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Introduction
The International Accounting Standards Board (IASB) is responsible for setting account-
ing standards for the countries that are a part of the Organisation for Economic Co-
operation and Development. One of its standards, known as the International Financial 
Reporting Standards (IFRS) 17, takes insurance contracts into account (see International 
Accounting Standards Board 2017). It is considered to be a fundamental overhaul for 
insurers’ accounting practices with a significant impact on large parts of the industry, 
such as equity valuation, operating infrastructure, product pricing models, and business 
strategies. The Canadian Accounting Standards Board will adopt the IFRS 17 without 
modification from January 1, 2023. The preparation for implementing the new stand-
ard has engendered substantial efforts and upgraded systems, processes, and controls. 
The Building Block Approach (BBA)is the general measurement model for liabilities in 
insurance contracts as considered in the IFRS 17. It ensues a comprehensive and coher-
ent framework that provides information on the various features of insurance contracts. 
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Under the BBA, the value of insurance contracts is measured as the sum of four blocks 
described as follows:

• Block 1: Sum of the future cash flows that relate directly to the fulfillment of contrac-
tual obligations;

• Block 2: The value of future cash flows;
• Block 3: Risk adjustment (RA) representing the compensation for bearing uncer-

tainty with regard to cash flows;
• Block 4: Contractual service margin (CSM) representing the unearned profit that 

will be recognized as a profit or loss when services are provided.

In this study, we address the evaluation of the RA (Block 3) of insurance policies by pro-
posing an efficient and accurate method in RA estimation under IFRS 17. It should be 
noted that IFRS 17 does not provide specific prescriptions for RA calculations or man-
date a particular method to determine RAs. Although it does not restrict the use of any 
technique, it requires RAs to reflect the compensation that the entity should receive for 
bearing the uncertainty with regard to the amount and timing of cash flows, which arises 
from non-financial risks. RAs can be computed using various measures of risk, justified 
by the principles and concepts in probability theory and statistical mathematics.

In this context, we consider the claims development triangle that will be the basis 
for our RA calculation. It is specifically used for forecasting future claims and estimat-
ing outstanding claims liabilities. Under the IFRS specification, Lindholm et al. (2020) 
used this method in the calculation of the CSM, valuation of a portfolio of insurance 
contracts, and allocation of the aggregate liability value to different groups of policies. 
Conversely, our study focuses on the characterization of the distribution of outstand-
ing claims liabilities and the computation of the ensuing RA. Some methods for esti-
mating outstanding liabilities include the chain-ladder, Bornhuetter—Ferguson, and 
frequency-severity methods; an overview of such methods is presented in (e.g. Taylor 
2012; Wüthrich and Merz 2008). Models for the claims supporting the abovementioned 
methods include the log-normal model (Barnett and Zehnwirth 2000), gamma model 
(Zehnwirth 1994; Mack 1991), distribution-free approach (Mack 1993), and over-dis-
persed model (Renshaw and Verrall 1998). In our case, we develop and customize the 
paid-incurred chain (PIC) model proposed in Merz and Wüthrich (2010) to predict the 
future claims, using Ontario’s automobile claims data.

To evaluate the RAs of insurance policies, the distribution of the outstanding claims 
liabilities needs to be determined. The general approach is to obtain the empirical cumu-
lative distribution function (CDF) via Monte-Carlo (MC) simulation. The distribution 
could be approximated using the normal or log-normal distributions. Here, we also 
employ the moment-based density method propounded in Provost (2005) as an alterna-
tive. For example, this method was applied to the risk measurement and management 
of insurance policies, including guaranteed minimum benefits in Gao et al. (2017) and 
Zhao et al. (2018) as well as aggregate losses in Jin et al. (2016).

Herein, we first calculate the outstanding claims liabilities of various groups of policies 
under a novel PIC method. Our method of calculation is an extension of the approach 
used in Happ and Wüthrich (2013) for a multi-line setting with a dependency structure. 



Page 3 of 26Zhao et al. Financ Innov            (2021) 7:71  

In accordance with the requirements of IFRS 17, we apply four RA calculation methods to 
determine the RAs based on the distribution of outstanding claims liabilities. As the explicit 
expression of the distribution of such liabilities is rarely obtainable, the moment-based den-
sity approximation is proposed to recover their empirical distribution. Our proposed meth-
odology is subsequently implemented on the historical data of incurred claims and paid 
losses. Although our application focuses only on the auto insurance sector, we develop an 
approach with overarching principles applicable to the analysis of other insurance data.

The departure of our contributions from the existing literature on the computation of 
the RAs of claims liabilities is highlighted through the following: (1) we provide a new 
PIC approach to model and predict the future unpaid losses based on the information 
on both incurred claims and paid losses data in practice; (2) in contrast to the methods 
used in Hertig (1985) and Gogol (1993), our methodology combines their principal ele-
ments by introducing the dependency between paid losses and incurred claims; (3) the 
moment-based density method is used as an efficient alternative to approximate the dis-
tribution of claims reserves; (4) finally, to our knowledge, this study is the first to elabo-
rate on the entire process of estimating RAs for auto insurance claims involving different 
groups of policies to comply with the IFRS 17 implementation.

The remainder of the paper is organized as follows: in “Model description” section, the 
PIC method is explained, and the claims reserves are computed; four RA computation 
methods are described in   “Risk adjustment calculation” section; in “Numerical illus-
tration” section, numerical illustrations are discussed based on historical data and the 
moment-based density approximation is employed to approximate the claims reserves’ 
distribution; and finally, the concluding remarks are presented in “Conclusion” section.

Model description
The claims development triangle is an essential method to organize data for actuarial 
analyses and claims reserving. The triangle (see Table  1) depicts how the claims in 
each accident year for the same line of business (LOB) develop to achieve their ulti-
mate value. This organization of data greatly facilitates the comparison of the devel-
opment history experienced in an accident year. In this method, we consider two 
types of triangles: (1) incurred claims, which refer to the reported claims amounts 
and (2) paid losses, which refer to the payments made for the claims. The paid losses 
should be less than or equal to the incurred claims in the same development year. 
However, they will have the same values ultimately, that is, all the reported claims 
must be paid off at the end of the lifetime of the policies.

Table 1 Illustration of the claims development triangle

i\j 0 · · · J · · · 0 j/i
0

Pi,J,l = Ii,J,l

0
Pi,j,l Ii,j,l

...
...

J =⇒ ⇐= J

The left‑hand panel displays the cumulative paid losses while the right‑hand panel shows the cumulative incurred claims for 
the same LOB l
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The fundamental ideas of the PIC method can be found in Merz and Wüthrich 
(2010). It is designed for analyzing the data on both incurred claims and paid 
losses. We denote the accident year by i ( 0 ≤ i ≤ J  ) and the development year by j 
( 0 ≤ j ≤ J  ). Here, J refers to the largest development year. We assume that there are n 
LOBs, where l ( 1 ≤ l ≤ n ) is the lth LOB. Let Ii,j,l be the cumulative incurred claims in 
accident year i after j development years for the lth LOB and Pi,j,l be the correspond-
ing cumulative paid losses. We further assume that all the claims are settled after J 
years, that is, Pi,J ,l = Ii,J ,l . It is worth noting that the assumption of Pi,j,l ≤ Ii,j,l is not 
considered in Merz and Wüthrich (2010). However, after investigating the constraint 
via numerical experiments, we find that the probability of Pi,j,l > Ii,j,l is extremely 
small. Furthermore, our focus lies on the prediction and forecast of the outstand-
ing loss liabilities rather than the incurred losses. Therefore, the possible breaches of 
Pi,j,l > Ii,j,l are innocuous in our modeling framework. Table 1 graphically portrays the 
implementation structure of this method for the same LOB l . Write

and

for the sets of paid losses data, incurred claims data, and joint data information up to 
development year j, respectively.

To model the dependence between paid and incurred data, we introduce a covari-
ance matrix V  based on the idea in Happ et al. (2012) and extend their work to a more 
general case of n LOBs. The matrix V  is set as any positive definite matrix that may 
incorporate managerial experience and judgment. Pinning down V  suitably reduces 
computational complexity. Given an accident year i for n LOBs, we consider a vector of 
random variables xi = (ξi,1,1, ζi,1,1, . . . , ξi,1,n, ζi,1,n, . . . , ξi,J ,1, ζi,J ,1, . . . , ξi,J ,n, ζi,J ,n)

⊤ , 
following the multivariate normal distribution with mean u and covariance matrix V  , 
where ⊤ is a matrix transpose. The cumulative paid losses Pi,j,l are determined by the 
recursion

with an initial value Pi,0,l = eξi,0,l . For the cumulative incurred claims Ii,j,l , we have a 
backward recursion

with an initial value Ii,J ,l = Pi,J ,l , where e−ζi,j,l are called the link ratios. Following Happ 
and Wüthrich (2013), we assume that there is a correlation coefficient between the 
incurred claims for a specific year and the paid losses after s years in the same LOB given 
by

B
P
j :={Pi,s,l : 0 ≤ i ≤ J , 0 ≤ s ≤ max(j − i, 0), 1 ≤ l ≤ n},

B
I
j :={Ii,s,l : 0 ≤ i ≤ J , 0 ≤ s ≤ max(j − i, 0), 1 ≤ l ≤ n}

Bj := B
P
j ∪B

I
j

Pi,j,l = Pi,j−1,le
ξi,j,l

Ii,j−1,l = Ii,j,le
−ζi.j,l

ρs,l = Cor (ξi,j+s,l , ζi,j,l).
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The correlation coefficients corresponding to the paid losses and incurred claims in dif-
ferent LOBs are defined as

where ρs,(l,l′) denotes the correlation coefficients between the incurred claims in the LOB 
l for a specific year and the paid losses in the LOB l′ after s years; ρξ

s,(l,l′) denotes the 
correlation coefficients between the paid losses in the LOB l for a specific year and the 
paid losses in the LOB l′ after s years; ρζ

s,(l,l′) denotes the correlation coefficients between 
the incurred claims in the LOB l for a specific year and the incurred claims in the LOB 
l′ after s years. All the remaining entries in V  are assigned a value of 0. The covariance 
matrix indicates that the incurred claim increments ζi,j,l correlate with the paid loss 
increments ξi,j+s,l in the succeeding years. Such dependencies are also extended to other 
LOBs, which are observed by the correlation between ξi,j+s,l and ζi,j,l′.

Conditional on the sets Bj and given the distribution assumptions on ξi,j,l and ζi,j,l , we 
analyze the joint distribution of 

(
log Pi,j+1,1, . . . log Pi,j+1,n, . . . , log Pi,J ,1, . . . , log Pi,J ,n

)⊤ . 
For ease of calculation, we consider

Let B be an invertible matrix determined via logarithmic transformation, such that 
yi = Bxi . Thus,

where µ = Bu and � = BVB⊤.
Furthermore, we define

and

This means yi,j = (y
(1)
i,j , y

(2)
i,j )

⊤ . Thus, the mean and covariance matrix can be partitioned 
in the same way as follows:

and

Following the Schur complement concept (see Zhang (2006), for example), we have

 where

ρs,(l,l′) = Cor (ξi,j+s,l , ζi,j,l′), ρ
ξ

s,(l,l′) = Cor (ξi,j+s,l , ξi,j,l′), and ρ
ζ

s,(l,l′) = Cor (ζi,j+s,l , ζi,j,l′),

yi =
(
log Pi,1,1, log Ii,1,1, . . . , log Pi,1,n, log Ii,1,n, . . . , log Pi,J ,1, log Ii,J ,1, . . . , log Pi,J ,n, log Ii,J ,n

)⊤
.

yi ∼ (µ,�),

y
(1)
i,j =

(
log Pi,1,1, log Ii,1,1, . . . , log Pi,1,n, log Ii,1,n, . . . , log Pi,j,1, log Ii,j,1, . . . , log Pi,j,n, log Ii,j,n

)⊤
,

y
(2)
i,j =

(
log Pi,j+1,1, log Ii,j+1,1, . . . , log Pi,j+1,n, log Ii,j+1,n, . . . ,

log Pi,J ,1, log Ii,J ,1, . . . , log Pi,J ,n, log Ii,J ,n
)⊤

.

µ = (µ(1),µ(2))
⊤,

� =
[
�(1)(1) �(1)(2)

�(2)(1) �(2)(2)

]
.

y
(2)
i,j |y

(1)
i,j ∼

(
µ̄, �̄

)
,
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and

Suppose µ̄′ and �̄′ are the respective projection vector and matrix of µ̄ and �̄ onto the 
space that contains 

(
log Pi,j+1,1, . . . log Pi,j+1,n, . . . , log Pi,J ,1, . . . , log Pi,J ,n

)⊤ . Suppose 
µ̄′ and �̄′ are the respective projection vector and matrix of µ̄ and �̄ , respectively. The 
entries in µ̄′ and �̄′ then correspond to their mean and covariance, respectively, of Pi,j,l for 
0 ≤ i ≤ J  , 0 ≤ j ≤ J  and 1 ≤ l ≤ n . Consistent with the assumption propounded in Merz 
and Wüthrich (2010), the vector 

(
log Pi,j+1,1, . . . log Pi,j+1,n, . . . , log Pi,J ,1, . . . , log Pi,J ,n

)⊤ 
follows a multivariate normal distribution with parameters µ̄′ and �̄′ , that is,

We denote the paid losses of the lth LOB for the accident year i and during the jth devel-
opment year by Ci,j,l . Thus,

As we are interested in the future unpaid losses, we require the distribution of Ci,j,l . Now, 
the total paid losses in year k is given by

At time J, the total discounted future unpaid losses is given by

where rk is the discount rate at time k. Therefore, this denotes the time-J outstanding 
loss liabilities of the claims, considering accident years 0 to J. It is also the best estimate 
of liability for the incurred claims related to the past service up to J. Hence, the total out-
standing liabilities of the claims of all LOBs is

Risk adjustment calculation
Notably, IFRS 17 mandates that RAs must be calculated based on the discounted fulfill-
ment cash flows over the term of the policies. As this new standard does not designate 
any estimation technique in determining the RA, we adopt four methods outlined in 
an RA document by the International Actuarial Association (2018): value at risk (VaR), 
conditional tail expectation (CTE), Wang transform (WT), and cost of capital (CoC).

µ̄ = µ(2) +�(2)(1)�
−1
(1)(1)(y(1) − µ(1))

�̄ = �(2)(2) − �(2)(1)�
−1
(1)(1)�(1)(2).

(1)
(
log Pi,j+1,1, . . . log Pi,j+1,n, . . . , log Pi,J ,1, . . . , log Pi,J ,n

)⊤ ∼ N
(
µ̄′, �̄

′)
.

(2)Ci,j,l = Pi,j,l − Pi,j−1,l .

(3)Ck ,l =
∑

i+j=k

Ci,j,l .

(4)RJ ,l =
J∑

k=1

CJ+k ,l

(1+ rk)k
,

(5)RJ =
n∑

l=1

RJ ,l .
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VaR is the loss level for which the loss random variable exceeds with probability 
1− α , where α is the confidence level (CL). Therefore, if S is the loss random variable, 
then the 100α% VaR, denoted by VaRα(S) , is given by

RA is equal to the difference between VaR and the corresponding probability weighted 
expected value. The drawback of VaR is that it disregards the extreme values beyond the 
CL, and this could lead to an underestimation of risk measures.

Furthermore, CTE’s advantage over VaR is its primary concentration on the tail 
of the loss distribution; it is also a coherent risk measure and an alternative quantile 
technique. Specifically, CTE is the expected loss given that the loss is greater than 
VaRα(S) . Therefore,

RA is then calculated as the difference between the CTE and the corresponding probabil-
ity weighted expected value.

Another coherent risk measure that we include is WT, which is typified as a distor-
tion risk measure; see Wang (2000, 2002). Under the WT, the probability distribution 
is adjusted due to risk preferences. This means that lower adjusted probability val-
ues are assigned to favorable outcomes while higher adjusted probability values are 
assigned to unfavorable outcomes. A WT was chosen in Miccolis and Heppen (2010) 
to provide RA as per IFRS 17 by calibrating parameters. A general expression for the 
distortion risk measure for a non-negative loss random variable S is given by

where FS(s) is the CDF of S and χ(x) is a distortion function χ : [0, 1] → [0, 1] , which is 
a non-decreasing function with χ(0) = 0 and χ(1) = 1 . The distortion function for WT 
is given by

where η is a risk aversion parameter. The higher the η , the less is the risk aversion. RA 
is calculated as the difference between the probability weighted expected value using 
adjusted probability and the expected value under the original probability.

Under the concept of CoC, an entity will determine its risk preference based on 
its selection of a capital amount appropriate for the risks that are relevant to IFRS 
17’s measurement objectives. Among the various approaches in determining capital 
requirements, the assigned capital amount used to compute the CoC adopted in this 
paper is the difference between (a) the amount calculated under the probability dis-
tribution associated with the selected CL and (b) the amount using the probability 
weighted expected value.

RA is computed as the present value of the future cost of capital associated with rel-
evant cash flows. This is expressed as

VaRα(S) = inf{s : P(S ≤ s) ≥ α}.

CTEα(S) = E[S|S > VaRα(S)].

gχ (s) =
∫ ∞

0
χ(1− FS(s)) d s,

χ(x) = �

(
�−1(x)+�−1(η)

)
,
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where Ai is the assigned capital amount for period ending at time i, ci is the CoC’s rate at 
time i, and ri is the discount rate at time i.

The challenge in choosing the appropriate ci is akin to meeting the specific require-
ment objectives. This should reflect a rate of return that is consistent with the entity 
being indifferent between insurance contract’s liabilities with uncertain cash flows and 
liabilities with fixed cash flows. Additionally, the CoC’s rate should consider the enti-
ty’s risk preference and experience. A general approach to quantifying an RA based on 
the CoC technique is described in Meyers (2017), which incorporates stochastic path 
dependencies given that the capital amount is impacted as time progresses, and such an 
approach is applied to the claims development triangles of the unpaid losses.

Numerical illustration
In this section, we present empirical demonstrations using incurred claims and paid 
losses data on Ontario automobile insurance policies from 2002 to 2016 inclusive. We 
study three different groups of policies categorized as: bodily injury, direct compensa-
tion, and accident benefit. This implies that we have six different data sets: (1) bodily 
injury incurred claims, (2) bodily injury paid losses, (3) direct compensation incurred 
claims, (4) direct compensation paid losses, (5) accident benefit incurred claims, and (6) 
accident benefit paid losses. The data sets were compiled by the General Insurance Sta-
tistical Agency.

Before performing the numerical implementation under our model setting, it is cru-
cial to verify the assumption of the chain-ladder data structure with dependencies. All 
the data sets in this empirical illustration are displayed as claims development triangles 
with a chain-ladder structure. For instance, Tables 2 and 3 display the incurred claims 
and paid losses of the direct compensation policy in the form of a triangle. Furthermore, 
we examine the residuals to ensure the existence of a chain-ladder data structure by 
employing the time series and lag plots, and the turning point test (Bhattacharyya 1984; 
Montgomery et al. 2015; Salvidio et al. 2016). Our findings reveal that the residuals are 
independent and identically distributed (IID), and the data conform with the proposed 
structure. To validate the dependency assumptions, we compute the correlation coeffi-
cients from V  following Happ and Wüthrich (2013). Table 4 shows the correlation coeffi-
cients between the incurred claims for a specific year and the paid losses after s years for 
all the three groups of policies. Table 5 reports the correlation coefficients between the 
incurred claims in one LOB for a specific year and the paid losses in another LOB after 
s years. For instance, ρs,(1,2) denotes the correlation coefficient between the incurred 
claims in business line 1 for a specific year and the paid losses in business line 2 after s 
years. Table 6 displays the correlation coefficients between the paid losses in one LOB 
for a specific year and the paid losses in another LOB after s years, and the correlation 
coefficients between the incurred claims in one LOB for a specific year and the incurred 
claims in another LOB after s years. Our findings show that the dependency structure 
exists in the data sets. Hence, the implementation of our model to the chain-ladder type 
data with dependency assumptions is well-justified.

risk adjustment =
n∑

i=1

ciAi

(1+ ri)i
,
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Table 4 Correlation between the incurred claims and paid losses in the same LOB

s ρs,1 ρs,2 ρs,3

0 0.9673 0.9515 0.9765

1 0.9724 0.8911 0.8572

2 0.9611 0.8014 0.5356

3 0.9400 0.7680 0.1920

4 0.9320 0.7764 0.1341

5 0.9350 0.6842 0.4612

6 0.9242 0.6654 − 0.0949

7 0.9266 0.6734 − 0.3408

8 0.8608 0.7925 − 0.5931

9 0.8521 0.6711 0.02666

10 0.5784 0.6987 − 0.2620

Table 5 Correlation between the incurred claims in one LOB and the paid losses in another LOB

s ρs,(1,2) ρs,(1,3) ρs,(2,3) ρs,(2,1) ρs,(3,1) ρs,(3,2)

0 0.8516 0.7330 0.2565 0.8468 0.8955 0.7726

1 0.9300 0.8664 0.3760 0.6187 0.1728 0.1606

2 0.9167 0.8706 0.2085 0.7879 0.0989 0.0806

3 0.8410 0.8293 0.2835 0.7131 0.1431 0.0778

4 0.6476 0.6742 0.1866 0.6017 − 0.2140 − 0.2218

5 0.4647 0.5316 0.2608 0.2737 0.3906 0.1997

6 0.2275 0.3576 0.1987 0.3975 − 0.4481 − 0.4478

7 0.5999 0.6718 0.1190 0.4253 − 0.3561 − 0.3038

8 − 0.1515 − 0.1563 0.1829 0.3611 − 0.5471 − 0.3441

9 0.4622 0.5232 − 0.2366 0.6607 0.1483 0.1454

10 − 0.6822 − 0.7042 − 0.3315 0.4814 − 0.7999 − 0.7563

Table 6 Correlation between different LOBs

s Paid loss Incurred claim

ρ
ξ

s,(1,2)
ρ
ξ

s,(1,3)
ρ
ξ

s,(2,3)
ρ
ζ

s,(1,2)
ρ
ζ

s,(1,3)
ρ
ζ

s,(2,3)

0 0.9273 0.8112 0.9347 0.7778 0.6865 0.8002

1 0.9175 0.8016 0.8003 0.8507 0.8196 0.6073

2 0.9245 0.8276 0.7583 0.8656 0.8448 0.7838

3 0.9318 0.8542 0.7750 0.8151 0.8543 0.7048

4 0.9306 0.8790 0.7798 0.6024 0.7517 0.5583

5 0.9072 0.8794 0.7540 0.3498 0.6470 0.2409

6 0.8892 0.9018 0.7526 − 0.0206 0.4208 0.4499

7 0.8897 0.8576 0.7702 0.4317 0.6922 0.4931

8 0.8404 0.8379 0.6583 − 0.0904 − 0.1547 0.3478

9 0.7751 0.7539 0.6738 0.3650 0.4274 0.6494

10 0.6963 0.6864 0.8090 − 0.6999 − 0.6689 0.3363
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These three types of insurance policies have various features and show different trends 
over the development years. In this illustration, we have n = 3 and J = 14 , i.e., we 
assume that all claims are settled after 14 years. Moreover, it is assumed that the hori-
zontal year is 2016, and we must forecast the future claims after 2016. The estimates of 
parameters φj,l , σj,l ,ϕj,l , τj,l for 0 ≤ j ≤ J  and 1 ≤ l ≤ n are obtained by using the maxi-
mum likelihood method. The formulae for the estimators are given by

and

As there are insufficient data points to estimate σ14,l and τ14,l , we extrapolate their val-
ues. Tables 7 and 8 display the estimates of these parameters.

To verify that our data set for the numerical illustration follows the normality assump-
tion in “Model description” section, we perform the Kolmogorov–Smirnov (KS), Shap-
iro–Wilk (SW), and Jarque–Bera (JB) tests on the observations log

Pi,j,l

Pi,j−1,l
 and log

Ii,j,l

Ii,j−1,l
 

covering the first three accident years. The KS test is a nonparametric test of the null 
hypothesis that the CDF of the data is equal to the hypothesized CDF. The KS test could 
be used to assess normality of empirical data when the hypothesized CDF is a normal 
distribution. The SW test is also used as a normality test, but it is designed for situations 
of small sample sizes. The JB test is a goodness of fit test to determine whether the sam-
ple data follow a normal distribution. The results from the three statistical tests are 
shown in Table 9. We see that high p-values are obtained so that we could not reject the 
null hypothesis of a normal CDF. Therefore, it is reasonable to adopt the normal assump-
tion in our modeling approach.

To compute the risk measures, the distribution of reserves for future unpaid losses is 
necessary. Note that the uncertainty of the predicted unpaid losses comes from both the 
uncertainties of future processes and parameter estimates. Therefore, both uncertain-
ties must be considered to determine the distribution. We employ the nonparametric 
bootstrap method to estimate the parameter uncertainty. Bootstrapping is a simulation-
based statistical analysis that could be used to measure the accuracy of sample estimates. 
As statistics calculated from samples can be used to estimate population parameters, we 
employ the bootstrap distribution to describe the behavior of the quantities being esti-
mated, such as SEs and CLs. Bootstrapping is a powerful technique in stochastic claims 
reserving (e.g. Gao 2018; England et al. 2019; Jeong et al. 2021). Considering the depend-
ent structure in our model setting, we employ a modified bootstrapping approach based 
on a stationary bootstrap method posited in Politis and Romano (1994). This approach 
is applicable for models with dependent data by using a moving block bootstrap tech-
nique. The bootstrapped observations under the moving block bootstrap are normally 
non-stationary. However, the modified method circumvents this problem by resampling 
blocks of random lengths. Based on this bootstrapping technique, Lin and Verrall (2010) 

φ̂j,l =
1

J + 1− j

J+1−j∑

i=1

log
Pi,j,l

Pi,j−1,l
, σ̂ 2

j,l =
1

J − j

J+1−j∑

i=1

(
log

Pi,j,l

Pi,j−1,l
− φ̂j,l

)2

,

ϕ̂j,l =
1

J + 1− j

J+1−j∑

i=1

log
Ii,j,l

Ii,j−1,l
, τ̂ 2j,l =

1

J − j

J+1−j∑

i=1

(
log

Ii,j,l

Ii,j−1,l
− ϕ̂j,l

)2

.
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conducted an adapted bootstrap approach to deal with dependent data containing both 
paid and incurred claims information. We then follow their bootstrapping to tackle 
dependent data across multiple LOBs.

Suppose {Pi,j,l , Ii,j,l : 0 < i ≤ J , 0 < j ≤ J − i, 1 ≤ l ≤ n} is an observed data set. We 
consider the log ratio of the data, that is, 
{ξi,j,l = log

Pi,j,l
Pi,j−1,l

, ζi,j,l = log
Ii,j,l

Ii,j−1,l
: 0 < i ≤ J , 0 < j ≤ J − i, 1 ≤ l ≤ n} . Recall that φj,l 

and σj,l are the respective mean and standard deviation of ξi,j,l in year j, while ϕj,l and τj,l 
are the respective mean and standard deviation of ζi,j,l in year j. Consider the residuals

where φ̂j,l,σ̂j,l,ϕ̂j,l and τ̂j,l are the estimates of φj,l , σj,l , ϕj,l and τj,l , respectively. 
Similar to the work of Lin and Verrall (2010), the residuals are grouped as 
Ui,j = {Di,j,l ,Ei,j,l : 1 ≤ l ≤ n} . We now follow and apply the stationary bootstrap 
method. For each i, starting from j = 1 , let Ui∗i ,j

∗
1
 denote the residuals randomly drawn 

from {Ui,j} . The new observations are given by

For j + 1 , we pick the residuals Ui∗i ,j
∗
j+1

 at random from the original residual sets {Ui,j} 
with a probability p, i.e.,

and then we draw Ui∗i ,j
∗
j +1 with a probability 1− p , i.e.,

As argued in Politis and Romano (1994), the probability p is chosen as p = 1/b , where 
b is the block size. The new estimates of parameters for each corresponding distribution 
are determined through these new observations.

Using the parameter estimates, the MC simulation method is conducted to forecast 
future unpaid losses and estimate the outstanding claims liabilities via the following 
procedure: 

1. Resample the data by using the bootstrap method to estimate the parameters.
2. For each i ( 0 ≤ i ≤ J  ), generate values of Pi,j,l ( i + 1 ≤ j ≤ J  , 1 ≤ l ≤ n ) through 

equation (1) using the new estimated parameter values.
3. Calculate Ci,j,l , CJ+l,l , RJ ,l and RJ using equations (2), (3), (4), and (5), respectively.
4. Repeat steps 1–3 for N times.

Considering that J = 14 and the horizontal year is 2016, we forecast the unpaid losses 
from 2017 to 2031. These unpaid losses correspond to insurance contracts with accident 
years from 2002 to 2016. The directive from IFRS 17 states that the discount rate applied 
to the estimates of the future cash flows should: (1) reflect the cash flows and liquidity’s 
characteristics of the insurance contracts and (2) be consistent with the current observed 

Di,j,l =
ξi,j,l − φ̂j,l

σ̂j,l
and Ei,j,l =

ζi,j,l − ϕ̂j,l

τ̂j,l
,

ξ∗i,1,l = φ̂j + σ̂j,lDi∗i ,j
∗
1 ,l

and ζ ∗i,1,l = ϕ̂j,l + τ̂j,lEi∗i ,j
∗
1 ,l
.

ξ∗i,j,l = φ̂j + σ̂j,lDi∗i ,j
∗
j+1,l

and ζ ∗i,j,l = ϕ̂j,l + τ̂j,lEi∗i ,j
∗
j+1,l

,

ξ∗i,j,l = φ̂j + σ̂j,lDi∗i ,j
∗
j +1,l and ζ ∗i,j,l = ϕ̂j,l + τ̂j,lEi∗i ,j

∗
j +1,l .
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market prices. IFRS 17 does not specify any technique to determine the discount rate. The 
“top-down” and “bottom up” methods are suggested by KPMG (2017) to determine the 
discount rate value. For ease of calculation, we assume r is constant and r = 0.024 in this 
example.

We implemented the MC simulation with 1,000,000 replicates. The histograms of 
unpaid losses for bodily injury type policies in different years ( CJ+l ) are displayed in 
Fig.  1. The means and standard deviations of the unpaid losses in different years are 
shown in Table  10; the means and standard deviations of the total discounted unpaid 
losses (i.e., outstanding claims liabilities) are shown in the last row. From Table 10, the 
direct compensation policy has much lower means and standard deviations. This is con-
sistent with the fact that the claims are almost always reported and paid in the first few 
years under this policy type. The accident benefit policy has the highest volatilities, and 
this observation suggests that the future cash flows for this policy are more uncertain 
than those of the other two policies. The histograms of the discounted total paid losses 
( RJ ) are portrayed in Fig. 2.

Note that it is impossible to obtain the exact distribution of outstanding claims 
liabilities. Therefore, some approximation methods must be employed, and the most 
commonly used one is the empirical CDF. Some parametric approximations, includ-
ing normal and log-normal distributions, could also be employed. The moment-based 
density approximation introduced in Provost (2005) is not only conceptually simple 
and computationally efficient but also produces approximation results that are quite 
accurate while providing useful functional representations of the density functions of 
interest. The resulting density approximants are mathematically equivalent to those 
obtained by employing orthogonal polynomials. However, this conceptually simple 
semiparametric technique eliminates some of the complications associated with the 
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Table 10 Mean and standard deviation for unpaid losses in future years

All amounts are in thousands in Canadian dollars

Year Bodily injury Direct 
compensation

Accident benefit

Mean Standard 
deviation

Mean Standard 
deviation

Mean Standard deviation

2017 1,859,772 68,810 178,005 9092 2,289,854 176,144

2018 1,814,231 76,725 2597 762 1,560,580 161,249

2019 1,612,904 79,329 661 651 1,142,443 132,493

2020 1,256,094 72,209 195 634 818,360 92,599

2021 852,082 54,877 115 504 578,499 53,822

2022 515,216 37,449 − 16 187 412,944 37,980

2023 295,915 24,583 − 118 139 299,307 27,513

2024 164,874 15,212 − 83 126 213,406 20,995

2025 97,402 13,584 − 35 50 147,015 11,728

2026 56,199 9201 − 3 44 108,296 10,062

2027 32,468 4982 2 40 75,435 6710

2028 17,794 2121 15 40 47,471 4726

2029 8188 1697 − 1 10 25,866 1529

2030 3172 259 − 2 0 12,738 1310

Discounted total 7,976,162 217,601 177,179 8902 7,183,122 272,334
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use of orthogonal polynomials but still yields comparable density approximants. Fur-
thermore, compared to the normal power approximation, the moment-based density 
approximation provides more accurate approximation results. The abovementioned 
arguments motivate our adoption of the moment-based density approximation 
method. Under this method, the exact density function with known first n moments 
can be approximated by the product of (1) a base density, whose tail behavior is con-
gruent to that of the distribution to be approximated, and (2) a polynomial of degree 
q. The parameters of the base density can be determined by matching the moments of 
the loss random variable and the approximated density.

The choice of the base function depends on the loss distribution. Based on the pre-
liminary examination on the distribution of claims liabilities, we adopt the normal 
distribution for the approximation. In particular, the base function �(x) with param-
eters θ and c is given by

Let the moments of the standardized version of the random variable X (i.e. (X − c)/θ ) be 
αX (i) for i = 0, 1, . . . , q . As it is impossible to obtain the theoretical moments of X, we 
can use the sample moments obtained from the data. Denote the theoretical moments 
of the base function �(x) by mX (i) for i = 0, 1, . . . , 2q . The parameters θ and c of �(x) 
can be determined by calculating the sample mean and sample standard deviation of the 
data.

The density fX (x) of X is approximated as

 the ki’s, i = 0, . . . , n are polynomial coefficients and are determined via

where M is a (q + 1)× (q + 1) symmetric matrix whose (i + 1) th row is 
(mX (i),mX (i + 1), . . . ,mX (i + q)).

Consequently, the approximated density of X is given by

The approximated CDF of X can be obtained from equation (6). As an explicit for-
mula for the quantile function is unavailable, quantiles can be calculated numerically 
(e.g., using Newton’s method). We consider the normal and log-normal approxima-
tions as benchmarks. The approximated densities for the total unpaid losses based 
on these three methods are displayed in Fig. 2. The corresponding CDFs are shown 
in Fig. 3, and the moment-based approximation is the closest to the empirical CDF. 
Additionally, Fig.  4 illustrates the differences between the corresponding CDF 

�(x) = 1√
2πc

e
− (x−θ)2

2c2 .

fq(x) = �(x)

q∑

i=0

ki

c

(
x − θ

c

)i

;

(k0, k1, . . . , kn)
⊤ = M

−1(αX (0),αX (1), . . . ,αX (q))
⊤,

(6)fq(x) =
1√
2πc
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− (x−θ)2
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(
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approximations of total unpaid losses and the empirical CDF. We observe that the 
moment-based density approximation generates the smallest deviations and mani-
festly outperforms the other two alternatives.

The KS test is used to assess the goodness of fit of the approximations. The results of 
the test are provided in Table 11, showing that the moment-based density approximation 
outperforms the two other approximations. More specifically, from the p-values, the test 
shows that we cannot reject the null hypothesis that the moment-based approximation 
is not different from the empirical density, while the same cannot be said for the other 
two approximations.

RAs of three policy types are computed using the VaR, CTE, WT, and CoC metrics 
based on the simulation results. The normal and log-normal approximations serve as 
benchmarks. We select three CLs for VaR and CTE: 90%, 95%, and 99%. The three 
risk aversion parameter values for WT are 0.1, 0.05, and 0.01. The capital amounts 
every year under the CoC method are determined using the VaR. The CoC rate is set 
at 0.08. The results are shown in Tables  12, 13, 14 and 15; percentages refer to the 
ratios of the RAs to the probability weighted expected values. In particular, the risk-
margin percentages are obtained using the baseline amounts displayed in the last row 
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of Table 10. These are the respective means of 7,976,162,  177,179  and  7,183,122 for 
the bodily injury, direct compensation, and accident benefit policies.

The results obtained from the moment-based density method are better than 
those from the normal and log-normal approximations. This is because the differ-
ences between the results from the empirical CDF and those from the moment-based 
density method are much smaller than the differences between the results from the 
other two methods and those from the empirical CDF. Note that RAs using the CTE 
method have the highest values because CTE considers potential loss beyond the CL. 
Risk adjustments using the CoC method have much lower values.
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Table 11 Results of the KS test under different methods

Bodily injury Direct compensation Accident benefit

Test statistic p-value Test statistic p-value Test statistic p-value

Moment-based 0.0007 0.6821 0.0004 0.9995 0.0005 0.9778

Normal 0.0081 0.0000 0.0019 0.1014 0.0098 0.0000

Log normal 0.0022 0.0000 0.0076 0.0000 0.0045 0.0000
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It has to be noted that, notwithstanding IFRS 17’s not indicating the method to deter-
mine RAs, the CLs are required to be disclosed. Therefore, if the WT or CoC method is 
used to calculate the RAs, the equivalent risk aversion factor or the CL consistent with 
the VaR method must be revealed.

Table 16 displays the aggregated future cash flows in different years. It should be noted 
that the sum of the RAs computed under the four methods for three business types (see 
Tables 12, 13, 14, and 15) are higher than the aggregated RAs computed through the cor-
responding four techniques (cf Table 17). For instance, as shown in Table 12, the RAs for 
bodily injury, direct compensation, and accident benefit types are 281,256, 11,421, and 
353,028, respectively, calculated using the VaR with the moment-based approximation 

Table 12 Risk adjustments using VaR

All RA amounts are in thousands in Canadian dollars

0.90 CL 0.95 CL 0.99 CL

RA RA (%) RA RA (%) RA RA (%)

Bodily injury Empirical CDF 281,429 3.88 364,611 5.03 523,824 7.22

Moment-based 281,256 3.88 364,606 5.03 523,960 7.23

Normal 278,867 3.85 357,922 4.94 506,216 6.98

Log normal 280,393 3.87 362,294 5.00 517,931 7.14

Direct compensation Empirical CDF 11,424 7.09 14,683 9.12 20,847 12.94

Moment-based 11,421 7.09 14,681 9.11 20,828 12.93

Normal 11,409 7.08 14,643 9.09 20,710 12.86

Log normal 11,560 7.18 15,022 9.33 21,674 13.46

Accident benefit Empirical CDF 352,271 5.39 459,570 7.04 666,593 10.21

Moment-based 353,028 5.41 459,407 7.04 665,528 10.19

Normal 349,010 5.34 447,949 6.86 633,543 9.70

Log normal 351,483 5.38 455,342 6.97 653,704 10.01

Table 13 Risk adjustments using CTE

All RA amounts are in thousands in Canadian dollars

0.90 CL 0.95 CL 0.99 CL

RA RA (%) RA RA (%) RA RA (%)

Bodily injury Empirical CDF 390,915 5.39 462,510 6.38 605,255 8.35

Moment-based 389,795 5.38 460,392 6.35 595,729 8.22

Normal 381,886 5.27 448,848 6.19 579,953 8.00

Log normal 387,745 5.35 457,804 6.31 596,583 8.23

Direct compensation Empirical CDF 15,682 9.74 18,453 11.46 23,882 14.83

Moment-based 15,655 9.72 18,409 11.43 23,711 14.72

Normal 15,623 9.70 18,363 11.40 23,726 14.73

Log normal 16,121 10.01 19,108 11.86 25,083 15.57

Accident benefit Empirical CDF 493,931 7.56 586,696 8.98 773,348 11.84

Moment-based 493,002 7.55 584,557 8.95 766,027 11.73

Normal 477,941 7.32 561,746 8.60 725,828 11.12

Log normal 487,929 7.47 577,114 8.84 754,583 11.56
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Table 14 Risk adjustments using WT

All RA amounts are in thousands in Canadian dollars

η = 0.10 η = 0.05 η = 0.01

RA RA (%) RA RA (%) RA RA (%)

Bodily injury Empirical CDF 285,504 3.94 368,985 5.09 528,895 7.29

Moment-based 285,638 3.94 369,381 5.09 531,055 7.32

Normal 278,845 3.85 357,856 4.94 505,752 6.97

Log normal 283,130 3.90 364,965 5.03 519,846 7.17

Direct compensation Empirical CDF 11,454 7.11 14,718 9.14 20,843 12.94

Moment-based 11,454 7.11 14,717 9.14 20,837 12.94

Normal 11,407 7.08 14,638 9.09 20,671 12.83

Log normal 11,770 7.31 15,222 9.45 21,766 13.51

Accident benefit Empirical CDF 361,243 5.53 468,546 7.18 676,108 10.35

Moment-based 361,284 5.53 468,625 7.18 676,152 10.35

Normal 348,993 5.34 447,905 6.86 633,286 9.70

Log normal 356,338 5.46 460,193 7.05 658,117 10.08

Table 15 Risk adjustments using CoC

All RA amounts are in thousands in Canadian dollars

0.90 CL 0.95 CL 0.99 CL

RA RA (%) RA RA (%) RA RA (%)

Bodily injury 129,885 1.79 168,546 2.32 242,936 3.36

Direct compensation 1786 1.11 2295 1.43 3255 2.02

Accident benefit 148,708 2.28 193,534 2.96 280,191 4.29

Table 16 The mean and standard deviation of aggregated unpaid losses

All amounts are in thousands in Canadian dollars

Year Mean Standard deviation

2017 4,327,631 228,720

2018 3,377,409 217,264

2019 2,756,007 191,977

2020 2,074,649 148,614

2021 1,430,696 97,908

2022 928,144 67,849

2023 595,105 46,881

2024 378,197 32,681

2025 244,382 22,777

2026 164,492 17,329

2027 107,906 10,548

2028 65,280 6272

2029 34,053 2904

2030 15,908 1483

Discounted total 15,336,464 445,304
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under a 90% CL. The sum of these RAs is 645,705, which is higher than the correspond-
ing aggregated RA of 586,476 presented in Table 17. The same conclusion is observed in 
all the other cases. This implies that if all the policy types are considered together, each 
aggregated RA will be lower than their corresponding sum of RAs under the business 
lines calculated separately.

Conclusion
This study proposed an efficient and accurate methodology and elaborated on the entire 
process of estimating RAs for claims according to the requirements of IFRS 17. The 
PIC model was adopted to describe the development of unpaid losses based on histori-
cal information with the data on incurred claims and paid losses. The MC simulation 
method was employed to generate samples of future unpaid losses. To approximate the 
distribution of claims reserves, the moment-based approximation method was used. 
Risk adjustments were computed in four different ways using the approximated distribu-
tion with the bootstrap method that was applied to obtain the distribution of RAs.

The methodology and procedures described in the study could be used in the form 
of implementation guidelines for the computation of the RAs of insurance companies’ 
claims. We observe some limitations of this study, which need to be examined further. 
For instance, the constraint Pi,j,l ≤ Ii,j,l is not strictly assumed in the modeling frame-
work in Merz and Wüthrich (2010), but the effect of possible breaches on forecasting 
accuracy is worth exploring in the future. Furthermore, the introduction of a depend-
ency structure might result in over-parametrization. This issue can be further investi-
gated with the use of statistical techniques, such as the heuristic estimation proposed by 
Avanzi et al. (2018), which deserves a thorough analysis and publication.

Future studies could extend the models and methods considered herein in many 
ways. The independent assumption on the link ratios could be relaxed, while it could 
be assumed that they follow a multivariate skew normal distribution (see Pigeon et al. 
2014). A prior distribution of the model parameters could be considered, leading to the 
Bayesian PIC method as alluded in Merz and Wüthrich (2010). When considering sev-
eral types of policies, risk dependencies and aggregation techniques should be treated 
with the help of an appropriate approach. A copula method could be used to model the 
dependence structure and calculate the aggregated risks for all the policies (e.g. Shi and 
Frees 2011; Peter et al. 2014; Abdallah et al. 2015; Jeong and Dey 2020). In addition, the 

Table 17 Aggregated RA

All RA amounts are in thousands in Canadian dollars

0.90 CL 0.95 CL 0.99 CL

RA RA (%) RA RA (%) RA RA (%)

VaR 586,476 4.21 762,604 5.47 1,101,150 7.90

CTE 818,662 5.87 970,599 6.96 1,274,986 9.14

CoC 251,297 1.80 326,596 2.34 471,843 3.39

η = 0.10 η = 0.05 η = 0.01

WT 598,364 4.29 774,772 5.56 1,114,406 7.99
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RA measurement only reflects the uncertainties originating from the non-financial risks 
associated with insurance contracts. To conduct a consolidated risk management, it 
will be worth analyzing a well-developed risk assessment framework by integrating our 
proposed technique with the decision-making approaches employed in the studies on 
financial risk evaluation and analysis (e.g. Kou et al. 2014, 2021a, b; Zha et al. 2021). It 
should be noted that we only considered the historical data of incurred claims and paid 
losses. The reliability of the estimation results will increase if we could incorporate other 
useful information, including earned premium, earned exposure, and reserves, sub-
ject to the accessibility of such data. Furthermore, the additional information may also 
decrease the variability of the model parameter estimates and improve the performance 
of future cash-flow forecasting. Finally, the computed RAs are solely based on future 
unpaid losses. When practically available, other relevant future cash flows that satisfy 
the requirements of IFRS 17 could be embedded in the implementation of the method of 
calculating RAs in the case of an insurance company.
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