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Introduction
Although the pioneering Black–Scholes model is still widely used in practice nowadays, 
it is actually far from being adequate to describe real markets because of some ideal-
ized assumptions. One typical example is the assumed perfect liquidity of the underlying 
financial market, which allows investors to trade the underlying very rapidly without or 
only at a minimal cost. However, it is widely acknowledged that not all securities are 
perfectly liquid, even if they are traded in a well-established financial market. In fact, 
every security suffers from the so-called liquidity risk, and this source of uncertainty is 
considered as one of the most critical risks in today’s finance industry. Although liquid-
ity has multiple facets, a large amount of economic research has focused on investigating 
the effects of liquidity risk on asset prices (Acharya and Pedersen 2005; Liu 2006), while 
a robust model that appropriately captures the impact of liquidity risk on derivative pric-
ing is yet to be proposed. Consequently, a significant challenge for risk managers is to 
understand how liquidity risk influences the pricing and hedging of derivatives.

Although exploring the effects of liquidity risk on derivative pricing has started gaining 
attention very recently, the relevant research is still at its infant stage, and there is even 
no consensus reached on the definition of liquidity risk. One strand of authors believe 
that liquidity risk mainly arises from the price impact caused by traders’ actions. For 
instance, Liu and Yong (2005) obtained a generalized Black–Scholes pricing equation 
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under the assumption that the trader’s activity has an impact on the underlying price, 
and a similar non-linear pricing equation was also presented by Loeper (2018). Another 
popular approach to measure liquidity is to use the spread between the bid and ask 
prices, and the illiquid assets are deemed to be those with a high spread Leippold and 
Schärer (2017). Furthermore, illiquidity of stocks is also regarded by a few authors as 
the inability to trade at all Ludkovski and Shen (2013), while many others hold a differ-
ent view that trading of illiquidity shocks is possible but the trading prices should be 
discounted (Subramanian and Jarrow 2001; Longstaff et al. 2005). A typical example was 
presented by Hyejin and Zhang (2018), who followed the utility maximization approach 
to price options using a discounting factor as a function of the trader’s trading speed, an 
approach firstly proposed by Cetin et al. (2004).

Recently, several empirical studies have demonstrated a common feature in liquidity, 
i.e., market-wide liquidity influences the stock returns. For example, under the assump-
tion that the market plays the role of a central counterparty and trades with the inves-
tors, a single market stress parameter was introduced by Madan and Cherny (2010) to 
describe market illiquidity, based on which a theoretical framework was developed for 
derivative pricing. This framework was further extended by Corcuera et al. (2010) and 
Albrecher et al. (2013), who calibrated the market stress parameter with options written 
on S&P 500 index, and the results showed that the market stress parameter exhibits a 
term structure and displays a mean-reverting behavior.

Motivated by the importance of market liquidity, a number of authors have adopted a 
market-wide liquidity based discounting factor to investigate the impact of liquidity risk 
on derivative prices, with the discounting factor being a quantity that is to be multiplied 
by the liquid asset price to obtain the liquidity-adjusted asset price. This originates from 
the work of Mandelbrot’s (1963) and Fama’s (1965), using the idea that that the volatility 
of an asset changes over time and experiences jumps in an illiquid market. The frame-
work was firstly proposed by Brunetti and Caldarera (2004), with liquidity risk modeled 
through a liquidity discounting factor which was incorporated into the so-called stock 
demand function, and it was further extended by Feng et al. (2014) through introducing 
a stochastic market-wide liquidity. In other words, their model is similar to a stochastic 
volatility model where the stochastic nature of the volatility is assumed to be driven by 
the market-wide liquidity. This framework was also adopted by Li et al. (2018a) and Li 
et al. (2018b) for the pricing of geometric Asian and quanto options, respectively, and 
a similar approach was used to investigate the impact of liquidity risk on discrete bar-
rier option prices under a jump-diffusion model (Li et al. 2019). Recently, the pricing of 
various types of derivatives including American options under the same framework is 
further considered by Zhang et al. (2019).

Following Brunetti and Caldarera (2004) and  Feng et  al. (2014, 2016), the liquidity-
adjusted underlying price in this paper, is assumed to be dependent on three random 
variables, i.e., the liquid underlying price, market-wide liquidity and liquidity discounting 
factor. A mean-reverting stochastic process is selected to describe market-wide liquidity, 
which is consistent with existing empirical evidence, and the liquidity discounting factor 
is made as a function of both market-wide liquidity and a parameter that governs the 
sensitivity of the underlying price to market liquidity. Our proposed model allows for 
a general correlation structure among different stochastic processes so that it is much 
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more flexible and closer to reality, which distinguishes our work from those presented by 
Brunetti and Caldarera (2004) and Feng et al. (2014). Of course, although the introduc-
tion of a general correlation structure enhances the modeling quality, it poses a signifi-
cant obstacle in seeking analytical solutions. Fortunately, we have managed to derive a 
closed-form pricing formula for European options, utilizing the characteristic function 
approach, which is derived using the Feynman–Kac theorem.1 Finally, the newly derived 
formula is verified with Monte-Carlo simulation, and the impact of liquidity risk as well 
as the general correlation structure on option prices is also investigated through numeri-
cal experiments.

The organization of the rest of the paper is as follows. “The modeling framework” sec-
tion introduces the modeling dynamics. In “A closed-form pricing formula” section, we 
express the option pricing formula in terms of a characteristic function, which is then 
analytically obtained utilizing the Feynman–Kac formula. “Numerical experiments and 
discussions” section presents the results of numerical experiments to demonstrate the 
validity and various properties of the new formula. “Conclusion” section concludes the 
article.

The modeling framework
We consider a filtered probability space (�,F ,P,Ft∈[0,T ]) that models the uncertainty in 
the economy with P as a probability measure either statistical or empirical. T as a finite 
time horizon. All stochastic processes involved in this article are assumed to be Ft∈[0,T ] 
adapted. We assume that stocks are not perfectly liquid and this illiquidity arises due to 
short supply or surplus in the market.

Following Brunetti and Caldarera (2004) and Feng et al. (2014), we now present how to 
incorporate liquidity risk into the stock price dynamics utilizing a liquidity discounting 
factor γt.

If we assume a fixed supply, S , for a stock, the demand function D(St , γt , It) for this 
stock is given by

where St is the stock price, It is the information process, and g is a smooth, strictly 
increasing function and ν is a positive constant. Under the condition of market clear-
ance, the market clearing price S of the stock should satisfy

which leads to the following market clearing price S for the stock

D(St , γt , It) = g

(

Iνt
γtSt

)

,

g

(

Iνt
γtSt

)

= S,

1 The Fourier transform, i.e., the characteristic function of the density method is one of the widely used and well under-
stood mathematical techniques used in finance. The use of this method in finance can be dated back to Heston (1993), 
who obtained an analytical pricing formula for the price of European options under stochastic volatility. Utilizing a vari-
ant of L ́evy’s inversion theorem, the resulting formula is in the form of the difference of two Fourier integrals involving 
the characteristic function, which is then derived by solving the PDE obtained using the Feynman–Kac theorem. Since 
then, Fourier inversion methods became a very active field of research in finance.
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using the invertibility of g (Brunetti and Caldarera 2004). Clearly, when there is no dis-
counting based on market illiquidity, i.e., γ = 1 , the dynamics of S should degenerate to 
the Black–Scholes (B–S) model, i.e.,

Here, SBSt  represents the B-S stock price, which we call the benchmark model, i.e., it is 
perfectly liquid, and is governed by the following stochastic process

with µS denoting the drift and BS
t  denoting a Wiener process under the measure P. 

Therefore, the price of the underlying stock affected by market liquidity can be formu-
lated as

Finally, with the price of the asset being sensitive to market liquidity, we should define 
a liquidity discounting factor γt , which should be a function of market liquidity Lt and a 
factor modeling the sensitivity of the asset price to the level of market liquidity denoted 
by β with β > 0 . The process γt captures the influence of liquidity on asset prices. We 
follow Brunetti and Caldarera (2006) to define the following dynamics of the liquidity 
discounting factor γt,

with dBγ
t dB

S
t = ρ1dt . From Equations (1), (2) and (3), we get2 the following dynamics for 

the illiquid asset price St:

Following Feng et al. (2014), we assume Lt is the level of market liquidity, governed by a 
mean-reverting stochastic process

where α̃ , θ̃ and ξ are respectively the mean-reversion speed, equilibrium level and volatil-
ity of market liquidity, and BL

t  is a Wiener process under P measure.

S =
1

γt

(

Iνt

g−1(S)

)

,

SBSt =
Iνt

g−1(S)
.

(1)
dSBSt

SBSt
=µSdt + σsdB

S
t ,

(2)St =
1

γt
SBSt .

(3)
dγt

γt
=
(

−βLt +
1

2
β2L2t

)

dt − βLtdB
γ
t .

(4)
dSt

St
=

(

µS + βLt +
1

2
β2L2t + ρ1σSβLt

)

dt + βLtdB
γ
t + σsdB

S
t .

(5)dLt =α̃

(

θ̃ − Lt

)

dt + ξdBL
t ,

2 See “Appendix”.
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It is clear that the proposed model is similar to a stochastic volatility model in the sense 
that the stochastic nature of the volatility is assumed to be driven by the market-wide liquid-
ity. However, in contrast to stochastic volatility model, the key factor that makes our model 
different is that Lt can take negative values as well depending upon whether the underlying 
asset is in short supply or surplus.

Further, we assume a general correlation structure among the three Brownian motions

Remark 2.1

It should be particularly emphasized that our model dynamics are much more general 
than those discussed by Brunetti and Caldarera (2004) and Feng et al. (2014) in the sense 
that they assumed BS

t  to be independent of the other two Brownian motions while such 
correlation is captured by our model. Our model financially makes more sense from 
two aspects; a) it is customary to define an aggregate liquidity measure as an average 
of the specific liquidity measures of each stock in the sample. Since Lt is the level of mar-
ket liquidity, i.e., a combination of liquidity levels of stocks, it should be correlated with 
each and every stock in the market, no matter the stock is perfectly liquid or illiquid. This 
motivates the inclusion of the coefficient ρ2 , and b) as the liquidity discounting factor is 
a stock-specific factor, it should be correlated with the dynamics of that particular stock 
price. With a general dependence structure, it of course provides more flexibility, while it 
also adds significantly extra difficulty in deriving analytical solutions. Albeit difficult, we 
are still able to produce a closed-form European option pricing formula, and the details 
are presented in the next section.

To price options we need to determine an equivalent martingale pricing measure. Since 
the underlying asset is illiquid, the market is incomplete because an investor cannot quickly 
trade without any additional cost. There are infinitely many equivalent martingale pricing 
measures, since our market is incomplete. Following Bingham and Kiesel (1998) which 
illustrate that all possible martingale measures can be characterized by their Girsanov 
identities, we select a suitable equivalent martingale measure from set of all such meas-
ures. Using the Radon-Nikodym derivative, we can obtain an equivalent martingale pricing 
measure as follows

Consequently, Girsanov theorem implies that the Brownian motions are changed under 
the new measure Q as follows:

dB
γ
t dB

S
t =ρ1dt,

dBL
t dB

S
t =ρ2dt,

dB
γ
t dB

L
t =ρ3dt.

dQ

dP
= exp

{

−
∫ t

0

�1(s)dB
S
s −

∫ t

0

�2(s)dB
γ
s − 1

2

∫ t

0

�
2
1(s)ds −

1

2

∫ t

0

�
2
2(s)ds − ρ1

∫ t

0

�1(s)�2(s)ds

}

.



Page 6 of 18Pasricha et al. Financial Innovation            (2022) 8:30 

where �1 and �2 should satisfy

Therefore, the stock price dynamics can be written under Q as

with

Following the idea of Heston (1993), we assume that the market price of liquidity risk is 
proportional to liquidity, i.e., kβLt as a means to achieve tractability3. As a result, we can 
re-write the dynamics as follows4:

with

where

A closed‑form pricing formula
This section presents the specific procedures to derive an analytical formula for Euro-
pean option prices under the dynamics of the liquidity-adjusted underlying price pro-
posed in Section 2.

dW
γ
t =dB

γ
t + �2dt + ρ1�1dt,

dWS
t =dBS

t + �1dt + ρ1�2dt,

dWL
t =dBL

t + ρ2�1dt + ρ3�2dt.

�1(ρ1βLt + σ)+ �2(βLt + ρ1σ) = µS + βLt +
1

2
β2L2t + ρ1σSβLt − r.

dSt

St
= rdt + βLtdW

γ
t + σsdW

S
t ,

dLt =
(

α̃θ̃ − α̃Lt − ξρ2�1 − ξρ3�2

)

dt + ξdWL
t .

(6)
dSt

St
= rdt + βLtdW

γ
t + σsdW

S
t ,

(7)dLt = α(θ − Lt)dt + ξdWL
t ,

α =α̃ + ρ3ξkβ ,

θ =
α̃θ̃ − ρ2ξ�1

α̃ + ρ3ξkβ
.

3 The main reason for such an assumption is for the tractability. The analytical tractability is actually very essential in 
finance practice, since model calibration with a large amount of real market data is a time-intensive process and it is 
even not possible to carry out empirical studies without analytical solutions. The availability of an analytical pricing for-
mula can be extremely important for the efficient application of the proposed model in practice, especially in the recent 
trend of algorithmic trading. On the other hand, by the definition of “market price of risk”, it is actually very reasonable 
to assume that it is proportional to a measure of liquidity itself, in addition to some other simple forms one may choose 
(Feng et al. 2014; Heston 1993; Zhang et al. 2019).
4 It should be pointed out here that our dynamics do not fall under the category of linear-quadratic diffu-
sion models defined in Cheng and Scaillet (2007) because of the following two reasons; (a) Eq. (3) indicates that 
dγt = (−βLt + 1

2
β2

L
2
t )γtdt − βLtγtdB

γ
t  involves a cubic term in the drift factor, which violates the requirement of lin-

ear-quadratic diffusion models, and (b) the dynamics under the measure Q, i.e., Eqs. (6) and (7), contain more Brownian 
motions than the dimension of the dynamics, which does not meet the requirement for being a linear-quadratic diffu-
sion model.
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A general pricing formula

Under the risk-neutral martingale measure Q, the price of a European call option with 
maturity T and strike price K, can be calculated as

where IA is the indicator function of the set A. In order to simplify the first term in Eq. 
(8), we use St as a numeraire and introduce a new measure Q1 as follows:

Under the new measure Q1 , the option price in Eq. (8) can be reformulated as

where F1 and F2 can further be simplified using the characteristic function as follows:

with j =
√
−1 and,

where Xt = ln(St) denote the log-price.
Further, note that

The only remaining unknown quantity to obtain a closed-form pricing formula is the 
characteristic function f2(η,T ) . We analytically work out the characteristic function of 
XT by applying the Feynman–Kac theorem, the details of which are provided in the next 
subsection.

The characteristic function of XT
Define h(η, t,T , xt , lt) = EQ(eiηXT | xt , lt) . Using the Feynman–Kac theorem, the partial 
differential equation (PDE) governing h(η, t,T , xt , lt) is given by

(8)
C =E

Q
t

(

e−r(T−t)(ST − K )+
)

=e−r(T−t)E
Q
t

(

ST I{ST≥K }
)

− Ke−r(T−t)E
Q
t

(

I{ST≥K }
)

.

(9)
dQ1

dQ
= e−r(T−t) ST

St
.

(10)
C =StE

Q1
t

(

I{ST≥K }
)

− Ke−r(T−t)E
Q
t

(

I{ST≥K }
)

=StF1 − Ke−r(T−t)F2,

F1 =E
Q1
t

(

I{ST≥K }
)

=
1

2
+

1

π

∫ +∞

0

Real

(

e−jη ln(K )f1(η,T )

jη

)

dη,

F2 =E
Q
t

(

I{ST≥K }
)

= 1

2
+ 1

π

∫ +∞

0

Real

(

e−jη ln(K )f2(η,T )

jη

)

dη.

(11)f1(η,T ) = E
Q1
t

(

ejηXT
)

, f2(η,T ) = E
Q
t

(

ejηXT
)

,

(12)

f1(η,T ) =E
Q1
t

(

ejηXT

)

=E
Q
t

(

e−r(T−t)+XT−Xt ejηXT

)

=e−r(T−t)−Xt E
Q
t

(

e(1+jη)XT

)

=e−r(T−t)−Xt f2(η − j,T ).
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with the terminal condition h|t=T = eiηxT . We assume that h(η, t,T , xt , lt) is of the fol-
lowing affine form,

Substituting (14) into (13) yields the following system of ordinary differential equations 
(ODEs) governing the functions A(t,T ; η) , B(t,T ; η) and C(t,T ; η),

with A(T ,T ) = B(T ,T ) = C(T ,T ) = 0 . Obviously, the ODE governing C(t, T) is a Ric-
cati equation with constant coefficients and hence can be solved easily, with the corre-
sponding solution given by

where δ1 =
√

(α − iηρ3ξβ)2 + ξ2β2(iη + η2), δ2 = α−iηρ3ξβ
δ1

 . If we further substitute 
C(t, T) from Eq. (18) into Eq. (16), the resulting equation is a first-order linear homoge-
neous differential equation whose solution can be straightforwardly derived as

where δ3 = −(2αθ+2iρ2ξση)(α−iηρ3ξβ)+2ξ2ρ1σβ(iη+η2), δ4 = −(2αθ+2iρ2ξση) . 
Finally, A(t, T) can be worked out by direct integration. It should be remarked that as the 
Ricatti equations admit analytical solutions, they are much more efficient to compute 
than using purely numerical approaches.

Till now, we have successfully derived a closed-form pricing formula for European 
options, when the underlying price needs to be adjusted due to liquidity issues. In 
the next section, the accuracy of the newly derived formula will be verified through 
numerical experiments, and the influence of liquidity on option prices will also be 
shown.

(13)

∂h

∂t
+

(

r −
1

2

(

β2l2 + σ 2
)

− ρ1σβl

)

∂h

∂x
+ α(θ − l)

∂h

∂l
+

(

1

2
(β2l2 + σ 2)+ ρ1σβl

)

∂2h

∂x2

+
1

2
ξ2

∂2h

∂l2
+ (ρ2σξ + ρ3ξβl)

∂2h

∂x∂l
= 0

(14)h(η, t,T , xt , lt) = eA(t,T ;η)+B(t,T ;η)lt+C(t,T ;η)l2t +iηxt .

(15)
∂C

∂t
=− 2ξ2C2 + 2(α − iηρ3ξβ)C +

1

2
β2

(

iη + η2
)

,

(16)

∂B

∂t
=
(

α − 2ξ2C(t,T , η)− iηρ3ξβ
)

B− (2αθ + 2iρ2ξση)C(t,T )+ ρ1σβ

(

iη + η2
)

,

(17)

∂A

∂t
=
1

2
σ 2

(

iη + η2
)

− irη − (αθ + ρ2iξση)B(t,T )−
1

2
ξ2B(t,T )2 − ξ2C(t,T ),

(18)

C(t,T ) =
1

2ξ2

(

(α − iηρ3ξβ)− δ1

(

sinh (δ1(T − t))+ δ2 cosh (δ1(T − t))

cosh (δ1(T − t))+ δ2 sinh (δ1(T − t))

))

,

(19)
B(t,T ) =

1

2δ1ξ2

(

δ2δ3 − δ4δ1

cosh (δ1(T − t))+ δ2 sinh (δ1(T − t))
+ δ4δ1

)

−δ3

2δ1ξ2

(

sinh (δ1(T − t))+ δ2 cosh (δ1(T − t))

cosh (δ1(T − t))+ δ2 sinh (δ1(T − t))

)
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Greeks

Since the call option price is derived in closed-form, it is therefore possible to differenti-
ate the price and obtain the closed-form expression for the Greeks. In this subsection, 
we derive the option sensitivities, the Greeks, for our modeling framework.

Note that the Greek with respect to any parameter y usually involves the first or 
second order derivative of F1 and F2 , which are given by (for i = 1, 2)

 Delta for a European call is

since ∂f1(η,T )

∂x = jηf1(η,T ) = jηe−r(T−t)−xf2(η − j,T ) implies ∂F1
∂x = Ke−r(T−t)

S
∂F2
∂x .

We can then express Gamma as

The Greek, Rho, is given by

where, for i = 1, 2,

with

and

where ∂A(η;t,T )
∂r  can be obtained by differentiating the solution of Eq. (17) with respect to 

r.
The Greek, Theta, is given by

where, for i = 1, 2,

∂Fi

∂y
=

1

π

∫ ∞

0

Real

(

∂fi(η,T )

∂y

e−jη ln(K )

jη

)

dη,
∂2Fi

∂y2
=

1

π

∫ ∞

0

Real

(

∂2fi(η,T )

∂y2
e−jη ln(K )

jη

)

dη

(20)�C =
∂C

∂S
= F1 +

∂F1

∂x
−

Ke−r(T−t)

S

∂F2

∂x
= F1

(21)ŴC =
∂2C

∂S2
=

∂F1

∂S
=

1

S

∂F1

∂x
=

1

πS

∫ ∞

0

Real
(

e−jη ln(K )f1(η,T )

)

dη.

(22)ρC =
∂C

∂r
= S

∂F1

∂r
− Ke−r(T−t) ∂F2

∂r
+ (T − t)Ke−r(T−t)F2

∂Fi

∂r
=

1

π

∫ ∞

0

Real

(

∂fi(η,T )

∂r

e−jη ln(K )

jη

)

dη

∂f1(η,T )

∂r
= −(T − t)f1(η,T )+ e−r(T−t)−x ∂f2(η − j,T )

∂r
,

∂f2(η,T )

∂r
= f2(η,T )

∂A

∂r
,

(23)�C =
∂C

∂t
= S

∂F1

∂t
+ rKe−r(T−t)F2 − Ke−r(T−t) ∂F2

∂t
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with

and

where ∂A
∂t ,

∂B
∂t  and ∂C

∂t  are given in Eqs. (17), (16) and (15) respectively.
In the Heston model, both initial volatility v0 and long-term mean of the volatility, 

say ω , impacts variance. Therefore, to obtain sensitivities with respect to volatility, Zhu 
(2010) defined two vegas, one based on 

√
v0 and the other based on 

√
ω . On the same 

lines, we define two sensitivities to the liquidity level, namely,

The Greek,  Vega1(V1 ), is given by

where ∂F1
∂lt

 and ∂F1
∂lt

 involve ∂f1
∂lt

 and ∂f2
∂lt

 which are given by

Similarly, the Greek,  Vega2 ( V2 ), is given by

where ∂F1
∂θ

 and ∂F1
∂θ

 involve ∂f1
∂θ

 and ∂f2
∂θ

 which are given by

with

∂Fi

∂t
=

1

π

∫ ∞

0

Real

(

∂fi(η,T )

∂t

e−jη ln(K )

jη

)

dη

∂f1(η,T )

∂t
= rf1(η,T )+ e−r(T−t)−x ∂f2(η − j,T )

∂t
,

∂f2(η,T )

∂t
= f2(η,T )

(

∂A

∂t
+

∂B

∂t
lt +

∂C

∂t
l2t

)

,

V1 =
∂C

∂lt
, V2 =

∂C

∂θ
.

V1 = S
∂F1

∂lt
− Ke−r(T−t) ∂F2

∂lt
,

∂f1

∂lt
=e−r(T−t)ex

∂f2(η,T )

∂lt
∂f2

∂lt
=f2(η,T )(B(η; t,T )+ 2C(η; t,T )lt)

V2 = S
∂F1

∂θ
− Ke−r(T−t) ∂F2

∂θ
,

∂f1

∂θ
=e−r(T−t)ex

∂f2(η,T )

∂θ
,

∂f2

∂θ
=f2(η,T )

(

∂A(η; t,T )

∂θ
+

∂B(η; t,T )

∂θ
l +

∂C(η; t,T )

∂θ
l2t

)
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and ∂A(η;t,T )
∂θ

 can be obtained by differentiating the solution of Eq. (17).
It should be remarked here that although any mathematical model needs to go through 

a calibration process before it can be applied in practice, the main purpose of this paper 
is to derive an analytical option pricing formula when there is a more general correla-
tion structure among different stochastic processes than that presented by Brunetti and 
Caldarera (2004) and Feng et  al. (2014), so that the model is much more flexible and 
closer to reality, while the efficiency of the calibration process can still be maintained. 
Moreover, the empirical study carried out by Feng et al. (2014) has already demonstrated 
the usefulness of a simplified model, and thus our model should provide a better perfor-
mance as the model adopted by Feng et al. (2014) is actually a special case of ours.

Numerical experiments and discussions
In this section, the results of numerical experiments are presented to illustrate various 
properties of the newly derived formula. Firstly, although the obtained pricing formula 
is in closed-form, a comparison of option prices produced by the formula (our prices) 
with those obtained from Monte–Carlo simulation (MC prices) is needed to give a sense 
of correctness of the formula. Also, our model will be compared with the Black–Scholes 
model and other existing models to demonstrate the significance and economic conse-
quences of incorporating liquidity risk into the option pricing framework. The sensitiv-
ity of option prices to various parameters is also studied to show how these parameters 
affect option prices.

In the following, unless otherwise stated, the values of the parameters chosen to 
achieve the goals mentioned above are listed as follows. The long-term mean θ , the 
mean-reverting speed α and the volatility ξ of the market liquidity level are set as 0.3, 
0.2 and 0.9, respectively, while the initial level of liquidity, i.e., L0 is chosen to be 0.3. 
The parameter β that governs the sensitivity of the underlying asset to market liquidity 
is allocated a value of 0.5. Moreover, the risk-free interest rate r, the initial underlying 
price S0, and the strike price K for the option are respectively 0.01, 100, 110, with the 
time to expiry T being 1. All of the three correlation coefficients, ρi, i = 1, 2, 3 , default 
as 0.2.

Table 1 presents the comparison of our prices and MC prices accompanied by a 98% 
confidence interval across different values of moneyness KS0 and maturity T. We observe 
that our pricing formula is accurate as the two prices are close to each other across all 
scenarios and the maximum relative error (RE) between the two prices is 0.69%, and 
all of our prices fall within the corresponding 98% confidence interval. Moreover, the 
correctness of our formula is further verified after observing that the average RE is 
0.35%, 0.25% and 0.42% for at-the-money, in-the-money and out-of-money options, 
respectively.

∂C(η; t,T )

∂θ
=0,

∂B(η; t,T )

∂θ
= 1

2δ1ξ2

(

−2δ2α(α − iηρ3ξβ)+ 2αδ1

cosh (δ1(T − t))+ δ2 sinh (δ1(T − t))
− 2αδ1

)

+
α(α − iηρ3ξβ)

δ1ξ2

(

sinh (δ1(T − t))+ δ2 cosh (δ1(T − t))

cosh (δ1(T − t))+ δ2 sinh (δ1(T − t))

)
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With the confidence in our pricing formula, we now present the comparison of 
our model and the model considered by Feng et al. (2014) (Feng’s model) as well as 
the Black–Scholes model to demonstrate the impact of the general dependence struc-
ture and liquidity risk. Figure 1a shows the sensitivity of our price with respect to the 
correlation coefficient ρ , where we select ρ such that ρ1 = ρ2 = ρ . It shows that our 
price when ρ = 0 is equal to the price under Feng’s model, which is consistent with 
the fact that Feng’s model is a degenerate case of our proposed model. Further, Fig. 1b 
presents the comparison of option prices obtained from our model, Feng’s model, and 
the Black–Scholes model. Clearly, call option prices when taking into account liquid-
ity risk are significantly higher than those under the Black–Scholes model when the 
underlying market is perfectly liquid, which can be explained as follows. Note that 

Table 1 Accuracy across different moneyness K
S0

 and maturity T 

K/S0 0.8 0.85 0.9 0.95 1 1.05 1.10 1.15 1.2

T=0.25

Authors 20.6059 16.1565 12.1767 8.8290 6.1928 4.2411 2.8668 1.9320 1.3080

MC 20.6508 16.2002 12.2146 8.8611 6.2203 4.2620 2.8808 1.9399 1.3129

(±0.0512) (±0.0491) (±0.0459) (±0.0417) (±0.0369) (±0.0319) (±0.0273) (±0.0231) (±0.0196)

RE(%) 0.22 0.27 0.31 0.36 0.44 0.49 0.49 0.41 0.37

T=0.5

Authors 22.2044 18.3607 14.9632 12.0507 9.6242 7.6515 6.0782 4.8400 3.8730

MC 22.2811 18.4308 15.0273 12.1090 9.6764 7.6946 6.1107 4.8656 3.8936

(±0.0797) (±0.0765) (±0.0727) (± 0.0684) (±0.0638) (±0.0593) (±0.0548) (±0.0506) (±0.0467)

RE(%) 0.34 0.38 0.43 0.48 0.54 0.56 0.53 0.53 0.53

T=0.75

Authors 24.1643 20.7209 17.6618 14.9924 12.6991 10.7540 9.1204 7.7576 6.6250

MC 24.1316 20.6906 17.6294 14.9573 12.6628 10.7156 9.0800 7.7148 6.5795

(±0.1087) (±0.1052) (± 0.1014) (±0.0973) (±0.0930) (±0.0888) (±0.0846) (±0.0806) (±0.0768)

RE(%) 0.14 0.15 0.18 0.23 0.29 0.36 0.45 0.55 0.69

T=1

Authors 26.2393 23.0847 20.2625 17.7660 15.5784 13.6760 12.0308 10.6132 9.3941

MC 26.2718 23.1155 20.2886 17.7896 15.5999 13.6973 12.0514 10.6347 9.4163

(±0.1442) (±0.1408) (±0.1371) (±0.1333) (±0.1295) (±0.1256) (±0.1218) (±0.1181) (±0.1146)

RE(%) 0.12 0.13 0.13 0.13 0.14 0.16 0.17 0.20 0.24

Fig. 1 Comparison with existing models
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Lt > 0 ( Lt < 0 ) indicates that the market is in short supply (surplus) while Lt = 0 
indicates the perfect level of liquidity. Hence, the value of |Lt | increases at lower levels 
of liquidity of the stock, which potentially depicts a substantial price response with 
only moderate trading volumes. Thus, holding an imperfectly liquid stock results in 
a premium (positive or negative depending on whether the  stock is in short supply 
or surplus). Consequently, the writer of a call option would need to purchase the 
underlying asset; illiquid assets would cost him/her more compared to the case if the 
underlying is perfectly liquid. Therefore, the writer would naturally expect a higher 
option premium to compensate for liquidity risk of the underlying asset.

To further check the statistical significance of the difference between our price 
and Feng’s price, we perform a one-sided Student’s t-test with the hypothesis, 
H0 : E = 0, H1 : E ≥ 0 , where E is the difference in our price and Feng’s price. We find 
that the sample mean is 1.269 and the test-statistic value is t = 30.391 with 15 degrees 
of freedom, which results into a p-value nearly 0, with a 95% confidence interval being 
(1.195754,∞) . Thus, this rejects the null hypothesis and confirms that our prices are 
significantly higher than Feng’s prices, demonstrating the importance to incorporate 
a general correlation structure to provide more flexibility.

Figure 2 presents the variation of the various Greeks, namely Delta, Gamma, Rho, 
Theta,  Vega1(V1 ) and    Vega2(V2 ), of a call option with the strike price. In Fig.  2a, 
Delta is negative, which implies that a long (short) position in a call (put) option with 
liquidity risk must be hedged through holding a long (short) position in the underly-
ing illiquid stock. Fig. 2b presents Gamma of the option and a small positive value of 
Gamma implies that Delta is changing slowly, which further implies that less frequent 
changes in the position are required to keep our position Delta neutral. As shown in 
Fig. 2c, Rho is actually a decreasing function of the strike price, which can be under-
stood from the fact that the call option price would be closer to zero when the strike 
is large, implying that the influence of the interest rate on option prices would be 
small. In Fig. 2d, we present Theta per calendar day, i.e., the formula for Theta divided 
by 365. We observe that Theta is negative, which is usually the case for an option, 
since an option would lose its time value as time passes. It is also interesting to notice 
that both  Vega1 and  Vega2 are higher when the option is at the money, while they are 
lower when the option is either in the money or out of money. The main explana-
tion for this phenomenon is that the payoff function would have a more significant 
impact on option prices when the option is in the money or out of money, since the 
call option is more likely to be exercised and expire worthless when the option is in 
the money and out of money, respectively.

Figure  3 illustrates how sensitive the liquidity-adjusted option prices are against 
the change of the correlation coefficients among the three stochastic factors, i.e., the 
underlying price, market liquidity, and liquidity discount factor. As expected, option 
prices increase with each of the correlation coefficients ρi, i = 1, 2, 3 . We observe that 
the impact of ρ1 , i.e., the correlation coefficient between the stock price and the dis-
count factor, is more significant as compared to the other two correlation coefficients, 
i.e., ρ2 and ρ3 . A larger value of ρ2 means higher value of market liquidity |Lt | (which 
implies lower levels of liquidity) and higher stock price, which in turn increases the 
call option price since the writer of the option has to pay higher price to purchase 
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the stock from the market. Finally, a larger value of ρ3 means higher value of market 
liquidity |Lt | (which implies lower levels of liquidity) and lower values of the discount 
factor, which leads to a higher option price since small γt gives a higher stock price 
compared to the perfectly liquid stock.

In contrast to Fig.  3, where we presented the sensitivity against each correlation 
coefficient when the other two correlation coefficients were non-zero, Fig.  4 dis-
plays the marginal impact of ρ1 and ρ2 for different values of moneyness when other 

Fig. 2 Greeks
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correlation co-efficients are zero. Depicted in Fig. 4a is that ρ1 has a significant impact 
on option prices across all the scenarios that include at-the-money, in-the-money and 
out-of-money, while the option price appears to be stable with respect to ρ2 shown 
in Fig. 4b. Of course, this does not mean that the introduction of ρ2 is meaningless, 
as one can clearly observe from Fig. 3 that the effect of ρ2 can not be neglected when 
other correlation coefficients are non-zero. A similar conclusion could also be drawn 
from Fig. 5.

Conclusion
In this article, the pricing problem of European options is studied when the underly-
ing asset is subject to liquidity risk. By making market liquidity and liquidity discount-
ing factor as random variables, the dynamics of liquidity-adjusted underlying prices 
are firstly obtained, and a general correlation structure among the random variables is 
specified. A closed-form pricing formula for European options is presented under the 
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Fig. 3 Sensitivity of the option prices with respect to correlation coefficients

Fig. 4 Marginal Impact of ρ1 and ρ2



Page 16 of 18Pasricha et al. Financial Innovation            (2022) 8:30 

proposed liquidity-adjusted model. It is also demonstrated through numerical experi-
ments that incorporating liquidity risk has a significant influence on option prices, and a 
general correlation structure among stochastic factors provides more flexibility.

Appendix
Applying the product rule for stochastic differentiation together with Equation (2) yields

Using Eq. (3) and Ito’s lemma, we have

Substituting the above in Eq. (24) and using Eq. (1), we have

(24)d(St) = d

(

1

γt

)

SBSt +
1

γt
dSBSt + d

(

1

γt

)

dSBSt .

d 1
γt
1
γt

=
(

βLt +
1

2
β2L2t

)

dt + βLtdB
γ
t .

Fig. 5 Sensitivity of the option prices with respect to correlation coefficients
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