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Introduction and literature review
Financial theory stipulates that increased stock market movements lower the benefits 
of internationally diversified portfolios and, thus, cause domestic capital markets to 
be more vulnerable to external shocks. The literature measuring stock market move-
ments has rapidly gained ground; the necessity of searching for reliable measures of 
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movements has prompted researchers to use alternative approaches to measure move-
ments in international stock markets and to evaluate the persistence structure among 
the stock markets using a technique to consider the problem of stylized facts. In this 
regard, predicting the stock market is not an impertinent task. On the contrary, it is one 
of the most challenging applications in economics and finance. An ideal pattern in eco-
nomics and finance, the efficient market hypothesis (EMH) (Fama 1965) or the random 
walk behavior, does not support stock market predictability.

Nevertheless, as per the EMH implications, security prices or returns move randomly 
and indicate market participants’ rationality. Moreover, most of the empirical studies 
conducted in this stream of literature have examined the presence of serial depend-
ence and persistence volatility in financial time series, which have raised questions on 
the validity of the EMH. In reality, volatility and dynamics of persistence effect could be 
explained by the tail dependence of the underlying assets, which exhibits extreme events 
simultaneously. Fluctuation, volatility, the dynamics of persistence, and tail dependence 
are interrelated in the analysis of the dependence structure of international equity mar-
kets. Further, the correlations between consecutive returns decay slowly, that is, long-
range dependence in returns is exhibited. Therefore, it is necessary to test for long-range 
persistence before attempting to analyze the financial markets.

The long-range dependence phenomenon has raised a challenging problem in financial 
time series analysis, which has been the subject of extensive theoretical and empirical 
investigation over the past few decades. The presence of long-memory components in 
the generating mechanism of stock market returns is a key issue with important implica-
tions for risk management, the econometric modeling and forecasting of asset prices, 
portfolio allocation strategy, and testing for market efficiency hypothesis (see Al-Shboul 
and Alsharari 2019). Additionally, the long-memory property describes the high-order 
correlation structure of a given time series  (Hosking 1984). There is persistent tempo-
ral dependence even among distant observations if a series exhibits long memory. Such 
series are characterized by a slowly decaying autocovariance function and an unbounded 
spectral density function at the null frequency. Thus, long-memory models are very 
effective tools that can be used as diagnostic tests to explore, analyze, and understand 
the nature of the underlying dynamics in stock returns.

Several literature reviews have been concentrated on analyzing the characteristics 
of assets and the long-range dependence in financial data. Usually, this modeling of 
asset returns is adopted in univariate and multivariate contexts, and financial model-
ers are confronted with the task of measuring the dependencies within or between asset 
returns. Many studies have confirmed that the dependence structure within and among 
a set of series will vary substantially, ranging from independence to complex forms of 
non-linear dependence that would cover all these features (Kang and Yoon 2007; Adnan 
and Erdost 2007). To account for this typical behavior, Granger and Joyeux (1980) and 
Hosking (1981) introduced the Autoregressive Fractionally Integrated Moving Average 
(ARFIMA) process. Beran (1994) and Guégan (1994) conducted a review of the statisti-
cal properties of this flexible class of processes. The ARFIMA model succinctly captures 
the long-term dependence pattern by allowing the integration order of the conventional 
Autoregressive integrated moving average (ARIMA) models to take non-integer (i.e., 
fractional) values.
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Apart from the conditional mean of a time series, long-range dependence effects 
in the volatility process have also been widely investigated. Taylor (1986), Lobato and 
Savin (1988), Ding et al. (1993), Crato and Ray (2000), Ling et al. (2021), and Liang et al. 
(2021), among others, found strong empirical evidence for long (hyperbolic)-memory in 
the squared and absolute values of asset returns that are used as proxies for unobserved 
volatility. Baillie et al. (1996a, 1996b) proposed the Fractionally Integrated Generalized 
Autoregressive Conditional Heteroskedasticity (FIGARCH) model, which combines 
high temporal dependencies in second conditional moments with the virtues of a par-
simonious parameterization. Since then, the intuitive concept of a fractional unit root 
being present in the variance equation has been extended to other Generalized Autore-
gressive Conditional Heteroskedasticity (GARCH) type specifications resulting in a 
collection of long-memory adaptations such as the Fractionally Integrated Exponen-
tial GARCH (FIEGARCH) of Bollerslev and Mikkelsen (1996), Fractionally Integrated 
Asymmetric Power Autoregressive Conditional Heteroskedasticity (FIAPARCH) of Tse 
(1998), and Hyperbolic GARCH (HYGARCH) of Davidson (2004).

Recently, empirical research has focused on long-memory dynamics in the context of 
the conditional mean or conditional variance of financial time series. In a pioneering 
work, Teyssière (1997) introduced the double long-memory ARFIMA-FIGARCH model, 
which generates long-range dependencies in the first and second conditional moments. 
The hybrid specification is more than a simple juxtaposition of two fractional processes, 
that is, the joint estimation of the ARFIMA and FIGARCH components in the mean and 
variance equations; it proves to be crucial for estimation and forecasting issues. Teyssière 
(1997) employed two dual long-memory specifications, namely ARFIMA-FIGARCH and 
ARFIMA-FIEGARCH, to model the absolute returns on Treasury bill futures. Applica-
tions to high-frequency exchange rate returns have also been proposed by Teyssière 
(1998) and Beine et al. (2002). Baillie et al. (2002) showed that the ARFIMA-FIGARCH 
model is useful for describing monthly CPI inflation rates across several industrialized 
countries. Karanasos et al. (2006) investigated the integration properties of monthly US 
real interest rate and its uncertainty using an ARFIMA-FIAPARCH process.

Nevertheless, these models are not fully efficient in modeling the volatility of finan-
cial time series. The main feature of such data is the strong evidence of cyclical patterns 
in volatility. Empirical evidence highlights the importance of modeling the periodic 
dynamics of volatility. To fulfill this aim,  Bordignon et al. (2007, 2009) suggested a new 
category of GARCH models characterized by periodic long-memory behavior. This cat-
egory of models introduces Gegenbauer polynomials into the equation of the standard 
GARCH model, which are considered as the generalized periodic long-memory filters 
to estimate time-varying volatility. These processes are termed as periodic long-memory 
GARCH (PLM-GARCH) and generalized long-memory GARCH (G-GARCH). In the 
literature, G-GARCH models are applied to estimate the financial time series, for exam-
ple, the estimation of the exchange rate using Monte Carlo simulations (Bordignon et al. 
2007; Caporin and Lisi 2007).

Several empirical studies have been developed to examine the linkages among stock 
market returns using various econometric approaches. Previous studies relied on 
linear time series models to study short-term dynamics while other studies adopted 
multivariate techniques to test for a stable long-term relationship among stock 
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market indices. An important precondition for validating the linear models is the sta-
bility of the models and the invariability of the parameters over time. In particular, 
our approach considers that the processes are fractionally integrated and sufficiently 
powerful to distinguish between short-range dependence and long-range depend-
ence, thus providing more robust results than conventional modeling methodology. 
Hence, it is essential to specify the model to obtain meaningful forecasts when study-
ing the financial market.

Many investigations have been conducted on the use of forecast models and their 
ability to generate a better forecast. Particularly, forecasting financial assets and their 
volatility has considerably drawn researchers’ attention. Predictive abilities and the 
forecasting performances of models are the fundamentals of risk management and 
investment analysis (Poon and Granger 2005). Specifically, this study extends Yalama 
and Celik (2013), Duppati et al. (2017),  Borup and Jakobsen (2019), Ma et al. (2019), 
Dufitinema and Pynnönen (2020), Kaya Soylu et al. (2020), Abuzayed and Al-Fayoumi 
(2021), and Dum et al. (2021) by considering the class of long-memory models that 
has the advantage of capturing, in addition to time-varying volatility and asymmetric, 
leverage effect, and long-term seasonal component. Consequently, we contribute to 
the study by selecting a model that integrated stylized facts to reproduce the inher-
ent characteristics of stock markets series. Additionally, this study contributes to the 
existing studies by comparing the volatility forecasting models’ performances. More-
over, it examines the underlying features of some GARCH-type models to assess their 
predictive performance at different horizons.

This study aims to assess the statistical properties and volatility series of the daily 
stock market returns. We evaluate the performance of various dual long-memory 
processes in detecting several significant features such as long-range dependencies, 
asymmetries, non-linearity, and multiple seasonality or time-varying correlations. We 
include numerous stylized facts in the modeling approach to check the performance 
of these new models in reproducing and identifying characteristic features of stock 
market indexes. Further, most empirical studies were devoted to the developed mar-
kets; this study contributes to the limited literature on the emerging stock markets in 
general and the Gulf Cooperation Council (GCC) markets in particular. Moreover, 
the findings of this study would contribute to future studies on GCC stock markets by 
adding further insights into the inherent dynamics of these markets.

This study investigates the presence of fractional dynamics in the returns and vol-
atilities of six GCC stock market indexes, which include Bahrain, Oman, Kuwait, 
Qatar, Saudi Arabia, and the United Arab Emirates (UAE). Accordingly, a set of dual 
long-memory models reproducing an assortment of stylized features is used to fit the 
dynamic structure of the analyzed series. This study aims to evaluate the forecast per-
formance of various GARCH-type models at different horizons forecasting over the 
horizons ranging from 5 days, 10 days, and 15 days. Further, it studies the intrinsic 
characteristics that drive the forecasting performance of these GARCH models and 
their predictive abilities. The originality of this study lies in the following. First, we 
use the most recent sample period that allows us to account for different financial and 
economic circumstances. Second, we establish the new development of long-memory 
models in the analysis to examine the efficiency of GCC markets.
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The remainder of the paper is organized as follows. “Competing dual long-memory mod-
els” section summarizes the basic features of the dual long-memory specifications used in 
this study. “Statistical properties of the stock market return” section describes the datasets 
and emphasizes on their statistical properties. “Results” section presents the empirical 
results, models’ estimates, and a comparative study of the out-of-sample forecasting perfor-
mances of the selected models. “Conclusions” section provides the summary and conclud-
ing remarks.

Competing dual long‑memory models
This paragraph presents a collection of dual long-memory specifications that have been 
widely discussed in the literature and emphasizes some of their salient features. We suc-
cessively consider the ARFIMA-FIGARCH, ARFIMA-HYGARCH, ARFIMA-FIAPARCH, 
ARFIMA-HYAPARCH, and ARFIMA-G-GARCH models.

The ARFIMA‑FIGARCH model

The double long-memory ARFIMA-FIGARCH process models the analyzed series by 
inserting fractional filters in both the mean and variance equations. For the conditional 
mean, we fit an ARFIMA(p, d, q) specification considered by Granger and Joyeux (1980) 
and Hosking (1981) defined as follows:

where rt is the stock market return series, µ is the mean of the series, and dm is a frac-
tional number; θ(L) = 1− θ1L− · · · − θpL

p and φ(L) = 1+ φ1L+ · · · + φqL
q are the 

AR and MA polynomials in the lag operator of the respective orders p and q (with all 
roots lying outside the unit circle), which constitute the short-memory parameters 
and affect only the short-run dynamics of the process, while the fractional integration 
parameter dm detects the long-memory behavior of the process. Various cases are pos-
sible: if −0.5 < dm < 0 , the process is anti-persistent memory; if 0 < dm < 0.5 , the pro-
cess is stationary long-memory and possesses shocks that disappear hyperbolically; and 
if 0.5 ≤ dm < 1 , the process is non-stationary but mean-reverting with finite impulse 
response weights. When dm = 0 , the process reduces to the standard ARMA; when 
dm = 1 , the process becomes ARIMA and implies infinite persistence of the mean to a 
shock in the returns. �t−1 stands for the information set available at time t − 1 , whereas 
the residuals are assumed to follow the conditional distribution ( D).

In the variance equation, we retain a FIGARCH(P, δ,Q)-type adaptation,

where ht is the conditional variance of rt , ω is the mean of the process, dv is the fractional 
degree of integration of ht , and β(L) and ̟(L) are lag polynomials of respective orders 
P and Q . An interesting feature of the FIGARCH model is that it nests both the GARCH 
model (Bollerslev 1986) for dv = 0 and the IGARCH specification (Engle and Bollerslev 
1986) for dv = 1 . In the first case, shocks to the conditional variance decay at an expo-
nential rate with the lag length, whereas in the second case, shocks remain important for 
all forecast horizons, thus revealing infinite persistence behavior. If 0 < dv < 1 , there is a 

(1)θ(L)(1− L)dm(rt − µ) = φ(L)εt , εt |�t−1 ∼ D(0, ht),

(2)ht = ω +
{

1− (1− β(L))−1̟(L)(1− L)dv
}

ε2t ,
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long-term dependence in the conditional variance indicated by a hyperbolic decay of the 
autocorrelation and autocovariance functions.

It is noteworthy that FIGARCH-type processes, although strictly stationary and 
ergodic for dv ∈ [0, 1] , are not covariance stationary. Furthermore, the interpretation of 
the long-memory parameter δ is challenging in the FIGARCH setup (see Davidson 2004 
for additional details).

The ARFIMA‑HYGARCH model

To cope with the deficiencies inherent to the FIGARCH framework, Davidson (2004) 
introduced a more general class of long-memory GARCH processes called hyperbolic 
GARCH (HYGARCH). These processes allow for a faster non-geometric (hyperbolic) 
decay rate for which covariance stationarity would still be achievable.

The ARFIMA-HYGARCH model adopts Eq.  (1) in the first conditional moment, 
whereas the conditional volatility is modeled using a HYGARCH parameterization given 
formally by

Parameters α and dv are assumed to be non-negative. Under the condition α < 1 , if 
the GARCH component obeys the usual covariance stationarity restrictions (Bollerslev 
1986), then the resulting stochastic process is weakly stationary (see Davidson 2004 for 
further details).

The HYGARCH model nests the FIGARCH process for α = 1 and the stable GARCH 
process for α = 0 . It is notable that in the latter case, the fractional parameter dv is uni-
dentified, thus raising a problem in constructing hypotheses tests. Davidson (2004) 
stated that when dv = 1 , the parameter α reduces to an autoregressive root reproducing 
geometric memory case, that is, GARCH models for α < 1 and integrated GARCH spec-
ifications for α = 1 . Hence, testing the restriction dv = 1 allows discriminating between 
geometric memory and hyperbolic memory dynamics. In this case, the GARCH or 
IGARCH type specifications will correspond to α < 1 and α = 1 , respectively.

The ARFIMA‑FIAPARCH model

It should be noticed that the models FIGARCH and HYGARCH disregard an impor-
tant stylized fact inherent to financial markets: the “leverage effect” (Black 1976), which 
corresponds to negative correlations between past returns and future volatility. To con-
sider asymmetric volatility responses to positive and negative shocks and volatility per-
sistence behavior, Tse (1998) extended the Asymmetric Power GARCH model of Ding 
et al. (1993) by incorporating a fractional filter in the conditional variance equation. The 
obtained model is known as FIAPARCH.

In the following, we present the ARFIMA-FIAPARCH model, which generates 
long-memory properties in both the first and (power transformed) second condi-
tional moments. In this dual long-memory framework, the conditional mean is fitted 
by an ARFIMA-type adaptation (Eq. (1)), whereas the conditional variance equation is 
expressed as a powerful transformation of the standard deviation as follows:

(3)ht = ω +
{

1− (1− β(L))−1̟(L)
[

1+ α

(

(1− L)dv − 1

)]}

ε2t .
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where −1 < γ < 1 and δ > 0 . Here, the power term δ plays the role of a Box-Cox trans-
formation of the conditional standard deviation h1/2t  , while γ denotes the asymmetry 
coefficient accounting for the leverage effect. When γ > 0 , negative shocks give rise to 
higher volatility than positive shocks. The reverse applies if γ < 0 ; the magnitude of the 
shocks is captured by the term (|εt | − γ εt).

It is noteworthy that using the power term δ allows us to go beyond the Gaussian 
assumption. If the datasets are assumed to follow a conditional normal density, then 
the first two moments (i.e., the mean and variance) completely typify the distribution 
of returns. This justifies the common use of a squared term δ = 2 and, hence, a meas-
ure of the variance to characterize the volatility structure. However, since asymmetry 
and heavy tails are both stylized facts of financial asset return, the normality hypoth-
esis seems unrealistic, and higher-order moments such as skewness and kurtosis are 
required to specify the true underlying distribution. In such a context, considering 
the variance as a measure of the volatility process (i.e., setting δ = 2 ) can adversely 
affect our models’ estimation results and forecasting performances. To overcome 
this issue, Ding et al. (1993) suggested estimating the volatility measure in the form 
of a power transformation by allowing an optimal power term δ to be endogenized 
and freely determined from the data. It should be noted that the FIAPARCH process 
reduces to the FIGARCH process when γ = 0 and δ = 2.

The ARFIMA‑HYAPARCH model

The HYGARCH model introduced by Davidson (2004) allows for long memory in the 
process of conditional volatilities. However, no asymmetry can be described through 
this model. Furthermore, due to no stationarity, the FIAPARCH process exhibits infi-
nite conditional second moments, and no statements about the autocovariance func-
tion can be derived. Therefore, in this study, the extension of FIAPARCH processes to 
the hyperbolic APARCH (HYAPARCH) process is considered, which can be a repre-
sentation of the asymmetric conditional volatilities.

The HYAPARCH model corresponds to the HYGARCH model for τ = 0 and δ = 2 
and to the FIAPARCH model for α = 1. Compared to the FIGARCH or HYGARCH 
models, the HYAPARCH model has the advantage of capturing important stylized 
features such as fat tails and leverage effects that correspond to negative correlations 
between past returns and future volatility. In sum, the HYAPARCH process couples 
the flexibility of a varying exponent with the asymmetry coefficient, thus capturing 
asymmetric volatility structure and letting the data determine the power of the heter-
oskedastic equation. Moreover, it is covariance stationarity, and it enhances the long-
memory aspect of the conditional volatility via the fractional differencing parameter 
dv.

(4)h
δ/2
t = ω +

{

1− (1− β(L))−1̟(L)(1− L)dv
}

(|εt | − γ εt)
δ ,

(5)
h
δ/2
t = ω +

{

1− (1− β(L))−1̟(L)
[

1+ α

(

(1− L)dv − 1

)]

(1− L)dv
}

(|εt | − γ εt)
δ .



Page 8 of 22Boubaker et al. Financial Innovation            (2022) 8:46 

The ARFIMA‑G‑GARCH model

The fundamental idea of this model is to include the generalized long-memory process into 
the equation describing the evolution of conditional variance in a GARCH framework. This 
new class of models is called Gegenbauer-GARCH (G-GARCH). Thus, we consider the fol-
lowing ARFIMA process with G-GARCH-type innovations to include the presence of a 
time-varying conditional variance.

where µt is the conditional mean of yt modeling using the ARFIMA process and 
εt/It−1 ∼ D

(

0, σ 2
t

)

 . σ 2
t  is the conditional variance, It−1 is the information observed up 

to time ( t − 1 ), zt is an i.i.d random variable with zero mean and unit variance, and D(·) 
is a probability density function.

To specify the dynamics of the conditional variance, the starting point is the dynamics of 
ε2t  . We assume that ε2t  follows a k-factor GARMA model, which describes a cyclical pattern 
of length S.

Here, ̟(L) = 1−
∑Q

i=1̟iL
i and β(L) = 1−

∑P
i=1 βiL

i are suitable polynomials in the 
lag operator L , and ϑt = ε2t − σ 2

t  is a martingale difference; dv,0 = dv/2, I(E) = 1 if S is 
even, and zero otherwise. Considering this assumption, the corresponding GARCH-type 
dynamics for conditional variance is given by

This implies that in the G-GARCH framework, each frequency has been modeled using 
a specific long-memory parameter dv,i (differencing parameter of the conditional vari-
ance). When dv,0 = dv,1 = · · · = dv,k , all the involved frequencies have the same degree of 
memory.

Model (9) may present most of the existing GARCH models. For example, the stand-
ard GARCH models (included seasonal GARCH (Bollerslev and Hodrick 1992) can be 
obtained by putting dv,i = 0, i = 0, 1, . . . , k . Similarly, the FIGARCH model is equivalent 
to S = 1 and 0 < dv,0 < 1 . Interestingly, generalized long-memory filters, in principle, may 
be applied to any category of the GARCH structure. Nonetheless, due to the constraints 
needed for conditional variance positivity, G-GARCH models are not always feasible; for 
this reason, Bordignon et  al. (2007) proposed to model the logarithm of the conditional 
variances. Therefore, a practical computing solution is to apply the filter to a generalized 
log-GARCH model. Therefore, consider the following equation:

(6)yt = µt + εt = µt + σt zt ,

(7)

[

(I − L)dv0(I + L)dv,k I(E)
k−1
∏

i=1

(I − 2νv,iL+ L2)dv,i

]

̟(L)ε2t = ω + [I − β(L)]ϑt ,

(8)Pv(L)ψ(L)ε2t = ω + [I − β(L)]ϑt .

(9)

σ 2
t = γ+β(L)σ 2

t +

{

I − β(L)−

[

(I − L)dv,0(I + L)dv,k I(E)
k−1
∏

i=1

(I − 2νv,iL+ L2)dv,i

]

̟(L)

}

ε2t .

(10)Pv(L)̟(L)
[

ln(ε2t )− τ

]

= γ + [I − β(L)]ϑt .
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Here, Pv(L) is the generalized long-memory filter introduced into a GARCH structure, 
ϑt = ln(ε2t )− τ − ln(σ 2

t ) is a martingale difference, and τ = E
[

(ln(z2t ))
]

 . The expected τ 
value depends on the distribution of the idiosyncratic shock and ensures that ϑt is a mar-
tingale difference, given that ln(ε2t ) = ln(σ 2

t )+ ln(z2t ) , under the Gaussian assumption 
τ = −1.27 . The expression for the conditional variance implied by (9) is

Since we are modeling ln(σ 2
t ) instead of σ 2

t  , no constraints for variance positivity are 
necessary. A further approach to bypass the parameter constraints is to adopt EGARCH 
versions of our model.

Statistical properties of the stock market return
Data

Our dataset consists of the daily stock market indices of six GCC countries, namely, 
Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the UAE from June 1, 2005 to July 
1, 2019, which corresponds to T = 3545 observations. The chosen period allows us to 
consider the effect of different financial and economic circumstances. These countries 
are divided into two groups: (1) the Organization of Petroleum Exporting Countries 
(OPEC), including Kuwait, Qatar, Saudi Arabia, and the UAE and (2) non-OPEC, includ-
ing Bahrain and Oman. As a proxy for stock markets, we use the major stock market 
index for each country extracted from Morgan Stanley Capital International. These data 
are transformed into their logarithmic form and considered in the first difference; so 
the series obtained correspond to stock market returns. Specifically, we define the stock 
market returns as rt = lnxt − lnxt−1 , for t = 1, 2, . . . ,T  . Here, xt represents the closing 
stock market index.

Furthermore, the application of standard unit root tests and unit root tests (Dickey 
and Fuller 1979, 1981; Perron 1988; Phillips and Perron 1988) show evidence of station-
arity,1 which is a standard finding in the literature on such series. At first sight, the stock 
market indexes appear to have a non-stationary behavior in the sense that they do not 
converge toward their long-term means and exhibit great instability. The return series 
illustrated in Fig.  1 seem to fluctuate randomly around zero, while the variance var-
ies over time with the alternation of volatile and tranquil periods. Table 1 contains the 
descriptive statistics and stochastic properties for each series.

We see that the average stock market returns are slightly negative for all GCC coun-
tries. Moreover, we observe that the UAE faces the highest degree of risk as meas-
ured by the standard deviation (2.095%), followed by Saudi Arabia (1.840%) and Qatar 
(1.677%), while Bahrain experiences the lowest risk (1.335%), followed by Oman 
(1.396%), indicating that the OPEC stock markets are riskier than the non-OPEC stock 
markets. All series exhibit negative skewness and show excess kurtosis. Therefore, we 
can say that all indexes show a high asymmetry to the left. The observed asymmetry 
may indicate the presence of nonlinearities in the evolution process of returns. The 

(11)ln(σ 2
t ) = γ + β(L) ln(σ 2

t )+ [I − β(L)− Pv(L)̟(L)]
[

ln(ε2t )− τ

]

.

1  To check the stationarity, we apply the unit root tests without and with structural breaks. We find evidence of station-
arity. These results are not reported here but are available upon request.
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departure from normality is confirmed by employing the Jarque–Bera test. This test 
strongly rejects the null hypothesis of normality for all series, which means that the 
minimum and maximum values have a greater deviation from the calculated mean. 
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Fig. 1  Daily returns of the stock market indexes

Table 1  Descriptive statistics of return series

JB is the statistic of Jarque and Bera test for normality, is the statistic of Ljung-Box test for serial correlation for order, and 
ARCH is the statistic of ARCH test for heteroskedasticity

*** denote significance at the 1% levels

Countries DLKuwait DLQatar DLSaudi Arabia DLUAE DLBahrain DLOman

Mean (%)  − 0.012  − 0.001  − 0.027  − 0.048  − 0.100  − 0.020

Std Dev (%) 1.533 1.677 1.840 2.095 1.335 1.396

Skewness  − 1.288  − 1.018  − 2.108  − 0.908  − 3.359  − 1.612

Kurtosis 17.317 16.958 29.805 15.728 42.223 29.72

JB × 10−4 1.709*** 1.607*** 5.945*** 1.335*** 28.686*** 5.849***

Q(10) 26.240*** 21.057*** 31.776*** 41.088*** 32.782*** 34.142***

ARCH (10) 29.556*** 21.127*** 13.238*** 21.095*** 12.498*** 15.415***
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These findings clearly show that the probability of observing extremely negative and 
positive realizations for our return series is higher than that of a normal distribution. 
The Ljung-Box test shows significant evidence of the serial correlation for all series, 
and the Autoregressive Conditional Heteroscedasticity-Lagrange Multiplier (ARCH-
LM) test indicates the presence of heteroskedasticity in all series (i.e., a rejection of 
the null hypothesis at the 1% level). Further, in the presence of heteroskedasticity, we 
try to identify an ARCH model type (Engle 1982) for each stock market return.
Long‑range dependencies

The panel of Fig. 2 displays autocorrelation functions for daily returns. As shown in this 
Figure, the autocorrelation functions of all stock returns show fast decay at first lags but 
testify a hyperbolic decay for larger lags. Hence, daily returns seem to be autocorrelated. 
Moreover, the periodograms present a pole at zero frequency. Such features may suggest 
that the stock market return series display a long-term persistent structure.

Investigating the memory features of the volatility of stock market indices, we see that 
for the absolute return series,2 the autocorrelation functions (Fig. 3) die off hyperboli-
cally, whereas the periodograms reveal a strong explosion at the origin of the frequency 
interval. As shown in Fig. 3, spectral density, traced by the periodogram, shows several 
peaks at mid frequencies, which proves the presence of much seasonality. We can thus 
assert the existence of long-run dependencies in the volatility process of the stock mar-
ket indexes. The findings outlined above suggest fitting long-memory processes in the 
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Fig. 2  Correlograms of the return series

2  We note that the absolute returns are considered as proxy of volatility.
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levels and volatilities of the stock market returns, allowing the capturing of the specific 
dynamic structure of the first and second moments of the datasets.

Results
This section estimates the following dual long (hyperbolic)-memory processes relying 
on the Quasi-Maximum Likelihood procedure. The choice of these models can be justi-
fied empirically by the analysis of the autocorrelation functions; they show that these 
functions decrease hyperbolically to zero as the lags increase and the associated spectral 
densities are unbounded, which may indicate the presence of long-memory behavior in 
the mean and variance. Additionally, these models constitute the most general class of 
the dual long-memory models described above and can capture long-range dependence 
in the mean and the volatility process.

Further, to test whether the process is a true long memory and not a short-memory 
process with level shifts, we use the test statistics of Perron and Qu (2010). Perron and 
Qu (2010) developed a simple test based on the log-periodogram estimator proposed 
by Geweke and Porter-Hudak (1983) and demonstrated that the test statistic follows a 
Gaussian process under the null hypothesis. They showed how the distribution of this 
estimator is highly dependent on the number of frequencies used, especially when 
the data generating process is a stationary short-memory process influenced by struc-
tural changes in level. This test is thus helpful to distinguish structural change from 
long-memory.

Due to the distributional properties of the stock returns, the Student’s t distribution3 is 
assumed for the innovations, as suggested by Bollerslev (1987). It is remarkable to note 
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Fig. 3  Correlograms and periodograms of the absolute return series

3  We have also estimated the models based on the skewed student distribution. Yet, the obtained results emphasize the 
superiority of the student’s t distribution. For the sake of conciseness, we restrict ourselves to the latter distribution. 
Complete results are available upon request.
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that lag order selection is a vital issue when specifying a dynamic model. To identify 
the truncation orders p, q,P andQ of the short-memory polynomials of the double long-
memory adaptations, we use the Schwarz and Hannan-Quinn Information criteria.

Modeling the GCC stock market returns

Estimation results (Tables  2 and 3) show that the fractional parameters in the mean 
equations of the three dual long-memory specifications are highly significant (at the 
1% level). This confirms that the stock market returns exhibit a long-run dependence 

Table 2  Estimates of ARFIMA-HYAPARCH model for each series

The values in parenthesis are the t-Student. υ̂ is the degree of freedom of the student’s t distribution. Skw is Skewness. Ex. 
Kurt is Excess of Kurtosis. Q(20) is the Ljung-Box statistic for serial correlation in the standardized residuals for order 20. 
Q2(20) is the Ljung-Box statistic for serial correlation in the squared standardized residuals for order 20. *, **, and *** denote 
significance at the 10%, 5% and 1% levels respectively.

Kuwait Qatar Saudi UAE Bahrain Oman

(p, dm , q) (1, d, 1) (1, d, 1) (0, d, 0) (0, d, 1) (0, d, 0) (1, d, 2)

(P, dv , Q) (1, δ, 1) (1, δ, 1) (1, δ, 1) (1, δ, 1) (1, δ, 1) (1, δ, 1)

µ 0.000
(0.389)

0.000
(0.744)

0.000
(0.572)

dm 0.104
(3.974)***

0.137
(3.085)***

0.117
(4.783)***

0.096
(3.160)***

0.086
(4.670)***

0.129
(3.784)***

θ1  − 0.208
(− 1.742)*

 − 0.234
(− 2.162)**

 − 0.216
(− 1.901)**

θ2

φ1  − 0.208
(− 1.742)*

 − 0.234
(− 2.162)**

 − 0.216
(− 2.127)**

φ2  −   − 

ω 0.000
(0.043)

0.001
(0.032)

0.000
(0.033)

0.000
(0.022)

0.001
(0.016)

0.003
(0.641)

dv 0.425
(7.886)***

0.347
(4.551)***

0.348
(6.070)***

0.377
(5.547)***

0.435
(6.872)***

0.369
(8.342)***

Log(α) 0.217
(3.763)***

0.197
(3.205)***

0.174
(3.879)***

0.238
(4.615)***

0.245
(3.982)***

0.245
(4.704)***

γ  − 0.182
(− 3.363)***

 − 0.197
(− 3.678)*** − 

 − 0.234
(− 4. 674)***

 − 0.228
(− 3.233)***

 − 0.249
(− 3.861)***

 − 0.145
(− 4.389)***

δ 1.972
(11.340)*** − 

2.628
(10.467)***

2.274
(9.892)***

3.157
(12.093)***

2.728
(10.873)***

2.312
(12.520)***

β1 0.677
(5.421)***

0.408
(4.521)***

0.546
(4.764)***

0.479
(4.983)***

0.578
(6.093)***

0.648
(6.169)***

̟1 0.461
(3.125)***

0.293
(3.938)***

0.293
(3.887)***

0.369
(4.673)***

0.398
(3.659)***

0.301
(4.670)***

υ̂ 5.131
(12.811)***

4.178
(13.901)***

5.675
(11.674)***

5.816
(10.632)***

4.755
(10.471)***

4.535
(11.150)***

Skw 0.254
(3.635)***

0.123
(1.768)*

0.124
(3.564)***

0.109
(1.757)*

0.234
(3.698)***

0.084
(1.212)

Ex. Kurt 3.999
(25.646)***

3.628
(25.984)***

3.857
(26.674)***

3.512
(23.982)***

3.853
(22.438)***

3.066
(23.404)***

Q(20) 22.559 22.601 22.082 21.672 20.874 18.359

Q2(20) 10.365 11.113 10.874 10.359 10.743 9.105

BDS(5) 5.143 4.587 5.327 4.875 3.174 3.987

Log−

Likelihood

1039.039 1048.083 1046.675 1043.855 1047.972 1049.567

Akaike  − 0.072  − 0.085  − 0.075  − 0.088  − 0.082  − 0.095
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structure.4 Moreover, the retained adaptations yield almost the same value for the frac-
tional differencing parameters dm ∈ [0.086, 0, 137].

On the other hand, the fractional orders of integration in the second conditional 
moments are statistically significant at the 1% level, which means that volatility is frac-
tionally integrated. However, it should be stressed here that the three processes do not 
share the same degree of fractional integration in their scedastic functions. Estimates of 
the long-memory parameters vary from 0.347 for the HYGARCH adaptation to 0.348 for 
the FIAPARCH process and 0.362 for the HYAPARCH’s case, whereas, interestingly, the 
FIGARCH model displays the highest persistence degree with a fractional differencing 
parameter of 0.425.

Table 3  Estimates of ARFIMA-G-GARCH model for each series

See Table 2

Kuwait Qatar Saudi UAE Bahrain Oman

(p, dm , q) (1, d, 1) (1, d, 1) (0, d, 0) (0, d, 1) (0, d, 0) (1, d, 2)

(P, dv , Q) (1, δ, 1) (1, δ, 1) (1, δ, 1) (1, δ, 1) (1, δ, 1) (1, δ, 1)

µ

dm 0.101
(3.968)***

0.134
(3.185)***

0.119
(4.639)***

0.106
(3.148)***

0.089
(4.642)***

0.127
(3.689)***

θ1  − 0.199
(− 1.821)*

 − 0.231
(− 2.145)**

 − 0.214
(− 1.887)**

θ2

φ1  − 0.204
(− 1.745)*

 − 0.238
(− 2.169)**

φ2  −   − 

ω 0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.00
(0.000)

0.000
(0.000)

dv 0.422
(7.981)***

0.344
(4.673)***

0.352
(6.859)***

0.385
(5.763)***

0.433
(6.834)***

0.349
(8.573)***

�V 0.412
(5.872)*** − 

0.414
(6.583)***

0.407
(5.347)***

0.410
(4.975)***

0.408
(5.352)***

0.403
(5.874)***

β1 0.646
(5.674)***

0.412
(4.683)***

0.551
(4.784)***

0.476
(4.836)***

0.582
(6.682)***

0.674
(6.357)***

̟1 0.458
(3.247)***

0.291
(3.952)***

0.287
(3.781)***

0.373
(4.836)***

0.392
(3.968)***

0.314
(4.792)***

υ̂ 5.245
(13.451)***

4.137
(13.346)***

5.755
(12.673)***

5.349
(11.453)***

4.457
(10.785)***

4.561
(10.893)***

Skw 0.216
(3.768)***

0.112
(1.775)*

0.101
(3.786)***

0.099
(1.752)*

0.201
(3.584)***

0.075
(1.211)

Ex. Kurt 3.762
(22.345)***

3.638
(24.674)***

3.667
(24.673)***

3.458
(23.729)***

3.367
(20.649)***

3.231
(21.658)***

Q(20) 20.767 21.178 20.278 20.562 19.742 18.786

Q2(20) 10.084 10.564 10.237 10.023 10.465 8.872

BDS(5) 4.676 4.214 4.773 4.266 3.547 3.371

Log−

Likelihood

1037.985 1046.353 1044.882 1042.773 1046.448 1048.992

Akaike  − 0.069  − 0.082  − 0.073  − 0.085  − 0.079  − 0.092

4  The results of the Perron-Qu test (significance levels of the 95% intervals) show clearly that all series follow a long-
memory process.



Page 15 of 22Boubaker et al. Financial Innovation            (2022) 8:46 	

Parameters’ estimates of the ARFIMA-FIGARCH specification show that the frac-
tional order of integration dv in the scedastic function is highly significant and statisti-
cally different from unity and zero (at the 1% significance level). This indicates that the 
impact of shocks to the conditional volatility flaunts a hyperbolic rate of decay instead of 
the conventional exponential decay inherent to the stable GARCH process or the infi-
nite persistence pattern distinguishing IGARCH type models. The fractional differenc-
ing parameter dv is highly significantly different from 0 and 1, rejecting the validity of the 
stable GARCH and the integrated GARCH (IGARCH) specifications.

Focusing on the estimates of the ARFIMA-HYGARCH process, we observe that the 
hyperbolic memory in variance, measured by the fractional order of integration dv , is 
pronounced. The amplitude parameter α is statistically different from 1, leading to the 
rejection of the FIGARCH alternative. A noteworthy feature here is the largest value of 
the α parameter which exceeds 1 ( α > 1 ). This suggests that the driving process of the 
stock returns is not covariance stationary.

It should be stressed that within the ARFIMA-HYGARCH framework, we can test for 
the restriction embodied in the ARFIMA-FIGARCH model, that is α = 1 , relying on a 
likelihood ratio type test. Formally, the likelihood ratio test is a statistical test used to 
compare the in-sample performance of nested models. The test statistic is asymptoti-
cally χ2 distributed with degrees of freedom equal to the number of tested restrictions. 
If ℓ0 denotes the log-likelihood value under the null hypothesis that the true model 
is FIGARCH, and ℓ is the log-likelihood under the alternative that the true model 
is HYGARCH, the test statistic LR = 2(ℓ− ℓ0) should follow a χ2 distribution with a 
degree of freedom one (the number of restrictions) under the null hypothesis. In this 
case, LR rejects the constraint implied by the FIGARCH adaptation α = 1 at the 1% sig-
nificance level ( χ2

(1) = 6.634 ), thus favoring the ARFIMA-HYGARCH specification over 
the ARFIMA-FIGARCH model.

The analysis of the estimation results of the ARFIMA-FIAPARCH parameterization 
calls for several observations: the power term δ̂ is statistically different from two for the 
FIAPARCH parameterization, whereas the estimated asymmetry coefficient γ̂ , although 
small-valued, is significant and negative; this implies that positive shocks predict higher 
volatility than negative shocks. In other words, the negative sign of γ̂ suggests that “good 
news,” that is, an unanticipated stock market increase is more destabilizing than “bad 
news,” that is, an unanticipated stock market drop. A likelihood ratio test can be con-
structed in which the restricted case is the ARFIMA-FIGARCH specification (i.e., δ = 2 
and γ = 0 ). The test statistic, which is asymptotically χ2 distributed with two degrees 
of freedom (when the null hypothesis is true), yields a value of 21.056 and then rejects 
the constraints implied by the FIGARCH-type adaptation at the 1% significance level 
( χ2

(2) = 9.210).
It is worth mentioning that the HYAPARCH specification adapts particularly well to 

the conditional variance since the Box-Pierce test statistics observed for the squared 
residuals are smaller than those obtained for the ARFIMA-FIGARCH, ARFIMA-
HYGARCH, and ARFIMA-FIAPARCH specifications. Additionally, while assessing the 
adequacy of the dual long-memory models, we see that the stock market return series 
under the ARFIMA-FIAPARCH structure displays the highest log-likelihood value and 
the lowest Akaike Information Criteria among all the competing models. Therefore, the 
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ARFIMA-HYAPARCH structure prevails over all the competing models in capturing the 
dynamics that govern the first and second conditional moments of the analyzed series.

Furthermore, the residuals from the ARFIMA process are modeled using the 
G-GARCH model to estimate the seasonal long-memory behavior in the conditional 
variance. The spectral densities, represented by the periodogram (Fig. 3), are unbounded 
at equidistant frequencies, proving seasonality. The estimation results of the ARFIMA-
G-GARCH model show special peaks at a frequency of �̂v ∈ [0.403, 0.414] ( ≈ 1/2 week) 
that correspond to semi-weekly cycles. Moreover, our empirical evidence suggests the 
same degree of persistence in the volatility of stock markets in the GCC countries.

Hence, from the various diagnostic statistics, the ARFIMA-HYAPARCH process 
and ARFIMA-G-GARCH adaptation appear to be the most satisfactory representation 
to describe the long-memory behavior of the stock market index in both its first and 
(power transformed or seasonal) second conditional moments.

For all countries, the empirical results indicate a significant change in the persistence 
structure, implying the presence of contagion effect. This long-range dependence may 
generate positive shocks in the global demand for industrial commodities that cause 
higher stock market prices or because stock market prices are positively related to the 
global business. Evidence regarding leverage effects implies that news in stock markets 
has an asymmetric impact on volatility. Particularly, bad news (negative shocks) gives 
rise compared to good news (positive shocks).

These results imply that the efficient stock market hypothesis should be rejected in the 
case of all countries. This result is consistent with Al Janabi et al. (2010) and Bley (2011), 
who found that the GCC stock markets are inefficient. The evince of persistence implies 
that stock market returns are predictable over the long term, and investors can anticipate 
their returns in a sufficiently long-term horizon. These findings are in line with Mimouni 
and Charfeddine (2016), Alqahtani et al. (2020), and Youssef and Mokni (2018).

Predictive performances of the dual long‑memory processes: a comparative study

In this section, we evaluate the out-of-sample forecasts of the stock market returns. 
For both the series, we use data until July 1, 2018 for estimation purposes and reserve 
those from July 2, 2018 for generating out-of-sample prediction values. The forecast 
horizons considered in this study correspond to five, ten, and fifteen steps in the future 
( s = 5, 10, 15 ). To evaluate the accuracy of the forecasts, we apply three evaluation crite-
ria: the mean square error, mean absolute error, and logarithmic loss function.

Additionally, we employ the Diebold–Mariano (DM) (1995) test to compare the 
predictive accuracy of two competing forecasts. The DM test uses a loss function 
associated with the forecast error of each forecast and tests the null hypothesis that 
the expected differential loss is zero, that is, E(Dt) = 0 , where the loss differential 
Dt = h(e1t)− h(e2t) . The two-loss functions are computed as follows:

where rt is the actual value of the series and r̂1t and r̂2t are two predictions for rt , where 
t = 1, 2, . . . ,T  . In most cases, the loss function is a square-error loss function or an 
absolute-error loss function. The hypotheses of interest are as follows:

(12)h(e1t) = h
(

r̂1t − r1t
)

and h(e2t) = h
(

r̂2t − r2t
)

,
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where h ≥ 1 is the forecast horizon.
The DM test has a standard normal limiting distribution under the null hypothesis; the 

relevant statistic of the test is given by

where

The DM test requires the loss differential to be covariance stationary. However, it may 
not be strictly necessary in some cases (Diebold 2015). Moreover, the DM statistic can 
be obtained by regressing the loss differential on a constant, using Newey-West standard 
errors. Nevertheless, the DM test is considerably found to be more versatile than the 
other tests of equal forecast accuracy.

Contrary to the widely used DM test, the Model Confidence Set (MCS), introduced by 
Hansen et al. (2003), allows for the comparison of multiple forecast models at once. This 
model selection method is an innovative way to manage the issue of selecting the best 
forecast models using an out-of-sample evaluation under a specified loss function. As 
defined in Hansen et al. (2011), an MCS, or M∗ , is a subset of a collection of candidate 
models, M0 , consisting of superior forecast models for a given significance level. The set 
of superior forecast models is formally defined as:

where E
(

Dij,t

)

 is finite and does not depend on t for all i, j ∈ M0 , and Dij,t is the loss 
differential. The purpose of this method is to determine the set of superior models, 
which can be done via a sequence of significance tests where the models that are found 
to be significantly inferior to other models of M0 are eliminated (Hansen et  al. 2011). 
Henceforth, MCS can be viewed as a sequential DM test or the confidence interval of a 
parameter (Quaedvlieg 2021). Therefore, using a set of forecasting models rather than an 
individual model is interesting, as no generic model will consistently outperform other 
models in every conceivable scenario. For a level of significance fixed at each step, this 
test procedure is built using an algorithm that allows yielding p-values for all the forecast 
models under consideration. Hence, this method is different from other model selection 
criteria that consider a single model and disregard the surprisal of the underlying data.

Table  4 reports the out-of-sample forecast evaluation results of the ARFIMA-FIA-
PARCH, ARFIMA-G-GARCH and the ARFIMA-HYAPARCH models using three 

(13)h(e1t) = h
(

r̂1t − r1t
)

and

{

H0 : E
(

h
(

e1,t−h

)

− h
(

e2,t−h

))

= 0

H1 : E
(

h
(

e1,t−h

)

− h
(

e2,t−h

))

�= 0
,

(14)S1 =
D

√

V̂
(

D
)

→ N (0, 1) and D =

∑n
t=1 Dt

n
,

(15)
V̂
(

D
)

=

κ̂0 + 2
n−1
∑

k=1

κ̂k

n
and κ̂k =

n
∑

t=k+1

(

Dt − D
)(

Dt−k − D
)

n
.

(16)M∗ =
{

i ∈ M0 : E
(

Dij,t

)

≤ 0 ∀ j ∈ M0
}

,
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evaluation criteria ( MSE,MAPE , and LL)5 for all series. The DM test uses the clas-
sical ARFIMA-FIGARCH process as a benchmark for tests; this choice is due to in-
sample variability of estimates. Additionally, reporting results of pairwise comparisons 
becomes rather laborious when the set of models ( M ) increases since one must perform 

Table 4  Out-of-sample forecasts of the stocks index

* denote significance at the 5% levels

Criterion Kuwait Qatar Saudi UAE Bahrain Oman

s = 5

ARFIMA-FIAPARCH MSE 0.024 0.017 0.013 0.026 0.023 0.010

MAPE 0.156 0.125 0.097 0.146 0.131 0.094

LL 22.035 11.831 11.640 6. 638 4.469 9.803

DM 1.956 1.568 1.672 1.564 1.434 1.726

ARFIMA-G-GARCH MSE 0.022 0.015 0.012 0.024 0.022 0.009

MAPE 0.148 0.121 0.094 0.143 0.132 0.086

LL 20.578 11.348 10.754 5.675 4.258 9.382

DM 1.898 1.502 1.583 1.497 1.379 1.682

ARFIMA-HYAPARCH MSE 0.018* 0.015* 0.011* 0.023* 0.021* 0.008*

MAPE 0.144 0.119 0.087 0.136 0.132 0.079

LL 19.604* 10.807* 9.865* 5.175* 4.165* 8.657*

DM 1.832 1.486 1.508 1.386 1.285 1.607

s = 10

ARFIMA-FIAPARCH MSE 0.028 0.022 0.021 0.018 0.019 0.017

MAPE 0.149 0.131 0.128 0.123 0.125 0.118

LL 18.638 11.469 10.584 5.443 4.467 8.326

DM 2.135 1.793 1.874 1.789 1.768 1.941

ARFIMA-G-GARCH MSE 0.022 0.017 0.013 0.021 0.018 0.011

MAPE 0.143 0.128 0.107 0.120 0.122 0.098

LL 17.982 11.095 10.048 5.175 4.165 7.981

DM 2.026 1.681 1.759 1.679 1.698 1.882

ARFIMA-HYAPARCH MSE 0.019* 0.010* 0.008* 0.023* 0.014* 0.007*

MAPE 0.133 0.098 0.083 0.116 0.114 0.076

LL* 17.342* 10.255* 9.282* 4.658* 4.025* 6.631*

DM 1.997 1.605 1.688 1.613 1.594 1.771

s = 15

ARFIMA-FIAPARCH MSE 0.025 0.023 0.021 0.018 0.019 0.017

MAPE 0.136 0.131 0.128 0.123 0.125 0.119

LL 16.175 14.469 9.584 6.443 4.467 5.326

DM 2.324 1.976 2.158 1.982 1.974 2.207

ARFIMA-G-GARCH MSE 0.025* 0.016* 0.020* 0.015* 0.018 0.017

MAPE 0.134 0.097 0.126 0.117 0.123 0.118

LL 15.872* 11.456* 7.175* 5.855* 3.996 4.864

DM 2.168 1.895 2.021 1.899 1.849 2.123

ARFIMA-HYAPARCH MSE 0.022* 0.012* 0.023* 0.015* 0.016* 0.014*

MAPE 0.131 0.087 0.116 0.102 0.121 0.112

LL 15.340* 10.153* 5.175* 4.165* 2.467* 2.376*

DM 2.006 1.823 1.996 1.875 1.7989 2.001

5  MSE: The Mean Square Error, MAPE: The Mean Absolute Prediction Error expressed as a percentage and LL: The 
Logarithmic Loss function.
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M(M − 1)
/

2 tests. Additionally, we test the significance of forecast losses with MCS to 
determine the model’s significance and predictive ability. This study uses the block boot-
strap procedure and significance level α = 5% to determine the MCS p-values. Forecast 
models included in M̂∗

0.95 (95% MCS) are identified by an asterisk.
For all indexes, the ARFIMA-HYAPARCH specification outperforms all the other 

computing techniques and ARFIMA-HYAPGARCH models, thus yielding the most 
accurate stock market forecasts. The ARFIMA-HYAPARCH prediction errors are the 
smallest for all evaluation criteria and forecast horizons. Contrarily, the ARFIMA-FIA-
PARCH is the worst performing model in terms of out-of-sample predictive accuracy 
since it produces the largest forecast errors among the set of dual long-memory adapta-
tions. Moreover, from Table 4, we observe that the ARFIMA-G-GARCH model outper-
forms the ARFIMA-FIAPARCH techniques. This model allows detecting and estimating 
the long-memory and seasonality. Nevertheless, from this table, ARFIMA-HYAPARCH 
seems to be the only model included in M̂∗

0.95 for all horizons under MSE and LL , 
whereas ARFIMA-FIAPARCH is the only model excluded from M̂∗

0.95 for all horizons 
under the MSE and LL criteria. Overall, the results of Table 4 seem to suggest that the 
ARFIMA-HYAPARCH model performs better compared to the other suggested models 
for almost all the horizons. However, it should be noted that the ARFIMA-G-GARCH 
model is a part of the 95% MCS for s = 15 under MSE and LL . We can conclude that 
the ARFIMA-HYAPARCH tends to be the sole superior model for all horizons under 
MSE and LL , whereas the ARFIMA-G-GARCH model is also in M̂∗

0.95 for longer hori-
zons under the same loss function. Generally, ARFIMA-HYAPARCH and ARFIMA-G-
GARCH tend to be better models for long-term forecasting. In sum, depending on the 
loss functions chosen in our work, the results suggest that the ARFIMA-HYAPARCH 
model and the ARFIMA-G-GARCH model for longer horizons are the most preferred 
models for volatility forecasting since they are ranked highest in terms of their MCS 
p-value.

Conclusions
This study attempted to investigate the presence of long-memory behavior in the returns 
and volatilities of the daily GCC stock market indexes. To combat this issue, we con-
sidered the applicability of three dual long-memory adaptations represented by the 
ARFIMA-FIGARCH, ARFIMA-HYGARCH, ARFIMA-FIAPARCH, and ARFIMA-
HYAPARCH models, and the ARFIMA-G-GARCH process. The empirical results dem-
onstrate clear and consistent evidence for long-memory in all stock market indexes’ 
first and second conditional moments. It should be stressed that the findings of long-
range dependencies violate the weak form of market efficiency hypothesis and reject the 
martingale model, which states that conditioning on historical returns, future returns 
are unpredictable. The in-sample diagnostics and the out-of-sample predictive perfor-
mances favor an ARFIMA-HYAPARCH modeling process. For all countries, the esti-
mates of the power terms are highly and significantly different from two. This validates 
estimating an optimal power transformation within the model rather than the common 
use of a squared term for the variance equation.

The empirical results prove that the ARFIMA-HYAPARCH model is the most suit-
able forecasting technique. Further, it can produce smaller predicting errors than the 
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other computing techniques. It may be considered a powerful forecasting method, 
notably when we need higher forecasting accuracy. However, the estimation results of 
the asymmetry coefficients of the HYAPARCH parameterization diverge for the index 
series indicating different volatility structures. It would be worth noting that volatility 
dynamics are the focus of interest in the vast field of risk management and derivatives 
pricing. Otherwise, these markets present an opportunity for portfolio diversification 
at the regional level.

Our empirical investigation has important policy consequences for researchers, 
traders, and policymakers. The evidence of long-range serial dependence gener-
ates the possible predictability of returns and the volatility of most GCC stock mar-
kets, indicating the existence of market imperfections and behavioral biases. These 
obtained results reveal the inefficiency of the GCC stock markets, which can be 
explained by the differences in irrational comportment or some extreme economic 
and financial events. Therefore, the features of long-term persistence, asymmetry, and 
the powerful transformation of the conditional variance should be considered when 
calculating risk measures, deriving pricing formulas, handling short and long-term 
trading positions, or constructing hedging strategies.
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