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Introduction
Data envelopment analysis (DEA) is an approach used to measure the relative effi-
ciency of a set of DMUs with multiple inputs and outputs, first introduced into the 
operations research and management science literature by Charnes et al. (1978). DEA 
has been used in various environments and numerous applications (Kou et al. 2021; 
Zha et al. 2020; Castelli et al. 2004 and references therein). The traditional DEA con-
siders each DMUs as black boxes consuming some inputs to produce some outputs 
without regarding the internal structure. In real-world problems, DMUs may have 
a network or internal structures; see, for example Färe and Grosskopf (1996) (who 
introduced the concept of network DEA for the first time), Castelli et al. (2004), Tone 
and Tsutsui (2009) and Guo et al. (2017). Kao (2014) presented a review of network 
DEA. In some cases, DMUs may consist of two-stage network structures where the 
outputs of the first stage, known as intermediate measures/ outputs/ products, are 
inputs to the second stage. Many authors have studied two-stage network DEA. Kao 
and Hwang (2008) proposed a multiplicative efficiency aggregation approach in which 
the overall efficiency of the two-stage process is expressed as the product of the effi-
ciency of two individual stages. Chen et  al. (2009) revealed that Kao and Hwang’s 
(2008) two-stage DEA model assumed constant returns to scale (CRS) and did not 
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apply the variable returns to scale (VRS) assumption. So, they developed an additive 
efficiency decomposition approach in which the overall efficiency is expressed as a 
weighted average of the efficiency of the individual stages under VRS technology. 
Despotis et  al. (2016) showed that the additive decomposition approach proposed 
by Chen et al. (2009) is biased toward the second stage and presents a composition 
approach to estimate unbiased efficiency scores for the individual stages.

Chen and Zhu (2004) offered a two-stage DEA model and indicated that the units with 
individual stages were efficient overall. However, using an example, they pointed out that 
overall efficient units do not necessarily indicate efficient performance in the two stages. 
Wang and Chin (2010) defined the overall efficiency of two-stage DMU under evalua-
tion as the weighted harmonic mean of the efficiencies of the two-stage DMU in each 
stage. They also generalized the additive efficiency decomposition model of Chen et al. 
(2009) to taking into consideration the relative importance weights of two individual 
stages (see models (24), (26) and (28) of Wang and Chin 2010). Zha and Liang (2010) 
presented a method for studying a two-stage production process in which initial inputs 
of a two-stage DMU are freely allocated in both stages. However, their method does not 
allow for the existence of shared intermediate products or additional direct inputs to 
be used in the second stage. Yu and Shi (2014) improved the method of Zha and Liang 
(2010) and proposed a two-stage DEA parametric model where part of the outputs of 
the first stage are used as inputs in the second stage and additional inputs are allocated 
in the second stage but, does not allow for final outputs to be produced directly in the 
first stage or shared inputs. To overcome the aforementioned problems, Izadikhah and 
Farzipoor (2016) considered a two-stage DEA model in which initial inputs of a two-
stage DMU are freely allocated in both stages and additional direct inputs are used in 
the second stage. Lozano et al. (2013) proposed a directional distance approach to deal 
with undesirable outputs. Lozano (2015a, 2015b) proposed slack-based measures (SBM) 
models for general network structures in which the exogenous inputs and outputs are 
considered at the system level instead of the process level. This model also relaxed the 
constraints for both the fixed-link and the free-link cases, thus enhanced the discrimi-
nating power of the model.

DEA models usually deal with data as absolute numeric values, while in the real world 
there are cases where data are ratios, for example, in efficiency measurement of financial 
institutions where financial ratios are included as output variables. There are two types 
of ratio data. In the first category, the  DMUj is considered as follows: 
DMUj = (XV

j ,XR
j ,Y

V
j ,YR

j ) in which XV
j  and YV

j  are the input and output components 
with absolute numeric values and are non-ratio, respectively. XR

j  and YR
j  are the input 

and output components with ratio scores, respectively. Therefore, in the first category, 
some input and output components are ratios and others are non-ratio measures. 
Emrouznejad and Amin (2009), Olesen et al. (2015), Olesen et al. (2017) and Hatami-
Marbini and Toloo (2019) are examples of the first category. In the second category, the 
inputs and outputs of the DMUj are as follows: DMUj = (XV

j ,YV
j ) where XV

j  and YV
j  are 

non-ratio input and output components which have absolute values. But, the ratio 
YV
j

XV
j

 or 



Page 3 of 26Akbarian  Financ Innov            (2021) 7:73  

XV
j

Y V
j

 are defined. Despic et al. (2007), Liu et al. (2011), Gerami et al. (2020) and Gerami 

et al. (2020) are examples of the second category.
Emrouznejad and Amin (2009) proposed DEA models for dealing with ratio data. In 

turn, Olesen et al. (2015) showed that the use of ratio inputs and outputs in the vari-
able returns-to-scale (VRS) and constant returns-to-scale (CRS) models generally vio-
lates the stated production assumptions. They developed new Ratio-CRS (R-CRS) and 
Ratio-VRS (R-VRS) models that allow the incorporation of ratio inputs and outputs. In 
the following, Olesen et al. (2017) developed radial and non-radial models under vari-
able and constant returns-to-scale technologies. Hatami-Marbini and Toloo (2019) 
showed several problems in both solutions extended by Emrouznejad and Amin (2009) 
and introduced modified envelopment and multiplier DEA models for measuring per-
formance to avoid the problems associated with Emrouznejad and Amin (2009). Des-
pic et al. (2007) combined DEA methodology and Ratio Analysis (Fernandez-Castro and 
Smith 1994) and introduced the DEA-Ratio (DEA-R) model. In DEA-R all possible ratios 
“output/input” are treated as outputs within the standard DEA model. The DEA-R is an 
approach to apply expert’s opinions in performance evaluationn of DMUs. For exam-
ple, if a certain output cannot be produced by a certain input, then, the corresponding 
ratio “output/input” can be deleted from the model. Also, if the ratio data is important 
to managers, traditional two-stage DEA models are not applicable. Tohidnia and Tohidi 
(2019) applied DEA-R for evaluating the efficiency and productivity change of DMUs 
over time. For more discussions on the advantage of DEA-R see Mozaffari et al. (2020), 
Ostovan et al. (2020), Kamyab et al. (2021), Sotiros et al. (2019), Sexton and Lewis (2003), 
Zhang et al. (2015) and Gerami and Mozaffari (2013).

Considering the advantage of DEA-R models over the CCR-based models, we evaluate 
the efficiency of two-stage DMUs by DEA-R models. To this end, we combine DEA-R 
and two-stage DEA methodologies and propose two DEA ratio models to evaluate over-
all ratio efficiency and individual stage ratio efficiencies of two-stage DMUs. These two 
models are called Range Directional DEA-R (RDD-R) and (weighted) Tchebycheff norm 
DEA-R (TND-R) models. We state and prove some facts about these two models. In the 
TND-R model, the Decision Maker can impose the preference of each stage over the 
other stages and project inefficient divided data on the Pareto front by selecting con-
venience weights. Additionally, RDD-R model is translation invariant and unit invariant 
and projects all divided DMUs under evaluation on the strong frontier of production 
possibility set, under some conditions (see proposition 6. Moreover, we compare the 
RDD-R and TND-R models with the proposed models in Chen et al. (2009), Despotis 
et al. (2016) (models (21) and (24) of Despotis et al. 2016) and Wang and Chin (2010) 
(models (24), (26) and (28) with ( �1 = 2

5
 , �2 = 3

5
 )) by some examples in order to show the 

validity and reliability of the proposed RDD-R and TND-R models and “two-stage DEA 
based on DEA-R.”

This paper is organized as follows. “Literature review” section presents the literature 
review on two-stage DEA and ratio analysis. “Proposed methodology” section develops 
two models based on DEA-R to evaluate overall ratio efficiency and individual stages 
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ratio efficiency of each two-stage DMUs under evaluation. Finally, “Numerical exam-
ples” section concludes the paper.

Literature review
Two‑stage DEA

Färe and Whittaker (1995) and Färe and Grosskopf (1996) used an input oriented two-
stage network DEA model to measure relative efficiencies in dairy production processes. 
Seiford and Zhu (1999) divided production process into independent sub-processes and 
calculated the efficiencies of the first stage, the second stage and the overall efficiency via 
three independent DEA models. Färe and Grosskopf (2000) presented a network DEA 
model for assessing Swedish Institute for Health Economics. Wang et  al. (1997) and 
Noulas et al. (2001) proposed applications of two-stage DEA to non-life insurance poli-
cies and information technology, respectively. For an in-depth review of the multistage 
DEA model, see Castelli et al. (2004). Figure 1 indicates a simple two-stage production 
process where the first stage uses inputs xi , (i = 1, . . . ,m) to produce outputs zd , 
(d = 1, . . . ,D) and then stage 2 uses these zd as inputs to produce final outputs yr , 
(r = 1, . . . , s) . In fact, the intermediate measures zd are outputs of stage 1 and inputs of 
stage 2. The first and the second stage efficiencies of DMUo, (o = 1, . . . , n) , are defined as 
θ1o =

∑D
d=1 w

1
dzdo

∑s
r=1 vixio

 and θ2o =
∑s

r=1 uryro
∑D

d=1 w
2
dzdo

 , respectively, where vi (i = 1, . . . ,m) and w1
d 

(d = 1, . . . ,D) are the input and output weights in the first stage and ur (r = 1, . . . , s) and 
w2
d (d = 1, . . . ,D) are the input and output weights in the second stage. Kao and Hwang 

(2008) defined the overall efficiency of DMUo as the product of the two individual effi-
ciencies, namely, θo = θ1o × θ2o  . Chen et al. (2009) found that the approach of Kao and 
Hwang (2008) cannot be extended to the VRS assumption (Banker et al. 1984) because, 

θo =

[

∑D
d=1 w

1
dzdo−wo

∑s
r=1 vixio

]

×

[

∑s
r=1 uryro−uo
∑D

d=1 w
2
dzdo

]

 could not be converted into a linear form under 

the condition of w1
d = w2

d . They therefore stated the overall efficiency of DMUo as a 
weighted sum of the efficiencies for the individual stages and proposed the following 
two-stage DEA model under CRS assumption (model (11) of Chen et al. 2009):

Stage 1 Stage 2

xij

i = 1, ..., m

zdj

d = 1, ..., D

yrj

r = 1, ..., s

DMUj

Fig. 1 A two-stage DMU
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Once the overall efficiency is obtained, the efficiency scores for the two individual stages 
of DMUo can be determined. If the first stage efficiency is prior to the second stage, θ1∗o  
can be determined by solving the following LP model (model (18) of Chen et al. 2009):

The efficiency for the second stage is then calculated as θ2o =
θ∗o−w∗

1
.θ1∗o

w∗
2

 , Also, by assum-

ing pre-emptive priority for stage 2, θ2∗o  can be determined by solving the following LP 
model (model (19) of Chen et al. 2009):

(1)

θ∗o = max

D
∑

d=1

w1
dzdo +

s
∑

r=1

uryro

s.t.

D
∑

d=1

w1
dzdo +

m
∑

i=1

vixio = 1

D
∑

d=1

w1
dzdj −

m
∑

i=1

vixij ≤ 0 j = 1, ..., n

s
∑

r=1

uryrj −

D
∑

d=1

w1
dzdj ≤ 0 j = 1, ..., n

w1
d ≥ 0 d = 1, ...,D

vi ≥ 0 i = 1, ...,m
ur ≥ 0 r = 1, ..., s

(2)

θ1∗o = max

D
∑

d=1

w1
dzdo

s.t.

m
∑

i=1

vixio = 1

(1− θ∗o )

D
∑

d=1

w1
dzdo +

s
∑

r=1

uryro = θ∗o j = 1, ..., n

D
∑

d=1

w1
dzdj +

m
∑

i=1

vixij ≤ 0 j = 1, ..., n

s
∑

r=1

uryrj −

D
∑

d=1

w1
dzdj ≤ 0

w1
d ≥ 0 d = 1, ...,D

ur ≥ 0 r = 1, ..., s

vi ≥ 0 i = 1, ...,m

(3)

θ2∗o = max

s
∑

r=1

uryro

s.t.

D
∑

d=1

w1
dzdo = 1

θ∗o

m
∑

i=1

vixio −

s
∑

r=1

uryro = 1− θ∗o

D
∑

d=1

w1
dzdj +

m
∑

i=1

vixij ≤ 0 j = 1, ..., n

s
∑

r=1

uryrj −

D
∑

d=1

w1
dzdj ≤ 0

w1
d ≥ 0 d = 1, ...,D

ur ≥ 0 r = 1, ..., s

vi ≥ 0 i = 1, ...,m
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The efficiency for the first stage is then calculated as θ1o =
θ∗o−w∗

2
.θ2∗o

w∗
1

 , where

by way of (1). If θ1o = θ1∗o  or θ2o = θ2∗o  , then this indicates that we have a unique efficiency 
decomposition. Despotis et  al. (2016) modeled the following single-objective program 
under the constant returns-to-scale (CRS) assumption; for assessments of the efficien-
cies of two individual stages and overall efficiency of the evaluated DMUo (Model (21) of 
Despotis et al. 2016):

Once an optimal solution (v∗,w∗,u∗) of the model (4) is obtained, the efficiency scores 
for DMUo under assessments in the first and second stages are respectively:

Also, the overall efficiency of DMUo is calculated as follows:

Moreover, they employed the unweighted Tchebycheff norm ( L∞ norm) to formulate 
following model (Model (24) in Despotis et al. 2016):

w∗
1 =

∑D
d=1 wdzdo

∑s
r=1 uryro +

∑D
d=1 wdzdo

w∗
2 =

∑s
r=1 uryro

∑s
r=1 uryro +

∑D
d=1 wdzdo

(4)

min

m
∑

i=1

vixio −

s
∑

r=1

uryro

s.t.

D
∑

d=1

wdzdj −

m
∑

i=1

vixij ≤ 0 i = 1, ...,m, j = 1, ..., n

s
∑

r=1

uryrj −

D
∑

d=1

wdzdj ≤ 0 r = 1, ..., s, j = 1, ..., n

D
∑

d=1

wdzdo = 1

wd ≥ 0 d = 1, ...,D
vi ≥ 0 i = 1, ...,m
ur ≥ 0 r = 1, ..., s

(5)
ê1o =

∑D
d=1 w

∗
dzdo

∑m
i=1 v

∗
i xio

=
1

∑m
i=1 v

∗
i xio

ê2o =

∑s
r=1 u

∗
r yro

∑D
d=1 w

∗
dzdo

=

s
∑

r=1

u∗r yro

(6)ê0o =
ê1o + ê2o

2
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in which E1
o and E2

o indicate the efficiency scores of stage 1 and stage 2 and are calculated 
by model (20) of Despotis et al. (2016).

Once an optimal solution (v∗,w∗,u∗) of the model (7) is obtained, the individual effi-
ciency scores and overall efficiency for DMUo under assessment are obtained by (5) and 
(6), respectively.

Wang and Chin (2010) generalized two-stage DEA models proposed by Chen et  al. 
(2009). They assigned specific weights �1 > 0 and �2 > 0 , with �1 + �2 = 1 , to each indi-
vidual stage to reflect its relative importance in the whole process. They formulated the 
overall efficiency of DMUo as follows (see model (24) of Wang and Chin 2010):

Once the overall efficiency θ∗o  is obtained, θ1∗o  and θ2∗o  can then be determined by solving 
following LP models (see models (26) and (28) of Wang and Chin 2010):

(7)

min δ

s.t.

D
∑

d=1

wdzdj −

m
∑

i=1

vixij ≤ 0 i = 1, ...,m, j = 1, ..., n

s
∑

r=1

uryrj −

D
∑

d=1

wdzdj ≤ 0 r = 1, ..., s, j = 1, ..., n

m
∑

i=1

vixio − δ ≤ E1
o

s
∑

r=1

uryro + δ ≥ E2
o

D
∑

d=1

wdzdo = 1

wd ≥ 0 d = 1, ...,D
vi ≥ 0 i = 1, ...,m
ur ≥ 0 r = 1, ..., s
δ ≥ 0

(8)

θ∗o = max �1

(

D
∑

d=1

wdzdo
)

+ �2

(

s
∑

r=1

uryro
)

s.t. �1

m
∑

i=1

vixio + �2

D
∑

d=1

wdzdo = 1

D
∑

d=1

wdzdj −

m
∑

i=1

vixij ≤ 0 j = 1, ..., n

s
∑

r=1

uryrj −

D
∑

d=1

wdzdj ≤ 0 j = 1, ..., n

wd ≥ 0 d = 1, ...,D
vi ≥ 0 i = 1, ...,m
ur ≥ 0 r = 1, ..., s
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Ratio analysis

Consider a set of n DMUs which is associated with m inputs and s outputs. Particularly, 
each DMUj = (Xj ,Yj) (j ∈ J = {1, . . . , n}) consumes amount xij(> 0) of input i and pro-
duces amount yrj(> 0) of output r . Corresponding to any DMUj , output-input ratio vec-
tor Vj is defined as follows:

Vj can be considered as outputs vector i.e., the more yrjxij
 , the better yrjxij

 . Let V =
⋃n

j=1 Vj be 

a group of output-input ratio. Then, the smallest closed convex and free-disposal attain-
able set1 that contains the observations can be expressed as follows: (see Liu et al. 2011 
for detail)

(9)

θ1∗o = max

D
∑

d=1

wdzdo

s.t.

m
∑

i=1

vixio = 1

(�1 − �2θ
∗
o )

D
∑

d=1

wdzdo + �1u
1 + �2

s
∑

r=1

uryro + �2u
2 = �1θ

∗
o

D
∑

d=1

wdzdj −

m
∑

i=1

vixij ≤ 0 j = 1, ..., n

s
∑

r=1

uryrj −

D
∑

d=1

wdzdj ≤ 0 j = 1, ..., n

wd ≥ 0 d = 1, ...,D
vi ≥ 0 i = 1, ...,m
ur ≥ 0 r = 1, ..., s

(10)

θ2∗o = max

s
∑

r=1

uryro

s.t.

D
∑

d=1

wdzdo = 1

�2

s
∑

r=1

uryro + �2u
2 − �1θ

∗
o

m
∑

i=1

vixio + �1u
1 = �2θ

∗
o − �1

D
∑

d=1

wdzdj −

m
∑

i=1

vixij ≤ 0 j = 1, ..., n

s
∑

r=1

uryrj −

D
∑

d=1

wdzdj ≤ 0 j = 1, ..., n

wd ≥ 0 d = 1, ...,D
vi ≥ 0 i = 1, ...,m
ur ≥ 0 r = 1, ..., s

Vj =
Yj

Xj
=

(

y1j

x1j
, . . . ,

ysj

x1j
,
y1j

x2j
, . . . ,

ysj

x2j
, . . . ,

y1j

xmj
, . . . ,

ysj

xmj

)

1 See Liu et al. (2011) for definition of attainable set.
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Fernandez-Castro and Smith (1994) calculated the ratio efficiency of DMUo by solving 
the following output-oriented model, for the first time:

or equivalently:

Proposition 1 At optimality of model (11), ϕ∗
R ≥ 1.2

Wu and Liang (2005) used ratio analysis to develop an aggregated ratio model to evalu-
ate DMUo as follows:

Definition 1 Wu and Liang (2005) DMUo is ratio efficient if and only if ψ∗ = 1.

Despic et al. (2007) referred to the model (12) as the DEA-R model and showed that this 
model is equivalent to the output-oriented DEA-R model (13):

Mozaffari et al. (2014) investigated the relationship between the DEA-R models (13) 
and (12) and proved that ψ∗ = 1

�∗ on optimality of the models (12) and (13) (also see 
Despic et al. 2007). Moreover, they proved that the model (11) is dual of the model 
(13) and therefore, ϕ∗

R = �∗ . So, we have the following property:

P =







yr

xi
|

n
�

j=1

�j
yrj

xij
≥

yr

xi
,

n
�

j=1

�j = 1, �j ≥ 0, i = 1, . . . ,m, r = 1, . . . , s







.

max ϕR
s.t. ϕR

yro
xio

∈ P i = 1, . . . ,m, r = 1, . . . , s

(11)

max ϕR

s.t.

n
∑

j=1

�j
yrj

xij
≥ ϕR

yro

xio
i = 1, ...,m, r = 1, ..., s

n
∑

j=1

�j = 1

�j ≥ 0

(12)

ψ∗ = max

m
∑

i=1

s
∑

r=1

wir
yro

xio

s.t.

m
∑

i=1

s
∑

r=1

wir
yrj

xij
≤ 1 j = 1, ..., n

wir ≥ 0 i = 1, ...,m, r = 1, ..., s

(13)

min �

s.t.

m
∑

i=1

s
∑

r=1

wir

yrj
xij
yro
xio

≤ � j = 1, ..., n

m
∑

i=1

s
∑

r=1

wir = 1

wir ≥ 0 i = 1, ...,m, r = 1, ..., s

2 Superscript ‘*’ indicates optimality.
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Proposition 2 At optimality of models (11) and (12), ϕ∗
R = 1

ψ∗.

Definition 2 Mozaffari et al. (2014) DMUo is DEA-R efficient if and only if the optimal 
objective function value of model (13), �∗ = 1 . In view of the above discussion, the ratio 
efficiency of DMUo under evaluation can be obtained using the models (11) or (12) or 
(13).

The issue of underestimation of efficiency and pseudo-inefficiency are two other prob-
lems that the traditional DEA models cannot overcome. Underestimation of efficiency 
occurs when input and output weights are computed as zero. Therefore, the impor-
tance of that variable is not considered in the efficiency score of the DMUs. In this case, 
the efficiency scores of DMUs are not calculated correctly. Different works have been 
reported in this field (see for instance Gerami et al. 2020, 2020). DEA-R models prevent 
the underestimation of efficiency and pseudo-inefficiency (Wei et al. 2011a, b, c). There-
fore, they correctly calculate the efficiency score of DMUs. Moreover, in some cases, the 
available data are presented as ratio output/input. Also, it may occur that in producing 
an output only a subset of inputs is being used. In modeling such restrictions, traditional 
DEA is not applicable, and using the DEA-R approach much easier than other proposed 
approaches (see Tohidnia and Tohidi 2019 for detail). The flexibility of DEA-R in mod-
eling such restrictions gave us the motivation to use DEA-R for evaluating two-stage 
DMUs. To this end, we combined DEA-R and network DEA to propose two new models 
for evaluating two-stage DMUs. In general, the proposed ratio network DEA models can 
be considered as a combination of the two-stage DEA efficiency model and ratio analy-
sis, and thus, they will be more preferred by experts who are familiar with ratio analysis.

Proposed methodology
As referred to in the “Introduction” section, DEA-R is a suitable approach to incorpo-
rate expert”s opinions. Moreover, when just ratio data as “output/input” are available, 
DEA-R is applicable. This shows the importance of applying DEA-R to the two-stage 
DEA. Because of these facts, we evaluated the efficiencies of two-stage DMUs using 
the DEA-R model (11) instead of conventional DEA models and proposed two mod-
els which we call (1)the Range Directional DEA-R (RDD-R) model and (2) (weighted) 
Tchebycheff norm DEA-R (TND-R) model for measuring the individual stage ratio 
efficiencies and overall ratio efficiency of a two-stage DMU under evaluation. Our 
proposed models obtain these ratio efficiencies by solving only one model. This is the 
other advantage of our proposed models in comparison with some other existing two-
stage models.

Let 
{

DMUj = (Xj ,Zj ,Yj)|j = 1, . . . , n
}

 be a group of two-stage data; in which, 
Xj = (x1j , . . . , xmj) , Zj = (z1j , . . . , zDj) and Yj = (y1j , . . . , ysj) , we define divided data 
{

DMU ′
j =

(

Zj

Xj
,
Yj
Zj

)

|j = 1, . . . , n
}

 where Zj

Xj
=

(

z1j
x1j

, . . . ,
zDj
x1j

, . . . ,
z1j
xmj

, . . . ,
zDj
xmj

)

 , 
Yj
Zj

=
(

y1j
z1j
, . . . ,

ysj
z1j
, . . . ,

y1j
zDj

, . . . ,
ysj
zDj

)

 , for each i = 1, . . . ,m , d = 1, . . . ,D and r = 1, . . . , s.

Again, we assume that the more zdjxij
 and yrjzdj

 are, the more they are considered as outputs. 

So, we have a set of DMUs with D ×m+ s × D outputs without any explicit inputs.
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Similar to the attainable set P, the following attainable set defines a bounded closed con-
vex and free-disposal set that contains the observations:

The inequalities of P′ are corresponding to stage 1 efficiency and stage 2 efficiency, 
respectively. In the sequel, we develop two models to estimate the overall ratio efficiency 
and individual stage ratio efficiencies of two-stage DMUs.

Tchebycheff norm DEA‑R (TND‑R) model

The weighted Tchebycheff norm turned out to be very useful in generating non-dom-
inated solutions (Pareto optimal solutions) in multiple objective programs (see Kou 
et  al. 2014; Kasimbeyli 2010). The distance between two points X = (x1, x2, . . . , xn) and 
X ′ = (x′

1
, x′

2
, . . . , x′n) with L∞ norm is given by:

The evaluation of the efficiency value of DMU with L∞-Norm (Tchebycheff norm) was 
introduced by Tavares and Antunes (2001). They presented the following model named 
TCH in DEA for evaluation of the performance of DMUk:

where Uo ∈ [0,+∞] is the efficiency value. Also, DMUo is efficient in the Tavares model 
(14) if and only if in optimal solution U∗

o = 0 , otherwise it is inefficient. With the intro-
ducing efficiency index as θ∗o = 1

1+U∗
o
 , θ∗o ∈ (0, 1] , DMUo is efficient in the Tavares model 

(14) if and only if in optimal solution θ∗o = 1.
The objective function of model (14) minimizes the distance between DMUo and 

its projected point on frontier efficiency. Using the weighted Tchebycheff norm, the 
model (14) can be written as the following weighted programming problem:

P′ =







(W ,V )

�

�

�

�

�

�

n
�

j=1

�j
Zj

Xj
≥ W ,

n
�

j=1

µj
Yj

Zj
≥ V ,

n
�

j=1

�j = 1,

n
�

j=1

µj = 1, �j , µj ≥ 0,W ∈ R
D×m

,V ∈ R
D×s







⊆ R
D×m+D×s

.

� X − X ′ �∞
= max{|x1 − x′

1
|, |x2 − x′

2
|, . . . , |xn − x′n|}

(14)

max Uo

s.t. Uo +

n
∑

j=1

�jxij ≤ xio, i = 1, ...,m

Uo −

n
∑

j=1

�jyrj ≤ −yro, r = 1, ..., s

n
∑

j=1

�jxij ≤ xio, i = 1, ...,m

n
∑

j=1

�jyrj ≥ yro, r = 1, ..., s

n
∑

j=1

�j = 1

�j , Uo ≥ 0, j = 1, ..., n
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where W1 ∈ R
m
≥0

 , W2 ∈ R
s
≥0

 are Decision Maker preference and 1W1 + 1W2 = 1 . 
Now, motivated by the weighted model (15), we introduce (weighted) Tchebycheff norm 
DEA-R (TND-R) models for evaluating two-stage DMUo = (Xo,Zo,Yo), o ∈ {1, 2, . . . , n}, 
as follows:

where W1 ∈ R
m
≥0

 , W2 ∈ R
s
≥0

 with 1W1 + 1W2 = 1 , are weights addressing total prefer-
ence over the two stages and are determined by the Decision Maker.

Suppose that (α∗
1
,α∗

2
) are the values of the objective function of model (16) at optimal-

ity. The stage ratio efficiencies and overall ratio efficiency scores are defined as F = 1

1+α∗
1

 , 

S = 1

1+α∗
2

 and O = F × S , respectively.

Proposition 3 If divided DMU 
(

Zo
Xo
,
Yo
Zo

)

 lies on the strong frontier of the PPS P′ then, 

DMUo = (Xo,Zo,Yo) is ratio-efficient overall and individual stages are ratio-efficient and 
vice versa.

Definition 3 Suppose that (α∗
1
,α∗

2
) are the values of the objective function of model 

(16) at optimality. Then, 

(15)

max Uo

s.t. UoW1 +

n
∑

j=1

�jxij ≤ xio, i = 1, ...,m

UoW2 −

n
∑

j=1

�jyrj ≤ −yro, r = 1, ..., s

n
∑

j=1

�jxij ≤ xio, i = 1, ...,m

n
∑

j=1

�jyrj ≥ yro, r = 1, ..., s

n
∑

j=1

�j = 1, �j ,Uo ≥ 0, j = 1, ..., n

(16)

max α1 + α2

s.t. α1W1 +
zdo

xio
≤

n
∑

j=1

�j

zdj

xij
, i = 1, ...,m, d = 1, ...,D

α2W2 +
yro

zdo
≤

n
∑

j=1

µj
yrj

zdj
, r = 1, ..., s, d = 1, ...,D

n
∑

j=1

µj

zdj

xij
≥

zdo

xio
, i = 1, ...,m, d = 1, ...,D

n
∑

j=1

�j
yrj

zdj
≥

yro

zdo
, r = 1, ..., s, d = 1, ...,D

n
∑

j=1

�j = 1

n
∑

j=1

µj = 1

�j , α1, α2 ≥ 0, j = 1, ..., n
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 (a1) if O = 1 , DMUo is said to be overall ratio efficient.
 (a2) if F = 1 , DMUo is said to be ratio efficient in stage 1.
 (a3) if S = 1 , DMUo is said to be ratio efficient in stage 2.
 (a4) if O < 1 , DMUo is said to be overall ratio inefficient.
 (a5) if F < 1 , DMUo is said to be ratio inefficient in stage 1.
 (a6) if S < 1 , DMUo is said to be ratio inefficient in stage 2.

Range directional DEA‑R (RDD‑R) model

Silva Portela et  al. (2004) proposed range directional measure for handling the nega-
tive data based on the directional distance function approach which provides an effi-
ciency score that results from the comparison of the DMU under evaluation with the 
so-called ideal point. Motivated by their approach, this paper defines Range Directional 
DEA-R (RDD-R) model as follows. Let {Yj|j = 1, . . . , n} , in which Yj = (y1j , . . . , letysj) , be 
a group of data in Rs . The range directional model without explicit inputs for assessing 
DMUo = Yo can be defined as follows:

or equivalently:

where R
+
o = (R+

1o, . . . ,R
+
so)

t is the vector between ideal point 

YM =

(

max
j=1,...,n

{y1j}, . . . , max
j=1,...,n

{ysj}

)t

 and DMUo = Yo = (y1o, . . . , yso) under evaluation, 

that is, R+
o = YM − Yo and R+

ro = max
j=1,...,n

{yrj} − yro , r = 1, . . . , s.

Proposition 4 Model (17) is always bounded, that is, 0 ≤ β∗
o ≤ 1 . DMUo is efficient if 

β∗
o = 0 . Therefore, the RDD-efficiency measure of DMUo is given by ρ∗ = 1− β∗

o.

By model (17), DMUo = (y1o, y2o, . . . , yso) is projected onto the frontier of P along the 
direction of the vector R+

o  atYo + β∗
o R

+
ro.

Model (17) also has following important characteristic that can be used to handle nega-
tive data, that is:

Proposition 5 Model (17) is translation invariant and unit invariant.

max βo
s.t. Yo + βoR

+
o ∈ P

βo ≥ 0

(17)

max βo

s.t.

n
∑

j=1

�jyrj ≥ yro + βoR
+
ro, r = 1, ..., s

n
∑

j=1

�j = 1

�j ,βo ≥ 0
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Proof The proof is trivial.  �
The following proposition discusses the conditions that DMUo under evaluation is 

projected onto the strong frontier of the attainable set P via Range Directional model 
(17).

Proposition 6 Suppose that the ideal point YM is constructed by s(=the dimension of 
Rs
+ ) extreme DMUs. If the vector of YM along with the vectors of these extreme efficient 

DMUs constitute an affine independent set then, DMUo is projected onto the strong fron-
tier (hyperplane) of attainable set P via model (17).

Proof It is enough to show that the first r constraints of model (17) are as equality at 
optimality. Without loss of generality, suppose that YM is constructed by s extreme 
DMUs Y1,Y2, . . . ,Ys . By affinity independence of the vectors Y1,Y2, . . . ,Ys and YM , the 
set {Y1 − YM ,Y2 − YM , . . . ,Ys − YM} constitutes a basis for vector space Rs

+ . Therefore, 
there exist the constants �̄1, �̄2, . . . , �̄s so that, 

∑s
j=1 �̄j(YM − Yj) = YM − Yo , �̄j ≥ 0 . 

(Note that defining YM , the vector YM − Yo lies in the positive linear combination of the 
vectors YM − Y1,YM − Y2, . . . ,YM − Ys ). Therefore, 
∑s

j=1 �̄j(YM − Yj) = YM − Y0, �̄j ≥ 0, j = 1, . . . , s . This implies 
∑s

j=1 µ̄jYj = Yo + βoR
+
o (YM − Yo) , 

∑s
j=1 µ̄j = 1 , where βo = 1− 1

∑s
j=1 �̄j

 , µ̄j =
�̄j

∑s
j=1 �̄j

 

and R+
o = YM − Yo . So,

thus, (βo, µ̄j , j = 1, . . . , s) is an optimal solution of (17). This completes the proof. �

Note: By proposition 6, if attainable set P contains strong hyperplane(s) then, DMUo is 
projected onto them, by model (17).

Now, inspired by model (17), Range Directional DEA-R (RDD-R) models for evalua-
tion two-stage DMUo = (Xo,Zo,Yo) is introduced as follows:

where R1+
o = ZM

XM
− Zo

Xo
 and R2+

o = YM
ZM

− Yo
Zo

,

for each i = 1, . . . ,m , d = 1, . . . ,D and r = 1, . . . , s . The notation ‖R‖ denotes the norm 
of vector R.

s
∑

j=1

µ̄jYj = Yo + βoR
+
o ,

s
∑

j=1

µ̄j = 1,

µ̄j ≥ 0, j = 1, ..., s

(18)
max β1 + β2

s.t. (Zo
Xo
,
Yo
Zo
)+ (β1

1

�R1+
o �

R
1+
o ,β2

1

�R2+
o �

R
2+
o ) ∈ P′

,

ZM

XM
=

( z1M

x1M
, ...,

zDM

x1M
, ...,

z1M

xmM
, ...,

zDM

xmM

)

,
zdM

xiM
= max

j=1,...,n
{
zdj

xij
}

YM

ZM
=

(y1M

z1M
, ...,

yDM

z1M
, ...,

y1M

zmM
, ...,

yDM

zmM

)

,
yrM

zdM
= max

j=1,...,n
{
yrj

zdj
}
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The RDD-R model (18) projects the vector Zo
Xo

 and YoZo
 on the frontier of attainable set P′ 

in direction of R1+
o  and R2+

o  and measure the ratio-efficiency of stage 1 and stage 2 of the 
two-stage DMU DMUo , respectively. Model (18) can be written as following single model:

where R1+
dio =

zdM
xiM

−
zdo
xio

 and R2+
rdo =

yrM
zdM

−
yro
zdo

.

Proposition 7 The RDD-R model (19)is always bounded that is, 0 ≤ β∗
1
≤ 1 and 

0 ≤ β∗
2
≤ 1.3

Two-stage DMUo = (Xo,Yo,Zo) is ratio-efficient if β∗ = 0 . Therefore, the RDD-ratio 
efficiency measure of DMUo is given by ρ∗ = 1− β∗.

So, ρ∗
1
= 1− β∗

1
 , ρ∗

2
= 1− β∗

2
 and ρ∗

o = ρ∗
1
ρ∗
2
 is said to be the RDD-ratio efficiency 

score of stage 1, RDD-ratio efficiency score of stage 2 and overall ratio-efficiency score of 
the two-stage DMUo , respectively.

Definition 4 Suppose that ( β∗
1
 , β∗

2
 ) is the optimal solution of the model (19). Then, 

 (a1) if ρ∗
o = 1 , DMUo is said to be overall ratio efficient.

 (a2) if ρ∗
1
= 1 , DMUo is said to be ratio efficient in stage 1.

 (a3) if ρ∗
2
= 1 , DMUo is said to be ratio efficient in stage 2.

 (a4) if ρ∗
o < 1 , DMUo is said to be overall ratio inefficient.

 (a5) if ρ∗
1
< 1 , DMUo is said to be ratio inefficient in stage 1.

 (a6) if ρ∗
2
< 1 , DMUo is said to be ratio inefficient in stages 2.

The following theorem states that individual stage efficiencies in the TND-R model 
(16) are equivalent to individual stage efficiencies in the RDD-R model (19):

Theorem 1 At optimality of models (16) and (19), α∗
1
= 0 ( α∗

2
= 0 ) if and only if β∗

1
= 0 

( β∗
2
= 0).

(19)

max β1 + β2

s.t.

n
∑

j=1

�j

zdj

xij
≥

zdo

xio
+ β1

1

�R1+
o �

R1+
dio d = 1, ...,D, i = 1, ...,m,

n
∑

j=1

ηj
yrj

zdj
≥

yro

zdo
+ β2

1

�R2+
o �

R2+
rdo r = 1, ..., s, d = 1, ...,D,

n
∑

j=1

�j = 1

n
∑

j=1

µj = 1

�j , β1, ηj , β2 ≥ 0

3 (*) is used for the optimal solution.
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Proof The proof is straightforward.
The insurance industry extends the productivities and services by providing safety and 
confidence. These companies have positive effects on the growth of the economy of a 
country. Fecher et al. (1993) was the first to conduct a study that applies DEA in evaluat-
ing the performance of insurance firms. Thereafter, many researchers have studied the 
insurance business by using the DEA techniques (see Eling and Jia 2019; Tone et al. 2019; 
An et al. 2020, for instance). Kaffash et al. (2019) found that from 1992 to 2018 there were 
132 studies on the insurance sector. Studies reviewed in their paper applied DEA to cal-
culate the efficiency of firms from various backgrounds, with multiple inputs and out-
puts. There are other studies in the literature (Borges et  al. 2008; Cummins and Weiss 
2013; Ilyas Ashiq 2019; Mandal 2014), which have calculated the efficiency of insurance 
companies by adopting DEA as a tool for efficiency measurement. Hwang and Kao (2006) 
were the first to employ Network-DEA to evaluate the performance of non-life insurance 
firms in Taiwan. Thereafter, many authors have investigated the performance of insur-
ance firms using the two-stage DEA (see Kao 2014; Chen et al. 2009; Guo et al. 2017; An 
et al. 2020 and references therein). Most of the prior research used more traditional DEA 
models. A few recent studies have adopted new DEA models such as the Network-DEA. 
However, to the best of our knowledge, there are only two studies that used the Network-
DEA and DEA-R simultaneously in the insurance industry (see Gerami et al. 2020; Osto-
van et al. 2020). In the next section, we apply the proposed methods to evaluate the per-
formance of non-life insurance firms in Taiwan also studied in Kao and Hwang (2008). �

Numerical examples

Example 1 In this example we evaluate two-stage DMUs that have been previously 
evaluated by Izadikhah et al. (2018). Consider 3 two-stage DMUs with each DMU 
consuming a single input (X) to produce a single output (Z), in stage 1 and a single input 
(Z) to produce a single output (Y), in stage 2. Data set for these DMUs are given in 
Table 1. The last column of Table 1 represents divided DMUs corresponding to the two-
stage DMUs. Evidently, (W1,W2) =

(

1
2
,
1

2

)

.

Figure  2 depicts efficient frontier of PPS constructed by divided DMUs. Ratio-effi-
ciency scores of the proposed TND-R and RDD-R models and efficiency scores of the 
Izadikhah’s method (Izadikhah et al. 2018) are reported in Table 2. Given Fig. 2 and the 

Table 1 Example 1. Data set for DMUs (Extracted from Izadikhah and Farzipoor 2016)

DMU Input(X) Intermediate measure (Z) Output (Y)
(

Z

X
,
Y

X

)

A 2 1.5 1.5 A′
(

3
4
, 1

)

B 4 4 5 B′
(

1, 5
4

)

C 5 5 6 C ′
(

1, 6
5

)



Page 17 of 26Akbarian  Financ Innov            (2021) 7:73  

obtained efficiency scores, only DMU B is individual stages ratio-efficient and overall 
ratio-efficient by our proposed methods and individual stages efficient and overall effi-
cient by Izadikhah’s method (Izadikhah et  al. 2018). More importantly, these results 
show that proposed methods evaluate two-stage DMUs in constant return to scale 
technology.

In view of Fig. 2 and the results of Table 2, the proposed TND-R and RDD-R models 
are capable to compare the first (second) stage of each two-stage DMUs with that of oth-
ers and ranking them. For example, in the first stage, two-stage DMU A = (2, 1.5, 1.5) 
produces 1.5 output using 2 input and two-stage DMU B = (4, 4, 5) produces 4 output 
using 4 input. So, ratio-efficiency of stage 1 of two-stage DMU B must be better (more) 
than that of two-stage DMU A. Table 2 confirms this fact. Also, the proposed models are 
capable to compare the overall efficiencies of two-stage DMUs and ranking them cor-
rectly. For example, two-stage DMU A = (2, 1.5, 1.5) produces 1.5 output using 2 input 
and two-stage DMU B = (4, 4, 5) produces 5 output using 4 input. It is reasonable to 
expected that overall efficiency of DMU B is better (more) than that of DMU A. Table 2 
confirms this fact.

1 2

1

2

Z
X

Y
Z

B

A
C

Fig. 2 PPS constructed by divided DMUs

Table 2 Numerical comparison between the TND-R and RDD-R methods and Izadikhah et al. (2018)

DMU RDD‑R method TND‑R method Izadikhah et al. (2018)

Stage1 Stage 2 Overall Stage1 Stage 2 Overall Stage1 Stage 2 Overall

A 0.75 0.75 0.5625 0.8 0.8 0.640 0.75 0.80 0.60

B 1 1 1 1 1 1 1 1 1

C 1 0.95 0.95 1 0.952 0.952 1 0.96 0.96
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Example 2 Consider 10 two-stage DMUs with each DMUs consuming two inputs 
(X1,X2) to produce a two output (Z1,Z2) in stage 1 and consuming inputs (Z1,Z2) to 
produce two outputs (Y1,Y2) in stage 2. Data set for these DMUs are given in Table 3. 
Applying TND-R model (16) (with equal weights), RDD-R model (19) and model (21) 
in Despotis et al. (2016) to each divided DMUk , k = 1, . . . , 10 , produces the results 
reported in Tables 4 and 5.
Similar to the example 1, this example shows the validity of proposed approaches. For 
example, two-stage DMU6 and DMU7 produce outputs (3, 3) and (4, 4), respectively, 
using the same inputs (2, 2) in stage 1. It is reasonable to expect that the rank of DMU7 
must be better than that of DMU6. Table 4 confirms this fact. The ranking obtained for 
individual stages and overall system of all DMUs by TND-R, RDD-R models and Des-
potis et al. (2016) model (21) is shown in the 5th–7th columns and 11th–13th columns 
of Table 4 and 5th–7th columns of Table 5, respectively. More interestingly, the ranking 
results of our proposed methods and model (21) of Despotis et al. (2016) are very similar 

Table 3 Example 2. Data set for 10 two-stage DMUs

DMU X1 X2 Z1 Z2 Y1 Y2
Z

X

Y

Z

1 2 3 4 9 16 18
(

2, 4
3
, 9
2
, 3

) (

4, 16
9
, 9
2
, 2

)

2 8 9 2 3 1 1
(

1
4
, 2
9
, 3
8
, 1
3

) (

1
2
, 1
3
, 1
2
, 1
3

)

3 3 1 9 4 3 2
(

3, 9, 4
3
, 4

) (

1
3
, 3
4
, 2
9
, 1
2

)

4 1 1 9 7 1 1 (9, 9, 7, 7)
(

1
9
, 1
7
, 1
9
, 1
7

)

5 1 1 1 1 1 1 (1, 1, 1, 1) (1, 1, 1, 1)

6 2 2 3 3 2 2
(

3
2
, 3
2
, 3
2
, 3
2

) (

2
3
, 2
3
, 2
3
, 2
3

)

7 2 2 4 4 2 2 (2, 2, 2, 2)
(

1
2
, 1
2
, 1
2
, 1
2

)

8 6 6 3 3 6 6
(

1
2
, 1
2
, 1
2
, 1
2

)

(2, 2, 2, 2)

9 6 6 3 3 3 3
(

1
2
, 1
2
, 1
2
, 1
2

)

(1, 1, 1, 1)

10 2 1 9 4 3 2
(

9
2
, 9, 2, 4

) (

1
3
, 3
4
, 2
9
, 1
2

)

Table 4 Example 2. Results from RDD-R model (19) and TND-R model (16)

“F”,“S” and “O” denote the first stage, the second stage and the overall stage of DMUo , respectively

TND‑R model (16) ranking RDD‑R model (19) ranking

DMUo F S O F S O F S O F S O

1. 0.048 1.000 0.048 2 1 3 0.0806 1.000 0.0806 2 1 3

2. 0.018 0.070 0.001 7 6 9 0.0604 0.1619 0.0098 7 6 9

3. 1.000 0.091 0.091 1 3 1 1.000 0.1626 0.1626 1 5 5

4. 1.000 0.063 0.063 1 7 2 1.000 0.1473 0.1473 1 7 2

5. 0.020 0.111 0.0023 5 2 5 0.066 0.1998 0.0132 5 2 5

6. 0.022 0.086 0.0019 4 4 7 0.071 0.1755 0.0124 4 3 7

7. 0.024 0.077 0.0018 3 5 8 0.076 0.1656 0.0126 3 4 6

8. 0.019 1.000 0.019 6 1 4 0.062 1.000 0.0620 6 1 4

9. 0.019 0.111 0.0021 6 2 6 0.062 0.1998 0.0123 6 2 8

10. 1.000 0.091 0.091 1 3 1 1.000 0.1626 0.1626 1 5 1
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to each other. Especially, the ranking results of stages 1 and 2 of the TND-R and RDD-R 
models and model (21) of Despotis et al. (2016) are almost the same. These results con-
firm the soundness of our model and its capacity of reliably solving the two-stage DEA 
problem.

Example 3 We here apply our new approaches to the 24 Taiwanese non-life insurance 
companies studied in Kao and Hwang (2008) where the inputs of stage 1 are Operation 
expenses (X1) and Insurance expenses (X2) and the output of stage 2 are Underwriting 
profit (Y1) and Investment profit (Y2). Also, the Direct written premiums (Z1) and Rein-
surance premiums (Z2) are two intermediate measures, that is, the outputs of the stage 1 
and the inputs to the stage 2. The data set appear in Table  6. In this example 
m = s = D = 2 . Therefore, each divided data DMUj =

(

Zj

Xj
,
Yj
Zj

)

∈ R
4 × R

4 . For such a 

two-stage structure and the data set, the efficiency results from RDD-R model (19) and 
TND-R model (16) are reported in Tables 7 and 8, respectively. As referred in Despic 
et  al. (2007), DEA-R is comparable with conventional DEA; we compare the results 
obtained by our proposed RDD-R model (19) and TND-R model (16) and those by pro-
posed methods in Chen et al. (2009) (models (18)–(19)), Despotis et al. (2016) (models 
(21) and (24) of Despotis et al. 2016) and Wang and Chin (2010) (models (19)–(21) and 
models (25), (27) and (29) with ( �1 = 2

5
 , �2 = 3

5
 ) of Wang and Chin 2010) and show there 

are some interesting relationship between them. The ranking results obtained from 
RDD-R model (19) for all the DMUs is shown in the 6th–8th columns of Table 7. Also, 
the ranking obtained from TND-R model (16) is shown in Table  8. For simplicity, all 
chosen Decision Maker’s preference (weights) Wj = (w1j ,w2j ,w3j ,w4j) , j = 1, 2 in 
TND-R model (16) are given in Table 9. Table 10 shows the results obtained from Chen 
et al. (2009) (columns 2–5), Despotis et al. (2016) (columns 6–11) and Wang and Chin 
(2010) (columns 12–17). It is interesting to note that two-stage DMUs 9, 12, 15, 19, 24 
are ratio-efficient in the first stage by our proposed models (for all weights in TND-R 
model) and all models in Table 10 (except for stage 1 of DMU 15 in Despotis et al. (2016) 
model (24)). Moreover, two-stage DMUs 3, 5, 17, 22 are ratio-efficient in the second 
stage by our proposed models (for all weights in TND-R model) and all models in 
Table  (10). The ranking results for individual stages of all two-stage DMUs are almost 

Table 5 Results from Despotis et al. (2016) model (21)

Despotis et al. (2016) model (21) Ranking

DMUo F S O F S O

1. 0.642857 1.000 0.642857 2 1 1

2. 0.053571 0.1667 0.008928 7 5 7

3. 1.000 0.0833 0.083333 1 6 2

4. 1.000 0.071429 0.071429 1 7 3

5. 0.142857 0.5000 0.0714285 5 2 5

6. 0.214286 0.3333 0.0714286 4 3 4

7. 0.285714 0.2500 0.0714285 3 4 5

8. 0.071429 1.000 0.071429 6 1 3

9. 0.071429 0.5000 0.0357145 6 2 6

10. 1.000 0.0833 0.083333 1 6 2
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the same by our proposed models and all models in Table (10). But, there are some sig-
nificant difference between the ranking results of our proposed models and those of the 
proposed models in overall in Table (10). Especially, DMU 24 is ranked as 24th DMU by 
Despotis et al. (2016) model (21) and 4th DMU by TND-R model (16). It may be due to 
round-off error problems. Comparison of the results obtained from the traditional CCR 
model (Kao and Hwang 2008) from one side and our proposed models from the other 
side, shows the similarity between them. DMUs 9, 12, 19 and 24 are stage 1 efficient in 
the traditional CCR, TND-R and RDD-R models. Also, DMUs 3, 5, 17 and 22 are stage 2 
efficient in the CCR, TND-R and RDD-R models. The above discussion shows the valid-
ity and reliability of the proposed RDD-R and TND-R models.

Table 6 Example 3. Data set for 24 Taiwanese non-life insurance companies (Kao and Hwang 2008)

DMUj Operation Insurance Direct 
written

Reinsurance Underwriting Investment

Expenses 
(X1)

Expenses 
(X2)

Premiums 
(Z1)

Premiums 
(Z2)

Profit 
(Y1)

Profit 
(Y2)

1 Taiwan Fire 1,178,744 673,512 7,451,757 856,735 984,143 681,687

2 Chung Kuo 1,381,822 1,352,755 10,020,274 1,812,894 1,228,502 834,754

3 Tai Ping 1,177,494 592,790 4,776,548 560,244 293,613 658,428

4 China Mari-
ners

601,320 594,259 3,174,851 371,863 248,709 177,331

5 Fubon 6,699,063 3,531,614 37,392,862 1,753,794 7,851,229 3,925,272

6 Zurich 2,627,707 668,363 9,747,908 952,326 1,713,598 415,058

7 Taian 1,942,833 1,443,100 10,685,457 643,412 2,239,593 439,039

8 Ming Tai 3,789,001 1,873,530 17,267,266 1,134,600 3,899,530 622,868

9 Central 1,567,746 950,432 11,473,162 546,337 1,043,778 264,098

10 The First 1,303,249 1,298,470 8,210,389 504,528 1,697,941 554,806

11 Kuo Hua 1,962,448 672,414 7,222,378 643,178 1,486,014 18,259

12 Union 2,592,790 650,952 9,434,406 1,118,489 1,574,191 909,295

13 Shingkong 2,609,941 1,368,802 13,921,464 811,343 3,609,236 223,047

14 South China 1,396,002 988,888 7,396,396 465,509 1,401,200 332,283

15 Cathay 
Century

2,184,944 651,063 10,422,297 749,893 3,355,197 555,482

16 Allianz Presi-
dent

1,211,716 415,071 5,606,013 402,881 854,054 197,947

17 Newa 1,453,797 1,085,019 7,695,461 342,489 3,144,484 371,984

18 AIU 757,515 547,997 3,631,484 995,620 692,731 163,927

19 North 
America

159,422 182,338 1,141,951 483,291 519,121 46,857

20 Federal 145,442 53,518 316,829 131,920 355,624 26,537

21 Royal Sunal-
liance

84,171 26,224 225,888 40,542 51,950 6491

22 Aisa 15,993 10,502 52,063 14,574 82,141 4181

23 AXA 54,693 28,408 245,910 49,864 0.1 18,980

24 Mitsui Sumi-
tomo

163,297 235,094 476,419 644,816 142,370 16,976
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Conclusion
In network DEA, if all data are expressed as ratio output/input or if in the production 
process an input is not used for producing a particular output or if data ratio is impor-
tant to managers, traditional two-stage DEA models can no longer be used. Flexibil-
ity of the DEA-R in incorporating the mentioned restrictions and expert opinions to 
the DEA models gave us the motivation to apply DEA-R for the evaluation of two-
stage DMUs. Also, the main contribution of this paper is to evaluate the two-stage 
DMUs using DEA-R to overcome the mentioned restrictions and shortfalls. To this 
end, we propose two novel models namely, RDD-R and TND-R to calculate individual 
ratio efficiencies and overall ratio efficiency of two-stage DMUs. Moreover, a decision-
maker can consider the preference of each stage over other stages by selecting weights 
in the TND-R model. Also, the RDD-R model projects all divided DMUo under evalu-
ation on the strong frontier of production possibility set (see proposition 6). We com-
pared our proposed methods with some existing methodologies to show validity and 
reliability of the of proposed approaches and “two-stage DEA based on DEA-R.” The 
results show that our approaches are similar to the existing approaches. We evalu-
ated two-stage DMUs using DEA-R where all the outputs from the first stage are the 
only inputs to the second stage. Initial studies had shown that our approach can be 
applied with free-link, and fixed-link assumptions. Moreover, it can be extended to 

Table 7 Example 3. Results from RDD-R model (19)

DMUo ρ
∗
1 ρ

∗
2 ρ

∗
o Ranking

Stage1 Stage2 Overall

1 Taiwan Fire 0.619136 0.272993 0.169020 4 10 10

2 Chung Kuo 0.685853 0.229561 0.157445 3 12 13

3 Tai Ping 0.225553 1.000000 0.225553 19 1 4

4 China Mariners 0.169137 0.193285 0.032692 18 18 24

5 Fubon 0.345343 1.000000 0.345343 7 1 2

6 Zurich 0.759439 0.222488 0.168966 2 14 11

7 Taian 0.210330 0.302617 0.063649 14 7 19

8 Ming Tai 0.253918 0.291722 0.074073 11 8 16

9 Central 1.000000 0.222597 0.222597 1 13 5

10 The First 0.200523 0.338090 0.067795 16 4 18

11 Kuo Hua 0.313446 0.221123 0.069310 8 15 17

12 Union 1.000000 0.307677 0.307677 1 6 3

13 Shingkong 0.312041 0.320531 0.100019 9 5 15

14 South China 0.207822 0.282088 0.058624 15 9 20

15 Cathay Century 1.000000 0.380049 0.380049 1 3 1

16 Allianz President 0.529846 0.233189 0.123554 5 11 14

17 Newa 0.193807 1.000000 0.193807 17 1 7

18 AIU 0.242163 0.187372 0.045375 12 20 23

19 North America 1.000000 0.210062 0.210062 1 16 6

20 Federal 0.350592 0.505326 0.177163 6 2 9

21 Royal Sunalliance 0.238490 0.200527 0.047824 13 17 22

22 Aisa 0.167047 1.000000 0.167047 19 1 12

23 AXA 0.298417 0.195809 0.058433 10 19 21

24 Mitsui Sumitomo 1.000000 0.180817 0.180817 1 21 8
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Table 8 Example 3. Results from TND-R model (16)

“F”,“S” and “O” denote the first stage efficiency score, the second stage efficiency score and overall efficiency score, 
respectively

(W1

1
,W

1

2
)  Ranking (W2

1
,W

2

2
)  Ranking (W3

1
,W

3

2
)  Ranking

DMUo (F, S, O) (F, S, O) (F, S, O) (F, S, O)

1. Taiwan Fire (0.402, 0.758, 
0.305)

(5, 4, 8) (0.518, 0.111, 
0.058)

(4, 4, 10) (0.026, 0.834, 
0.022)

(4, 4, 9)

2. Chung Kuo (0.934, 0.713, 
0.666)

(2, 7, 3) (0.958, 0.090, 
0.087)

(2, 7, 8) (0.360, 0.799, 
0.288)

(2, 7, 6)

3. Tai Ping (0.085, 1.000, 
0.085)

(16, 1, 15) (0.129, 1.000, 
0.129)

(15, 1, 5) (0.004, 1.000, 
0.0036)

(10, 1, 16)

4. China Mariners (0.065, 0.615, 
0.040)

(21, 12, 23) (0.100, 0.060, 
0.006)

(20, 11, 22) (0.003, 0.718, 
0.002)

(11, 12, 22)

5. Fubon (0.122, 1.000, 
0.122)

(11, 1, 11) (0.182, 1.000, 
0.182)

(10, 1, 1) (0.006, 1.000, 
0.006)

(8, 1, 11)

6. Zurich (0.486, 0.603, 
0.293)

(3, 14, 9) (0.602, 0.057, 
0.034)

(3, 12, 13) (0.036, 0.708, 
0.026)

(3, 14, 7)

7. Taian (0.078, 0.640, 
0.050)

(18, 9, 21) (0.120, 0.066, 
0.008)

(17, 9, 20) (0.003, 0.740, 
0.0028)

(11, 9, 21)

8. Ming Tai (0.082, 0.624, 
0.051)

(17, 11, 20) (0.125, 0.062, 
0.008)

(16, 10, 20) (0.004, 0.726, 
0.0029)

(10, 11, 20)

9. Central (1.000, 0.552, 
0.552)

(1, 20, 6) (1.000, 0.047, 
0.047)

(1, 17, 12) (1.000, 0.663, 
0.663)

(1, 20, 5)

10. The First (0.115, 0.734, 
0.085)

(12, 5, 15) (0.172, 0.099, 
0.017)

(11, 5, 15) (0.005, 0.815, 
0.0042)

(9, 5, 14)

11. Kuo Hua (0.109, 0.516, 
0.056)

(14, 21, 19) (0.164, 0.041, 
0.007)

(13, 18, 21) (0.005, 0.630, 
0.0031)

(9, 21, 18)

12. Union (1.000, 0.793, 
0.793)

(4, 3, 1) (1.000, 0.133, 
0.133)

(1, 3, 4) (1.000, 0.860, 
0.860)

(9, 3, 1)

13. Shingkong (0.110, 0.590, 
0.065)

(13, 17, 18) (0.165, 0.054, 
0.009)

(12, 14, 13) (0.005, 0.697, 
0.0032)

(9, 16, 17)

14. South China (0.076, 0.639, 
0.049)

(19, 10, 22) (0.116, 0.066, 
0.008)

(18, 9, 20) (0.003, 0.739, 
0.002)

(11, 10, 22)

15. Cathay 
Century

(1.000, 0.716, 
0.716)

(1, 6, 2) (1.000, 0.092, 
0.092)

(1, 6, 7) (1.000, 0.802, 
0.802)

(1, 6, 2)

16. Allianz Presi-
dent

(0.196, 0.589, 
0.115)

(7, 18, 12) (0.280, 0.054, 
0.015)

(6, 14, 16) (0.010, 0.696, 
0.007)

(5, 17, 10)

17. Newa (0.070, 1.000, 
0.070)

(20, 1, 17) (0.108, 1.000, 
0.108)

(19, 1, 6) (0.003, 1.000, 
0.003)

(11, 1, 19)

18. AIU (0.149, 0.596, 
0.089)

(9, 15, 14) (0.219, 0.056, 
0.012)

(8, 13, 17) (0.007, 0.703, 
0.005)

(7, 15, 12)

19. North 
America

(1.000, 0.613, 
0.613)

(1, 13, 4) (1.000, 0.060, 
0.060)

(1, 11, 9) (1.000, 0.717, 
0.717)

(3, 13, 3)

20. Federal (0.398, 0.904, 
0.360)

(6, 2, 7) (0.514, 0.273, 
0.140)

(5, 2, 2) (0.026, 0.938, 
0.024)

(4, 2, 8)

21. Royal Sunal-
liance

(0.142, 0.558, 
0.079)

(10, 19, 16) (0.210, 0.048, 
0.010)

(9, 16, 18) (0.007, 0.669, 
0.0044)

(7, 19, 13)

22. Aisa (0.090, 1.000, 
0.090)

(15, 1, 13) (0.137, 1.000, 
0.137)

(14, 1, 3) (0.004, 1.000, 
0.0039)

(10, 1, 15)

23. AXA (0.182, 0.673, 
0.123)

(8, 8, 10) (0.263, 0.076, 
0.020)

(7, 8, 14) (0.009, 0.767, 
0.007)

(6, 8, 10)

24. Mitsui Sumi-
tomo

(1.000, 0.582, 
0.582)

(1, 19, 5) (1.000, 0.053, 
0.053)

(1, 15, 11) (1.000, 0.690, 
0.690)

(1, 18, 4)
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Table 9 Example 3. Chosen weights for TND-R model (16)

Wi
1 Wi

2

i. (w11,w21, w31, w41) (w12,w22, w32, w42)

1. (0.125, 0.125, 0.125, 0.125) (0.125, 0.125, 0.125, 0.125)

2. (0.2, 0.2, 0.2, 0.2) (0.005, 0.005, 0.005, 0.005)

3. (0.005, 0.005, 0.005, 0.005) (0.2, 0.2 ,0.2, 0.2)

Table 10 Example 3. Results from Chen et al. (2009), Despotis et al. (2016) and Wang and Chin 
(2010)

Chen et al. 
(2009)

Despotis et al. (2016) Wang and 
Chin (2010)

((�1, �2) = ( 2
5
,
3

5
))

Models 
(11)–(13)

Ranking Model (21) Ranking Model 
(24)

Ranking Models (24), 
(26),(28)

Ranking

DMUo (F, S, O) (F, S, O) (F, S, O) (F, S, O) (F, S, O) (F, S, O) (F, S, O) (F, S, O)

1. Taiwan 
Fire

(0.993, 
0.704, 
0.849)

(3, 4, 3) (0.9926, 0.7045, 0.6992)(3, 5, 3) (0.9848, 
0.7054, 
0.6947)

(4, 4, 3) (0.9926, 0.7045, 
0.8202)

(3, 4, 4)

2. Chung 
Kuo

(0.998, 
0.626, 
0.812)

(2,5,5) (0.9985, 0.6257, 0.6248)(2, 6, 5) (0.9971, 
0.6260, 
0.6242)

(2,7,5) (0.9985, 0.6257, 
0.7750)

(2, 5, 6)

3. Tai Ping (0.690, 1, 
0.817)

(18,1,4) (0.6900, 1, 0.690) (19, 1, 4) (0.6900, 1, 
0.6900)

(17,1,4) (0.6900, 1.000, 
0.8477)

(16, 1, 3)

4. China 
Mariners

(0.724, 
0.420, 
0.596)

(16,11,16) (0.7243, 0.4200, 0.3042)(17, 12, 
15)

(0.7181, 
0.4202, 
0.3018)

(16,12,15) (0.7243, 0.4200, 
0.5659)

(15, 12, 15)

5. Fubon (0.831, 
0.923, 
0.873)

(9,2,2) (0.8307, 0.9233, 0.7670)(9, 3, 1) (0.8011, 
0.9457, 
0.7577)

(11,2,2) (0.8307, 0.9233, 
0.8821)

(9, 2, 1)

6. Zurich (0.961, 
0.406, 
0.689)

(4,13,11) (0.9606, 0.4057, 0.3897)(4, 14, 12) (0.9619, 
0.4037, 
0.3883)

(5,15,12) (0.9606, 0.4057, 
0.6330)

(4, 15, 12)

7. Taian (0.752, 
0.352, 
0.580)

(11,17,18) (0.7521, 0.3522, 0.2649)(12, 17, 
18)

(0.6827, 
0.4026, 
0.2748)

(19,16,18) (0.6706, 0.4124, 
0.5411)

(17, 13, 18)

8. Ming Tai (0.726, 
0.378, 
0.579)

(14,14,19) (0.7256, 0.3780, 0.2743)(15, 15, 
16)

(0.6748, 
0.4076, 
0.2750)

(22,14,17) (0.7256, 0.3780, 
0.5445)

(14, 16, 17)

9. Central (1, 0.223, 
0.612)

(1,21,20) (1, 0.2233, 0.2233) (1, 22, 20) (0.9437, 
0.2323, 
0.2192)

(6,21,20) (1.000, 0.2233, 
0.5340)

(1, 21, 20)

10. The First (0.862, 
0.541, 
0.713)

(7,8,9) (0.8615, 0.5408, 0.4660)(7, 9, 9) (0.7845, 
0.5597, 
0.4391)

(12,9,9) (0.8615, 0.5408, 
0.6807)

(7, 9, 9)

11. Kuo Hua (0.729, 
0.207, 
0.509)

(13,22,24) (0.7292, 0.2066, 0.1507)(14, 23, 
23)

(0.6899, 
0.2276, 
0.1570)

(18,22,23) (0.7292, 0.2066, 
0.4562)

(13, 22, 23)

12. Union (1, 0.760, 
0.880)

(1,3,1) (1, 0.7596, 0.7596) (1, 4, 2) (1, 0.7596, 
0.7596)

(1,3,1) (1.000, 0.7596, 
0.8557)

(1, 3, 2)

13. Shin-
gkong

(0.811, 
0.243, 
0.557)

(10,20,21) (0.8107,0.2431,0.1970) (10, 21, 
21)

(0.6794, 
0.3052, 
0.2073)

(20,19,21) (0.8107, 0.2431, 
0.4992)

(10, 20, 21)

14. South 
China

(0.725, 
0.374, 
0.577)

(15,15,20) (0.7246, 0.3740, 0.2710)(16, 10, 
17)

(0.6777, 
0.4222, 
0.2861)

(21,11,16) (0.6699, 0.4309, 
0.5501)

(18, 11, 16)

15. Cathay 
Century

(1, 0.614, 
0.807)

(1,6,9) (1, 0.6138, 0.6138) (1, 7, 6) (0.9371, 
0.6376, 
0.5976)

(7,6,6) (1.000, 0.6138, 
0.7683)

(1, 6, 7)
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the more complicated two-stage DEA models. For example, it can be extended to two-
stage DEA models with a shared resources and feedback and in case there are external 
inputs. This, however, needs further research and a deeper analysis.
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respectively

Table 10 (continued)

Chen et al. 
(2009)

Despotis et al. (2016) Wang and 
Chin (2010)

((�1, �2) = ( 2
5
,
3

5
))

Models 
(11)–(13)

Ranking Model (21) Ranking Model 
(24)

Ranking Models (24), 
(26),(28)

Ranking

DMUo (F, S, O) (F, S, O) (F, S, O) (F, S, O) (F, S, O) (F, S, O) (F, S, O) (F, S, O)

16. Allianz 
President

(0.886, 
0.362, 
0.639)

(6, 16, 13) (0.9072, 0.3356, 0.3044)(6, 18, 14) (0.8871, 
0.3597, 
0.3191)

(8,17,14) (0.8856, 0.3615, 
0.5866)

(6, 17, 14)

17. Newa (0.723, 
0.460, 
0.613)

(17,10,14) (0.7232, 0.4597, 0.3325)(18, 11, 
13)

(0.5668, 
0.6183, 
0.3504)

(24, 8, 13) (0.6276, 0.5736, 
0.6014)

(19, 8, 13)

18. AIU (0.794, 
0.326, 
0.587)

(10,18,17) (0.7935, 0.3262, 0.2588)(11, 19, 
19)

(0.7691, 
0.3335, 
0.2565)

(14, 18, 
19)

(0.7935, 0.3262, 
0.5396)

(11, 18, 19)

19. North 
America

(1, 0.411, 
0.706)

(1,12,10) (1, 0.4112, 0.4112) (1, 13, 11) (0.9962, 
0.4120, 
0.4104)

(3, 13, 11) (1.000, 0.4112, 
0.6467)

(1, 14, 11)

20. Federal (0.933, 
0.586, 
0.765)

(5,7,7) (0.9332, 0.5857, 0.5465)(5, 2, 8) (0.7712, 
0.6763, 
0.5216)

(13, 5, 8) (0.9332, 0.5857, 
0.7305)

(5, 7, 8)

21. Royal 
Sunalli-
ance

(0.751, 
0.262, 
0.541)

(12,19,23) (0.7505, 0.2623, 0.1969)(13, 20, 
22)

(0.7434, 
0.2668, 
0.1984)

(15,20,22) (0.7321, 0.2743, 
0.4925)

(12, 19, 22)

22. Aisa (0.590, 1, 
0.742)

(19,1,8) (0.5895, 1, 0.5895) (20, 1, 7) (0.5895, 1, 
0.5895)

(23, 1, 7) (0.5895, 1.000, 
0.7822)

(20, 1, 5)

23. AXA (0.843, 
0.499, 
0.685)

(8,9,12) (0.8426, 0.4989, 0.4203)(8, 10, 10) (0.8141, 
0.5079, 
0.4135)

(10, 10, 
10)

(0.8426, 0.4989, 
0.6507)

(8, 10, 10)

24. Mitsui 
Sumitomo

(1, 0.087, 
0.544)

(1,23,22) (1, 0.0870, 0.0870) (1, 24, 24) (0.8267, 
0.1255, 
0.1037)

(9, 23, 24) (1.000, 0.0870, 
0.4522)

(1, 23, 24)
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