
ing normally; this is usually associated with cyber technology and cloud computing. 
Although cyber losses constitute a small fraction of total operational losses, they account 
for a significant share of the total operational value-at-risk (Aldasaro et al. 2020). Addi-
tionally, higher algorithmic complexity reduces transparency, which increases the cost of 
financial institutions due to the need to engage external auditors for regulatory compli-
ance (Masciandaro et al. 2020).

One variable to measure the technological burden of ML could be the time required 
for the computation of the model and its consequent environmental impact, that is, 
the carbon footprint derived from its electricity consumption (see Alonso and Mar-
qués 2019). Although recent industry research, such as CDP (2020), shows that indirect 
financed emissions (scope 3) are considered to outweigh both directly produced emis-
sions (scope 1) and indirect consumption-related emissions (scope 2), the truth is that, 
currently, the vast majority of reported emissions in the financial industry remains only 
in scopes 1 and 2 (see Moreno and Caminero 2020 for a breakdown of climate-related 
disclosures by significant Spanish financial institutions). Therefore, when credit under-
writing represents a significant share of banks’ business models, keeping this technology 
under environmental evaluation may represent a key element of the current (carbon) 
net-zero commitments by these institutions.

Another factor that should be considered is the increasing dependence on services 
provided by third-party providers, such as cloud computing, or those related to fast data 
processing through the use of GPUs or TPUs (Financial Stability Board 2019)12 and the 
potential change in the exposure to cyber risk. The integration of these services with leg-
acy technology is one of the main challenges for institutions, and it is presented as one of 
the most important obstacles when putting ML models into production (see IIF 2019a). 
Notably, some institutions are exploring the use of cloud computing providers to avoid 

12  The graphics processing unit (GPU) has an advantage over the central processing unit (CPU) when training complex 
ML models because of its distinct architecture. While the CPU is made up of a small number of complex cores that work 
sequentially, the GPU is made up of many simple, small cores that are designed to work on multiple tasks simultane-
ously. The ability to perform multiple calculations in tandem makes the GPU a very efficient tool for using ML. Likewise, 
the Tensor Processing Unit (TPU) is an application-specific integrated circuit, AI accelerator, developed by Google spe-
cifically for machine learning.

11  In the calculation of capital add-on for market risk, errors are counted on a daily basis, and depending on whether 
they amount to one threshold or another, they are counted as green, yellow, or red. This data is abundant and can be 
used to improve the models. Furthermore, in credit risk, the scarcity of defaults means that a time series usually contains 
only up to ten annual data points, such that the confidence in the credit risk estimates is significantly lower than in the 
market risk estimates. To correct this weakness, there is the possibility of counting the errors based on the rating migra-
tions observed for the debtors, since there will be a higher frequency of observed data. In any case, if a bias is identified 
in the quantification of risk, it must always be adjusted, beyond the estimation’s own margin of error, by establishing a 
margin of conservatism.
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such challenges and utilize new data sources, which are particularly relevant to financial 
authorities because of their potential to impact data privacy.13

Market conduct

Similarly, data quality and, in particular, all privacy-related matters are additional aspects 
to be considered by institutions when applying ML. According to the EBA (2020), one of 
ML’s main limitations concerns data quality. Institutions use their structured data as the 
main sources of information in predictive models, prioritizing compliance with privacy 
regulations and the availability of highly reliable data. It follows that, in the context of 
lending, there is no widespread use of alternative data sources (e.g., information from 
social networks), while advanced data analytics are used to some extent. To consider all 
these issues, the system of governance and monitoring of ML models acquires particu-
lar relevance, including some aspects such as transparency in the programming of algo-
rithms as well as the auditability of models and their use by different users within the 
institutions, from the management team to the analysts (see  Babel et al. 2019).

Finally, there are two areas, interpretability and control of biases, whose importance 
transcends statistical or technological evaluation, thereby influencing legal and ethical 
considerations with repercussions for clients and consumer protection. For instance, the 
proposal for a regulation of the European Parliament and the Council laying down har-
monized rules on artificial intelligence (European Commission 2021) explicitly classifies 
credit scoring as a “high risk” activity due to its potential economic impact on people’s 
lives. Therefore, from a supervisory perspective, these aspects mostly belong to the field 
of market conduct. Perhaps, these two additional factors represent ML’s most important 
new model risks with respect to traditional statistical models. Unlike traditional statisti-
cal models, most ML models are not inherently interpretable; therefore, we require post 
hoc interpretation techniques to evaluate their outcomes.14 However, these interpreta-
tion techniques can lead to misleading conclusions (Rudin 2019), and they have limita-
tions regarding controlling for biases (Slack et al. 2020).

In summary, we use the IRB system to place the list of factors that may constitute a 
source of model risk within its validation process. In Table 1 we group these factors into 
three categories: (1) statistics, (2) technology, and (3) market conduct.

Purpose of the model

Finally, we must reiterate the circumstance that any model risk-adjustment process 
should depend on, which is the actual use of the algorithm. We consider three possi-
ble use cases: credit scoring and monitoring, regulatory capital, and provisioning (IIF 
2019a).15 For instance, it might be argued that credit institutions usually enjoy greater 
flexibility when using statistical models for provisioning rather than in other fields, 
such as regulatory capital, although they must still comply with the regulations and 

13  See European Banking Authority (2017c).
14  We will introduce in “Quantifying the model risk” section some of the most popular of post hoc explanations tech-
niques. For a complete review of post hoc explanations of machine learning models, see Molnar (2019).
15  To this end, we disregard the potential use of ML techniques to build a master model by the supervisor to assist with 
the benchmarking task.
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principles of prudence and fair representation.16 In fact, provisions could be envisaged 
as an accounting concept governed by the International Accounting Standard Board.17 
Specifically, IFRS 9.B5.5.42 requires “the estimate of expected credit losses from credit 
exposures to reflect an unbiased and probability-weighted amount that is determined by 
evaluating a range of possible outcomes […] this may not need to be a complex analysis.” 
Similarly, it has been established that the information used to compute provisions can 
only be qualitative, although the use of statistical models or rating systems will be occa-
sionally required to incorporate quantitative information (IFRS 9. B 5.5.18). However, 
granting new loans or credit scoring is a field wherein the use of ML could have a greater 
impact because of the availability of massive amounts of data that could increase the 
value provided by more flexible and scalable models (see IIF 2019b). Nonetheless, pre-
cisely because of its importance, credit scoring is a field that is subject to special regula-
tion in particular market conduct rules,18 as is also the case with regulatory capital (see 
IIF 2019a).

Table 1  Components of ML model risk

Model risk components

Statistics
Stability

Hyper-parameters

Over-fitting

Dynamic calibration

Feature engineering

Technology
Transparency

Carbon-footprint

Third-party providers

Cyber-risk

Market conduct
Privacy

Auditability

Interpretability

Biases

16  In “An empirical example” section we run an empirical exercise to assess precisely this.
17  See Appendix 9 from Circular 04/2017, November 27th, Banco de España.
18  The EBA (2019b) guidelines on loan origination and monitoring determines that when technological innovation is 
used to grant credit, institutions must, inter alia, (1) manage the risks derived from the use of this technology; (2) evalu-
ate the potential bias that can be introduced into the decision-making process; (3) be able to explain the result ensuring 
their robustness, traceability, auditability and resilience; (4) document the correct use of the tool; and (5) ensure that the 
entire management team and analysts understand how it works. Based on the principle of proportionality, the national 
competent authorities will require documentation on the credit scoring models, and their level of understanding within 
the entity, both by managers and employees, as well as the technical capacity for their maintenance. Likewise, given the 
relevance of the use of this technology in the Fintech sector, the ECB (2018) incorporates the evaluation of structural 
aspects of the governance of the credit granting process, as well as the credit evaluation methodologies and the manage-
ment of the data. In fact, the use of AI (including ML) for credit scoring is one of the practical cases recently discussed 
by the Single Supervisory Mechanism (SSM) with the Fintech industry in one of its latest dialogues (May 2019).
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Quantifying the model risk
In this section, we propose a methodology to measure the perceived model risk from a 
supervisory standpoint when validating any ML-based system, which depends on the 
intrinsic characteristics of the ML algorithm and on the model’s intended use. The meth-
odology consists of two phases. First, we discuss the assignment of a score to a given ML 
model for each of the three risk categories. Second, we discuss how to assign a weight to 
each risk category for each analyzed use case by means of using the regulatory texts as 
the supervisor’s benchmark, and in the absence of a specific supervisor’s loss function 
or usefulness measure, as summarized in Sarlin (2013). Assuming that policymakers are 
not cost-ignorant and aim to facilitate innovation, we also acknowledge that they do not 
disclose their loss function, which describes the trade-off between not allowing a model 
to be deployed and permitting its use by financial institutions. Therefore, this second 
phase allows financial institutions to interpret the regulation in the absence of this infor-
mation from supervisors. Notwithstanding this, the output of our framework can only 
be read as a ranking of models based on their risk-adjusted performance, and it lacks the 
knowledge on which threshold value to choose in order to determine the optimal model.

First phase: computing the risk scores

In “Identifying the risks: compatibility of ML with the IRB validation process” section, 
we identified up to 13 factors that could constitute a source of model risk from the per-
spective of the supervisor during the validation process. We divided those factors into 
three categories: statistics, technology, and market conduct. For a given ML model, we 
assign a score in every category. The score ranges from 1 to 5, where 5 indicates the 
highest level of risk perceived by the supervisor when deciding whether to approve the 
model or not.

For each category, we focus on a subset of factors. In the statistics category we have 
selected “Stability” and “Hyperparameters,” in the technology category we have selected 
“Carbon Footprint” and “Transparency,” and in the market conduct category we have 
selected “Interpretability.” We deemed these factors as representative for two reasons. 
First, because they are highly relevant in their categories, and notably, their evaluation 
has implications for the other factors. Second, because they can be computed using any 
empirical database in the absence of prior information on specific characteristics of the 
financial institution under consideration, while for the remaining factors, we need addi-
tional information. In any case, we include a discussion on how we could potentially 
quantify the remaining factors in the “Appendix” section.

For the statistics category, we counted up to five factors: stability, overfitting, hyper-
parameters, dynamic calibration, and feature engineering or data pre-processing, hav-
ing selected “Stability” and “Hyperparameters” as highly representative. The first one, 
if we count the number of mentions of “Stability” in the regulatory documents we have 
collected (see “Second phase: assigning weights to risk categories” section for further 
details), has 6.4 mentions per document, much more than hyperparameters (0.2 times 
per document), overfitting (0.16), dynamic calibration (0.02), and feature engineering 
(0.33). Therefore, we consider it as a preferred candidate for quantification. There are 
different methods to measure the stability of a prediction. According to Dupont et  al. 
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(2020), the stability of the predictions can be understood as the absence of drift over 
time, the generalization power when confronted with new data, and the absence of 
instability issues during retraining. Either of these three descriptions works for our pur-
pose. However, because not every dataset contains temporal dimensions, we will focus 
on the second and third definitions, measuring the standard deviation of the predictions 
of the models when using different sample sizes, in particular, retraining the models 100 
times, each with different sample sizes, always keeping it within the range between 60 
and 100% of the training set. Thus, we can test the stability of the predictions. Addi-
tionally, we have also considered it relevant to count the number of hyperparameters, 
as this factor is used for calculations once the ML model has been trained and validated, 
and it might add valuable information on the remaining statistical factors, as it could be 
argued that all of them would somehow be linked to the size of the models. Finally, we 
show in the Appendix on pages 24 to 26 a suggestion on how the "Dynamic Calibration" 
could be computed, along with suggestions on how to calculate "Overfitting" and "Fea-
ture Engineering."

For the technology category, we counted up to four factors: transparency, carbon foot-
print, third-party providers, and cyber-attacks. We have selected “Carbon Footprint” as 
the most representative term because as we will explain below, with its calculation we 
could get an approximation of the magnitude of the remaining factors in this category, 
as all of them rely on the required computer power to run the algorithms. We measure 
it through the model training latency, that is, how long in seconds it takes to train the 
model. For the sake of completeness, we also consider the “Transparency” of the models 
by first distinguishing between parametric and nonparametric models. Among the non-
parametric models, we consider that deep learning models are more complex than tree-
based models because the number of parameters to estimate is higher. However, while 
the calculation of the risk factors "third-party providers" and "Cyber ​​risks" will depend 
on the specific dataset and the particular circumstances of the financial institution, they 
share with “Carbon Footprint” the underlying importance of the computer require-
ments. The longer it takes to train a model, the more likely it is that the user needs some 
cloud service (thus increasing the risk of the third-party provider), and the more prone 
processes can be to cyber-attacks. We further discuss how we could potentially calculate 
these two technological risk factors in the “Appendix” section.

For the market conduct category, we counted up to four factors: privacy, auditability, 
interpretability, and bias. We have selected “Interpretability” as the most relevant term 
in the category. We assign a score for “Interpretability” to a given ML model using the 
latency (number of seconds) of the computation of the SHAP values for the explana-
tion of the results. SHAP (Lundberg and Lee 2017) is an interpretability technique that 
allows for the global and local interpretation of any model. There is an ongoing debate 
on the efficacy of SHAP as an ML interpretation tool (see the “Literature review” sec-
tion). In any case, SHAP, along with permutation feature importance, is one of the most 
popular options for interpreting complex ML models. If we use an ML model to predict 
a target variable based on a set of features, SHAP can rank all the features depending 
on their importance in the final prediction. The ranking of a given feature depends on 
its contribution to the predicted result in a particular observation, compared with the 
average prediction. These contributions are known as Shapley values. Once the Shapely 
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values for each feature and each instance have been computed, we can obtain the overall 
SHAP importance by adding them together.19

Both SHAP and permutation feature importance have advantages and limitations 
(Molnar 2019), but it seems that SHAP, despite its drawbacks, is gaining popularity as 
the leading global interpretation technique (Hall et al. 2021). While SHAP can deliver 
a clear ranking among features, it is computationally expensive. Therefore, we consider 
that the time and resources required to execute SHAP could be a good proxy for how 
easy it is to interpret a model. To the best of our knowledge, this is the first attempt 
to use a standard explainable artificial intelligence technique, common in the academic 
literature, in the supervisory model validation process to provide assistance to market 
participants interpreting the regulation.

To calculate the remaining risk factors in the market conduct category, we need infor-
mation that may not be included in all the databases. For example, to calculate "Bias,” we 
would need information from features’ labels, and these features should contain sensi-
tive information. It is not always possible to access this type of information. In any case, 
we consider that our “Interpretability” score can be a reference for the rest of the risk 
factors in the market conduct category, as understanding how easy it is to interpret a 
model could be a proxy itself for how easy it would be to detect biases, the probability 
of breaching privacy rules, and the traceability of the model. We discuss how we could 
potentially calculate "Bias,” "Privacy," and "Auditability" in the “Appendix” section.

Second phase: assigning weights to risk categories

How important should each category be when determining the risk in the ML model? In 
the second phase, we assign weights to each category depending on the purpose of the 
model. We consider three possible use cases: regulatory capital, credit scoring and mon-
itoring, and provisioning. For example, it could be argued that interpretability should 
matter more if the purpose of the model is to grant new credit, but less if the purpose is 
to compute provisions on outstanding loans.

The ideal way to carry out this exercise would be to know the real preferences of 
supervisors when assessing these three risks. However, these preferences are unknown 
or ambiguous at best. Therefore, we propose a method to estimate weights for the risk 
categories that reflect their actual regulatory importance in each possible model use. 
For each risk category, we create terminology with a list of representative words (plus 
their lemmatization) associated with the category based on expert knowledge. The lists 
are provided in the Appendix Table 11. We include 54 words for the statistics category, 
30 words for the technology category, and 51 words for the market conduct category. 
Although this list is not exhaustive, we aim to obtain a representative sample of words 
for each category. Thereafter, we select a sample of regulatory documents referring to 
each of the three possible use cases (capital, credit scoring, provisioning) and a set of 
documents that we assume belong to a common area, as they refer to all possible uses 

19  To compute the Shapley value of a feature of interest for a given instance, we start by considering all possible coali-
tions of features that exclude the feature of interest, including the empty set. For all those different coalitions, we com-
pute the difference in the predicted outcome with and without the feature of interest. The Shapley value of the feature of 
interest is the weighted average of the differences in the predictions among all coalitions. When the number of features 
is high, the number of coalitions can be almost impossible to manage, and that is why there are several techniques for 
approximating the results.
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of the model. A methodical search for each purpose of the models has been conducted 
in the repository of the European Banking Authority, Basel Committee on Banking 
Supervision, and European Central Bank. Further documents referring in particular to 
artificial intelligence have been included, as a recent proposal from the European Com-
mission (“Artificial Intelligence Act”) or working papers from central banks (e.g., Bracke 
et al. 2019; Dupont et al. 2020). Finally, some guidelines from auditors or international 
institutions, such as the World Bank, have been selected because of their reliability. The 
selection of texts includes binding requirements and non-binding recommendations. 
This list is included in Table 12 of the Appendix. The weight of the risk categories in each 
use of the model depends on the number of times the terms of the category are men-
tioned in the model’s use documents.

Consequently, we have three risk categories (statistics, technology, and market con-
duct), and four sets of regulatory documents (capital, credit scoring, provisions, and 
common area). Let us call Hi,j,k the percentage of words from risk category i over all 
words of document k belonging to a set of documents j:

where Wi,j,k refers to the number of times a word from risk category i appears in docu-
ment k from the set of documents j, and Nk is the total number of words in document 
k. We call Hi,common the overall frequency of risk category i in the common area set of 
documents:

where Mcommon refers to the number of documents collected from a common area. 
Finally, we compute the overall relative frequency of risk category i in a model using j as:

 where Mj is the total number of documents analyzed for model use j.
In Fig. 3 and Table 2, we compare the overall relative frequency of words for each risk 

category: capital, credit scoring, and provisions. Our results show that the statistics risk 
category is more important for capital requirements, whereas technology and market 
conduct risks are more important for credit scoring. Another key insight is that while 
capital and credit scoring have approximately 14% of the percentage of mentions of the 
three risk categories, provisions has only 12%. This may indicate that provisioning is the 
area with the lowest perceived supervisory model risk.

Are these differences significant? In Table 3 we check if the average intensity of the 
categories is significantly different across the model´s uses. We perform a t-test based on 
the following T statistic, built under the null hypothesis that two means of the popula-
tions are equal.

Hi,j,k = Wi,j,k/Nk

Hi,common =

Mcommon

k

Hi,common,k/Mcommon

Hi,j =

Mj
∑

k

Hi,j,k/Mj +Hcommon
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where Mean1 and Mean2 are the mean values ​​of each sample, s1 and s2 are the standard 
deviations of the two samples, n1 and n2 are the sample sizes of the two samples, and n-1 
are the degrees of freedom. With the T statistic value and degrees of freedom, we can 
compute the corresponding p-values of every possible comparison of means. The p val-
ues are shown in Table 3. It can be seen that the differences between capital and credit 
scoring are significant for statistics and market conduct, the differences between capital 
and provisions are significant for statistics and technology, and the differences for credit 
scoring and provisions are significant for technology and market conduct. We recog-
nize that the number of mentions of these risk factors in the selected documents may be 
insufficient to reflect their importance. Therefore, we perform a robustness analysis, in 
which, instead of counting the number of times the risk terms appear in the documents, 
we count the number of negative words that surround each mention of those terms. In 
this way, we can capture the intensity with which the terms appear (counting the times 
they appear in the documents) and the tone toward them (counting the negative words 
that surround them). The results are presented in the Appendix, “Robustness exercise: 
sentiment analysis” section, in this document, and they complement the results of the 
benchmark exercise. We leave the construction of a more complex sentiment analysis on 

Tstatistic =
Mean1 −Mean2

√

S2
1

n1
+

S2
2

n2

Table 2  Overall relative frequency of categories in model uses

Statistics Technology Market conduct Total

Capital 7.90% 2.50% 3.75% 14.15%

Credit scoring 6.41% 3.09% 5.13% 14.63%

Provisions 6.38% 2.36% 3.90% 12.64%
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the perception of statistical, market conduct, and technological risks in different uses of 
the model for further investigation.

Once we have computed the score of the ML models for each risk category and the 
relative importance of risk categories for each possible use case, we can define the super-
visory model risk of the ML algorithm m for use j as follows:

where Zi,m is the darkness score (after the black box definition surrounding ML) of 
model m for risk category i, and Hi,j is the overall relative frequency of risk category i in 
a model use j.

For instance, the darkness Z of model m in the category i = statistics, should capture 
the ordinal importance for the model validator of each risk factor (i.e., stability of pre-
dictions, number of hyperparameters, overfitting, dynamic calibration, and feature engi-
neering) between all models being evaluated. As every risk category will be calculated 
based on heterogeneous proxy variables with different measurement scales, we propose 
to leave at the discretion of the model validator (e.g., the supervisor) how to aggregate 
them into a single score Zi,m . For illustrative reasons, we will assume in Table 4 a discrete 
choice between the range [1,5] for each Zi,m . Assuming that we are comparing five dif-
ferent models, the darkest (riskiest) possible model would have a maximum value of 5 in 
every category. Therefore, we can compute the darkness score of any given model, nor-
malizing the respective Zi,m using the maximum score, and thus obtain a relative valua-
tion of the model riskiness.

Supervisory model riskiness for capital = (2 * 7.9 + 4 * 2.5 + 3 * 3.75)/(5 * 7.9 + 5 * 2.5 
+ 5 * 3.75) = 0.523.
Supervisory model riskiness for credit scoring = (2 * 6.41 + 4 * 3.09 + 3 * 5.13)/(5 * 6.4
1 + 5 * 3.09 + 5 * 5.13) = 0.554.
Supervisory model riskiness for provisioning = (2  *  6.38 + 4  *  2.36 + 3  *  3.90)/
(5 * 6.38 + 5 * 2.36 + 5 * 3.90) = 0.536.

The construction of the supervisory model riskiness is a multidisciplinary task that 
aims to quantify the requirements to comply with the regulation. While expert knowl-
edge of statistics and technology is required in the first phase to open the algorithmic 
black box, an in-depth understanding of financial supervision is key in the second phase 
to break down how the model fits into the regulatory requirements. Our scorecard 
offers a structured methodology for estimating this exercise from a neutral standpoint, 

Supervisorymodel riskm,j =

3
∑

i

Hi,jZi,m

Table 3  Hypothesis contrast (p value) about difference in mean values

Bold means that differences between model uses are statistically significant at 10% of significance level

Statistics Technology Market conduct

Capital versus credit scoring 0.0181 0.1897 0.003
Capital versus provisions 0.0133 0.0180 0.5618

Credit scoring versus provisions 0.9404 0.1097 0.0128
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identifying for the first time a set of risk categories and their corresponding risk compo-
nents that may be quantified using some proxy variables. Indeed, we assume no prefer-
ences from the supervisor or model validator for the weight of each risk category, which 
is estimated directly from the regulatory texts. This will allow supervisors to provide 
credit institutions with a neutral assessment of ML as a technology to be used in predic-
tive models in a standardized format.20 Notwithstanding this, further research is needed 
to investigate different alternatives to aggregate the identified proxy variables into each 
score Zi,m.

An empirical example
In this Section, we propose an empirical example of the framework using a database 
available at Kaggle.com, called "Give me some credit". It contains data on 120,000 granted 
loans. For each loan, a binary variable indicates whether the loan has defaulted. Addi-
tionally, 11 characteristics are known for each loan: borrower age, debt ratio, number of 
existing loans, monthly income, number of open credit lines, number of revolving credit 
accounts, number of real estate loans, number of dependents, and the number of times 
the borrower has been 30, 60, and 90 days past due. To capture nonlinear relationships, 
we include the square of these characteristics as additional variables until we have a total 
of 22 explanatory variables. We apply the framework to five of the models that appear 
most frequently in the academic literature on credit default prediction: penalized logistic 
regression via LASSO, decision tree, random forest, XGBoost, and deep neural network. 
The deep learning model used in our study is an artificial neural network in which we 
consider the possibility of having three to six hidden layers. Therefore, we use a mul-
tilayer perceptron model, where the number of hidden layers and nodes in each layer 
has been chosen according to proper cross-validation to obtain the largest AUC in the 
validation sample. In particular, we divide our data into training (80%) and testing (20%) 
sets. We choose the hyperparameters for each model that maximize the AUC-ROC out-
of-sample through a fivefold cross-validation. The hyperparameters of each model are as 
follows: the depth of trees for CART (7), the depth of trees and the number of trees for 
random forest (20 and 100, respectively), the depth of trees and the number of trees for 
XGBoost (5 and 40), and finally the optimal number of hidden layers (3) and nodes (300, 
200, and 100), while activation functions would be rectified linear unit for the hidden 
layers and sigmoid for the output layer, and the optimization method is Adam.

Table 4  Example scorecard of a model risk assessment

Risk category Darkness Score % Regulatory 
capital

% Credit scoring % Provisions

Statistics 2 7.9% 6.41% 6.38%

Technology 4 2.5% 3.09% 2.36%

Conduct 3 3.75% 5.13% 3.9%

20  This challenge is not the first of its kind to occur in financial supervision. For instance, when assessing the capital 
requirements for market risk, supervisors have agreed on the methodology (i.e.: Value-at-Risk, or Expected Shortfall) 
but discretionally assume that in the back testing the surcharges due to deviations from the estimations are calculated 
simply by using a traffic-light test, BIS (1996).



Page 18 of 35Alonso Robisco and Carbó Martínez ﻿Financial Innovation            (2022) 8:70 

As mentioned before, we will use a subset of five risk factors that we deem representa-
tive of each risk category to showcase this methodology. In “First phase: computing the 
risk scores” section, we provide a comprehensive explanation of why we choose these 
five proxies. In summary, we selected factors that could be representative of their cor-
responding categories, which could be estimated using a common credit database and 
in the absence of prior information on specific characteristics of the financial institution 
under consideration. In the “Appendix” section, we suggest a method for quantifying the 
remaining components of model risk. We leave for future research a deeper discussion 
on the calculation of these factors.

Our results for the scores of the five aforementioned models are shown in Table 5 and 
in Fig. 4 we map the assessed riskiness of each model per risk factor into a scorecard.

Model risk

We calculate the score for statistics based on the models’ stability and the number of 
hyperparameters, as these two factors stand out as highly relevant in this category (see 
“First phase: computing the risk scores” section for a detailed explanation of this). For 
the stability of the predictions, we show the standard deviation in the AUC-ROC for 100 
simulations with different train–test partitions. It can be seen that the models with the 
highest standard deviations are deep learning and CART, whereas the models with the 
lowest standard deviations are LASSO and XGBoost. Computing the number of hyper-
parameters is straightforward, that is, the LASSO model with the lowest need for hyper-
parameters and the deep learning model with the highest need. Considering the values 
for these factors, we assign a score of 1 to LASSO, a score of 2 to XGBoost, a score of 3 
to both CART and random forest, and a score of 5 to deep learning. As mentioned in 
“Quantifying the model risk” section, we aggregate the estimations of each proxy vari-
able in each risk category into a single score using expert knowledge.21

The technology score will depend only on the models’ transparency and on the latency 
of the training, measured in seconds (see “First phase: computing the risk scores” section 
for an explanation of why we focus on those two factors). For the model´s transparency, 
following our explanation in “Literature review” section, LASSO falls into the category 
of parametric models, CART into nonparametric models, random forest and XGBoost 

Table 5  Scorecard phase 1: “measuring the darkness of the algorithmic black-boxes”

Lasso CART​ RF XGBoost MLP

Statistics Stability (SD) 0.001 0.005 0.003 0.001 0.002

Number hyper-parameters 0 1 2 2 + 5

Darkness Score 1 3 3 2 5

Technology Latency training 3.92 s 0.67 s 19.25 s 1.29 s 31.42 s

Transparency 1 2 3 3 5

Darkness Score 1 1 3 2 5

Market conduct Latency SHAP 0 0 60 s 8 s 2000 s

Darkness Score 1 1 2 2 3

21  c.f. footnote 20.
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into the category of nonparametric ensemble models, and finally, deep learning falls into 
the most complex category. Considering the latency of training, we assign a score of 1 to 
LASSO and CART, 2 to XGBoost, 3 to random forest, and a score of 5 to deep learning.

The score for market conduct will be calculated based on the latency of the SHAP 
method measured in seconds, as we find this as a good proxy for the feasibility of inter-
preting a black box model, and therefore how easy it would be to spot biases and audit 
them (IIF 2019c), capturing the interconnectedness between all risk market conduct risk 
factors (see “First phase: computing the risk scores” section for a detailed explanation).22 
As mentioned in “First phase: computing the risk scores” section, for a given ML model, 
SHAP is a technique that allows us to rank the features according to their contribution 
to the predicted result for a particular instance, compared to the average prediction 
of the entire dataset. These contributions can be added to obtain the final importance 
of the features (for more details, see “First phase: computing the risk scores” section). 
Therefore, SHAP allows us to interpret the decisions and predictions of any ML model. 
However, evaluating SHAP contributions is computationally expensive. Therefore, we 
consider the time (latency) required to implement SHAP to be a good signal of how easy 
it is to interpret an ML model. Because interpretability is one of the main issues in mar-
ket conduct risk, we consider that SHAP latency can be used as a good proxy for this 
category. While we are interested in the time it takes to compute the SHAP values, we 
include in Figs. 6 and 8 of the Appendix, the results from the application of SHAP to the 
ML models.

Because LASSO and CART are interpretable models, we assign them a score of (1). 
For XGBoost and random forest, we assign a score of (2) because the latency of the 
SHAP method is relatively low. We assign a score of (3) to deep learning because of the 
long time it takes to calculate its SHAP values.

Once we assign the score to each category for the five models, we use the weighting for 
different use cases to compute the overall model risk, as shown in Table 6. Independent 
of the purpose of the model, LASSO has the lowest model risk and deep learning has 
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22  In any case, as mentioned before, we suggest a way to compute each remaining factor separately in the “Appendix” 
section.
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the highest. CART has a higher model risk than XGBoost for capital (owing to its poor 
stability) and a lower perceived model risk when using it for provisioning and credit. 
Provisions is the purpose with less model risk from a supervisory perspective, especially 
for deep learning, thus reflecting the flexible nature of statistical modeling regulation in 
this area. The net amounts of regulatory requirements for credit scoring and capital are 
very similar. While the statistical requirements for credit scoring are lower than those 
for regulatory capital (6.41% vs. 7.9% frequency of terms’ occurrence), this is offset by 
the higher level of requirements regarding market conduct issues in this area, which has 
a frequency of occurrence of 5.13% in our texts, compared to 3.75%, respectively. How-
ever, the level of implementation observed in the industry nowadays indicates that credit 
scoring is a field in which ML is being deployed more actively (see IIF 2019a). This could 
imply that the statistical requirement represents a barrier to the introduction of ML in 
the short term, whereas the need for interpretable results of ML (associated with market 
conduct requirements) represents a challenge in the medium term.

Gross predictive performance

There are different methods to compute the prediction gains of an ML model. As we 
showed before, one of the most popular measures, and the one we will use, is to compare 
the statistical performance of the models using the AUC-ROC metric.23 The results are 
presented in Table 7, where we show the increase in the AUC-ROC of each model with 
respect to the one achieved by logit.24 XGBoost is the model with the largest gain in 
terms of prediction, approximately 5% in the AUC-ROC, followed by the random forest 
with 4%, and deep learning with 1.7%. CART and LASSO have 0.4% and 0.2% gains on 
average, respectively, compared with logit. This ranking based on AUC-ROC gains is in 
line with the results from the literature reviewed in Fig. 1, where the models with the 

Table 6  Scorecard phase 2: computing the supervisory riskiness for regulatory capital

Lasso CART​ RF XGBoost MLP

Statistics 1 3 3 2 4

 Capital: 7.9%

 Credit: 6.41%

 Provisions: 6.38%

Technology 1 1 3 2 5

 Capital: 2.5%

 Credit: 3.09%

 Provisions: 2.36%

Market conduct 1 1 2 2 3

 Capital: 3.75%

 Credit: 5.13%

 Provisions: 3.9%

Supervisory model risk capital 14.15 29.95 38.7 28.3 55.35

Supervisory model risk credit 14.63 27.45 38.76 29.26 56.48

Supervisory model risk provisions 12.64 25.4 34.02 25.28 49,02

23  Other measures include GINI, Kolmogorov–Smirnov or the confusion matrix.
24  The average AUC-ROC for Logit is around 80%
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highest prediction gains are XGBoost and random forest, and deep learning does not 
necessarily predict better than the other algorithms. Because our dataset lacks a time 
dimension, it is not possible to calculate the predictive performance using reinforcement 
learning algorithms or convolutional neural networks.25 Although this particular rank-
ing among ML models may change when other databases are used, our exercise provides 
a quantification of the predictive gains that will assist us in the challenge of measuring 
the risk-adjusted performance of these models.

Model risk‑adjusted predictive performance

Once we know the model risk of the algorithms (Table 6) and their gross predictive per-
formance (Table 7), we plot their risk-adjusted performances in Fig. 5. CART shows a 
moderate increase in predictive performance with respect to logit, but it does show a 
considerable increase in riskiness. However, while random forest and XGBoost have 
similar levels of riskiness compared to CART, they display a better predictive perfor-
mance. In any case, XGBoost clearly outperforms the other models as the most risk-
efficient. This is driven by the good results of this model in terms of the computational 
power required (approximated by the latency), comprehensive statistical nature (stabil-
ity of predictions), and interpretability (quantified using computability of SHAP values), 
which allows it to be a well-balanced solution for the regulatory requirements for all 
purposes, compared to the rest of the ML models. In any case, this exercise should be 
complemented with more advanced calculations of the performance of the ML models 
as, for instance, it might be argued that the benefits of being able to classify better credit 
defaults are more important in credit scoring than in capital, or that the calibration of 
the models (which might behave differently depending on the level of PD) will be crucial 
for computing provisions (expected loss, i.e., higher PD) or capital (unexpected loss, i.e., 
lower PD). Therefore, more research should be conducted on this dimension (Alonso 
and Carbó 2021). Furthermore, this exercise refers only to the supply side of the ML 
models. To find an “optimal model” in equilibrium, we should strike a balance with an 
indifference curve representing supervisors’ preferences.

This empirical exercise shows the potential for this methodology to discern the impor-
tant factors inside the “algorithmic black box,” and connect them in a realistic manner 

Table 7  Results of the estimated AUC-ROC using “Give Me Some Credit” dataset

Logit Lasso CART​ Random forest XGBoost MLP

AUC-ROC 80% 80.2% 80.4% 84.2% 85.3% 81.7%

AUC-ROC
95% interval

79.3%
80.7%

79.6%
80.8%

79.7%
81.2%

83.7%
84.8%

84.8%
85.8%

81%
82.3%

AUC-ROC (differ-
ence with logit)

– 0.2% 0.4% 4.2% 5.3% 1.7%

25  Unlike supervised algorithms, reinforcement learning algorithms receive an assessment for each given response, 
and learn based on the reward or punishment they receive for hit or miss, so the time dimension of loans would be an 
essential variable for reinforcement learning. Instead, we extrapolated in “Model risk-adjusted predictive performance” 
section the prediction gains for reinforcement learning as a function of the gains from Deep Learning (deep neural net-
work).
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with the regulatory requirements to obtain a transparent result that is easier to commu-
nicate to the banking industry.

Conclusion
According to recent surveys, credit institutions in the field of credit risk management 
are at different stages of ML implementation. These range from the calculation of regula-
tory capital to credit scoring or estimation of provisions. In this environment, financial 
authorities face the challenge of allowing financial institutions and clients to maximize 
the opportunities derived from progress and innovation, while observing the principles 
of technological neutrality, regulatory compliance, and consumer protection. To duly 
address this challenge, we present a framework to measure the model risk-adjusted per-
formance of ML used in the area of credit default prediction.

To calculate the model risk when evaluating the statistical performance of ML, we first 
identified 13 factors that could make this technology incompatible with the IRB valida-
tion system. We divided these 13 factors into three categories, statistics, technology, and 
market conduct, and described a procedure to assign a score to each category based on 
the ML model being used. The importance of these categories when calculating model 
risk depends on the use of the model itself (credit scoring, regulatory capital, or provi-
sions). We collect a series of regulatory documents for each use case, and, using NLP, we 
compute the importance of each risk category according to the intensity of mentions. 
We find that statistical risks are more important for regulatory capital, while technology 
and market conduct risks are more important for credit scoring. We tested our frame-
work to measure the model risk of five of the most popular ML algorithms, using a pub-
licly available credit default database. When comparing the model risk of each of them 
with their respective predictive performance in terms of the AUC-ROC, we can assess 
which of the ML models have a better risk-adjusted performance.

Thus, the evolution of ML in the financial sector must consider the supervisory inter-
nal model valuation process. It should also be in line with the explanatory needs of the 
results, something that the academic literature is promoting with important develop-
ments in the field of interpretable ML. Several challenges remain for further research. 
First, all variables in each risk category were measured methodically. Of particular inter-
est could be to investigate new approaches to capture the presence of risk factors in 
the regulatory texts relating to statistics, technology and market conduct. For instance, 
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using latent Dirichlet allocation (Blei et al. 2003) for topic modeling, or keyword discov-
ery (Sarica et  al. 2019) for semantic research could support the reproducibility of the 
results, as well as our methodology based on expert risk terminology. In addition, the 
benefits of employing ML models using larger datasets should be quantified. Integrating 
macro-prudential considerations into this assessment could be the cornerstone of any 
policy decision. For this purpose, further assumptions could be made regarding supervi-
sors’ preferences to assess how banks respond when choosing models with certain risks.

Appendix
On the computation of the remaining components of ML model risk

Statistics

Overfitting is a problem that arises when the predictive model has poor generalization 
performance. The more specialized the model is on the training data, the less it can gen-
eralize on new test data. To calculate the overfitting, we can compare the performance 
of the model (the loss function) on the train sample and on the test sample after each 
update during training or after including more data. The graphical representation of this 
comparison is called the "learning curve". We might consider an overfitting problem to 
exist if the training loss plot decreases with experience, while the validation loss plot 
does not decrease, or decreases to a point and starts to increase again.

Dynamic calibration refers to the need to re-train the model as new data is fed con-
tinually into the system. While a static model can be trained offline, a dynamic model 
adapts to changing data which requires to be trained online, incorporating new obser-
vations through continues updates. Today, thanks to new technologies, many sources 
of information actually change over time, so the more features the model has, the 
greater the need to monitor the input data for changes. In this sense, since ML is capa-
ble of handling larger amounts of data (EBA 2020), we could represent this risk compo-
nent by counting the number of features that the model has in production, after data 
pre-processing.

Feature engineering is necessary in those ML models that require the transformation 
of input variables or features to work correctly or to improve their performance. On the 
other hand, by transforming the variables and not dealing with raw data, we could lose 
control over their economic sense.

A non-exhaustive list of techniques considered as feature engineering could include: 
(1) Data imputation (numerical and categorical), (2) Handling outliers (cap or drop the 
observation), (3) Binning, (4) Log transformation, (5) One-hot encoding (transform a 
categorical variable into a set of binary values), (6) Grouping observations (e.g.: highly 
correlated variables), (7) Feature split, (8) Scaling (either normalizing or standardizing), 
or (9) extracting a date. One way to calculate the feature engineering risk factor for dif-
ferent ML models could be to assess how sensitive the performance of ML model is to 
some of the aforementioned techniques.

Technology category

Third party-providers constitutes a risk exposure to the extent that an institution cannot 
control the outcome of a service within its own in-house risk framework. This would be 
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subject to the characteristics of the IT system and human capital of each institution. The 
more complexity the ML model presents, the higher the probability that an institution 
requires outsourcing to an external SaaS26 provider. This could be proxied by a dummy 
variable if an ML model requires outsourcing or not.

Cyber-risk is a sub-class of third-party provider risk, but due to its potential impact it 
deserves to be evaluated separately. Our aim is to assess a potential change in the risk 
exposure if an institution requires too much computational power (number of opera-
tions per second) forcing it to shift from in-house deployment to cloud services.

Usually preparing an ML model for production involves four steps: (1) Pre-processing 
input data, (2) Training the model, (3) Storing the trained model, and (4) Deployment of 
the model. Clearly, training the ML model is the most computationally intensive task, 
especially for Deep Learning. In this scenario, we define cyber-risk as cloud migration 
risk (Akinrolabu et al. 2019), which could be evaluated as the marginal contribution of 
a single ML model to the total computational requirements of the overall models cur-
rently in production in the institution.

Market conduct category

Privacy refers to the legal mandate to protect personal data, as any piece of informa-
tion that relates to an identifiable person. Both in the US27 and EU28 institutions must 
comply with strict security and privacy requirements, as regulators strive to protect 
discrimination in credit decisions by automated systems. The fact that ML models can 
better unravel patterns in consumer data has raised concerns about whether they might 
be unintentionally using sensitive information to generate the predictions. In this con-
text, the notion of data minimisation (to collect as little data as possible and hold it for 
as short a time as possible according to the purpose for which it was collected) arises. 
This runs against ML as an enabler of big data analysis, and requires a qualitative assess-
ment on the probability of each model being able to comply with current legal require-
ments. This would depend on variables such as the number of features, the number of 
transformations during data pre-processing and the frequency of updates in data feed-
ing, as well as in-house characteristics of the financial institution regarding data storage 
architecture.

Auditability is required to comply with model risk governance regulation both in US29 
and EU.30 Institutions must be able to ensure the robustness, traceability, auditability 
and resilience of the models. This would include dealing with issues like time or stor-
age limitations for deployment, and production bottlenecks in delivering certain models 

26  Software as a System.
27  See for instance Smith (2020), detailing the work of the Federal Trade Commission on privacy and data security in 
artificial intelligence.
28  The EU’s General Data Protection Regulation (GDPR) defines in Article 4 “personal data” as any information relating 
to an identified or identifiable natural person. An identifiable natural person is one who can be identified, directly or 
indirectly, in particular by reference to an identifier such as a name, an identification number, location data, an online 
identifier or to one or more factors specific to the physical, physiological, genetic, mental, economic, cultural or social 
identity of that natural person.
29  The Federal Reserve Board’s Supervisory & Regulation Letter 11-7 is often used to refer to all three US agencies’ guid-
ance.
30  See for instance EBA (2019b), on Loan Origination and Monitoring, and  EC (2021) with the proposal for a regulation 
of the European Parliament and of the Council laying down harmonised rules on artificial intelligence (artificial intel-
ligence act).
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to the market, as well as an adequate understanding by the management. This becomes 
a challenge for ML, which require re-training of models, and complex statistical pro-
cesses. Therefore, an idea would be to use surrogate models, as a solution that mimics 
the decision boundary of an original complex model, but through interpretable or “white 
box” models as regressions or simple classification trees. New techniques are now avail-
able that attempt to copy the behaviour of ML models, retaining the original accuracy, 
but including desired characteristics like interpretability, or reduced number of features 
(see Unceta et al. 2020). Following this rationale, if a sufficiently accurate copy of an ML 
model could be found, then we could conclude that there exists a low level of auditability 
risk.

Biases and potential discrimination in credit decisions by automated systems raised 
early concerns within regulators both in US31 and EU.32 Institutions need to ensure that 
any model’s decision does not rely upon any protected characteristic of an individual. 
In this context, new ML interpretability techniques, like counterfactuals, are showing 
promising results, as mentioned in Wachter et al. (2017). The underlying idea would be 
to use adversarial perturbations by generating synthetic data points close to an existing 
one (e.g.: race, either white or black) such that the new instance is classified differently 
than the original one. For example, a counterfactual analysis could suggest for a particu-
lar classifier to change the race only to “black” people in order to alter the outcome of 
the model, while not suggesting that “white” people’s race should be varied. If the result 
of the counterfactual analysis shows that there is some discriminant variable that affects 
the result of an ML model, then we consider that there is a risk of bias for that model.

SHAP results from empirical exercise

As we discussed in the main text, SHAP is an interpretability technique of ML models 
that allows us to classify characteristics according to their contribution to the predic-
tion of the ML model. It is model agnostic, so it could be applied to the result of any 
ML modelling technique. Executing this method requires a considerable amount of 
time. For this reason, we view the time it takes to run SHAP as a signal of market con-
duct risk. Therefore, in our framework, what we are mostly interested in is the latency 
measured in seconds of SHAP execution for different ML models. In this Section, we 
show for illustrative purposes the results of SHAP when applied to Random Forest, 
XGBoost, and Deep Learning in our empirical exercise. The results are in Figs. 6, 7 
and 8. Features are ranked from most important to least important. The colour red is 
associated with high values of the feature, and the colour blue is associated with low 
values ​​of the feature. On the x-axis we can find the impact of the features on the out-
put of the ML model. To understand these numbers, we can take a look at Fig. 6. The 

31  The Equal Credit Opportunity Act (ECOA) prohibits discrimination in “any aspect of a credit transaction” for both 
consumer and commercial credit on the basis of race, colour, national origin, religion, sex, marital status, age, or certain 
other protected characteristics, and the Fair Housing Act (FHA) prohibits discrimination on many of the same bases in 
connection with residential mortgage lending.
32  European Commission’s Guide to Ethical Principles of AI (2019) cites the principle of explicability of algorithms as 
one of the critical elements, and in accordance with the European General Data Protection Regulation (GDPR) Article 
22 on automated individual decision-making, including profiling, the data subject shall have the right not to be subject 
to a decision based solely on automated processing, implying that decisions […] shall not be based on special categories 
of personal data and pointing to the need to include human judgement in any decision-making process (i.e.: data con-
troller).
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fact that "NumberOfTimpes90DaysLate" appears first means that, on average, it is the 
characteristic with the greatest impact on the Random Forest predictions. The higher 
the values ​​of this characteristic, the greater the impact on the model. This is the 
opposite of what happens to "Age". The higher the "Age", the lower the impact of the 
model. The ranking of features slightly changes from one model to another. The fea-
tures “NumberOfTimpes90DaysLate” and “NumberOfTime3-0-59DaysPastDueNot-
Worse” appear for the three models among the top three most important variables. 
But there are some discrepancies. For instance, “RevolvingUtilizationOfUnsecured-
Lines” appears as the most important variable for the outcome in XGBoost, but not 
for the output in random forest and deep learning. On the other hand, “Age” always 
appears the fourth most important variable, and its impact has always the same direc-
tion. We leave for further research the study of these discrepancies.

Robustness exercise: sentiment analysis

In our main exercise, in order to weight each risk category (statistics, technology, market 
conduct) for each possible use case (capital, credit rating, provisions), we first select a 

Fig. 6  SHAP interpretation of Random Forest in the empirical example

Fig. 7  SHAP interpretation of XGBoost in the empirical example
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series of regulatory documents for each use of the model, and then we count the num-
ber of mentions of terms related to statistical, technological and market conduct risks in 
those documents (see Table 11). We recognize that the number of times a term is men-
tioned in a document may not be indicative of its importance in the document, or of the 
sentiment in the document toward the term. For this reason, we complement our main 
analysis with the exercise that we report below.

Maintaining the same regulatory documents as in our main exercise, we now count 
the number of negative words surrounding each mention of terms related to statistical, 
technological, and market conduct risks in those documents. We use the dictionary by 
Hu and Liu (2004), which is a popular and comprehensive list of negative words in Eng-
lish with up to 4780 terms.33 Our goal is to weight the number of surrounding negative 
words by the number of mentions of the terms in every document.

Let i refer to the risk categories (statistics, technology, and market conduct), let j refer 
to the types of regulatory documents (capital, credit scoring, provisions), and k to any 
document. We count the number of negative words, if any, that are within d words34 of 
distance of each mention of terms from category i in each document of type j. We save 
that counting in vector Xk ,i,j , a vector with as many positions as mentions of terms from 
risk category i in document k of type j.

We then calculate Ti,j as the average number of negative terms in the d words sur-
rounding the mentions of terms from category i in the type j as follows:

where Xn
k ,i,j is the nth position of vector Xk ,i,j (i.e.: the number of negative words within d 

words of the nth mention of a term from category i in document k of type j), term Kj 
indicates the total number of documents on a type of regulatory documents j, and term 
Nk ,i,j indicates the number of mentions of terms from risk category i in document k of 
type j.

Ti,j =

∑Kj

k=1

∑Nk ,i,j

n=1
Xn
k ,i,j

∑Kj

k=1
Nk ,i,j

Fig. 8  SHAP interpretation of Deep Learning in the empirical example

33  We acknowledge, as stated by one of the creators of the dictionary, Bing Liu (2010), that the appearance of one or 
more negative words in a sentence that contains the term of interest does not necessarily imply a negative sentiment. 
Still, we believe the exercise serves us to approximate the interest.
34  We have tried different specification for parameter d, as d = 5, 10, 15 and 20.
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This way, instead of calculating the intensity of the appearance of the term, we meas-
ure the tone toward the term. The results are shown in Tables 8 and 9, for d = 10 and 
20 respectively (the results do not change substantially for different values ​​of d like d = 5 
or d = 15). In those tables we show the average negative words surrounding the risk 
terms by risk category and by use of the model. One of our main findings is that senti-
ment regarding technology and market conduct risks is more negative for credit scoring 
than for regulatory capital and provisions. In documents related to credit scoring, terms 
related to technology and conduct risk tend to be more surrounded by negative terms 
(1.06 and 0.96 negative words for every 10 words, and 2.04 and 1.76 for every 20 words) 
than in documents related to capital or provisions. This is true even though credit scoring 
documents have the lowest percentage of negative words out of total words, as shown in 
Table 10. This is in line with our main analysis. The terms related to technological risks 
and market conduct risks appear more frequently and with more negative sentiment in 
documents related to credit scoring than in regulatory capital or provisions documents.

Second, there are fewer negative words around key terms in provisions documents 
than in regulatory capital or credit scoring documents (except for statistical risk). This 
effect is even more significant if we take into account that provisions documents are 
those with the most negative terms overall, by a wide margin (Table  10). Again, this 
supports our main exercise, in which we found that the mentions of risk terms for the 
three categories were lower for provisions, suggesting that provisioning is the category 
in which ML could has the lowest perceived risk. On the other hand, sentiment towards 
statistical risk in regulatory capital documents is no worse than in credit rating or provi-
sions documents. This is at odds with our main exercise, in which we consider statistical 
risk to be particularly relevant for regulatory capital. We leave the study of this result for 
future research.

Table 8  Average number of negative terms in the 10 words surrounding the key terms

Statistics Technology Market conduct

Capital 0.79 0.59 0.78

Credit scoring 0.93 1.06 0.95

Provisions 0.89 0.42 0.75

Table 9  Average number of negative terms in the 20 words surrounding the key terms

Statistics Technology Market conduct

Capital 1.53 1.17 1.46

Credit scoring 1.85 2.04 1.76

Provisions 1.76 0.96 1.38

Table 10  Percentage of negative words over total

Percentage of negative 
words over total words

Capital 3.87%

Credit scoring 3.09%

Provisions 4.88%
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Remaining figures

See Fig. 9 and Tables 11, 12 and 13. 
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Fig. 9  Calculation of regulatory requirements using NLP, for each model purpose
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Table 11  Terminology for each model risk category

Statistics Technology Market conduct

Stability Transparency Privacy

Over-fitting Carbon footprint Auditability

Over-fit External providers Interpretability

Hyper parameters Dependencies Biases

Dynamic calibration Cyber-risk Expert judgement

Feature engineering Third-party Expert personnel

Forecast Cloud Human judgement

Parameters IT system Human-in-the-loop

Test Legacy Human-on-the-loop

Calibration Infrastructure Governance

Features Computing Ethics

Explanatory variables Computational power Ethical

AUC​ Deployment Human

ROC in-house Compliance

Recall Development Management

Prediction Pilot Explainability

Logit ICT Internal control

Algorithm Architecture Knowledge

Scenario Resilience Consumers

Data quality Security Consumer protection

Back-testing Operational risk Discrimination

Benchmarking Outsourcing risk Uncertainty

Model Reversibility Accountability

Optimisation DevOps Market abuse

Dimensionality Software Complexity

Validation Hosting Decision making

Metrics Cyber-risk Soundness

Structured Model stealing Conduct

Unstructured Poisoning attacks Internal audit

Semi-structured Adversarial attacks Fairness

Classification Open-source Fair

Tree-based Diversity

Neural network Oversight

Regression Simplicity

Clustering GDPR

Support vector machine Transparency

Reinforcement learning Traceability

Parametric Opaqueness

Non-parametric Black-box

Performance Black boxes

Prociclality Surrogates

Train Trust

Training Trustworthiness

Volatility Influence

Tuning SHAP

Threshold Shapley

Cross-validation Independent conditional 
expectations

Compilation Partial dependence plots

Out-of-sample statistical ICE

Predictive PDP

Challenger model Complex

Correlation

Confidence level
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Table 12  Set of regulatory texts analysed, classified by purpose of the model

Capital

"Credit Portfolios and Risk-Weighted Assets: Analysis of European Banks". Trucharte et al. (2015). Estabilidad 
Financiera No 29. Banco de España
“Studies on the Validation of Internal Rating Systems”. BIS Working Paper No 14. Heitfield (2005)
“ The Internal Ratings-Based Approach. Supporting document of the New Basel Accord”.  BIS (2001)
“Implementation and Validation of Basel II Advanced Approaches in Spain”. Banco de España (2006)
“On the specification of the assessment methodology for competent authorities regarding compliance of an 
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