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Abstract 

Since the emergence of Bitcoin, cryptocurrencies have grown significantly, not only in 
terms of capitalization but also in number. Consequently, the cryptocurrency market 
can be a conducive arena for investors, as it offers many opportunities. However, it is 
difficult to understand. This study aims to describe, summarize, and segment the main 
trends of the entire cryptocurrency market in 2018, using data analysis tools. Accord-
ingly, we propose a new clustering-based methodology that provides complementary 
views of the financial behavior of cryptocurrencies, and one that looks for associations 
between the clustering results, and other factors that are not involved in clustering. 
Particularly, the methodology involves applying three different partitional clustering 
algorithms, where each of them use a different representation for cryptocurrencies, 
namely, yearly mean, and standard deviation of the returns, distribution of returns 
that have not been applied to financial markets previously, and the time series of 
returns. Because each representation provides a different outlook of the market, we 
also examine the integration of the three clustering results, to obtain a fine-grained 
analysis of the main trends of the market. In conclusion, we analyze the association of 
the clustering results with other descriptive features of cryptocurrencies, including the 
age, technological attributes, and financial ratios derived from them. This will help to 
enhance the profiling of the clusters with additional descriptive insights, and to find 
associations with other variables. Consequently, this study describes the whole market 
based on graphical information, and a scalable methodology that can be reproduced 
by investors who want to understand the main trends in the market quickly, and those 
that look for cryptocurrencies with different financial performance.In our analysis of 
the 2018 and 2019 for extended period, we found that the market can be typically 
segmented in few clusters (five or less), and even considering the intersections, the 6 
more populations account for 75% of the market. Regarding the associations between 
the clusters and descriptive features, we find associations between some clusters with 
volume, market capitalization, and some financial ratios, which could be explored in 
future research.
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Introduction
The cryptocurrency market comprises more than 4000 cryptotocoins,1 with over 800 
trades per second, and more than 280 exchanges. It has become a huge new market in 
the very short term, considering that Bitcoin (Nakamoto 2009), the first peer-to-peer and 
decentralized digital currency was produced in 2008, and the first Bitcoin was mined in 
2009. While cryptocurrencies were originally created to enable anonymous wire trans-
fers and online purchases, they have become a powerful investment tool.

However, this new market is diverse. Cryptocurrencies with different technologies, 
purposes, and user bases, coexist, and form a highly heterogeneous market that is dif-
ficult to understand and manage, for those addressing a good investment allocation.

Regarding other assets, the value of cryptocurrencies swing based on news events. 
However, cryptocurrencies have no physical assets, or governments to return their value 
to. Moreover, the cryptocurrency market is new, based on a still developing technology 
that is highly speculative and small compared to others. Consequently, it is highly vola-
tile with large upswings, bubbles, and sudden market downturns.

Being a market so novel, big, diverse, and volatile, it needs to be clearly understood. 
So far, several categorization efforts have been made. For example, the Cryptocompare 
website2 analyzed over 200 cryptoassets, according to regulatory aspects, level of decen-
tralization, supply issuance, economic incentives, and others. Such a taxonomy is use-
ful, even if it only covers approximately 5% of the existing cryptocurrencies at that time. 
Another example, Burniske and Tatar (2017) classifies over 200 cryptocurrencies into 
three classes of assets, based on traditional financial markets, namely capital, consuma-
ble/transformable, and store of value assets. However, this classification is highly subjec-
tive, because many times, the cryptocurrencies may be an integration of some of them. 
Furthermore, these approaches typically cover a small fraction of the cryptocurrencies, 
which are the most important in terms of volume and popularity and focus on qualita-
tive aspects or aspects that change insignificantly.

A different approach involves analyzing the financial performance of cryptocurren-
cies, and describing them from a statistical point of view. Chan et  al. (2017) analyzed 
a few cryptocoins (Bitcoin, Dash, Dogecoin, Litecoin, MaidSafeCoin, Monero and Rip-
ple), which exhibited heavy-tailed distributions, that fitted the generalized hyperbolic 
distributions. Hu et al. (2019) analyzed the stylized facts, and the return properties of 
222 cryptocurrencies, and found a large degree of skewness, and volatility in the popu-
lation of returns. Furthermore, according to Pele et al. (2020), cryptocurrencies can be 
clearly separated from classical assets, mainly owing to their tail behavior, high variance, 
and high departure from normality. However, their results also show that the behavior of 
cryptocurrencies is diverse.

The same conclusion can be drawn from other clustering analyses using cryp-
tocurrencies. Stosic et  al. (2018) represent the correlations of 119 cryptocurrency 
markets as a complex network, and discover distinct community structures in its 
minimum spanning tree. Song et  al. (2019) analyze 76 cryptocurrencies using the 

1  Although cryptoassets is a more general term, as explained in Burniske and Tatar (2017), we use cryptoasset, crypto-
coin, and cryptocurrencies terms indistinguishably
2  https://​crypt​ocomp​are.​com

https://cryptocompare.com
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correlation-based clustering, and filtering out the linear influences of Bitcoin and 
Ethereum, and detect 6 clusters, but that do not remain stable after the announce-
ment of regulations from various countries. The time dimension also plays an impor-
tant role (Sigaki et  al. 2019) clustering 437 time series of cryptocurrencies, using 
hierarchical techniques that detect four different groups with a behavior that evolves 
differently, in terms of efficiency for the information.

All these approaches show that it is possible to establish different groups of cryp-
tocurrencies in terms of their financial performance. Additionally, it is useful to bet-
ter understand the cryptocurrency market, but also to build a diversified portfolio. In 
the same way, they use different representations of the cryptocurrencies: correlations 
(Stosic et  al. 2018; Song et  al. 2019), factors extracted from the correlation matrix 
(Pele et al. 2020), and time series (Sigaki et al. 2019). Each representation focuses on 
different aspects of cryptocurrency that are meaningful to the purpose of the analysis.

However, it would be possible to combine the clustering results using different 
representations of cryptocurrencies, where each consider different aspects of cryp-
tocurrencies. Thus, the combination of the clustering results makes it possible to 
characterize each cryptocurrency in several dimensions, one for each cluster strat-
egy. If the clusters for each cluster strategy are meaningful, their combinations would 
offer a more detailed characterization of the market and useful insights for portfolio 
management.

This study aims to propose a new methodology that help us to arrange and under-
stand the main trends of the market at a glance, based on the financial behavior of 
cryptocurrencies.

Each of the clustering methods considered should offer a complementary view of 
cryptocurrencies, and a meaningful graphical representation that makes it possible to 
observe the main characteristics of each segment of the market at a glance.

The combination of the clustering methods will make it possible to profile each 
cryptocurrency, considering the different clusters to which it belongs. Furthermore, 
the most populated clustering intersections will help us detect the main trends in 
the market. In conclusion, the clustering analyst can spot the intersection that has a 
particular financial behavior by choosing the prototype of interest for each clustering 
method. This can help investors address interesting cryptocurrencies, depending on 
the investment profile.

In conclusion, the methodology includes the study of the associations between the 
clustering results, and other cryptocurrency features not considered in the clustering. 
Thus, the methodology helps to discover potential relationships between the result-
ing clusters, and other aspects beyond the data characterization used in the clustering 
methods.

The proposed methodology is fully supported by different statistical tools that ensure 
the robustness of the results. Further, it is easily scalable, to manage a growing, and 
dynamic market. Regarding computations, we used R (R Core Team 2013) and several R 
libraries, as shown in Table 15.

In our study, we include all cryptocurrencies in the market in 2018 (more than 1,700 
cryptocurrencies), going beyond the few dozens (or few hundreds) of cryptocurrencies 
analyzed in other studies.
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Regarding the data characterization, we describe each cryptocurrency considering the 
log-return transformation of the daily price in 2018 based on three different levels of 
granularity:

•	 Mean and standard deviation of the daily returns
•	 Distribution of the daily returns
•	 Time-series of the daily returns

In the first case, we provide a meaningful summary commonly used to describe finan-
cial assets over time, as it is the annualized return and volatility, or with the central ten-
dency and dispersion of returns. In the second case, we consider the whole distribution 
of returns that account for not only the central tendency and dispersion of an asset, but 
also for the whole aggregated behavior including asymmetry, kurtosis, and tails. The 
methods for analyzing distributional data belong to the field of symbolic data analysis 
(Noirhomme-Fraiture and Brito 2011), where observations account for internal variation 
that can be represented as intervals or distributions, and have been previously used in 
finance (Arroyo and Maté 2009; Arroyo et al. 2011; González-Rivera and Arroyo 2012). 
In conclusion, we consider the observed data, that is, the log return time series that 
accounts for variations over time and makes it possible to identify when volatile or stable 
periods occur in each cryptocurrency.

There is a high diversity of clustering techniques. However, in our case, interest lies in 
the different perspectives shown at each level of granularity. Therefore, for all represen-
tations, we use partitional prototype-based clustering algorithms with a similarity meas-
ure (distance), that is meaningful for each kind of representation. Thus, we will have a 
prototype describing the behavior of each cluster using the same representation of the 
data. Prototypes make it possible to assign financial meaning to the entire cluster.

We further combined the three clustering results and analyzed the most numerous 
intersections with the help of visual tools. Such approaches have been successfully used 
in biostatistics (L’Yi et al. 2015; Kern et al. 2017). In our case, we use them to represent 
the main trends in the cryptocurrency market. If several cryptocurrencies belong to the 
same clusters in the three clustering results, we can consider them to be very similar. 
We further inspect the relationships among the three clustering results with the help of 
visualization tools.

The proposed approach provides a screening mechanism that allows us to explore the 
entire market, despite its complexity and size. The intersection of the clustering results 
can also help investors in selecting a suitable cryptocurrency for the portfolio, as it char-
acterizes the market in more detail.

In a further step, we investigate the association between the clustering results and dif-
ferent features of cryptocurrencies, such as technological variables, market capitaliza-
tion, the maturity (age) of the cryptocurrency, and some of the asset portfolio ratios. We 
aim to inspect whether some clusters are tightly associated with some aspects that do 
not consider the clustering process. We conducted inference statistical tests, to assess 
whether the associations were significant. These associations enhance the profiling of 
the different clusters. We keep continuous references to concrete cryptocurrencies 
of the market, where most of them are not known, which are part of our analysis. In 
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conclusion, we discuss our results and exemplify how they could be used, and further 
present our conclusions, including some points, to stimulate further research.

Literature review
Clustering financial data

Clustering analysis is a well-known data analysis tool that has been used in different 
fields (Henning et  al. 2016). Particularly, in Finance, the seminal work of Mantegna 
(1999) used the cross-correlation of the return time series, and minimum spanning trees 
(MST) to group the stocks of the New York Stock Exchange from, 1989 to 1995. Man-
tegna (1999) applies the MST to represent the stock market as a network. Bonanno et al. 
(2004) further applied the same methodology considering different time horizons, to 
compare the return and volatility networks. The methodology of Mantegna is applied 
with different variations in other contexts (Onnela et al. 2003; Mizuno et al. 2006; Brida 
and Risso 2009). Furthermore, Marti et  al. (2017) proposed different alternatives and 
variants for this methodology.

Another important strand applies fuzzy clustering to financial time series, typically 
grouping stocks to develop portfolios. For example, D’Urso et  al. (2013) and D’Urso 
et al. (2016) applied a model-based approach with different variations of fuzzy clusters, 
to financial markets for different distance metrics (autorregresive, Caiado). Similarly, 
D’Urso et al. (2020) proposed a fuzzy clustering method based on cepstral representa-
tion, using the daily Sharpe ratio as a variable of clustering.

The main application of clustering in finance is building portfolios. For example, 
Nanda et al. (2010) applied K-means, fuzzy C-means, and self-organizing maps (SOM), 
to returns and financial ratios from Indian stocks, to classify them into different clusters 
and subsequently develop portfolios from these clusters. Chaudhuri and Ghosh (2015) 
propose an approach that groups the daily Indian market volatility comparing Kernel 
K-means, SOM and Gaussian clustering models to achieve right volatility prediction 
using the clusters as predictors.

Liao (2007); Liao and Chou (2013) cluster the daily market data, and apply different 
association rules between the K-means groups, indices, and some market categories. 
These associations help analyze and describe co-movement among the different markets.

Regarding the use of time series as objects for clustering, Aghabozorgi and Teh (2014) 
proposed a three-phase clustering model, to categorize companies based on the shape 
similarity of their stock markets, using dynamic time warping (DTW) (Berndt and Clif-
ford 1994). D’Urso et  al. (2019) apply a trimming procedure to a fuzzy clustering of 
stocks comprising the FTSE MIB with a DTW as a distance metric with good results, to 
mitigate the outlier effect on time series.

From traditional finance to cryptoasset markets

Yermack (2013) analyzes Bitcoin market in-depth, and consider it an investment that 
is more speculative than a currency. Apparently, Bitcoin market poses high risk for the 
management of transactions, and credit markets. In conclusion, a deflationary scenario 
is anticipated owing to the limited number of bitcoins that can be issued (21 million). 
This study anticipated many aspects of cryptocurrency markets prevalent today (exces-
sive volatility and high level of computer knowledge required for using and integrating 
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them into the web of international payments). A more updated vision of this innova-
tive market regards cryptocurrency exchange. Drozdz et al. (2018, 2019) show that BTC/
USDT and ETH/USDT ETH/BTC were almost indistinguishable from exchange rate 
quotes in the forex market. The authors show that the exchange of cryptocurrencies 
has a behavior similar to that of more mature markets such as stocks, commodities, or 
Forex. Complementarily, the latest study Drozdz et al. (2020a) points to the anticipated 
disconnection of the cryptocurrency from the conventional markets, and states that the 
Bitcoin on the cryptomarket plays a role similar to that of the USD in the Forex market, 
or Drozdz et al. (2020b), where cryptocurrencies began to be correlated with traditional 
assets, only from 2020.

Corbet et  al. (2019) analyzed the high growth of the cryptocurrency market and its 
heterogeneity since 2014 in depth. They consider different aspects including regulatory, 
cyber-criminality, market efficiency, and bubble dynamics, and make recommenda-
tions for further investigations on different domains. We consider a couple of them, and 
address some characteristics based on liquidity with the volume as a proxy, market cap, 
and other key metrics or ratios, such as the beta or Sharpe ratio. More recently, Fang 
et al. (2021) updated a survey covering various cryptocurrency trading aspects, includ-
ing unsupervised machine learning techniques and others (e.g., cryptocurrency trading 
systems, bubble, and extreme conditions, prediction of volatility and return, crypto-
assets portfolio construction and crypto-assets, technical trading, and others).

The characterization of cryptocurrencies from a statistical point of view has been 
tackled by different studies. Chan et al. (2017) analyze the distributions of a few cryp-
tocurrencies (Bitcoin, Dash, Dogecoin, Litecoin, MaidSafeCoin, Monero and Ripple) 
and show that they exhibit heavy-tailed distributions that fit the generalized hyperbolic 
distributions. Our study considers heavy-tail and associated power-law distribution 
analyses. As part of a benchmark with other markets, Baek and Elbeck (2015) show that 
Bitcoin market volatility is 26 times more volatile than the S&P 500 Index.

Zhang et al. (2018) analyzes the stylized facts of eight cryptocurrencies that represent 
almost 70% of the market capitalization and find, that among other things, heavy tails 
for the returns, return autocorrelations that decay quickly, while the autocorrelations for 
absolute returns decay slowly, whose returns display strong volatility clustering, and lev-
erage effects, and a power-law correlation between price and volume. The study of styl-
ized facts has been extended by increasing the number of digital coins to 222 (Hu et al. 
2019). Similarly, we consider it important to include as many cryptocurrencies as pos-
sible in our study, to characterize the market fully.

Clustering of cryptocurrencies

The classical methodology based on MST algorithms (Mantegna 1999) is applied by 
Song et  al. (2019), to filter out the influence of Bitcoins and Ethereum; it detects six 
homogeneous clusters. However, the structure found does not remain stable after the 
announcement of regulations from various countries. Interestingly, the use of clustering 
together with other methods, such as VAR models and Granger causality tests (Zieba 
et  al. 2019) show that Bitcoin shock prices are not transmitted to the prices of other 
cryptocurrencies, with Litecoin and Dogecoin being the most influential actors. Accord-
ing to the results, Bitcoin exhibits a lower relationship with other cryptocurrencies. 
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Another approach is the use of the random matrix theory, and hierarchical structures in 
an MST on 119 cryptocurrencies, from 2016 to 2018 (Stosic et al. 2018). They find mul-
tiple collective behavior in the cryptocurrency market, which contrasts with the intuitive 
idea that Bitcoin has a global influence on the entire market.

Furthermore, the time dimension was also considered. Sigaki et al. (2019) first classify 
437 cryptocurrencies according to information efficiency, using permutation entropy 
and statistical complexity, and then cluster their time series using dynamic time warping 
and hierarchical clustering, to find four groups where the behavior in terms of informa-
tion efficiency evolves differently.

All these articles show the complexity of the underlying structure in the cryptocur-
rency market, where some cryptocurrencies influence others, even in unexpected ways.

The comparative study of cryptocurrency markets and traditional financial markets 
is also a key research area. Corbet et  al. (2018) show that cryptocurrencies are highly 
connected among themselves, and disconnected from mainstream assets (bonds, stocks, 
S&P500, gold). Consequently, Pele et al. (2020) merged classification based on asset pro-
files and the dynamic evolution of clusters. First, they characterize a selected group of 
log-returns assets, including 150 cryptocurrencies, stock commodities, and exchange 
rates, to estimate a multidimensional vector by applying a dimensionality reduction 
with factor analysis. They further used classification, where K-means is one of the tech-
niques applied. The main difference between cryptocurrencies and traditional assets is 
the higher variance and longer tails of the log-return distribution. The work also shows 
that individual cryptocurrencies tend to develop over time, with similar characteristics 
(synchronic evolution).

Methodology
Dataset description

We retrieved data from https://​www.​crypt​ocomp​are.​com/ for all cryptocurrencies 
traded in 2018. Many new cryptocurrencies have emerged in recent years, but many of 
them are short-lived and barely traded. We aim to include as many of them as possible 
in our study. First, we eliminate NaN and Inf values, which are mostly caused by zero 
prices in log transformations. Second, we filter out cryptocurrencies that were in the 
market less than 95% of the days (92 cryptocurrencies in 2018). We kept for clustering, 
those that were in the market but were not traded, that is, zero return and volatility or 
zero volume, as they are part of the market. In 2018, there were 306 cryptocurrencies on 
exchanges, that were barely traded. However, we decided to include them in the clus-
tering as they are a substantial part of the cryptocurrency market. Even if they have no 
interest in investors, we are interested in knowing where they are allocated.

Our final dataset in 2018 consisted of 1,723 cryptocurrencies. However, we decided to 
eliminate cryptocurrencies with low or no activity from the second part of our analysis, 
the association tests. Low market activity may cause heavy tails in the return distribu-
tion and affect the consistency of the results. The remaining dataset for association tests 
consisted of 1,262 cryptocurrencies with higher statistical quality, ensuring the existence 
of the first and second statistical moments.

We also downloaded the data for 2019, to extend our experiment for a longer time-
frame, analyzing the generalization of the results.

https://www.cryptocompare.com/
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In addition to cryptocurrency data, we use daily data from CCI303 to represent the 
global behavior of the cryptocurrency market. The CCI30 is a market cap weighted 
index (Rivin and Scevola 2018), which represents the 30 largest cryptocurrencies by 
market capitalization, which makes it a good representative of the market. However, 
other crypto indexes (such as, CRIX or BCGI that stands for Bloomberg Galaxy Crypto 
Index) could be used in our methodology, as all of them highly correlate with the mar-
ket (Häusler and Xia 2021). We chose the CCI30 index owing to its data availability and 
transparent methodology. However, the proposed methodology could be used with 
other indices, provided that it ensures an accurate representation of the trend for the 
entire market. We also retrieve data from the US Department of the Daily Treasury Bill 
market (T-Bill).4 We use both for the computation of some financial benchmarking rates 
as the Beta and Sharpe ratio, which we explain in the subsequent sections.

Regarding the cryptocurrencies, we constructed the following variables:

•	 Daily log-returns: The use of returns instead of prices in Finance price time-series is 
very extended and consolidated, owing to its more suitable statistical properties and 
better comparability. It has also been used in cryptocurrency markets Letra (2016), 
Stosic et al. (2018). The return for cryptocurrency i on day t is computed as: 

 where Pi(t) is the daily cryptocurrency price for the i cryptoasset on day t.
•	 Heavy tail: Heavy tail behavior in a return distribution means that extreme price 

fluctuations are relatively frequent. This might be related to the finite-size effects 
in the number of active agents, linked to the liquidity and volume of the market 
(Watorek et al. 2020). The rates of return distributions for less liquid cryptocurren-
cies are characterized by thicker tails, and poorer scaling.5 We aim to identify cryp-
tocurrencies prone to extreme behavior and whether they associate with some clus-
ters. We define a cryptocurrency with heavy tail behavior by a binary variable if it has 
a tail index lower than 2, according to Newman (2005)

	 This would question the existence of the finite first, and the second moments of the 
underlying distributions, which is not a problem in our case, as we use the observed 
sample statistics in a descriptive manner.

•	 Volume: The daily traded volume in the units of the base cryptocurrency, is used as a 
liquidity proxy. We transform the volume into an ordinal variable using the quantile 
functions. Three cryptocurrencies represent 66% of the trading volume of the market 
in 2018, namely Bitcoin (46%), Ethereum (16.5%), and EOS (4%); in total, 10 crypto-
currencies (BTC, ETH, EOS, BCH, XRP, LTC, ICX, HSR, ETC, IOT) 
represent 80% of the daily volume.

•	 Market cap: it is the one-day market capitalization of February 4, 2019. Three cryp-
tocurrencies represent 60% of the market cap: WBTC* (26.8%), BTC(22.4%), and NPC 

ri(t) = ln(Pi(t))− ln(Pi(t − 1))

4  https://​home.​treas​ury.​gov/.
5  A power-law distribution is also referred to as a scale-free distribution because a power-law is the only distribution 
that is the same, regardless of the scale (Newman 2005).

3  https://​cci30.​com/.

https://home.treasury.gov/
https://cci30.com/
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(11.5%), and five cryptocurrencies (WBTC*, BTC, NPC, XRP, AMIS) represent 
80% of the total market cap.

•	 Beta and Sharpe ratios: We compute and discretize Beta and Sharpe ratio for each 
cryptocurrency. These variables enrich the characterization and give us a financial 
flavor of the clusters that will help us with interpretability.

•	 Technological variables: We represent the encryption, and consensus algorithms of 
the cryptocurrency as nominal variables:

–	 Encryption: There are 105 different values. The most relevant are Scrypt, 
SHA256, SHA256D, X11, X13, X15, PoS, Multiple, and CryptoNight. We notice 
that this information is not available for 35% of cryptocurrencies (599 obs.) in 
2018.

–	 Consensus: There are 60 possible values, including the well-known Proof of 
Work (PoW) and Proof of Stake (PoS). The most predominant are obviously 
PoW/PoS, PoW, and PoS, although this information is missing in 31% of the cryp-
tocurrencies (536 obs.) in 2018

•	 Age: We estimate the time on the market of each cryptocurrency, and transform it 
into an ordinal variable, by a quantile function. Age and maturity terms are inter-
changeable in our study.

Methods

We aim to group the cryptocurrencies based on the behavior of their log-returns in 
2018, which will be described later. For this purpose, we use different clustering algo-
rithms that deal with the three representations of the log-returns, described in the pre-
vious section: statistic moments, observed probability distribution, and observed daily 
time series.

We use centroid-based clustering algorithms as the centroids provide an interpretable 
summary of the elements of each cluster, which will help us identify the most relevant 
features of the cluster elements. However, this type of clustering algorithm assumes 
knowledge about the desired number of clusters (k), which is a drawback. We applied 
different quality criteria, to determine the optimum number of clusters, depending on 
the technique used. The evaluation of clustering performance is intrinsically difficult, 
owing to the lack of objective measures—no true table. Moreover, different approaches 
have been applied, to compare different clustering techniques, for instance, by applying 
the multiple criteria decision making (MCDM) in Kou et al. (2014) with different meth-
ods (i.e., TOPSIS, DEA, and VIKTOR) including 11 performance measures. Particularly, 
in our case, and for K-means, as we will detail later on, we mostly rely on the straightfor-
ward majority rule criteria implemented in the R-package (Charrad et al. 2014), which 
applies 30 performance measures, which is a simpler methodology than MCMD, but 
adequate in our case, as we do not benchmark different clustering techniques.

Moreover, we use distance-based clustering algorithms, which are simple, intuitive, 
and applicable to a wide variety of scenarios (Aggarwal et al. 2013). The algorithms con-
sidered are based on meaningful dissimilarity measures or distances that help in the 



Page 10 of 46Lorenzo and Arroyo ﻿Financial Innovation             (2022) 8:7 

interpretability of the clusters. This is especially important for more complex representa-
tions, such as distributions or time series. For example, in the case of distributions, the 
measure should relate to the properties of the density function (central tendency, spread, 
symmetry), while in the case of time series, it will be more with the shape of the time 
series. Meaningful measures will help us better understand the resulting clusters, and 
interpret the nearness of the observations to the centroid. Additionally, our clustering 
algorithm provides a prototype or centroid of the clustering, which facilitates the char-
acterization of the resulting clusters.

The cluster intersections help us merge the results of the different clusters, and identify 
the most prominent cryptocurrency profiles in 2018, according to different characteris-
tics through the three techniques. Furthermore, we analyzed the association between 
the clustering results found for the three representations, and the different attributes of 
cryptocurrencies.

K‑means clustering algorithm for the first and second statistical moments

Regarding the bi-variate (or two-moments) representation, where the two variables are 
the yearly mean, and standard deviation of the log-returns, we use K-means cluster-
ing (MacQueen 1967), which is one of the most extensively used clustering algorithms 
(Wu et al. 2008) globally and on cryptocurrency markets, particularly (Fang et al. 2021). 
We standardized the two variables to homogenize the differences between their ranges. 
K-means clustering minimizes within-cluster variances, that is, squared Euclidean 
distances in our case, which makes the result easy to understand and interpret. Before 
clustering, we compute the Hopkins statistic (Banerjee and Dave 2004) to rule out the 
possibility that a uniform random distribution generated the dataset.

To select the number of clusters (k), we compute several internal cluster validity indi-
ces (CVIs) for crisp partitions (Arbelaitz et al. 2013), including Silhouette, Dunn, COP 
Davies-Bouldin, Calinski-Harabasz, or the score function, and then apply the majority 
rule to choose the best number of clusters.

We apply clustering ensemble techniques (Acharya 2011) to reduce the randomness 
of partitional cluster results. We run the K-means algorithms 10 times, and ensemble 
the outcomes by minimizing the Euclidean distance. We confirm that the dissimilarity 
among the different runs is closer to zero, which makes the ensemble cluster a more 
stable representation. For each algorithm run, we apply the Hartigan-Wong method 
for clustering (Hartigan and Wong 1979) with ten iterations, to reach convergence and 
consider 50 random starts for each iteration. Once we have the 10 algorithm runs, we 
compute the medoid of an ensemble of partitions, that is, the element of the ensemble 
minimizing the sum of dissimilarities to all other elements (Hornik 2005, 2019).

Dynamic clustering algorithm for histograms

Regarding the yearly log-return distribution, we apply a clustering algorithm that deals 
with the histogram-data form. More precisely, we apply the dynamic clustering algo-
rithm for histogram data based on the l2 Wasserstein distance (Irpino and Verde 2006; 
Irpino et al. 2014). Thus, we group the cryptocurrencies with similar distributions of log-
returns in 2018.
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The dynamic clustering algorithm needs a dissimilarity function to assign the observa-
tions to the clusters, which is the l2 Wasserstein distance. Given two histograms h1 and 
h2 , the l2 Wasserstein distance is defined as

where F−1
1

 and F−1
2

 are the inverse of the cumulative distribution functions, that is, the 
quantile functions of h1 and h2 , respectively. This distance can be decomposed as follows:

where µi and σi are the mean and the standard deviation of the hi respectively, and ρ1,2 
is the correlation of h1 and h2 (Irpino and Verde 2015). Cpnsequently, the l2 Wasserstein 
distance can be decomposed by adding three elements that account for the histogram 
differences in terms of location, spread, and shape. Interestingly, this distance matches 
the perceptual similarity that humans observe when comparing distributions (Arroyo 
and Maté 2009). All these aspects make it a suitable distance for clustering distributions 
and, in our case, log-return distributions.

The dynamic clustering algorithm for histogram data based on the Wasserstein dis-
tance (Hist-DAWass) is a k-means-like algorithm for clustering a set of observations 
described by histogram variables (Irpino and Verde 2006; Irpino et al. 2014). Each of the 
k clusters is represented by a centroid or prototype, and observations are assigned to 
the closest prototype. The prototype is an average histogram of the histograms observed 
for each variable. In our case, observations are described by a single histogram variable 
representing the distribution of log-returns, and the resulting prototype is a histogram 
that averages the histograms of the observations that belong to the cluster (Irpino and 
Verde 2015). Consequently, the prototypes can be interpreted in a financial context as 
log-return distributions.

We used the clustering implementation in the R-package Hist-DAWass (Irpino 2016). 
This implementation provides a quality measure, which is the percentage of the sum of 
squared (SS) deviation explained by the model running the algorithm several times for 
each k. We run the clustering algorithm 20 times for each k, of which the solution is the 
best among the repetitions, that is, the one that maximizes the SS.

TADPole clustering for time‑series

Time-series clustering is a challenging domain for clustering owing to the high dimen-
sionality of objects and their ordering. Consequently, many approaches have been pro-
posed over time (Liao 2005; Rani and Sikka 2012; Aghabozorgi et al. 2015).

We aim to cluster the time series with similar volatility patterns in the same period. 
For this purpose, the Euclidean distance may fail to produce an intuitively correct meas-
ure of similarity between two time series as it is very sensitive to small distortions in the 
time axis. However, other measures, such as dynamic time warping (DTW), manage this 
problem using warping the non-linearly of the time dimension, to estimate their simi-
larity. Currently, DTW is considered one of the most popular and useful shape-based 
measures (Aghabozorgi et al. 2015).

(1)dW (h1, h2) :=

√

∫ 1

0

[

F−1
1

(t)− F−1
2

(t)
]2

dt

(2)dW (h1, h2) =

√

(µ1 − µ2)
2 + (σ1 − σ2)

2 + 2σ1σ2
(

1− ρ1,2
)
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However, DTW is intrinsically slow owing to its quadratic time complexity, which 
hampers its applicability in clustering. Therefore, we use the enhanced DTW algorithm 
TADPole (Time-series Anytime Density Peak) (Begum et al. 2015), which extends the 
density peak (DP) clustering framework (Rodriguez and Laio 2014) and exploits the 
upper and lower bounds of DTW, to prune unnecessary distance computations, which 
accelerates the convergence of the algorithm. Consequently, TADPole produces a cor-
rect answer quicker, and then refines it until it converges to the exact answer. Moreover, 
the clustering algorithm only requires two parameters, which makes it easy to use. First, 
a cut-off distance that defines the thresholds to select the series. We further set it as 2; 
and second, a window size that defines the time frame to make the comparison between 
the series that we set as 3. Optionally, we can also select the number of clusters (k), or let 
the algorithm choose the optimal one, based on the local density of points (closer series 
at some time based on some cut-off distance) using a “knee point finding” algorithm, 
where points with higher values of ρi · δi , where ρi refers to the local density and δi is the 
distance from points with higher local density.

We consider a different number of clusters k, and compute the internal cluster validity 
index (CVI) for each cluster. As this clustering algorithm uses three distances, we use 
Calinski-Harabasz as the CVI index to secure the convergence of the algorithm for the 
asymmetric distance measure.

TADPole allows for the clustering of time-series with arbitrary shapes, which is very 
useful in our case owing to the heterogeneity of the cryptocurrency market. In contrast, 
DTW is not a geometric distance with the three fundamental metric properties: non-
negativity, symmetry and triangle inequality. TADPole clusters cannot be represented 
as “balls” in a metric plane, as in K-means. The result is a partition around the medoid 
(PAM) type centroid, using the DTW similarity measure that can be represented only in 
a DTW space. This centroid is a time-series that helps to identify the volatility patterns 
of the resulting clusters.

We apply the implementation of the TADPole algorithm of the R-libraries 
DTWCLUST by Sarda-Espinosa (2019); Sardá-Espinosa (2019). The time-series are log-
return values that facilitate the characterization of the clusters from a financial perspec-
tive. The DTW measure implemented in the package follows the estimation in Lemire 
(2008).

Combination of clustering results

Once we have the results of the clustering algorithms, we combine them by intersect-
ing the clusters. Potentially, we have T1 · T2 · T3 intersections, where Tn is the number 
of clusters obtained for the clustering algorithm n. The combination of the clustering 
results makes it possible to characterize each cryptocurrency in several dimensions, 
one for each cluster strategy. The resulting multidimensional categorical datasets can be 
shown using visualization techniques supported by graph theory (L’Yi et al. 2015; Kern 
et al. 2017). To better highlight the changes in the clustering between the different tech-
niques, we visualized such changes by means of a so-called alluvial diagram, which is 
considered a good example in Rosvall and Bergstrom (2010). We use the alluvial visu-
alization implemented in R (Bojanowski and Edwards 2016) to show the main flows of 
cryptocurrencies.
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We can also numerically compare two partitions represented as a c1 × c2 matrix, 
where nij is the number of objects in group i of partition 1 ( i = 1, ..., c1 ) and group j of 
partition 2 ( j = 1, ..., c2 ). The labeling of the two partitions was arbitrary. Hubert and 
Arabie (1985) developed the Adjusted Rand Index (ARI) with a correction for chance as

The index computes the proportion of the total of 
(

n

2

)

 object pairs that agree, that is, 

they are either (i) in the same cluster according to partition 1 and the same cluster 
according to partition 2, or (ii) in different clusters according to partition 1 and in differ-
ent clusters according to partition 2. The higher the ARI index, the higher the agree-
ment.6 In our case, this means that more cryptocurrencies share clusters for the different 
partitions. We used the function implemented in the R package MCLUST by Scrucca 
et al. (2016). We also focus on the cluster intersections with higher cardinality for a bet-
ter profiling of the main trends of the cryptocurrency market.

Association test

In conclusion, we enhance the descriptive information of each cluster by examining the 
level of association with different independent variables not considered by the cluster-
ing algorithms. We analyze the association among clusters and the categorical variables 
defined in Table 1 by applying Fisher’s exact tests, and analyzing the Pearson’s residu-
als of the contingency tables that we explain later. First, quantitative variables must be 
transformed into ordinal by quantile functions.

Below, we introduce some variables that are financial ratios, which we borrow from 
the portfolio theory (Bacon 2008), and apply it to characterize the behavior of crypto-
currencies from an investor perspective, enhancing the association study as well. We 
take advantage of the R-library PerformanceAnalytics by Peterson et al. (2018), for the 
computation of the Sharpe ratio.

Beta is a volatility measure of the systematic risk of an asset, the risk inherent to the 
entire market that is non-diversifiable, in statistic terms, the beta is the slope of the 
regression of our asset compared with a reference on the market:

where Rc is the return of our cryptocurrency, Rb is the return of the benchmark market, 
and the CCI30 index that tracks the 30 largest cryptocurrencies by market capitalization.

The Beta value shows whether an asset moves in the same direction as the reference 
index, and how volatile or risky it is compared to it. The  beta  for the entire market is 
1.0. A positive beta means that the asset moves in the same direction as the market, 
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(4)β =
Cov(Rc,Rb)

Var(Rb)
,

6  The Rand Index yields a value between 0 and 1, but the Adjusted Rand Index can yield negative values if the index is 
less than the expected index.
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while a negative beta means that the asset moves in the opposite direction. Furthermore, 
an absolute value higher than 1 indicates greater sensitivity to systematic risk (i.e., higher 
risk), while values lower than 1 indicate less sensitivity.

The Sharpe ratio(Sharpe variable) is the average return of risk-free by volatility unit 
or total risk. The ratio determines the risk of investment with respect to the return of an 
investment with zero risk:

where Rc is the return of cryptocurrency, σc is the standard deviation or the volatility 
of our cryptocurrency, and Rf  is the risk-free rate considered the reference; we consid-
ered the daily value of the annualized T-Bill over 90 days. Its daily value for 2018 was 
E[Rf ] = 0.00525% , which is almost zero. The greater the value of the Sharpe ratio, the 
more attractive the risk-adjusted return of cryptocurrency is.

Typically, the chi-square test is used to examine the significance of the associa-
tion between categorical data on a contingency table. However, the significance value 
is an approximation that is not adequate when the sample size is small. We ruled out 
the chi-square test as the results are insignificant if the expected frequency is not typ-
ically higher than 5 in at least 80% of the cells of the contingency table (Yates 1984). 
This assumption is not fulfilled in our case, for many of the categorical variables, and 
for some levels. We used Fisher’s exact test (Fisher 1922) to test the association between 

(5)SRc =
E[Rc − Rf ]

σc
,

Table 1  Categorical variables used on the association tests and values

Variable # Levels Values

Algorithm 73 Encryption algorithm (SHA256, Ethash, X13, X11,...)

ProofType 39 Consensus algorithm (PoW, PoW/PoS,DPoS..)

Volume 5 Percentiles of the volume negotiated. Namely, P70 for volume values lower than the P70 
percentile, P80 for values higher than the P70 and lower than the P90 , and similarly P90 , P99 
and P100.

MkCap 5 Percentiles of the market capitalization. Namely, P70 for market cap values lower than the 
P70 percentile, P80 for values higher than the P70 and lower than the P90 , and similarly P90 , 
P99 and P100.

Beta 6 Beta values divided into the following categories:

NegBeta for beta values lower than -0.01

CashLike if beta is to equal or higher than -0.01 and lower than 0.01

LowVol if beta is equal to or higher than 0.01 and lower than 0.95

Indexlike if beta is equal to or higher than 0.95 and lower than 1.05

HighVol if beta is equal to or higher than 1.05 and lower than 100

Extreme if beta is higher than 100

Sharpe 4 Sharpe ratio divided into the following categories:

SRF (Small Risk-free) for negative values

ERP (Excess return positive) for positive values lower than 0.5

ACC​ (Acceptable) for values equal to or higher than 0.5 and lower than 1.0

GOOD for values equal to or higher than 1.0

Age 7 Deciles of the age variable (time on the market). Namely, D4 for age values lower than the 
P40 percentile, D5 for values higher than the P50 and similarly D6 , D7 , D8 , D9 and D10 for P100.

HeavyTail 2 Binary variable that take value 1 if the cryptocurrency has a heavy-tail behaviour or 0 if it 
does not.
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the variables in Table 1 and the cluster results, which are applicable for all sample sizes. 
This test assumes no dependency between the categorical variables as a null hypothesis, 
and assumes a multivariate hypergeometric distribution for the cells in the contingency 
tables (Mehta and Patel 1983).

For large datasets, the Monte Carlo method provides an unbiased estimate of the exact 
p-value (Mehta and Patel 1996). Monte Carlo comprises a repeated sampling method 
that for any observed table, there are many tables, each with the same dimensions and 
columns and row margins as the observed table. Monte Carlo simulations are imple-
mented in R stats-package for the chisq.test function. We ran 8,000 simulations for each 
association, that is, for each pair of variables under analysis, generating simulated con-
tingency tables filled with a sampling of a multivariate hyper-geometric distribution. 
We further compute the probability that we have a distribution, as we have effectively 
observed, that is, the p-value. A cell-by-cell comparison of the observed and estimated 
frequencies indicates the nature of the dependence. If the p-values of the Fisher associa-
tion tests between a couple of variables are lower than 0.01, then we consider the asso-
ciation to be significant. For each significant association between categorical variables of 
the contingency table, we analyze standardized (adjusted) Pearson’s residuals for cell ij 
(Agresti 2018), which are defined as follows:

where Oij and Eij are the observed and expected frequencies, respectively, mi is the row 
total, nj is the column total, and N is the total number of observations.

The sign of the residual (positive or negative) indicates whether the observed fre-
quency in cell ij is higher or lower, respectively, than the value fitted under the model, 
while the magnitude indicates the degree of departure. A standardized residual having 
an absolute value that exceeds a value of approximately 2.00, when there are a few cells, 
or approximately 3.00 when there are many cells, indicates that the cell does not satisfy 
H0 (Agresti 2018). In our case, we assume a more conservative position, and consider it a 
cut-off for significant standardized residuals that exceed 3.50.

Replication within a longer time‑frame

We propose a time-frame agnostic methodology that aims to describe the behavior of 
a period of time, regardless of its length or frequency. We use 2018, an extremely active 
period in the cryptocurrency market, as the subject of analysis. However, it would be 
interesting to replicate the methodology for other time periods, and/or consider other 
time frequencies.

In this respect, we re-apply our methodology to an extended time frame that includes 
both 2018 and 2019, to validate the stability of the results obtained, and the robustness 
of the methodology. For this purpose, we consider an extended timeframe, including 
both 2018 and 2019.

We further consider only the cryptocurrencies traded on the market during the entire 
period (730 days), that is, 440 cryptocurrencies in total. For this particular shortlist, 
we compute the associations on the extended period for the financial ratios (Beta and 

(6)r(Adj)ij =
Oij − Eij

√

Eij(1−
mi
N )(1−

nj
N )
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Sharpe Ratio), Volume. However, the variables Algorithm, ProofType, and Age remain 
unchanged. For the case of MkCap, we do not have values at regular intervals. Hence, we 
use those that we took the 4th of February, 2019, as we explained in the variable descrip-
tion section.

We re-run the three clustering techniques for the 2018-19 timeframe. However, to 
determine the number of clusters, we confirmed that the results were quite similar to 
those obtained in 2018. Therefore, to ease the comparison, we chose to use the exact 
same number of clusters used in 2018.

This experiment will help us determine whether some of the underlying structures on 
the market persist when we consider a longer period and the same for the associations 
found.

Results
In this section, we present the results of the three clustering algorithms: intersection, 
clustering and association tests. In Table 2, we summarize the three clustering results, 
showing the cardinality of each cluster and, for the sake of comparison, the observed 
mean and standard deviation of the prototypes (for the K-means, we show the centroid 
values).

Clustering results of the bi‑dimensional representations

Regarding the existence of clusters, the Hopkins statistic computed on scaled average 
returns, and volatility is 0.01552. The value is below 0.5, which indicates the existence of 
an underlying structure.

According to the CVI index, the optimum number of clusters was 3. The descriptive 
statistics of the three centroids in ordinary values are shown in Table 2; Figure 1a show 
the scatter plot of the clusters.

The clustering algorithm clearly discriminates the cryptocurrencies between lower 
(Cluster 2 and 3) and higher volatility (Cluster 1), which is the less populated cluster as 
well. From a financial perspective, Cluster 1 includes riskier cryptocurrencies. Cluster 3 
mostly allocates negative mean returns, while those in Cluster 2 have the higher returns, 
some of them positive and others negative. However, the three centroids are close to the 
zero-mean return point.

Table 2  Cluster cardinality, mean value and standard deviation of the centroid or prototypes for the 
clustering methods

For Hist-DAWass and TADPole we compute the mean and standard deviation of the prototypes

K-means Hist-DAWass TADPole

Card. Mean Std.Dev. Card. Mean Std.Dev. Card. Mean Std.Dev.

Clus. 1 19 − 0.008 1.795 496 − 0.134 0.337 22 − 0.001 0.080

Clus. 2 903 − 0.002 0.130 147 − 0.503 0.378 843 0.026 0.046

Clus. 3 801 − 0.009 0.229 1007 − 0.011 0.108 858 − 0.028 0.047

Clus. 4 57 − 0.044 0.867

Clus. 5 16 − 0.095 3.123
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Fig. 1  Volatility-Average return plane in ordinary values with the vertex names and the more representative 
cryptocurrencies in terms of market cap for the different clustering techniques for 1723 cryptocurrencies in 
2018 time frame
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Figures 3, 4 and 5 show a more detailed view of each cluster. In these figures, we repre-
sent the density in the bi-dimensional (two-moments) space (r̄, σ) in a contour plot that 
helps us to locate areas in which cryptocurrencies tend to be more concentrated.

•	 Cluster 1: This cluster allocates cryptocurrencies with negative average returns, but 
with very high volatility, ranging from 1 to 5. It includes only 19 cryptocurrencies 
that represent approximately 1% of the sample, as shown in Fig. 3a. The higher con-
centration of cryptocoins in this cluster is surrounding volatility 1.5, and the mean 
return is approximately -0.1, as shown in Fig.  3b. ELTCOIN (token that run on 
Ethereum blockchain network released in October 2017) has a central position in 
the cluster, and around it, we can find B2X, ADCN (no traded on the market since 
November 2019), BLX, WAND (derivative market platform), GOOD, SBIT, ZCG, ITT, 
REX, STAR​ (it is a token and operates on the Ethereum platform, higher volume in 
Ethereum along 1st and last quarter of 2018) and PFR. This cluster contains a mix of 
Ethereum tokens and cryptocoins with its own blockchain, most of them with low 
traded volume, which may cause a few operations to trigger volatility.

•	 Cluster 2: This cluster is the more populated, with approximately 900 cryptocur-
rencies (52% of the total). It allocates moderate behaviors, including higher mean 
return cryptoassets. It is also less homogeneous than the others, with different dense 
areas of concentration, as shown in Fig.  4a which point out the existence of other 
potential cluster. Most of the higher capitalization cryptocurrencies (BTC, EOS, ETC, 
ETH, and LTC) are in the sub-cluster with very low volatility, and moderate nega-
tive returns, as shown in Fig. 4b. However, we also find some cryptocurrencies with 
moderate positive returns (134 cryptotocoins), and very low volatility, as shown in 
Fig. 4c. These cryptocurrencies include ALEX (low trading in the first half of 2018, 
and higher activity in the second half of 2018), BST (BlockStamp had very low activ-
ity in 2018), ETL (EtherLite is an ERC20 token based on Ethereum with high peaks 
of activities in the first quarter of 2018, and no activity in the remaining part of the 
year), or OPES (OpesCoin had moderate activity in the first half of 2018, and were 
flat in the second); all of them can be considered low-medium market capitalization 
(under the 70th percentile). However, the details of Fig. 4c, show the high homogene-
ity on the selected area where there is no any density contour curve.

•	 Cluster 3: This cluster has 801 cryptocurrencies, most of them with negative average 
returns, and a volatility lower than 0.5. According to Fig. 5a, the highest concentra-
tion of cryptocurrencies is located in a mean return closer to zero, and a volatility of 
approximately 0.1. Some of the more representative cryptocurrencies of this cluster 
in terms of market capitalization are XEM, VIA, QRL, DASH, QTUM, XST, and BCH, 
which are close to each other in the cluster (see Fig. 5b).

We confirm that K-means clearly identifies three different behaviors of cryptocurren-
cies, in terms of mean returns and volatility.

Clustering results of histogram representations

According to the CVI, the clustering algorithm for histogram data based on the l2 Was-
serstein metric (Irpino et al. 2014) separates the cryptocurrencies into five clusters. Each 
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cluster is represented by its prototype, which is a log-return distribution. Table 3 shows 
the descriptive statistics of the prototypes of the five clusters.

The five distributions exhibit slightly negative central tendency measures, with Cluster 
1 having the lowest values. They are quite symmetrical, with low skewness and heavy 
tails, as indicated by a high kurtosis. Skewness is closer to zero in all cases, but positive, 
which means that the right tail of the distribution is fatter; in other words, it has more 
extreme positive return values (or over the mean) on the right tail.

It is important to note that the coefficients of variation for the centroids are quite dif-
ferent for the clusters that range from -0.75 to -32.90, which indicates that this clustering 
algorithm is especially sensitive to this particular statistic. This is particularly relevant 
in the financial context as the coefficient of variation evaluates the degree of volatility 
assumed in comparison to the amount of return expected from investments. However, 
because the mean returns are negative, its financial interpretation would be misleading.

The last column of Table 3 provides a measure of variance (Var.Wass) that quantifies 
the deviation of the distributions of objects into a cluster with respect to its prototype. It 
is a dispersion measure for histogram data based on the L2 Wasserstein metric (Irpino 
and Verde 2015). This statistic measures how representative the prototype of a cluster is. 
According to this statistic, Cluster 3 would be the more uniform cluster, whereas Cluster 
5 would be more heterogeneous.

The first column in Fig. 6 represents the prototypes of the five clusters, while the rest 
of the columns show some of the relevant cryptocurrencies of each cluster. Interestingly, 
except for the prototype of Cluster 1, the others exhibit a similar shape, where the main 
differences lie in the range of the distribution (note that each plot has a different range 
for the X-Y axis) and in the tail behavior. We describe them below:

•	 Cluster 1: The prototype in Fig. 6a has a mean return of -0.13, and the highest kurto-
sis (13.43). The standard deviation of this prototype is slightly lower than that of the 
Cluster 1 prototype; however, the shape of the distribution is different, as the tails are 
heavier. The Wasserstein variance in Table 3 associated with the mean distribution 
(0.025) suggests that the cluster is homogeneous and has a cardinality closer to 500 
cryptocurrencies, which represent approximately 30% of the samples. Some of the 
most representative cryptocurrencies in this cluster have a high market cap (P99), 
for example, BITUSD (high capitalization along 2018 but in a downward trend), 
CHAT in Fig. 6b, KEY in Fig. 6c (high trading volume in the second half of 2018), MAN 
(increasing trading volume along 2018, maximum at the end of the year) and OCN (a 
token for peer-to-peer sharing economies such as Airbnb).

•	 Cluster 2: The prototype shown in Fig. 6d (green color distribution) has the lowest 
mean (-0.50) and median (-0.51) return among the clusters, and the highest coeffi-
cient of variation (-0.75). The cluster variance (0.079) indicates a homogeneous clus-
ter. This cluster has 147 cryptocurrencies and concentrates all non-traded crypto-
currencies (92) and the lowest market cap (P70) for most cryptocurrencies in this 
cluster. Representative into the cluster by the market cap is 365 in Fig. 6e, ACN, CBX 
or ALT in Fig. 6f.

•	 Cluster 3: The prototype shown in Fig. 6g has a mean return close to zero ( −0.01 ) 
and the most moderated volatility (0.11), and the shortest observed range between 
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minimum and maximum returns. According to the Wasserstein variance, this cluster 
is the most homogeneous, which is especially interesting given that it has the high-
est cardinality with more than 1000 cryptocurrencies (around 60% of the sample). 
Unsurprisingly, this cluster allocates cryptocurrencies with the highest market capi-
talization, including BTC in Fig. 6h, BCH, EOS, ETC, ETH in Fig. 6i and others (HSR, 
ICX or LTC). Given the size of the cluster, these cryptocurrencies represent the pre-
dominant behavior in the market, which is unsurprisingly the most moderate behav-
ior, and includes the most popular cryptocurrencies.

•	 Cluster 4: The prototype shown in Fig. 6j is characterized by negative mean returns 
(-0.04), notable volatility (standard deviation of 0.87) and fat tails with very high kur-
tosis (11.95). The coefficient of variation was also low (-19.97). The cluster was not 
very homogeneous compared with the mean distribution (0.128). The cardinality of 
this cluster is low (around 60 cryptocurrencies). Further, some of the representative 
cryptocurrencies are NAS (most of the trading volume in the 2nd and 3rd quarters 
of 2018), NKC (high trading volume since February 2018 and very important trad-
ing volume in August 18), POLY in Fig. 6k (launched in January 2018), FSN (higher 
volume activity in the 2nd and 3rd quarter of 2018 with a peak in August), JNT in 
Fig. 6l (higher volume activity in 3rd quarter) or MNTP (no continuity on the trading 
volume with sporadic peaks).

•	 Cluster 5: The prototype shown in Fig. 6m has a mean return closer to zero (-0.09), 
but the highest standard deviation (3.12), which causes the lowest coefficient of var-
iation (-32.90). The shape of the cluster is almost symmetric (0.05) with moderate 
kurtosis compared with the other clusters (5.66). We find the highest negative and 
positive returns in this cluster. This cluster was the most heterogeneous compared 
with the mean distribution (1.116). Unsurprisingly, it has the lowest cardinality, with 
only 16 cryptocurrencies, which is approximately 1% of the sample. Some represent-
ative cryptocurrencies are B2X in Fig. 6n (low trading in 2018), ITT in Fig. 6o (very 
active trading volume in January 2018 and along and a peak in July but no activity 
since that time, no trading volume in 2019), LBTC (launched in 2017, discontinuous 
activity along 2018 with no activity at all from September to end of November), PFR, 
STAR​ (noted in Cluster 2 of K-means), YOVI, AMIX, ELTCOIN (noted in Cluster 2 
of K-means) or FLLW (some activity the first 2-3 months of 2018, low trading vol-
ume in the remaining part of the year).

Hist-DAWass clustering shows that it is possible to effectively discriminate the log-
return distributions, considering central tendency, dispersion, and shape.

Clustering results of the time‑series representation

TADPole clustering Begum et  al. (2015) has better performance with a k = 3 value 
according to the Calinski-Harabasz index. Figure  7 represents the time axis, and the 
medoids of each cluster. Hence, they are observed objects (time series of cryptocurren-
cies). Figure 8 shows the annual and quarterly density functions of the three medoids. 
Also, Fig. 8a represents how different the density plot of the Cluster 1 compared with the 
others corresponding with the higher volatile cryptocurrencies is.
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•	 Cluster 1: The medoid of this cluster in Fig. 8b shows a time-variation of approxi-
mately zero, with return peaks positive and negative up to (-0.2, +0.2). The central 
part of the distribution is heavily concentrated around zero, but with extreme volatil-
ity. The quarterly average returns change smoothly, starting with a low but positive 
value in the first quarter, negative in the second and third, and positive in the fourth 
quarter. This cluster had the lowest cardinality (22 cryptoassets). The medoid of this 
cluster is the time-series LINK (Chainlink’s native token, known as LINK, which is 
used to pay the network’s node operators, or oracles, to provide secure data feeds). 
Other cryptocurrencies in this cluster are LTCU​, PPC, SWT, AIR, NGC, PLR or ZSC.

•	 Cluster 2: The medoid of this cluster in Fig.  8c shows consistent average returns 
above zero. The density functions have three modes, which are greater than or 
equal to zero. However, the last two quarters of 2018 exhibited fat-negative tails 
with ranges over -0.1. The cardinality of this cluster represents approximately 49% 
of the cryptocurrencies, including some of the highest market cap cryptocurrencies 
BTC, HSR (noted in Cluster 3 of Hist-DAWass), ICX (noted in Cluster 3 of Hist-
DAWass), LTC (noted in Cluster 3 of Hist-DAWass), and XRP. The medoid is the 
cryptocurrency XTO (referred to as Tao coin, as well as a token for music streaming 
services).

•	 Cluster 3: The medoid of this cluster in Fig. 8d has average returns below zero in all 
the quarters; the densities further exhibit two modes smaller than or equal to zero, 
and occasionally large positive returns. The cardinality of the cluster was approxi-
mately 50% of the total. This cluster includes most of the remaining highest market 
cap cryptocurrencies (e.g., EOS, ETC, ETH). The medoid is the cryptocurrency ZNE 
(Zone coin with more trade activity in the first quarter of 2018, with the more impor-
tant peak of trade volume in July, flat trading volume in the remaining part of the 
year).

Evidently, the TADPole clustering for the return time series effectively identifies three 
different clusters by considering the time series trend and dispersion over time. In 
Table 4, we show the variability of the clusters, measuring the variability as the mean dis-
tance (DTW+LB) to the centroid, and its standard deviation with LB as Lower Bound. 
The variability is quite similar in all clusters, with cluster 1 being the most homogene-
ous, and Cluster 3 being the least. However, according to the standard deviation and 
coefficient of variation, the dispersion within the clusters is quite high.

Intersection of clusters

Regarding comparison, Fig.  1 shows the three clustering results on the same annual 
return-volatility plane. In each plot, all cryptocurrencies are located in the same loca-
tion, but the color scheme in each plot represents the respective clustering results. In the 
plot, we marked the cryptocurrencies with the highest market capitalization and poly-
gon vertices. Notably, most of them are located in a precise area below the point (0, 0). 
The polygons and colors reveal that the results of the three techniques overlap owing to 
the different dimensionality of the objects. The only exception is Cluster 1 of K-means in 
Fig. 1a and Cluster 5 of Hist-DAWass in Fig. 1b which are mostly the same. These plots 
confirm that each clustering algorithm considers different aspects of cryptocurrencies, 
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and that their combinations may provide further insights into the cryptocurrency mar-
ket. TADPole clustering in Fig. 1c is the more different in the groups, compared with 
previous techniques, overlapping all the cluster areas when represented on the same 
return-volatility plane than the other techniques.

We further analyze the main groups of cryptocurrencies that remain together through 
the three clustering algorithms, which we call the intersection of clusters. Only 24 out of 
45 ( 3× 5× 3 intersections) are populated. Table 5 shows all the intersections, and those 
with a cardinality greater than 100 (first six intersections), representing 75% of the total 
market.

Intersection  1 and 2 have almost 300 cryptocurrencies each. Both are characterized 
by cryptocurrencies that belong to Cluster 2 and 3 in the K-means and Hist-DAWass 
algorithms, which are the most populated clusters for each technique. Both are charac-
terized by low volatility, and (negative) close to zero average returns. However, in Inter-
section 1, we find Cluster 3 of the TADPole algorithm, whereas in Intersection 2, we find 
Cluster 2, which mainly differs from that in the first case, in that, it has negative quar-
terly average returns, while in the second case they are positive. In Intersection 1, we find 
cryptocurrencies such as EOS, GVT, MANA, ETH, and ETC. In Section 2, we find some of 
the most popular market cap cryptocurrencies (BTC, LTC, XRP), and some others with 
lower market caps and higher returns (AE, USDT, ZRX).

Intersection 3 and 4 have approximately 200 cryptocurrencies, each with a high influ-
ence of K-means and Hist-DAWass clusters. These intersections are characterized 
by cryptocurrencies that belong to Cluster 3 of K-means and Cluster 3 of the Hist-
DAWass technique  6(g). The main difference from the previous intersections is that 
Cluster 3 of K-means corresponds, on average, with negative daily mean returns but 
moderate volatility 3(a); therefore, the average returns are also lower for this intersection.

Intersection 3 includes one of the highest market cap cryptocurrency (BCH), and others 
with high market capitalization (GNT, LSK, QTUM). In Intersection 4, the lower returns 
introduced by Cluster 1 of K-means is compensated by the positive effect on the return 
by the Cluster 2 of TADPole, with the centroids sited over zero mean returns for all 
quarters 8(c). There are no high returns cryptocurrencies at this intersection (DASH, SC, 
STRAT​).

In conclusion, in Intersection  5 and 6, we have Cluster 3 from K-means, Cluster 1 
from Hist-DAWass, Cluster 3, and 2 from TADPole, respectively. Cluster 2 from Hist-
DAWass was more volatile than Cluster 3 and has the heavier tails. In Intersection 5, we 
find cryptocurrencies with an average-high risk and average returns (CMT, ETT, HST). 
Intersection 6 allocates some cryptocurrencies with high market caps but low returns 
(BCD, SBTC, GEO).

In the alluvial plot shown in Fig. 9, we show how the different clusters of the different 
algorithms are related. This makes it possible to appreciate both the main trends already 
mentioned, and those that are more subtle. For example, notably, the smallest clusters in 
K-means and Hist-DAWass (Cluster 1 and 5, respectively) share the most cryptocur-
rencies. In the subgroup of very volatile cryptocurrencies, we find that AMIS, B2X, ELT-
COIN, FLLW, GOOD, ICE, ITT, LBTC, PFR, REX, RIPT, STAR​, WAND, XIN, YOVI, and 
ZCG. Further, the group diverges and relates to the two main clusters of the TADPole 
without a clear pattern, which means that the temporal evolution is more conventional 
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with a mean return on a quarterly basis, positive or negative, but not related to other 
forms of multidimensionality. Curiously, the smallest TADPole Cluster 1 is not strongly 
related to any other cluster. This means that its peculiar time series evolution is not par-
ticularly related to the prototypes of the aggregated representations of the other cluster-
ing techniques, namely the return distributions and mean-standard deviation bi-variate 
or two-moments representations.

In conclusion, we notice that DEUR is the only cryptocurrency that was not pair-com-
bined with any other cryptocurrencies along the three techniques with no activity at all 
in the market, during our analysis period.

With regard to the ARI values, we obtained extremely low agreement values. The high-
est value is 0.0123, which is very close to zero, which means no agreement. We obtain 
this value for the agreement between the K-means and Hist-DAWass results. For the 
rest of the intersections, we find even lower values. This means that there is no agree-
ment between the different clustering results, which matches our aim of using clustering 
results that provide complementary views on the market.

Association tests

As explained in the Methods section, we rely on exact Fisher tests based on Monte Carlo 
simulations for the significance tests of the associations between the variables. The 
p-values of Fisher’s test are depicted graphically in Fig. 10, with the results of the Fisher 
tests among the categorical variables in Table 1 and the clusters (including the intersec-
tions of the clustering results). P-values lower than 0.01 are represented in purple color 
addressing the more significant associations.

The association tests are aimed at enhancing the characterization of the clusters, by 
adding value to the prototyping descriptions that we explained in Result section. In the 
red box, we group the areas with the associations between clusters, and market categori-
cal variables.

Association between market cap, volume and clusters

According to Table  6, the Cluster 3 of K-means (the one with the more pronounced 
negative mean return prototype with -0.009) is associated with cryptocurrencies of high 
volume, but not those with the highest (Volume variable with P80, P90, and P99 values) 
with standardized residuals of 4.36, 4.35, and 5.71, respectively. However, Cluster 2 with 
the least pronounced negative mean returns (-0.002) is associated with the lower per-
centiles (P70) with a very high residual of 8.93.

While Volume was not considered in the clustering algorithm, the K-means results 
show an interesting association with volume; more precisely, lower volume or liquidity 
cryptocurrencies are strongly associated with the Cluster 2 profile. Curiously, some of 
the cryptocurrencies with the highest volume (BTC, EOS, ETC, ETH, LTC, and XRP) are 
also located in Cluster 2, even if the association is not statistically representative.

Regarding the Hist-DAWass and Volume variable, according to Table 6, Clusters 1, 
and 2, whose prototypes had the lowest mean returns (-0.134, -0.503), are strongly asso-
ciated with the lower Volume cryptocurrencies (standardized residuals 12.25 and 3.72). 
However, Cluster 3, whose prototype had the least pronounced negative average returns 
(-0.011) and the lowest volatility (0.108), is associated with the highest percentiles P90, 
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P99, and P100 with residuals of 5.09, 7.85, and 3.71, respectively. It is also possible to see 
weaker but relevant associations in one of the lowest cardinality clusters (Cluster 4) with 
a standardized residual of 3.36 for P80.

Consequently, we can conclude that Hist-DAWass provides a more accurate screen-
ing by Volume than K-means, as it separates the cryptocurrencies in the three groups 
more clearly.

Regarding the MKCap variable, in Table 7, the K-means association is not very strong. 
For example, we see the lowest and highest market cap percentiles (P70, P100) sharing 
the same Cluster 2 with standardized residuals of 3.91 and 3.57, respectively.

However, in the association between the MKCap variable and Hist-DAWass, we 
observe a significant association between Cluster 1, and the lowest market cap percen-
tiles P70 with a value of 8.07. In contrast, Cluster 3 is linked to high market cap crypto-
currencies (P90 and P99 percentiles).

Association between financial ratios and clusters

Regarding the associations with Beta, Table  8 shows a link (standardized residual 
of 17.79) between the Cluster 1 of K-means and the Extreme Beta (ICE, ITT, PFR, 
and STAR​), which is consistent with the cluster being the one with the most volatile 
cryptocurrencies.

Cluster 2 of K-means allocates cryptocurrencies with positive and moderate negative 
mean returns, and is strongly related to low volatility (LowVol) Betas (BTC, DCN, WAVES 
or WBTC*).

In conclusion, Cluster 3 is associated (standardized residual of 5.79) with cryptocur-
rencies with high volatility (HighVol) (ADA, BCH or SALT).

The beta value acts as a proxy of the risk, and the association with the K-means results 
reveal that it discriminates three groups of different behaviors that could interest the 
investor depending on his/her risk-aversion profile, sufficiently.

However, we can confirm the higher screening capacity of the Hist-DAWass cluster-
ing with the help of Table 8. This technique separates with a high significance NegBeta in 
Cluster 1, Cluster 2, and Cluster 3 (the high negative value of -15.24 of the standardized 
residual means that NegBeta cryptocurrencies are not significantly allocated in Cluster 
3); IndexLike in Cluster 3; and Extreme beta values in Clusters 4 and 5 with the highest 
standardized residuals (10.33 and 19.24). The association of Cluster 3 and Indexlike Beta 
values can be explained by many of the components of the CCI30 index (BTC, BCH, 
DASH, ETC, ETH, LTC).

Regarding the Sharpe ratio variable, Table 9 shows that TADPole is capable of reflect-
ing a strong association between ERP (excess return positive) and cluster 2 (BTM, SC, 
DNT, LEND, and WINGS) with a residual of 10.6, and between SRF (small risk-free) class 
and Cluster 3 (EOS, ETC, ETH, NEO, or ZEC) with a residual of 11.65.

The Sharpe ratio represents the excess return with respect to a risk-free asset or, in 
other words, the risk-reward for the investment on the asset (cryptoasset in our case). 
Interestingly, there was no association with the GOOD categorical label –a Sharpe ratio 
higher than 1.0– in the 2018 dataset. In the best case, there are weak associations with 
ACC​ -higher than 0.5, and lower than 1.0, which is a suboptimal category (see Table 1). 
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These cryptocurrencies are located in Cluster 2 and are represented by a distribution 
with a positive mean return, as shown in Table 2.

In summary, the clustering results of the K-means and Hist-DAWass clusters are 
associated with the Market cap, Volume, and Beta variables, and the TADPole results 
are only associated with the Sharpe ratio.

Associations results for the intersection of clusters

As shown in Fig.  10, the cluster intersection (Combi variable) is significantly associ-
ated with most of the variables. The intersection of the cluster provides a complemen-
tary characterization of the cryptocurrencies as the intersections successfully combine 
the idiosyncrasy of each clustering algorithm. Tables 6, 7, 8, and 9 show the association 
between the different categorical variables and the higher cardinality intersections (first 
six rows in Table 5).

Regarding the Volume variable, Intersection 3 with standardized residuals of 6.21 and 
6.21, and Intersection 4 with standardized residuals of 4.53 to 7.35 are associated with 
high-volume cryptocurrencies in percentiles P90, P99 (ADT, BLOCK, CND). Intersec-
tion 4 is also linked with P80 percentile (FLIX, LDC, RVT). The highest percentile 
P100 is associated with Intersection 1 (EOS, ETC, ETH) with a standardized residual 
of 4.02. In conclusion, the lowest percentile P70 is allocated in Intersection 1 (again, it 
coincides with P100), Intersection 2, Intersection 5, and Intersection 6.

Regarding the MKCap variable, the low market cap cryptocurrencies P70 are mostly 
allocated in Intersection 5 (ANTI, BBT, XMG) and Intersection 6 (BTA, CNT, NTRN) 
with standardized residuals of 4.88 and 4.87, respectively. The percentiles P80, P90 are 
linked to Intersection 3 (ADT, BTX, ION) and P80 with Intersection 4 (BAY, LEND, 
SKY).

There are no Extreme Beta cryptocurrencies in the highest cardinality intersections, 
as shown in Table 8. However, we can see an association between HighVol and Intersec-
tion 3 (BCH, QTUM, XVG) and Intersection 4 (ADA, HSR, STRAT​) with residuals of 
6.20 and 6.62, respectively. In contrast, LowVol is associated with Intersection 2 (BTC, 
WAVES, WBTC*) with a residual of 5.62. In conclusion, the NegBeta values are strongly 
associated with Intersection 5 (FRX,PPP, XPY) and Intersection 6 (GLC, TIT, XHI) 
with standardized residuals of 7.87 and 10.52, respectively.

Regarding the Sharpe ratio, the acceptable cryptocurrencies for investment (Acc) are 
mostly allocated in Intersection  2 (WAVES, XRP, ZEN) with standardized residuals 
of 4.13. The excess return positive (ERP) are linked to Intersection 2 (AC, ZRC, ZRX) 
and Intersection  4 (ADA, HSR, SC) with a standardized residual of 5.20 and 4.67, 
respectively.

Notably, the intersections are associated with all the considered categorical variables, 
except for the technological variables that we review below. Consequently, we can con-
clude that the intersections of the clustering results improve the characterization by 
means of the associations. The intersection inherits some of the associations of the dif-
ferent clustering results, despite the significance being lower.



Page 26 of 46Lorenzo and Arroyo ﻿Financial Innovation             (2022) 8:7 

Associations between financial and the technological variables

It is worth mentioning that while technological variables are not associated with any 
clustering results, they have a significant relationship with other independent financial 
variables, such as market cap (Tables 10, 11) and trading volume (Table 12), as shown 
in Fig. 10 (grey square in the upper left area). For example, in Table 10, we can see a rel-
evant association between Scrypt (7.58 standardized residual), SHA256 (3.58), and X11 
(6.65) encryption algorithms, as well as the lower percentile (P70) of the market cap. 
Encrypted algorithms CryptoNight-V7, Ethash, Ouroboros are also associated with the 
highest market cap percentile (P100).

Regarding the consensus algorithm, the ProofType variable in Table 11, the PoS (3.74), 
PoW/PoS (9.09), and PoW (4.54) are associated with the lowest quantile (P70) of the 
Market cap variable.

Associations with the age of the cryptocurrencies

In Table 13, we can see the associations of clusters with the age or maturity of the cryp-
tocurrencies. In K-means, the only association is that of Cluster 2, which is character-
ized by low volatility (0.130) and slightly negative average returns (-0.002) in Table  2, 
with the youngest cryptocurrencies (D4) (standardized residual of 4.74).

However, Hist-DAWass showed more interesting associations. For example, Clus-
ter 1 is associated with cryptocurrencies in the deciles D5, D6, and D7, with standard-
ized residuals of 11.88, 7.91, and 4.70, respectively. According to Table 3, this cluster is 
characterized by a distribution with moderate skewness (0.82) and high kurtosis (13.43). 
Similarly, Cluster 2 is linked to cryptocurrencies in decile D6 with a residual of 4.97.

In contrast, the oldest cryptocurrencies are prominently associated with Cluster 3 
with a standardized residual of 15.08. Interestingly, Cluster 3 is also a cluster with higher 
market cap cryptocurrencies (BCH, BTC, DASH, EOS, ETC, ETH, IOT,LINK, 
LTC, NEO, WAVES, XLM, XMR, XRP, ZEC, ZRX); hence, they are the most 
popular cryptocurrencies for investors, but also those with more stable behavior, accord-
ing to the cluster prototype.

Regarding the intersections of the clustering results, Table  13 shows that the oldest 
(D10) cryptocurrencies are allocated in Intersection  3 and 4 with high standardized 
residuals (7.20, 8.37, respectively). Middle-age cryptocurrencies (D5, D6) are linked to 
Intersection 5 and Intersection 6, whereas the younger ones (D4) are significantly allo-
cated in Intersection 6 (EBC, ICOB, PULSE) and Intersection 4.

We further confirm that Hist-DAWass offers stronger associations than K-means, 
and that the main intersections provide even more associations. Consequently, cluster-
ing intersections are very good for characterizing cryptocurrencies owing to their higher 
granularity, and their tendency to display more significant associations that are better 
distributed.

Association with heavy‑tail behavior

We counted 461 out of 1723 cryptocurrencies with heavy-tail behavior in 2018. Accord-
ing to the tests, heavy-tail behavior is mainly associated with Cluster 2 in K-means and 
Cluster 2 in Hist-DAWass (standardized Pearson’s residuals of 7.02 and 17.08, respec-
tively), but the association is also high for Cluster 1 of K-means and Hist-DAWass, as 
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shown in Table 14. We have already mentioned that Cluster 1 in K-means allocates the 
highest volatile cryptocurrencies, and in this case, they correspond to heavy-tail crypto-
currencies as well. As stated earlier, Cluster 2 of Hist-DAWass allocates more negative-
return cryptocurrencies. Therefore, we can conclude that heavy-tails are stronger for the 
left tail. In conclusion, there is no clear link between the TADPole technique and the 
heavy-tail distributions (very low values for the standardized Pearson’s residuals); there-
fore, we conclude that there is no relationship between shape-base clustering and distri-
bution characterization.

Analysis of the extended time frame

According to Fig. 2, we can see that the shapes of the clusters in the extended period is 
quite similar to those found for 2018 (Fig. 1). We notice that the xy-axis has different 
ranges for volatility and mean return, owing to the variation in the data sets, which are 
primarily different in the number of cryptocurrencies. However, a comparison of both 
time-frame periods shows that the shapes are mostly the same.

If we analyze the ARI index of the K-means results in 2018 and 2018-2019, we find 
a high agreement or similarity (0.349). The agreement for Hist-DAWass is similar 
(0.304), whereas for TADPole is null (-0.0021). The TADPole result can be explained 
as it uses the ‘raw’ data and not a summary, which makes it more difficult to find similar 
trajectories through longer time periods. Additionally, TADPole clustering appears to 
be more sensitive to changes in the objects to be clustered, than the classic K-means 
and Hist-DAWass.

Regarding the application of the association tests for the extended time frame, the 
results in Fig. 11 are quite similar to those in 2018 shown in Fig. 10 with some excep-
tions: there is no association between TADPole and ClassSharpeR variable. Rather, we 
find a significant association between K-means and Hist-DAWass with ClassSharpeR. 
We further confirm the association between technological variables and Volume and 
MKCap.

We can conclude that there is a persistence on the structures detected by K-means 
and Hist-DAWass confirmed on the extended period but not for TADPole clustering. 
However shape-based clustering as TADPole is helpful in enhancing the description of 
the market for the chosen time frame.

Discussion
In this section, we summarize the main results obtained from the clustering and associa-
tion tests.

•	 We confirm the existence of a structure in the market, that allows us to segment 
the cryptocurrencies into clusters. Interestingly, the optimum number of clusters 
remains low, independent of the representation considered, which indicates a high 
degree of homogeneity despite the high number of cryptocurrencies. This result is 
consistent with others that find evidence of different behaviors among cryptocurren-
cies (Song et al. 2019; Sigaki et al. 2019; Stosic et al. 2018) .

•	 The Hist-DAWass clustering offers a more subtle discrimination of the crypto-
currencies that are offered by the K-means on the mean and standard deviation, 
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Fig. 2  Volatility-Average return plane in ordinary values for the different clustering techniques for 440 
cryptocurrencies in 2018-19 time frame
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or by the TADPole on the time series. From our point of view, the log distribu-
tion offers a nuanced summary that considers not only the mean and the standard 
deviation of the distribution, but also other aspects such as symmetry, kurtosis, or 
tail behavior. Obviously, the distribution aggregation does not consider the evolu-
tion of through time, but this problem can be partially overcome by considering 
a sequence of distributions that aggregate data, say, quarterly, instead of yearly. 
Therefore, we consider that Hist-DAWass is a suitable and promising profiling tool 
for investors, and believe that it could be used in financial markets in general.

Fig. 3  Cluster 1 represented in the bi-dimensional space (r̄ , σ) by a 2D density contour plot
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Fig. 4  Cluster 2 represented in the bi-dimensional space (r̄ , σ) by a 2D density contour plot
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Fig. 5  Cluster 3 represented in the bi-dimensional space (r̄ , σ) by a 2D density contour plot

Table 3  Descriptive statistics for the prototypes of the Hist-DAWass clustering

Bold figures show extreme performance values

Mean Std. Dev. Coef.Var. Skew. Kurt. Med. Min. Max. Var.Wass.

Clus. 1 − 0.13 0.34 − 2.51 0.82 13.43 − 0.16 − 2.24 2.36 0.025

Clus. 2 −  0.50 0.38 −  0.75 0.56 9.33 − 0.51 − 2.69 2.18 0.079

Clus. 3 −  0.01 0.11 − 10.06 0.28 7.10 − 0.01 − 0.55 0.62 0.005

Clus. 4 − 0.04 0.87 − 19.97 0.54 11.95 − 0.08 − 5.44 6.67 0.128

Clus. 5 − 0.09 3.12 −  32.90 0.05 5.66 − 0.17 − 17.56 17.56 1.116
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•	 Our results show that the K-means partition is strongly associated with Beta val-
ues. This is not surprising, as beta is computed using the mean return and volatil-
ity, which are the variables considered for clustering.

•	 Both the K-means and Hist-DAWass partitions are associated with the market 
capitalization and the volume. The relation between price and volume for bitcoin 
has been documented in the literature (Balcilar et al. 2017; Sahoo et al. 2019; Sze-
tela et  al. 2021) but our results hints that such a relationship could be extended 
to other cryptocurrencies in the market. Particularly, the association seems to be 
stronger in the case of Hist-DAWass, which means that the shape of the distribu-
tion plays a role in the association with the volume and market cap.

•	 The K-means and Hist-DAWass clusters also show an interesting association with the 
age of the cryptocurrencies. The results indicate that younger and older cryptocurren-
cies have particular and different return and volatility behaviors as detected by the clus-
tering techniques. This maturity effect was previously observed in the Bitcoin financial 
behavior (Drozdz et al. 2018). However, our results point out that it happens to other 
cryptocurrencies. Pele et al. (2020) shows that the behavior of cryptocurrencies evolves 
and follows a synchronic evolution. Our results show that younger cryptocurrencies 
tend to have higher kurtosis and skewness, while the oldest cryptocurrencies are more 
stable. Interestingly, the cluster with the most extreme behavior did not show a signifi-
cant association with a particular age category.

•	 TADPole clustering of the time-series representation produced a small number of 
clusters and was associated with the Sharpe ratio. However, in the extended time frame, 
the clustering results do not show a low similarity with the results in 2018, and further 
show no associations. Therefore, the TADPole or shape-based clustering seem to offer 
more unstable results, probably because they use disaggregated data, and the results are 
more sensitive to small changes.

•	 The intersection of clusters seemingly inherit the association that we observed sepa-
rately for each one of the methods. This is confirmed for the Age, MkCap variables, and 
different financial ratios. Consequently, clustering intersections characterize the main 
trends of the cryptocurrency market in a comprehensive manner, providing a manage-
able number of clusters with a multi-faceted characterization, and display significant 
associations with other relevant variables not considered in the clustering process.

•	 We confirm the persistence of many of the associations in a longer period which seems 
to confirm that these associations are not conjectural, but prolonged.

•	 The proposal of techniques other than those proposed in this research may yield better 
results measured in terms of a higher level of significance in the associations, which is 
what determines the quality of the detected clusters that could ultimately be a part of 

Table 4  Variability of TADPole clusters with the mean distance (Mean Dist.) to the centroid, standard 
deviation (Std. Dev.) and coefficient of variation (Coef. Var.)

Cluster Mean Dist. Std. Dev. Coef. Var.

1 4.31 3.04 0.71

2 4.60 3.29 0.72

3 4.85 3.53 0.73
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Fig. 6  Density plot for prototypes (first column), and some representative cryptocurrencies of each cluster in 
terms of market capitalization (2nd and 3rd columns)
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further investigations. In any case, the proposed methodology is fully open to test other 
techniques but always ensures the descriptive capacity of the prototypes, which should 
be considered if other potential techniques are proposed.

Use of the methodology results
The methodology proposed can be used as a way to map the main trends of the mar-
ket by integrating different partitional clustering techniques. A similar example in the 
literature is the work by Soleymani and Vasighi, which groups stocks using enhanced 
K-means and computes value-at-risk measures to find the most and least riskiest groups 
of stocks.

In our methodology, the interested user, for example, an investor, could use the clus-
ters to browse the cryptocurrency market and select cryptocurrencies or groups that are 
interesting or differ from their behavior. The search depends on its aims, for example, 
looking for diversification in a portfolio with traditional stocks, building a portfolio of 
cryptocurrencies that behave differently, etc. For such purposes, they can use one clus-
tering result, or a combination of some of them. A graphical representation and sum-
mary of the prototypes should inform the search. Furthermore, the association of some 
of the clusters with some financial ratios can also guide the selection, for example, look-
ing for clusters associated with interesting beta values or Sharpe ratios. The association 
with other descriptions, such as age, market cap, or volume, can also refine the search. 
After the search, a group of stocks is available, and the analyst should look at their 
behavior specifically, for example, the distribution of returns, the value of the financial 
ratios, the temporal evolution, etc.

We consider, for example, a trader with a high risk aversion, but that unsurprisingly 
would like to obtain high returns. Based on such investment criteria and aligned with 
the characteristics of the different centroids, the most suitable selection should be the 
cryptocurrencies in Intersection  2 in Table  5. This intersection comprises Cluster 2 of 

Fig. 7  Medoids of the clustering results of the TADPole algorithm (time series of daily returns)
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Fig. 8  Density plot in a and quaterly distribution of the TADPole medoids represented by violin graphs in 
b–d with mean and standard deviation
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K-means, which includes higher mean returns cryptocurrencies, Cluster 3 of Hist-
DAWass, which has shorter tails and a higher median, and Cluster 2 of TADpole with a 
consistent average return above zero.

Further, the trader can look for the higher market cap cryptocurrencies (P99, P100) at 
the intersection, and those with a Beta, IndexLike value, and a Sharpe ratio equal to or 
higher than ERP. The outcome of the search was cryptocurrencies DCR, LTEC, XMR, 
and ZEN.

Another trend in the literature shows the use of clustering as a preceding stage, before 
applying well-known portfolio optimization models. For example, after a clustering pro-
cess, Gubu et al. (2020) computes the Sharpe ratio of each stock and selects the stocks 
with the highest value from each cluster. Similarly, Nguyen Cong et al. (2014) cluster the 
stocks based on their associated return rate and risk after a multi-objective optimization, 
to find a global solution Pareto optimal by selecting the stocks of each cluster (previ-
ously less interesting clusters from a financial point of view are discarded). Based on this 
premise, we can use our methodology to reduce the cryptocurrency market universe to 
those cryptocurrencies allocated on what we consider the more interesting clusters or 
intersections. We can further apply the portfolio optimization model that we consider 
appropriate Burggraf (2019) on the selected clusters or intersections.

For example, we consider a portfolio manager interested in the features of the afore-
mentioned Intersection 2. Particularly, besides the centroid properties, they also consider 

Fig. 9  Alluvial plot showing the ‘flows’ of cryptocurrencies through the three clustering algorithms



Page 37 of 46Lorenzo and Arroyo ﻿Financial Innovation             (2022) 8:7 	

the significant associations of Intersection 2 with the other descriptive values. For exam-
ple, there is a significant association between the Intersection  2 and the LowVol value 
Beta variable, which represents low volatility. Similarly, Intersection 2 has a significant 
association with the ERP value, which represents a moderate excess positive return of 
the Sharpe ratio. Furthermore, Intersection 2 is associated with cryptocurrencies that are 
not very popular, according to the significant associations with the value P70 of vari-
able Volume, which represents the lowest liquidity according to our categorization, and 
with the value D4 of the variable Age, which represents the younger cryptocurrencies in 
our categorization. With this information, the portfolio manager could consider only the 
cryptocurrencies of Intersection 2 as a reduced universe of cryptocurrencies to apply a 
portfolio optimization model.

Conclusions
In this study, we analyzed the cryptocurrency market in 2018, that is, all cryptocurren-
cies traded in 2018, using a novel method that involved the integration of three different 
clustering algorithms. Each method uses a meaningful representation considering differ-
ent aggregation or granularity levels of the daily returns, from the yearly average return 
and volatility, the yearly distribution of returns, and finally, the observed time series of 

Fig. 10  Matrix-type representation of the association tests in 2018 using the Fisher’s exact test. Binary 
colored, where pink color indicates significant association at p-values lower than 0.01. The red box for 
cluster-categorical variables and the gray box focused on the particular associations with the technological 
variables. The yellow line represents the trivial association between a variable and its own
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daily returns. Given the meaningful data representation, the cluster prototypes are use-
ful to obtain an informative summary, and a visual representation of the main trends of 
the entire market.

Furthermore, we enhanced our profiling of the cryptocurrency market with asso-
ciation tests to validate the potential relationship between the clustering results and 
other descriptive features of cryptocurrencies (technological attributes, financial 
ratios, market cap, volume and age). These tests make it possible to ascertain whether 
some features are related to a particular financial performance detected by the clus-
tering algorithms. Additionally, we found a significant association between techno-
logical attributes and the behavior of the market. These associations discovered open 
venues for future research to confirm them and determine their scope more precisely.

Our analysis confirmed that there is an underlying structure of the data, which also 
persisted when considering a longer time period. Each of the clustering algorithms 
helped to reveal different aspects of the cryptocurrency market. Furthermore, we 
show that the combination of the different clustering results proved valid for detect-
ing the main trends in the cryptocurrency market. The cluster partitions along with 
the prototypes, and the cluster description provide a manageable summary in the 
financial terms of the entire market. It is also possible to obtain more sophisticated 
profiles by examining the intersection of the clusters. Furthermore, the analyst or 

Table 5  Intersection of clusters across the different clustering algorithms, each column represent 
the cluster number. Intersections (Combi variable) are ordered by backwards cardinality

Intersection (Combi) Kmeans Hist-DAWass TADPole N

1 2 3 3 295

2 2 3 2 294

3 3 3 3 208

4 3 3 2 196

5 3 1 3 166

6 3 1 2 148

7 2 1 2 97

8 2 1 3 78

9 2 2 3 57

10 2 2 2 54

11 3 2 3 20

12 3 4 2 18

13 3 4 3 18

14 3 2 2 15

15 2 4 2 10

16 2 4 3 8

17 1 5 2 8

18 1 5 3 8

19 2 3 1 7

20 3 3 1 7

21 3 1 1 5

22 1 4 2 3

23 2 1 1 2

24 2 2 1 1
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Fig. 11  Matrix-type representation of the association tests in 2018–19 using the Fisher’s exact test. Binary 
colored, where pink color indicates significant association at p-values lower than 0.01. The red box for 
cluster-categorical variables and the gray box focused on the particular associations with the technological 
variables. The yellow line marks the trivial maximum association for the same variables

Table 6  Volume - Standardized Person’s residuals

Bold figures show the more significant positive residuals

Technique Cluster/
Intersection

Volume

P70 P80 P90 P99 P100

K-means 1 − 0.13 2.43 − 1.05 − 0.97 − 0.43

2 8.93 − 4.73 − 4.20 − 5.57 2.61

3 − 8.90 4.36 4.35 5.71 − 2.54

Hist-DAWass 1 12.25 − 4.33 − 4.82 − 7.26 − 3.67

2 3.72 − 1.71 − 1.78 − 1.66 − 0.74

3 − 12.01 3.09 5.09 7.85 3.71
4 − 2.02 3.36 0.44 − 0.95 0.22

5 − 0.48 2.78 − 0.97 − 0.90 − 0.40

Combi 1 3.66 − 2.20 − 2.62 − 2.52 4.02
2 5.98 − 2.52 − 2.51 − 3.49 − 0.41

3 − 10.25 2.57 6.21 6.21 − 0.26

4 − 12.42 6.39 4.53 7.35 − 0.21

5 7.16 − 3.21 − 2.24 − 3.95 − 2.14

6 7.30 − 1.25 − 3.96 − 4.39 − 1.97
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investor can look for specific cryptocurrencies and determine the clusters to which 
they belong, and how far they are from the prototypes, according to the dissimilarity 
measure used for each clustering method.

We believe that the proposed methodology provides a consistent and descriptive 
tool supported by both well-known, and modern clustering techniques that may be 
useful for investors who need to understand the cryptocurrency market, as it reduces 
the dimensionality of the data set and identifies the main trends in a descriptive 
manner.

Particularly, the associations between financial ratios and clusters could play an 
important role in enhancing the performance of the optimization algorithms for 

Table 7  Market cap - Standardized Person’s residuals

Bold figures show the more significant positive residuals

Technique Cluster/
Intersection

Market cap (MKCap)

P70 P80 P90 P99 P100

K-means 1 1.15 0.28 − 0.96 − 0.91 − 0.37

2 3.91 − 5.90 − 1.77 0.20 3.57
3 − 4.08 5.85 1.92 − 0.06 − 3.51

Hist-DAWass 1 8.07 − 1.70 − 4.98 − 4.64 − 2.21

2 2.36 − 0.87 − 1.63 − 0.81 − 0.63

3 − 8.37 1.88 4.89 4.84 2.59

4 − 0.44 − 0.24 1.37 − 0.16 − 0.78

5 0.94 0.44 − 0.89 − 0.84 − 0.34

Combi 1 2.27 − 3.02 − 2.45 0.86 2.97

2 2.17 − 3.34 0.40 − 0.90 1.31

3 − 6.69 3.98 4.80 1.89 − 1.54

4 − 6.33 3.63 2.72 3.31 − 0.33

5 4.88 − 0.99 − 3.38 − 2.22 − 1.72

6 4.87 0.21 − 2.94 − 3.96 − 1.58

Table 8  Beta - Standardized Person’s residuals

Bold figures show the more significant positive residuals

Technique Cluster/
Intersection

Beta

NegBeta CashLike LowVol Indexlike HighVol Extreme

K-means 1 3.05 − 0.17 − 2.92 − 0.97 − 1.45 17.79
2 − 2.87 0.57 6.70 − 0.18 − 5.58 − 1.51

3 2.41 − 0.54 − 6.26 0.32 5.79 − 1.13

Hist-DAWass 1 12.09 1.57 − 0.32 − 5.84 − 3.37 − 1.90

2 3.97 − 0.28 − 2.24 − 0.94 0.74 − 0.38

3 − 15.24 − 1.29 3.10 6.66 2.83 − 4.29

4 6.93 − 0.36 − 5.47 − 2.05 1.23 10.33
5 2.02 − 0.15 − 2.70 − 0.89 − 1.34 19.24

Combi 1 − 3.71 − 0.90 4.50 − 0.19 − 2.92 − 

2 − 4.07 0.49 5.62 0.57 − 4.82 − 

3 − 3.47 − 0.79 − 5.74 3.28 6.20 –

4 − 3.42 0.76 − 5.41 1.99 6.62 –

5 7.87 − 0.65 1.73 − 3.61 − 3.53 –

6 10.52 1.29 − 1.69 − 3.16 − 1.61 –
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asset selection, and the diversification of portfolios (Liu 2019; Platanakis et al. 2018; 
Brauneis and Mestel 2019) or improving the forecasting performance of predictive 
models (Mallikarjuna and Rao 2019) to tackle the difficulty of investing in a new 
and unknown market. It is also promising to analyze the connections between the 

Table 9  Sharpe ratio - Standardized Person’s residuals

Bold figures show the more significant positive residuals

Technique Cluster/Intersection Sharpe ratio

SRF ERP Acc

TADPole 1 − 1.43 1.52 − 0.44

2 − 11.32 10.60 3.69
3 11.65 − 10.95 − 3.58

Combi 1 5.83 − 5.49 − 1.74

2 − 6.02 5.20 4.13
3 3.92 − 3.63 − 1.53

4 − 4.67 4.67 0.11

5 3.93 − 3.68 − 1.24

6 − 3.00 3.04 − 0.15

Table 10  Relevant associations between Encrypted algorithm - Market cap using the standardized 
Person’s residuals

Bold figures show the more significant positive residuals

Encrypted algorithm 
(Algorithm)

Market cap (MKCap)

P70 P80 P90 P99 P100

Counterparty − 1.92 4.00 − 0.51 − 0.49 − 0.19

CryptoNight−V7 − 1.92 − 0.50 1.69 − 0.49 5.16
Ethash − 0.99 − 0.11 − 1.15 0.98 4.37
Leased POS − 1.36 − 0.35 − 0.36 − 0.34 7.42

Ouroboros − 1.36 − 0.35 − 0.36 − 0.34 7.42
Scrypt 7.58 − 2.54 − 3.05 − 5.06 − 2.16

SHA256 3.58 − 1.64 − 2.14 − 1.52 − 0.30

X11 6.65 − 2.34 − 3.68 − 3.72 − 0.87

Table 11  Relevant associations between Consensus algorithm - Market cap using the standardized 
Person’s residuals

Bold figures show the more significant positive residuals

Consensus algorithm 
(ProofType)

Market cap (MKCap)

P70 P80 P90 P99 P100

LPoS −1.36 −0.35 −0.36 −0.34 7.42

PoI −1.36 −0.35 −0.36 −0.34 7.42

PoS 3.74 −1.77 −0.76 −2.82 −0.88

PoW 4.54 −2.39 −1.69 −3.12 0.63

PoW/PoS 9.09 −3.38 −4.69 −4.72 −2.43
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Table 12  Relevant associations between Consensus algorithm - Volume using the standardized 
Person’s residuals

Bold figures show the more significant positive residuals

Consensus algorithm 
(ProofType)

Volume

P70 P80 P90 P99 P100

LFT −1.20 −0.38 −0.40 −0.37 6.23

PoS 3.66 −1.65 −1.41 −1.74 −1.29

PoW/PoS 7.34 −1.51 −3.80 −4.65 −1.84

Table 13  Age - Standardized Person’s residuals

Bold figures show more significant positive residuals

Technique Cluster/
Intersection

Age

D4 D5 D6 D7 D8 D9 D10

K-means 1 −1.14 0.32 0.76 2.48 0.63 1.18 −2.14

2 4.74 −0.34 −1.75 0.91 1.33 −1.14 −2.79

3 −4.56 0.29 1.63 −1.29 −1.43 0.96 3.11

Hist-DAWass 1 3.27 11.88 7.91 4.70 −0.51 −3.35 −13.70

2 2.41 2.85 4.97 −1.15 −1.32 −1.78 −3.64

3 −3.99 −11.80 −8.80 −4.65 0.38 2.80 15.08
4 1.08 −1.35 −0.83 0.83 1.06 2.05 −1.95

5 −1.06 0.49 0.94 1.08 0.80 1.43 −1.98

Combi 1 1.70 −2.76 −1.40 0.19 0.24 0.36 0.51

2 4.71 −1.10 −1.73 −0.15 1.93 −1.22 −2.13

3 −5.47 −4.02 −3.05 −1.46 −1.82 3.07 7.20
4 −5.61 −4.24 −2.99 −2.84 −0.54 1.55 8.37
5 1.35 6.34 7.38 2.87 1.16 −2.07 −8.53

6 3.87 8.38 3.62 2.16 −1.15 −2.38 −7.92

Table 14  Heavy-tail cryptocurrencies, Standardized Person’s residuals for the association between 
the heavier tail distributions and clusters

Bold figures show more significant positive residuals

Technique Cluster Heavy-tail

K-means 1 3.60
2 7.02
3 − 7.78

Hist-DAWass 1 0.52

2 17.08
3 − 11.97

4 3.27

5 3.24

TADPole 1 − 0.91

2 − 0.28

3 0.48
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technological implementation of the blockchain networks, and the formation of a 
given cryptocurrency’s prices that we have only noted.

In conclusion, in our proposal, the combination of the results of the different clus-
tering techniques by intersecting the clusters is quite an intuitive and straightforward 
method. However, studies could examine much more sophisticated techniques. For 
instance, the heterogeneous large-scale group decision maker approach applied by 
Chao et al. (2021) is mostly based on fuzzy clustering, where we could consider each 
clustering technique as a decision-maker. Thus, the heterogeneous LSGDM allows us 
to modulate the weight of each technique upon integrating them (Table 15).
Acknowledgements
We are grateful to the anonymous referees of the journal for their useful suggestions for improving the quality of the 
article. We are also very grateful for the selflessness, and effort of the huge community of R developers https://​www.r-​
proje​ct.​org/, which we relied on to develop our research.

Authors’ contributions
The initial idea was conceived by JA. The experiments were designed using the LL. The search on the databases, statisti-
cal analysis, and software design was performed using LL. The work was drafted by LL and revised thoroughly, by JA. All 
the authors read and approved the final manuscript.

Funding
Funding was provided by EIT Digital (Grant no 825215) and European Cooperation in Science and Technology (COST 
Action 19130).

Availability of data and materials
The datasets generated and/or analyzed during the current study are available in the OSF repository https://​osf.​io/​
mr4pg/?​view_​only=​4053e​b6e7b​46421​b9bae​19415​1997a​e8.

Table 15  Summary of the main R libraries applied on the different parts of the investigation

DOMAIN R package Functions

Data wrangling reshape2 Table convertion between Wide and Long

data.table Flexible and faster handling of big tables

xts Financial time-series operation

rjson For Json file convertion to R objects

dplyr Manipulation of operations with R com-
mands, mainly %>% operator

magick Figure format conversion from png to eps

Quality poweRlaw An implementation of maximum likeli-
hood estimator of heavy tail distributions

mclust Adjusted Rand Index computation

clusterend Hopkins index computation

Clustering clue Ensemble of k-means outcomes

Hist-DAWass Histogram clustering

dtwclust TADPole clustering

Graphs ggplot2 General graph package

FactoMineR Scatter-plots of clustering

factoextra Scatter-plots of clustering

plotly Joint Probability Density (K-mean clusters)

magrittr Joint Probability Density

RSelenium Joint Probability Density

ggridges Density plots of TADPole medoids

Finance PerformanceAnalytics Sharpe ratio

Association tests vcd Pearson’s residuals representation

https://www.r-project.org/
https://www.r-project.org/
https://osf.io/mr4pg/?view_only=4053eb6e7b46421b9bae194151997ae8
https://osf.io/mr4pg/?view_only=4053eb6e7b46421b9bae194151997ae8


Page 44 of 46Lorenzo and Arroyo ﻿Financial Innovation             (2022) 8:7 

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 26 September 2020   Accepted: 14 November 2021

References
Acharya JGA (2011) Cluster ensembles. WIRES Data Mining and Knowledge discovery 1(4):305–315
Aggarwal CC, Reddy KC (2013) Data clustering: algorithms and applications, 1st edn. Chapman & Hall/CRC​
Aghabozorgi S, Teh YW (2014) Stock market co-movement assessment using a three-phase clustering method. Expert 

Syst Appl 41(4, Part 1):1301–1314. https://​doi.​org/​10.​1016/j.​eswa.​2013.​08.​028
Aghabozorgi S, Shirkhorshidi AS, Wah TY (2015) Time-series clustering-a decade review. Inf Syst 53:16–38
Agresti A (2018) An introduction to categorical data analysis. Wiley
Arbelaitz O, Gurrutxaga I, Muguerza J, Pérez JM, Perona I (2013) An extensive comparative study of cluster validity indices. 

Pattern Recognit 46:243–256
Arroyo J, Maté C (2009) Forecasting histogram time series with k-nearest neighbours methods. Int J Forecast 25(1):192–

207. https://​doi.​org/​10.​1016/j.​ijfor​ecast.​2008.​07.​003
Arroyo J, González-Rivera G, Maté C, San Roque AM (2011) Smoothing methods for histogram-valued time series: an 

application to value-at-risk. Stat Anal Data Min The ASA Data Sci J 4(2):216–228. https://​doi.​org/​10.​1002/​sam.​10114
Bacon CR (2008) Practical portfolio performance measurement and attribution. The Wiley Finance Series. John Wiley & 

Sons
Baek C, Elbeck M (2015) Bitcoins as an investment or speculative vehicle? a first look. Appl Econ Lett 22(1):30–34
Balcilar M, Bouri E, Gupta R, Roubaud D (2017) Can volume predict bitcoin returns and volatility? a quantiles-based 

approach. Econ Model 64:74–81. https://​doi.​org/​10.​1016/j.​econm​od.​2017.​03.​019
Banerjee A, Dave RN (2004) Validating clusters using the hopkins statistic. In: 2004 IEEE international conference on fuzzy 

systems (IEEE Cat. No.04CH37542), vol 1, pp 149–153
Begum N, Ulanova L, Wang J, Keogh E (2015) Accelerating dynamic time warping clustering with a novel admissible 

pruning strategy. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and 
data mining. KDD ’15, pp 49–58. Association for Computing Machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​
27832​58.​27832​86

Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. In: KDD workshop, vol 10, pp 
359–370. Seattle, WA

Bojanowski M, Edwards R (2016) alluvial: R Package for Creating Alluvial Diagrams. R package version: 0.1-2. https://​
github.​com/​mbojan/​alluv​ial

Bonanno G, Caldarelli G, Lillo F, Micciche S, Vandewalle N, Mantegna RN (2004) Networks of equities in financial markets. 
Eur Phys J B Condens Matter 38(2):363–371. https://​doi.​org/​10.​1140/​epjb/​e2004-​00129-6

Brauneis A, Mestel R (2019) Cryptocurrency-portfolios in a mean-variance framework. Finance Res Lett 28:259–264
Brida J, Risso W (2009) Dynamics and structure of the 30 largest North American companies. Soc Comput Econ 

35(1):85–99
Burggraf T (2019) Risk-based portfolio optimization in the cryptocurrency world. Inf Syst Econ eJournal. https://​doi.​org/​

10.​2139/​ssrn.​34547​64
Burniske C, Tatar J (2017) Cryptoassets: the innovative investor’s guide to bitcoin and beyond. McGraw-Hill Education. 

https://​books.​google.​es/​books?​id=-​5AtDw​AAQBAJ
Chan S, Chu J, Nadarajah S, Osterrieder J (2017) A statistical analysis of cryptocurrencies. J Risk Financ Manag 10(2):12
Chao X, Kou G, Peng Y, Viedma EH (2021) Large-scale group decision-making with non-cooperative behaviors and 

heterogeneous preferences: An application in financial inclusion. Eur J Oper Res 288(1):271–293. https://​doi.​org/​10.​
1016/j.​ejor.​2020.​05.​047

Charrad M, Ghazzali N, Boiteau V, Niknafs A (2014) NbClust: an R package for determining the relevant number of clusters 
in a data set. J Stat Softw 61(6):1–36

Chaudhuri TD, Ghosh I (2015) Using clustering method to understand Indian stock market volatility. Commun Appl 
Electron 2(6):35–44

Corbet S, Meegan A, Larkin CJ, Lucey B, Yarovaya L (2018) Exploring the dynamic relationships between cryptocurrencies 
and other financial assets. Econ Lett 165:28–34

Corbet S, Lucey B, Urquhart A, Yarovaya L (2019) Cryptocurrencies as a financial asset: a systematic analysis. Int Rev Financ 
Anal 62:182–199

Drozdz S, Gebarowski R, Minati L, Oswiecimka P, Watorek M (2018) Bitcoin market route to maturity? evidence from return 
fluctuations, temporal correlations and multiscaling effects. Chaos Interdiscip J Nonlinear Sci 28(7):071101. https://​
doi.​org/​10.​1063/1.​50365​17

Drozdz S, Minati L, Oswiecimka P, Stanuszek M, Watorek M (2019) Signatures of the crypto-currency market decoupling 
from the forex. Future Internet 11(7):154. https://​doi.​org/​10.​3390/​fi110​70154

Drozdz S, Minati L, Oswiecimka P, Stanuszek M, Watorek M (2020) Competition of noise and collectivity in global cryp-
tocurrency trading: Route to a self-contained market. Chaos Interdiscip J Nonlinear Sci. https://​doi.​org/​10.​1063/1.​
51396​34

Drozdz S, Minati L, Oswiecimka P, Stanuszek M, Watorek M (2020) Complexity in economic and social systems: cryptocur-
rency market at around covid-19. Entropy 22(9):1043

https://doi.org/10.1016/j.eswa.2013.08.028
https://doi.org/10.1016/j.ijforecast.2008.07.003
https://doi.org/10.1002/sam.10114
https://doi.org/10.1016/j.econmod.2017.03.019
https://doi.org/10.1145/2783258.2783286
https://doi.org/10.1145/2783258.2783286
https://github.com/mbojan/alluvial
https://github.com/mbojan/alluvial
https://doi.org/10.1140/epjb/e2004-00129-6
https://doi.org/10.2139/ssrn.3454764
https://doi.org/10.2139/ssrn.3454764
https://books.google.es/books?id=-5AtDwAAQBAJ
https://doi.org/10.1016/j.ejor.2020.05.047
https://doi.org/10.1016/j.ejor.2020.05.047
https://doi.org/10.1063/1.5036517
https://doi.org/10.1063/1.5036517
https://doi.org/10.3390/fi11070154
https://doi.org/10.1063/1.5139634
https://doi.org/10.1063/1.5139634


Page 45 of 46Lorenzo and Arroyo ﻿Financial Innovation             (2022) 8:7 	

D’Urso P, De Giovanni L, Massari R (2016) Garch-based robust clustering of time series. Fuzzy Sets Syst 305(C):1–28. 
https://​doi.​org/​10.​1016/j.​fss.​2016.​01.​010

D’Urso P, De Giovanni L, Massari R (2019) Trimmed fuzzy clustering of financial time series based on dynamic time warp-
ing. Ann Oper Res 229. https://​doi.​org/​10.​1007/​s10479-​019-​03284-1

D’Urso P, Cappelli C, Di Lallo D, Massari R (2013) Clustering of financial time series. Phys A Stat Mech Appl 
392(9):2114–2129

D’Urso P, Giovanni LD, Massari R, D’Ecclesia RL, Maharaj EA (2020) Cepstral-based clustering of financial time series. Expert 
Syst Appl 161:113705. https://​doi.​org/​10.​1016/j.​eswa.​2020.​113705

Fang F, Ventre C, Basios M, Kong H, Kanthan L, Li L, Martinez-Regoband D, Wu F (2021) Cryptocurrency trading: a compre-
hensive survey. arxiv:​2003.​11352

Fisher RA (1922) On the interpretation on teh x2 from contingency tables and the calculation of the p. R Stat Soc 
85(1):87–94

González-Rivera G, Arroyo J (2012) Time series modeling of histogram-valued data: the daily histogram time series of 
s&p500 intradaily returns. Int J Forecast 28(1):20–33. https://​doi.​org/​10.​1016/j.​ijfor​ecast.​2011.​02.​007

Gubu L, Rosadi DA (2020) Robust mean variance portfolio selection using cluster analysis: a comparison between kamila 
and weighted K-mean clustering. Asian Econ Financ Rev 10(10):1169–1186

Hartigan JA, Wong MA (1979) Algorithm as 136: a k-means clustering algorithm. J R Stat Soc Ser C (Applied Statistics) 
28(1):100–108

Henning C, Meila M, Murtagh F, Rocci R (2016) Handbook of cluster analysis. CRC Press
Hornik K (2005) A CLUE for CLUster Ensembles. Journal of Statistical Software 14(12). https://​doi.​org/​10.​18637/​jss.​v014.​i12
Hornik K (2019) Clue: Cluster Ensembles. R package version 0.3-57. https://​CRAN.R-​proje​ct.​org/​packa​ge=​clue
Hu AS, Parlour CA, Rajan U (2019) Cryptocurrencies: stylized facts on a new investible instrument. Financ Manag 

48(4):1049–1068
Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218
Häusler K, Xia H (2021) Indices on cryptocurrencies: an evaluation. IRTG 1792 Discussion Papers 2021-014, Humboldt Uni-

versity of Berlin, International Research Training Group 1792 “High Dimensional Nonstationary Time Series” . https://​
ideas.​repec.​org/p/​zbw/​irtgdp/​20210​14.​html

Irpino A, Verde R (2006) Dynamic clustering of histograms using wasserstein metric. COMPSTAT 2006. Proceedings in 
Computational Statistics. Physica-Verlag, Heidelberg, pp 869–876

Irpino A (2016) HistDAWass Package: An R Tool for Histograms-values Data. R package version 1.0.4. https://​cran.r-​proje​ct.​
org/​packa​ge=​HistD​AWass

Irpino A, Verde R (2015) Basic statistics for distributional symbolic variables: a new metric-based approach. Adv Data Anal 
Classif 9:143–175

Irpino A, Verde R, De Carvalho Francisco de AT (2014) Dynamic clustering of histogram data based on adaptive squared 
Wasserstein distances. Expert Syst Appl 41(7):3351–3366. https://​doi.​org/​10.​1016/j.​eswa.​2013.​12.​001

Kern M, Lex A, Gehlenborg N, Johnson CR (2017) Interactive visual exploration and refinement of cluster assignments. 
BMC Bioinform 18(1):1–13

Kou G, Peng Y, Wang G (2014) Evaluation of clustering algorithms for financial risk analysis using mcdm methods. Inf Sci 
275:1–12. https://​doi.​org/​10.​1016/j.​ins.​2014.​02.​137

Lemire D (2008) Faster retrieval with a two-pass dynamic-time-warping lower bound. CoRR. arxiv:​0811.​3301
Letra IJS (2016) What drives cryptocurrency value? a volatility and predictability analysis. PhD thesis, Instituto Superior de 

Economia e Gestão
Liao S-H (2007) Mining stock category association and cluster on Taiwan stock market. Expert Syst Appl 35:19–29
Liao S-H, Chou S-Y (2013) Data mining investigation of co-movements on the Taiwan and China stock markets for future 

investment portfolio. Expert Syst Appl 40(5):1542–1554. https://​doi.​org/​10.​1016/j.​eswa.​2012.​08.​075
Liao TW (2005) Clustering of time series data-a survey. J Pattern Recognit Soc 1(38):1857–1874
Liu W (2019) Portfolio diversification across cryptocurrencies. Financ Res Lett 29:200–205
L’Yi S, Ko B, Shin D, Cho Y-J, Lee J, Kim B, Seo J (2015) XCluSim: a visual analytics tool for interactively comparing multiple 

clustering results of bioinformatics data. BMC Bioinform 16(S11):5
MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth 

Berkeley sympposium on mathematical statistics and probability, vol 1, pp 281–297
Mallikarjuna M, Rao RP (2019) Evaluation of forecasting methods from selected stock market returns. Financ Innov 

5(1):1–16. https://​doi.​org/​10.​1186/​s40854-​019-​0157-x
Mantegna R (1999) Hierarchical structure in financial markets. Eur Phys J B 11(1):193–197
Marti G, Nielsen F, Bi’nkowski M, Donnat P (March 2017) A review of two decades of correlations, hierarchies, networks 

and clustering in financial markets. Papers 1703.00485, arXiv.​org. https://​arxiv.​org/​abs/​1703.​00485
Mehta CR, Patel NR (1983) A network algorithm for performing fisher exact test in rxc contingency table. J Am Stat Assoc 

78(382):427–434
Mehta CR, Patel NR (1996) Exact testsTM . SPSS exact tests 7:12
Mizuno T, Takayasu H, Takayasu M (2006) Correlation networks among currencies. Phys A Stat Mech Appl 364:336–342. 

https://​doi.​org/​10.​1016/j.​physa.​2005.​08.​079
Nakamoto S (2009) Bitcoin: A peer-to-peer electronic cash system. http://​www.​bitco​in.​org/​bitco​in.​pdf
Nanda SR, Mahanty B, Tiwari MK (2010) Clustering Indian stock market data for portfolio management. Expert Syst Appl 

37:8793–8798
Newman M (2005) Power laws, pareto distributions and zipf’s law. Contemp Phys 46(5):323–351. https://​doi.​org/​10.​1080/​

00107​51050​00524​44
Nguyen Cong L, Wisitpongphan N, Meesad P, Unger H (2014) Clustering stock data for multi-objective portfolio optimiza-

tion. Int J Comput Intell Appl. https://​doi.​org/​10.​1142/​S1469​02681​45001​14
Noirhomme-Fraiture M, Brito P (2011) Far beyond the classical data models: symbolic data analysis. Stat Anal Data Min 

ASA Data Sci J 4(2):157–170. https://​doi.​org/​10.​1002/​sam.​10112

https://doi.org/10.1016/j.fss.2016.01.010
https://doi.org/10.1007/s10479-019-03284-1
https://doi.org/10.1016/j.eswa.2020.113705
http://arxiv.org/abs/2003.11352
https://doi.org/10.1016/j.ijforecast.2011.02.007
https://doi.org/10.18637/jss.v014.i12
https://CRAN.R-project.org/package=clue
https://ideas.repec.org/p/zbw/irtgdp/2021014.html
https://ideas.repec.org/p/zbw/irtgdp/2021014.html
https://cran.r-project.org/package=HistDAWass
https://cran.r-project.org/package=HistDAWass
https://doi.org/10.1016/j.eswa.2013.12.001
https://doi.org/10.1016/j.ins.2014.02.137
http://arxiv.org/abs/0811.3301
https://doi.org/10.1016/j.eswa.2012.08.075
https://doi.org/10.1186/s40854-019-0157-x
http://arxiv.org/abs/org
https://arxiv.org/abs/1703.00485
https://doi.org/10.1016/j.physa.2005.08.079
http://www.bitcoin.org/bitcoin.pdf
https://doi.org/10.1080/00107510500052444
https://doi.org/10.1080/00107510500052444
https://doi.org/10.1142/S1469026814500114
https://doi.org/10.1002/sam.10112


Page 46 of 46Lorenzo and Arroyo ﻿Financial Innovation             (2022) 8:7 

Onnela J-P, Chakraborti A, Kaski K, Kertész J, Kanto A (2003) Dynamics of market correlations: taxonomy and portfolio 
analysis. Phys Rev E. https://​doi.​org/​10.​1103/​physr​eve.​68.​056110

Pele D, Wesselhöfft N, Härdle W, Kolossiatis M, Yannis Y (2020) A statistical classification of cryptocurrencies. https://​ssrn.​
com/​abstr​act=​35484​62

Peterson BG, Carl P, Boudt K, Bennet R, Ulrich J, Zivot E, Lestel M, Balkissoon K, Wuertz D (2018) PerformanceAnlytics: 
econometric tools for performance and risk analysis. R package version 1.5.2. https://​cran.r-​proje​ct.​org/​packa​ge=​
Perfo​rmanc​eAnal​ytics

Platanakis E, Sutcliffe C, Urquhart A (2018) Optimal vs naïve diversification in cryptocurrencies. Econ Lett 171:93–96
R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 

Vienna, Austria. R Foundation for Statistical Computing. http://​www.R-​proje​ct.​org/
Rani S, Sikka G (2012) Recent techniques of clustering of time series data: a survey. Int J Comput Appl 52(15):1–9
Rivin I, Scevola C (2018) The cci30 index. arXiv:​ Gener​al Finance
Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496. https://​doi.​

org/​10.​1126/​scien​ce.​12420​72
Rosvall M, Bergstrom CT (2010) Mapping change in large networks. PLoS ONE 5(1):e8694
Sahoo PK, Sethi D, Acharya D (2019) Is bitcoin a near stock? linear and non-linear causal evidence from a price-volume 

relationship. Int J Manag Financ. https://​doi.​org/​10.​1108/​IJMF-​06-​2017-​0107
Sarda-Espinosa A (2019) Dtwclust: time series clustering along with optimizations for the dynamic time warping dis-

tance. R package version 5.5.6. https://​CRAN.R-​proje​ct.​org/​packa​ge=​dtwcl​ust
Sardá-Espinosa A (2019) Time-series clustering in R using the dtwclust package. R J 11(1):22–43
Scrucca L, Fop M, Murphy TB, Raftery AE (2016) mclust 5: clustering, classification and density estimation using Gaussian 

finite mixture models. R J 8(1):289–317
Sigaki HYD, Perc M, Ribeiro HV (2019) Clustering patterns in efficiency and the coming-of-age of the cryptocurrency 

market. Sci Rep. https://​doi.​org/​10.​1038/​s41598-​018-​37773-3
Soleymani F, Vasighi M. Efficient portfolio construction by means of cvar and k-means++ clustering analysis: evidence 

from the nyse. Int J Financ Econ. https://​doi.​org/​10.​1002/​ijfe.​2344
Song J, Chang W, Song J (2019) Cluster analysis on the structure of the cryptocurrency market via bitcoin–ethereum 

filtering. Phys A Stat Mech Appl. https://​doi.​org/​10.​1016/j.​physa.​2019.​121339
Stosic D, Stosic D, Ludermir TB, Stosic T (2018) Collective behavior of cryptocurrency price changes. Phys A Stat Mech 

Appl 507:499–509. https://​doi.​org/​10.​1016/j.​physa.​2018.​05.​050
Szetela B, Mentel G, Bilan Y, Mentel U (2021) The relationship between trend and volume on the bitcoin market. Eurasian 

Econ Rev 11:25–42. https://​doi.​org/​10.​1007/​s40822-​021-​00166-5
Watorek M, Drozdz S, Kwapien J, Minati L, Oswiecimka P, Stanuszek M (2020) Multiscale characteristics of the emerging 

global cryptocurrency market. Phys Rep. https://​doi.​org/​10.​1016/j.​physr​ep.​2020.​10.​005
Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Philip SY et al (2008) Top 10 algorithms 

in data mining. Knowl Inf Syst 14(1):1–37
Yates F (1984) Tests of significance for 2 x 2 contingency tables. R Stat Soc 147(3):426–463
Yermack D (2013) Is bitcoin a real currency? An economic appraisal. Working Paper 19747, National Bureau of Economic 

Research. https://​doi.​org/​10.​3386/​w19747. http://​www.​nber.​org/​papers/​w19747
Zhang W, Wang P, Li X, Shen D (2018) Some stylized facts of the cryptocurrency market. Appl Econ 50(55):5950–5965
Zieba D, Kokoszczyski R, Sledziewska K (2019) Shock transmission in the cryptocurrency market. is bitcoin the most 

influential? Int Rev Financ Anal 64:102–125

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1103/physreve.68.056110
https://ssrn.com/abstract=3548462
https://ssrn.com/abstract=3548462
https://cran.r-project.org/package=PerformanceAnalytics
https://cran.r-project.org/package=PerformanceAnalytics
http://www.R-project.org/
http://arxiv.org/abs/General
https://doi.org/10.1126/science.1242072
https://doi.org/10.1126/science.1242072
https://doi.org/10.1108/IJMF-06-2017-0107
https://CRAN.R-project.org/package=dtwclust
https://doi.org/10.1038/s41598-018-37773-3
https://doi.org/10.1002/ijfe.2344
https://doi.org/10.1016/j.physa.2019.121339
https://doi.org/10.1016/j.physa.2018.05.050
https://doi.org/10.1007/s40822-021-00166-5
https://doi.org/10.1016/j.physrep.2020.10.005
https://doi.org/10.3386/w19747
http://www.nber.org/papers/w19747

	Analysis of the cryptocurrency market using different prototype-based clustering techniques
	Abstract 
	Introduction
	Literature review
	Clustering financial data
	From traditional finance to cryptoasset markets
	Clustering of cryptocurrencies


	Methodology
	Dataset description
	Methods
	K-means clustering algorithm for the first and second statistical moments
	Dynamic clustering algorithm for histograms
	TADPole clustering for time-series
	Combination of clustering results
	Association test
	Replication within a longer time-frame


	Results
	Clustering results of the bi-dimensional representations
	Clustering results of histogram representations
	Clustering results of the time-series representation
	Intersection of clusters
	Association tests
	Association between market cap, volume and clusters
	Association between financial ratios and clusters
	Associations results for the intersection of clusters
	Associations between financial and the technological variables
	Associations with the age of the cryptocurrencies
	Association with heavy-tail behavior

	Analysis of the extended time frame

	Discussion
	Use of the methodology results
	Conclusions
	Acknowledgements
	References


