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Introduction
The novel coronavirus 2019 (COVID-19) disease has led to an unprecedented disruption 
to the U.S. economy and also an unparalleled slump in the U.S. stock market. Typically, 
a key market-wide circuit breaker designed to prevent the stock market from falling 
through the floor had been triggered four times in sequence in March 2020. Investors 
inevitably suffered heavy losses from plunging stock prices. Fears about the crisis and 
its impact on the global economy rapidly spread to the rest of the world. According to 
the report ‘Coronavirus: US stocks see worst fall since 1987 from China Daily on the 
17th March 2020, after the U.S. market experienced worst point declines in history, 
global markets saw similar slides. That is, the performance of the U.S. market was a 
leading indicator of ups and downs of global markets particularly under such circum-
stances. This paper thus provides a comprehensive analysis on the association between 
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COVID-19 and the instability of the U.S. stock market performance (including both 
return predictability and price volatility), which serves the interests of investors when 
making investment decisions during difficult times (Kou et al. 2014, 2021). Facts in the 
past prove that crises induce risks but also create investment opportunities: stock return 
predictability and price volatility substantially increase in bad times (e.g., Schwert 1989; 
Cujean and Hasler 2017; Hong et al. 2018; Liu et al. 2020a; Narayan 2020a, 2020b).

Since the outbreak of COVID-19, there are an increasing number of studies on stock 
market reactions to the crisis (e.g., Ashraf 2020a, b; Baker et  al. 2020; Lee and Chen 
2020; Mazur et al. 2020; Narayan et al. 2020; Topcu and Gulal 2020). The arrived consen-
sus is that stock prices severely dropped and price fluctuation greatly enlarged following 
the occurrence of the pandemic disease. However, those studies did not test whether and 
when COVID-19 triggered the dramatic changes in stock market performance assum-
ing no prior knowledge of the break location. Furthermore, they only focused on price 
changes and volatility but failed to concern return predictability which is an important 
theme in the finance literature.

This paper fills the research gap by studying the instability of stock return predictabil-
ity and price volatility, and its linkage with COVID-19. Using daily data from January 
1st, 2019 to June 30th, 2020 and the structural break tests proposed by Bai and Perron 
(1998, 2003), Elliot and Mullier (2004) and Xu (2013), we find that there exists a sin-
gle break for both S&P 500 and DJIA return prediction models. The break took place 
in mid-late February, 2020, the timing of which is consistent with the COVID-19 out-
break or more specifically the stock selling-offs by the U.S. senate committee members 
before COVID-19 crashed the market. Furthermore, we also find evidence of a single 
break in price volatilities of both S&P 500 and DJIA, which occurred on February 21st, 
2020, similar to the case of return predictability. The findings of significant increases in 
both return predictability and price volatility during COVID-19 indicate that the pan-
demic created profitable investment opportunities for market participants, with those 
with plenty of liquidity at hand benefiting most. Fed policy of pumping liquidity to the 
financial system might have stimulated profitability seeking in the stock market, which 
may enlarge income and wealth inequality.

The paper thus contributes to the existing literature in two important ways. First, pre-
vious studies either use event analyses (i.e., partition the sample to examine the differ-
ence of stock market performance across subsamples) or exogenous variable analyses 
(i.e., take major events as exogenous variables and establish models describing the rela-
tionship between market performance and those variables) to determine how stock mar-
kets react to external shocks (e.g., Mohanty et al. 2010; Ashraf 2020a, b). This paper tests 
for structural breaks in return predictive and price volatility models without COVID-19 
variables and investigates the linkage between those breaks and COVID-19, thus pro-
viding explicit empirical evidence about whether and how public crisis affects market 
performance. Second, it also adds to the literature by studying stock return predictabil-
ity when COVID-19 broke out, thus providing unprecedented evidence that suggests 
potential investment opportunities for investors.

The rest of the paper proceeds as follows. First, we briefly review the literature. Sec-
ond, we describe the data used for empirical analysis. Third, we evaluate the role of 
COVID-19 on the instability of return predictability and price volatility in the U.S. 
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market, respectively. Finally, we conclude the paper with suggestions to both investors 
and policy makers.

Literature review
Determination of future stock return and volatility

As for prediction, a large literature has identified a number of predictors that are use-
ful to predict future stock returns. Those include (but are not limited to) dividend yield 
and dividend-price ratio (Fama and French 1988; Campell and Shiller 1988), price-earn-
ings ratio (Campell and Shiller 1988; Welch and Goyal 2008), short interest rate (Camp-
bell 1987; Ang and Bekaert 2007), term and default spreads (Campbell 1987; Fama and 
French 1989), and consumption-wealth ratio (Lettau and Ludvigson 2001). Besides 
predictors, forecasting techniques also play an important role in determining forecast 
accuracy. According to Mallikarjuna and Rao (2019), traditional regression techniques 
generally outperform others including artificial intelligence and frequency domain mod-
els in providing accurate forecasts.

In terms of stock volatility, academic researchers used to make the forecasts by tra-
ditional GARCH models using indicators based on the past behavior of stock price 
and volatility (Gokcan 2000; Emenogu et al. 2020). More recent studies become aware 
of issues such as parametric assumptions, leverage and asymmetric effects, and power 
transformations and long memory (e.g., Brooks 2007; Bandi and Reno 2012; Hou 2013). 
In this paper, we introduce GARCH models for volatility forecasting because we aim to 
test for the instability of the volatility process, which is primarily built upon those mod-
eling techniques.

Major events and stock market performance

Return and price volatility are two important indicators of market performance. Their 
changes can be divided into two categories: small changes and large jumps/declines (or 
alternatively structural changes). According to Glosten and Milgorm (1985), the former 
is triggered by information flows or liquidity shifts while the latter is induced by major 
events, including financial crises, policy changes and natural disasters. For example, 
Schwert (2011) shows historically high levels of stock market volatility in the months 
following the financial crisis in late 2008. By using data of 13 OECD countries over the 
period from 1972 to 2002, Ioannidis and Kontonikas (2008) find that monetary policy 
shifts significantly affect stock returns. Landfear et al. (2019) document abnormal nega-
tive effects on stock returns due to the U.S. landfall hurricanes.

As a public crisis, COVID-19 is inflicting unprecedented global destructive eco-
nomic damage (Phan and Narayan 2020). In a recent pioneer study, Goodell (2020) 
highlights that COVID-19 may have wide ranging influence on financial sectors 
including stock markets. Empirical evidence also supports the statement. For exam-
ple, based on data of 64 (advanced and emerging) countries over the period Janu-
ary 22, 2020 to April 12, 2020, Ashraf (2020a, b) find that stock markets negatively 
react to COVID-19 and this reaction varies over time depending on the stage of 
the outbreak. When extending data to 77 countries’ main indices, Liu et al. (2020b) 
reinforce that the pandemic incurs considerable negative shocks on global stock 
markets. Topcu and Gulal (2020) draw a similar conclusion when only focusing on 
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emerging markets. Whether the effect of COVID-19 on stock markets is transient 
or permanent depends on the nature of the markets (Gil-Alana and Claudio-Qui-
roga 2020). Although recent literature reports that global stock markets react to the 
COVID-19 pandemic with negative returns, Ashraf (2020a, b) find uniform reaction 
across countries: the response is stronger for countries with higher national level 
uncertainty aversion.

With respect to volatility, Baker et al. (2020) point out that “COVID-19 has resulted 
in the highest stock market volatility among all recent infectious diseases including 
the Spanish Flu of 1918”. This is also supported by Baig et al. (2020). Sharma (2020) 
further shows that COVID-19 has a statistically significant effect on stock volatility, 
but the impact actually varies with countries involved, with the markets in higher-
income countries overreacting in the beginning and bouncing back more rapidly 
than lower-income countries. Engelhardt et al. (2020), on the other hand, argue that 
the magnitude of market volatility in reaction to COVID-19 depends on trust: vola-
tility is significantly lower in high-trust (including societal trust and trust in the gov-
ernment) countries.

Structural break tests

Structural break tests for regression models (such as return prediction models) can 
be dated back to Chow (1960), who develops an F-test for a single break assuming the 
date for the break is known. Other tests for a single unknown break are Brown et  al. 
(1975), Andrews (1993) and Andrews et  al. (1996) for instance. More recent studies 
extend the prior research to allow for multiple breaks, unit root dynamics, heteroske-
dasticity and serial correlation (e.g., Bai and Perron 1997, 1998, 2003; Elliott and Muller 
2004; Lee et al. 2021). Empirical investigation based on those recent econometric tech-
niques includes Paye and Timmermann (2006), Rapach and Wohar (2006), and Hong 
et al. (2018). In this paper, we consider the methodology of Bai and Perron (1998, 2003) 
because it allows us to determine the confidence intervals for the timing of break occur-
rence as well as the coefficients around the breakpoints. For robustness, we also include 
Elliot and Muller (2004) which accommodate for various types of breaks like rare, large 
breaks as well as those with small, frequent breaks.

There are a large number of studies on tests for structural breaks in volatil-
ity. These include the most widely used one which is based on the cumulative sum 
(CUSUM) of squared series. Numerous researchers have developed and empirically 
implemented versions of the CUMSUM test (e.g., Inclan and Tiao 1994; Lee and Park 
2001; Rapach and Strauss 2008; Xu 2008). They differ in how they deal with asset 
return features like non-normality and serial dependence. The primary issue of the 
existing CUSUM-based tests, as argued by Xu (2013), is that they are constructed 
without any explicit alternative hypotheses. This exposes the tests to criticism for 
having low power in practice even though they are consistent against a broad range 
of alternatives. This paper thus uses the methodology of Xu (2013), which specifies 
an alternative that allows for both smooth and abrupt changes in volatility without 
compromising the diagnostic ability of the CUSUM-based test. For robustness, we 
also consider a modified test based on the Lagrange multiplier (LM) principle.
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Data
Our datasets consist of two main U.S. stock market indices and predictor variables 
of concerns to investors. It should be noted that apart from traditional predictors, 
we also consider sentiment and technical indicators given their importance especially 
when crises hit the market (e.g., Wen et al. 2019). Table 1 shows the definition, data 
availability, and the data source for all variables under investigation.

There are several important observations to be noted. First, daily data are employed 
for a more precise detection of structural breaks in regression models. Therefore, tra-
ditional predictors such as the dividend yield, price-earnings ratio and the consump-
tion-wealth ratio and those of interest to investors such as the unemployment rate 
are not included due to their data frequency. Second, a relatively short period January 
1st, 2019 to June 30th, 2020 is introduced because a longer period might increase 
the power of the test but also introduce undesired noises, which would make our 
linkage of potential breaks with COVID-19 much harder. Third, the length of lag 1 
only is considered as daily stock prices tend to rapidly incorporate publicly available 
information.

Table 1 Data description

Table 1 shows primary information for both stock index returns and predictor variables. PI = the stock price index adjusted 
for both dividends and splits; VIX = volatility index. Subscripts t  and t − 1 are day t  and t − 1 , respectively

Symbol Variable Definition Data availability Data source

RS&P500t
Daily Standard and 

Poor’s 500 (S&P 500) 
Stock Index Return

log(PIS&P500t /PIS&P500t−1 ) 01/01/2019–
06/30/2020

Yahoo Finance

RDJIAt
Daily Dow Jones Indus‑

trial Average (DJIA) 
Stock Index Return

log(PIDJIAt /PIDJIAt−1 )
01/01/2019–

06/30/2020
Yahoo Finance

SIUSt−1
Daily Lagged Short 

Interest Rate
3‑Month Treasury Bill 

Rate
01/01/2019–

06/30/2020
Federal Reserve Bank of 

St. Louis

TSUSt−1
Daily Lagged Term 

Spread
Difference between 

10‑Year Treasury 
Bond Rate and 
3‑Month Treasury 
Bill Rate

01/01/2019–
06/30/2020

Federal Reserve Bank of 
St. Louis

DSUSt−1
Daily Lagged Default 

Spread
Difference between 

Moody’s Seasoned 
Baa and Aaa Corpo‑
rate Bond Yields

01/01/2019–
06/30/2020

Federal Reserve Bank of 
St. Louis

CVIXUSt−1
Daily Lagged Change 

in Chicago Board of 
Options Exchange 
(COBE) Volatility Index 
(VIX)

log(VIXUSt /VIXUSt−1)
01/01/2019–

06/30/2020
www.Inves ting.com

CTVS&P500
t−1

Daily Lagged Change 
in S&P500 Trading 
Volume

log(CTVS&P500
t /CTVS&P500

t−1 )01/01/2019–
06/30/2020

Yahoo Finance

CTVDJIA
t−1

Daily Lagged Change in 
DJIA Trading Volume

log(CTVDJIA
t /CTVDJIA

t−1 )
01/01/2019–

06/30/2020
Yahoo Finance

RS&P500t−1
Daily Lagged Standard 

and Poor’s 500 (S&P 
500) Stock Index 
Return

log(PIS&P500t−1 /PIS&P500t−2 ) 01/01/2019–
06/30/2020

Yahoo Finance

RDJIAt−1
Daily Dow Jones Indus‑

trial Average (DJIA) 
Stock Index Return

log(PIDJIAt−1/PI
DJIA
t−2 )

01/01/2019–
06/30/2020

Yahoo Finance

http://www.Investing.com
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Table  2 illustrates the descriptive analysis of those stock index returns and predic-
tor variables. Observations highlight that from January 1st, 2019 to June 30th, 2020 the 
average index returns were 0.0002 and 0.0001 for S&P 500 and DJIA, respectively. The 
kurtosis values of the returns (more than 16.0000) indicate that large jumps and extreme 
movements were prevalent in both markets. This may attribute to the four consecu-
tive triggers of the key market-wide circuit breaker on March 9th, 12th, 16th and 18th, 
2020. Both the short interest rate and the term spread (also known as indictors for future 
economic activities) fell below zero and the change in VIX (also referred to as ‘the fear 
gauge’) dropped to as low as − 0.1156 (compared to its highest level 0.1701) during the 
same period, indicating potential economic contractions.

COVID‑19 and instability of stock return predictability
We begin by investigating the role of COVID-19 on the instability of the U.S. stock 
return predictability. First, we focus on establishing reasonable regression models to 
predict future returns. Second, we test for the presence, location and the significance 
of structural breaks in the return prediction models. Next, we investigate whether the 
derived breaks can be related to COVID-19.

Stock return predictions

As shown in Table  1, predictor variables available to use for predicting stock index 
returns RS&P500

t  and RDJIA
t  include SIUSt−1 , TS

US
t−1 , DS

US
t−1 , CVIX

US
t−1 , CTV

S&P500
t−1  , CTVDJIA

t−1
 , 

RS&P500
t−1

 and RDJIA
t−1

 . Before the formal model setup, we test the correlations between all 
the variables and present the results of the correlation matrix in Table 3. It is apparent 
that DSUSt−1 , CVIX

US
t−1 and Rt−1 have a strong relationship with both index returns.

In order to establish reasonable regression models for stock return predictions, we 
employ the widely-adopted stepwise methodology embedded with Bayesian Information 
Criterion (BIC) to select predictor variables (e.g., Hsu et al. 2010; Hong et al. 2018). It 
should be noted that we aim to establish regression models that can be used to predict 
stock returns rather than choose the best statistical models for predictions. The proce-
dure begins with a constant model. At each step the BIC is computed to compare models 
with and without a predictor variable and the variable is then added or removed from 

Table 2 Summary Statistics: 01/01/2019–06/30/2020

Table 2 reports the mean, standard deviation (STD), minimum (Min), maximum (Max), skewness, kurtosis, and the number 
of observations (Num of Obs) for both stock index returns and predictor variables over the period January 1st, 2019 to June 
30th, 2020

Variable Mean STD Min Max Skewness Kurtosis Number 
of Obs.

RS&P500 0.0002 0.0078 − 0.0554 0.0389 − 1.0167 16.6603 377

RDJIA 0.0001 0.0083 − 0.0601 0.0467 − 1.0053 17.5810 377

SIUS 1.6079 0.8402 − 0.0460 2.4730 − 0.8568 2.3110 377

TSUS 0.1596 0.2966 − 0.5240 1.1630 0.1647 2.8855 377

DSUS 1.0644 0.2477 0.7900 1.9900 1.6558 5.5371 377

CVIXUS 0.0002 0.0383 − 0.1156 0.1701 1.2662 6.6640 377

CTVS&P500 0.0004 0.0780 − 0.3730 0.2742 − 0.4012 7.2318 377

CTVDJIA 0.0004 0.1010 − 0.4126 0.3744 − 0.1001 5.9482 377
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the model accordingly. This procedure terminates when no variable can be introduced 
and eliminated. The final model takes the form given by:

where R = the log of stock index returns as described in Table 1; z = the vector of the 
constant and predictor variables selected by the stepwise regression. ε = the distur-
bance term with mean zero and variance σ 2 . Subscripts t and t − 1 are day t and t − 1 , 
respectively.

Table 4 provides estimation results for predictive regression models, including the esti-
mated coefficients of the selected predictor variables and their standard errors, adjusted 
R2 and the root mean square errors (RMSEs). To save space, we only report estimates of 
the final models.

The table highlights the inclusion of DSUSt−1 and RS&P500
t−1

 in the S&P 500 return model 
and DSUSt−1 and RDJIA

t−1
 in the DJIA return model. The estimated coefficients for both mod-

els are statistically significant at the 1% level with hypothesized signs. For example, the 
negative coefficients of the lagged return series are consistent with the price pressure 

(1)Rt = βzt−1 + εt ,

Table 3 Correlation Matrix: 01/01/2019–06/30/2020

Table 3 reports the pairwise Pearson correlations between all variables over the period from January 1st, 2019 to June 30th, 
2020. P values are provided in the parentheses

** and ***indicate significance at the 5% and 1% levels, respectively

Variable R
S&P500
t

SI
US

t−1
TS

US

t−1
DS

US

t−1
CVIX

US

t−1
CTV

S&P500

t−1
R
S&P500

t−1

Panel A. S&P 500

RS&P500t
1.000 0.0018 

(0.9725)
− 0.0134
(0.7962)

0.1100 
(0.0330**)

0.1641
(0.0014***)

0.0001
(0.9980)

− 0.3397
(0.0000***)

SIUSt−1
1.0000 − 0.6905

(0.0000***)
− 0.5926
(0.0000***)

− 0.0021 
(0.9677)

0.0103
(0.8427)

0.0136 
(0.7930)

TSUSt−1
1.0000 0.6319

(0.0000***)
− 0.0800
(0.1216)

− 0.0206
(0.6907)

0.0761
(0.1408)

DSUSt−1
1.0000 − 0.1201

(0.0198**)
− 0.0337
(0.5146)

0.1316
(0.0106**)

CVIXUSt−1
− 1.0000 0.2235

(0.0000***)
− 0.7099
(0.0000***)

CTVS&P500
t−1

1.0000 − 0.1041
(0.0437**)

RS&P500t−1
1.0000

Variable R
DJIA
t SI

US

t−1
TS

US

t−1
DS

US

t−1
CVIX

US

t−1
CTV

DJIA

t−1
R
DJIA

t−1

Panel B. DJIA

RDJIAt
1.0000 0.0049 

(0.9248)
− 0.0170 

(0.7428)
0.1062 

(0.0395**)
0.1593
(0.0019***)

0.0181
(0.7271)

− 0.3123
(0.0000***)

SIUSt−1
1.0000 − 0.6905

(0.0000***)
− 0.5926
(0.0000***)

− 0.0021 
(0.9677)

0.0085 
(0.8691)

0.0144
(0.7802)

TSUSt−1
1.0000 0.6319

(0.0000***)
− 0.0800
(0.1216)

− 0.0206
(0.6907)

0.0718
(0.1605)

DSUSt−1
1.0000 − 0.1201

(0.0198**)
− 0.0395
(0.4454)

0.1291
(0.0123**)

CVIXUSt−1
1.0000 0.2608

(0.0000***)
− 0.6809
(0.0000***)

CTVDJIA
t−1

1.0000 − 0.1331
(0.0098***)

RDJIAt−1
1.0000
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hypothesis that heavy trading of the U.S. index component stocks tends to produce price 
pressure or excess volatility (Vijh 1994). The adjusted R2 values at a more than 10% level 
is non-negligible and can have important implications for asset-allocation decisions as 
the predictable component of stock returns is usually relatively small (Kandel and Stam-
baugh 1996). Moreover, these regressions have also reached a local minimum of RMSE. 
Other predictor variables listed in Table 1 are not included in the final models due to 
their failure to meet the selection criteria of the stepwise regression. It should also be 
noted that CVIXUS

t−1 are strongly correlated with RS&P500
t−1

 and RDJIA
t−1

 as shown in Table 3 
such that only RS&P500

t−1
 or RDJIA

t−1
 enters the final models based on the information criteria.

The results reinforce those in prior studies that indicate an important role of economic 
fundamentals in explaining the U.S. stock returns (e.g., Rapach and Wohar 2006; Chang 
et al. 2019). They also highlight strong autocorrelations in the daily U.S. stock returns, 
consistent with the literature of short-term stock return behavior (e.g., Avramov et al. 
2006; Bogousslavsky 2016).

Being aware of general data problems, we further test to what extent our ordinary least 
square (OLS) estimates might be affected and also present the results in Table  4. We 
evaluate the robustness of our results by testing whether parameter estimates change 
substantially after accounting for the effects of both outliers and heteroskedasticity and 
serial correlation. The table highlights the robustness of the performance of all predic-
tive regression models to potential data issues. The estimated coefficients (i.e.,β̂S&P500

0

,β̂S&P500
1

,β̂S&P500
2

,β̂DJIA
0

 , β̂DJIA
1

 and β̂DJIA
2

 ) remain significant at the same statistical level 
and the RMSE for each model becomes much smaller, suggesting that our OLS estimates 

Table 4 Estimation Results of  Stepwise Predictive Regression Models and  Robustness 
of Parameter Estimates: 01/01/2019–06/30/2020

Table 4 reports both estimation and robust estimation results of the final predictive regression models determined by the 
BIC over the period January 1st, 2019 to June 30th, 2020
a Outlier robust statistics are obtained using iteratively reweighted lease squares with a bi‑square weighting function
b The Newey‑West statistics are used as the heteroskedasticity and serial correlation robust statistics, where the lag 
calculated as 4 ∗ ( N

100
)
2/9

 is introduced to correct for serial correlation. Standard errors are provided in the parentheses

** and *** indicate significance at the 5% and 1% levels, respectively

Least-
Square 
Regression 
Statistics

Outlier 
Robust 
 Statisticsa

Heteroskedasticity 
and Serial 
Correlation 
 Statisticsb

Estimate Adjusted 
R
2

RMSE Estimate Adjusted 
R
2

RMSE Estimate Adjusted 
R
2

RMSE

Model I: RS&P500t = βS&P500
0 + βS&P500

1 DSUSt−1 + βS&P500
2 RS&P500t−1 + εt

β̂S&P500
0

− 0.0050 
(0.0017***)

0.1352 0.0073 − 0.0035 
(0.0008***)

0.1905 0.0037 − 0.0050 (0.0021**) 0.1352 0.0073

β̂S&P500
1

0.0050 
(0.0015***)

0.0043 
(0.0008***)

0.0050 (0.0020**)

β̂S&P500
2

− 0.3608 
(0.0485***)

− 0.1384 
(0.0254***)

− 0.3608 (0.1054***)

Model II:RDJIAt = βDJIA
0 + βDJIA

1 DSUSt−1 + β
DJIA

2
RDJIAt−1 + εt

β̂DJIA
0

− 0.0052 
(0.0018***)

0.1146 0.0079 − 0.0035 
(0.0009***)

0.1322 0.0038 − 0.0052 (0.0021**) 0.1146 0.0079

β̂DJIA
1

0.0050 
(0.0017***)

0.0042 
(0.0008***)

0.0050 (0.0022**)

β̂DJIA
2

− 0.3316 
(0.0490***)

− 0.2354 
(0.0248***)

− 0.3316 (0.1022***)
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barely suffer from the outlier effect. With respect to the heteroskedasticity and serial 
correlation, both S&P 500 and DJIA return models are more or less affected: for instance, 
the standard error is 0.0020 (0.0022) for β̂S&P500

1
 ( ̂βDJIA

1
 ), leading to a decrease in the sig-

nificance of the coefficient from 1% to 5%. However, the models remain competitive in 
forecasting as the coefficients are still important at the conventional level.

Overall, the results suggest that the predictive regression models derived is reason-
able for predicting the U.S. stock returns, with non-significant changes in parameter 
estimates after accounting for potential data problems. Next section turns to whether 
structural breaks exist and how they may affect model parameters.

Tests for breaks and their significance

As mentioned previously, we introduce Bai and Perron (1998, 2003) and Elliot and Mul-
lier (2004) to test for unknown structural breaks. The former enables estimation of 
breakpoints and statistical analysis of the resulting estimators whereas the latter dis-
plays excellent properties in the presence of persistence (given the non-stationarity of 
the default spread in the final regression models). In our implementation, we allow all 
coefficients to change at each break since there is no strong reason to believe that any 
coefficient involved should be immune from shifts.

Table 5 reports the results of various tests for structural breaks which allow for serial 
correlation, different variances of the errors and trending regressors as well as those for 
the true number of breaks. The selection of trimming percentages ( π ) is vital to break 
test results since a small π can cause substantial size distortions while a large π can 
sharply reduce the combinations of breakpoints allowed. Usually, there are five options 
for πs : 5%, 10%, 15%, 20%, 25% (Bai and Perron 1998). We set the trimming percent-
age,π , to 20% and 25%, allowing for 3 breaks ( m = 3 ) and 2 breaks ( m = 2 ), respectively 
given the relatively short sample period under studied. These correspond to a minimum 
window of approximately 94 and 126 days between breaks for our datasets starting from 
January 1st, 2019.

As expected, the statistics of the SupF(1) test, double maximum tests, SupFt(1|0) test 
and the Ĵ -test are all significant for both π = 20% and π = 25% , suggesting the presence 
of structural breaks (highly likely a break). Together with the evidence of the BIC and 
the SM for the number of true breaks, we conclude with one-break prediction models 
for both S&P 500 and DJIA returns. These findings reinforces those in prior studies that 
predictive regression models are characterized by structural instability (e.g., Rapach and 
Wohar 2006; Paye and Timmermann 2006; Hong et al. 2018).

Although the hypothesis tests above suggest statistical significance of instability, they 
alone cannot reveal the economic significance of the break. To this end, we re-estimate 
both S&P 500 and DJIA return models in different regimes partitioned by the derived 
break above. Table  6 reports the estimated coefficients and their standard errors, 
adjusted R2 , and also the estimated breakpoint as well as its 90% confidence interval.

The regressions reveal several interesting results. Most notably, the predictive 
regression coefficients as well as the adjusted R2 values of both S&P 500 and DJIA 
return models change substantially following the break. For instance, in the case of 
π = 0.20 , the estimated coefficient of DSUSt−1 for Model I was 0.0023 in regime 1 (Janu-
ary 1st, 2019 to February 19th, 2020). It increased to 0.0166 with significance at the 
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1% level when one moves to regime 2 (February  20th, 2020 to June 30th, 2020). The 
adjusted R2 value was 0.0065 before the break and increased substantially to 0.2488 
afterwards. While some of this variation can be clearly attributed to sampling vari-
ation due to sometimes large standard errors, this does not conceal the fact that the 
derived break in the regression models tends to be sufficiently large that it is of sub-
stantial economic interest. It should also be noted that parameter specification has 
little impact on the break location: the breakpoint (02/20/2020 or 02/21/2020) when 
π = 0.20 is quite close to (02/14/2020) when π = 0.25 . The difference is actually 
induced by a minimum window allowed between each break.

Nature of the break

Questions may naturally arise about what the primary cause for the derived break is. We 
examine whether the timing of the statistical break is consistent with the COVID out-
break. According to the COVID-19 data repository by the center for systems science and 
engineering (CSSE) at Johns Hopkins university, the first case of COVID-19 was con-
firmed in the U.S on January 22nd, 2020. The breakpoint 02/20/2020 (02/21/2020) when 
π = 0.20 and that 02/14/2020 when π = 0.25 for the S&P 500 (DJIA) return model are 
evidently late than the start of the pandemic though their 90 percent confidence inter-
vals are not precisely estimated as they cover a broad range of dates.

A close look at those breakpoints derived reveals interesting facts that they seem to 
approach the end of the stock selling by senate committee members in the U.S after 
COVID-19 broke out. According to Fox News, 4 senators sold off stocks worth millions 
of dollars in the days before the coronavirus outbreak crashed the market. Specifically, 
Richard Burr, chairman of the Senate Intelligence Committee, conducted more than 
30 transactions to dump between $628,000 and $1.72 million on February 13th, 2020. 
Dianne Feinstein, ranking member of the Senate Judiciary Committee, and her hus-
band sold between $1.5 million and $6 million between January 31st, 2020 and February 
18th, 2020. Kelly Loeffler and her husband, Jeffrey Sprecher, Chairman of the New York 

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000
S&P 500 Index Price

Richard sold off stocks on Feb 13th, 2020

Dianne sold stocks between Jan 31st and Feb 18th, 2020  

Kelly solds stocks between Jan 24th and Feb 14th, 2020 

James sold stocks on Jan 27th, 2020

Fig 1. Stock Selling by the Senate Committee Members and the performance of the S&P 500: 01/01/2019–
06/30/2020. Notes: Figure 1 plots the timing of the stock selling by the senate committee members over the 
period January 1st, 2019 to June 30th, 2020
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Stock Exchange, sold stocks between January 24th, 2020 and February 14th, 2020, worth 
a total between $1.2 million and $3.1million. James Inhofe sold as much as $400,000 
on January 27th, 2020. Figure 1 further visualizes the timing of the stock selling by the 
senate committee members. It is apparent that the market plunged immediately after 
those senators dumped their stocks. This further indicates that information asymmetry 
existed between government bureaucrats and the public. Bureaucrats have information 
advantage, enabling them to successfully reduce the likelihood of huge losses during the 
COVID-19 crisis.

Overall, we find that stock return predictability was subject to a structural break which 
can be ascribed to COVID-19 during the period under investigation. Moreover, the pre-
dictability significantly increased after the outbreak of the pandemic crisis. According 
to Cujean and Hasler (2017), as economic conditions deteriorated, difference in inves-
tors’ learning speed increased. Investors’ opinions eventually polarized, causing returns 
to react to past information.

The findings have vast implications for academic researchers, investors and policy 
makers. First, COVID-19 is an important cause of market inefficiency, implying signifi-
cant return predictability and existence of profitable opportunities for traders and spec-
ulators. The selling-offs by insiders provides clues to market timing. Second, profitable 
opportunities will benefit those who have plenty of liquidity at hand. Third, Fed policy of 
pumping liquidity into the financial system may have stimulated profitability seeking in 
the stock market, which may enlarge income and wealth inequality.

COVID‑19 and instability of price volatility
In this section, we turn to studying the characteristics of price volatility in the COVID-
19 context. As with return predictability, first, we attempt to establish reasonable models 
for modeling price volatility. Second, we focus on testing for the presence, location and 
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Fig 2. Time Series Plots: 01/01/2019–06/30/2020. Notes: Figure 2 plots the time series of both S&P 500 and 
DJIA for the period January 1st, 2019 to June 30th, 2020

Table 7 Tests for ARCH Effect: 01/01/2019–06/30/2020

Table 7 reports statistics of ARCH effect for both S&P 500 and DJIA over the period January 1st, 2019 to June 30th, 2020. 
ARCH lags are determined by BIC

***indicates significance at the 1% level

Return ARCH (15) Statistics Return ARCH (15) Statistics

RS&P500t
164.1490*** RDJIAt

158.4570***
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the significance of structural breaks in volatility models. Third, we examine the linkage 
between the derived breaks and COVID-19.

Price volatility modeling

Before the formal model set up, we investigate stock return behavior for the period 
studied. Figure 2 plots return series of both S&P 500 and DJIA. It is apparent that large 
or small changes in prices tend to cluster together, resulting in the persistence of these 
magnitudes of price changes. Supportive evidence is from the tests for ARCH effect (lag 
15) in Table 7: statistics are significant at the 1% level for both return series, indicating 
potential high-level ARCH effect, i.e., GARCH effect.

The GARCH model involved is then given by:

where σ = non-stationary unconditional variance; ε = potential conditional hetero-
scedasticity. R is the same as in Eq. (1). σt is a deterministic function of t and εt sat-
isfies E(εt) = 0 and E

(
ε2t
)
= 1 . To determine the orders of the GARCH models in Eq. 

(2), we consider several potential possibilities (Mcmillan and Speight 2004) and select 
the orders by BIC. Table  8 shows that the BIC values increase as orders of the mod-
els become larger, thus supporting GARCH (1,1) as the optimal model for describing 
the volatility process. This is consistent with Ashely and Patterson (2010) who find that 
GARCH (1,1) is in general adequate for modeling daily price volatility.

Tests for breaks and their significance

As mentioned previously, we introduce Xu (2013) to test for unknown structural breaks 
in price volatility, which accommodates the stylized facts that previous studies always 

(2)
Rt = σtεt ,

σ 2
t = α0 + α1ε

2
t−1 + · · · + αqε

2
t−q + β0 + β1σ

2
t−1 + · · · + βpσ

2
t−p,

Table 8 Tests for GARCH effect: 01/01/2019–06/30/2020

Table 8 displays results of tests for the GARCH effect for both S&P 500 and DJIA over the period January 1st, 2019 to June 
30th, 2020. L and BIC are presented in log values

P values are provided in the parentheses

** and *** indicate significance at the 5% and 1% levels, respectively

α0 α1 α2 β1 β2 L BIC

Panel A: S&P 5000

GARCH (1,1) 0.0000 
(0.0000***)

0.2642 
(0.0038***)

– 0.7356 
(0.0018***)

– 1503.0000 − 5.9455

GARCH (2,1) 0.0000 
(0.0000***)

0.1810 
(0.0104**)

0.1606 
(0.0093***)

0.6582 
(0.0011***)

– 1504.5000 − 5.8902

GARCH (2,2) 0.0000 
(0.0000***)

0.1803 
(0.0085***)

0.3224 
(0.0040***)

0.0833 
(0.0011***)

0.4138 
(0.0011***)

1505.2000 − 5.8865

Panel B: DJIA

GARCH (1,1) 0.0000 
(0.0000***)

0.2477 
(0.0041***)

– 0.7521 
(0.0021***)

– 1486.7000 − 5.9201

GARCH (2,1) 0.0000 
(0.0000***)

0.1409 
(0.0051***)

0.1709 
(0.0049***)

0.6835 
(0.0088 ***)

– 1488.5000 − 5.8764

GARCH (2,2) 0.0000 
(0.0000***)

0.1383 
(0.0016***)

0.3316 
(0.0195**)

0.0949 
(0.0073***)

0.4350 
(0.0030***)

1489.4000 − 5.8658
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lack explicit alternative hypotheses, potentially leading to lower power of tests in prac-
tice. Table 9 reports the results for both modified CUSUM and LM tests ( ̂Q and L̂ statis-
tics, respectively) for the presence and the number of breaks.

The table highlights that structural breaks are present in volatilities of S&P 500 and 
DJIA: both modified CUSUM and LM tests reject the constant variance hypothesis at 
5% level when cross validated bandwidths are used. Further investigation indicates a sin-
gle break with its location around February 21st, 2020, which is similar to the derived 
break in return predictability.

Figure 3 plots the difference of the realized volatility between two subsamples parti-
tioned (i.e. volatility of subsample 1 minus subsample 2) at a given date. Assume that 
the minimum length of time to compute volatility is one month. The sample period now 
becomes February 1st, 2019 to May 31st, 2020. It is apparent that the difference of the 
volatility between subsamples arrives at its maximum (0.0115 for S&P 500 and 0.0126 
for DJIA) when the derived break above is used for sample partition. In other words, 
volatility significantly increased during the period after the break.

Nature of the break

Similar to the case of return predictability, we argue that the timing of the statistical 
break that took place on February 21st, 2020 is consistent with the COVID-19 outbreak. 
More specifically, the break occurrence followed closely to the stock selling-offs by the 
senate committee members in the U.S before COVID-19 crashed the market.

Table 9 Xu (2013)’s Test Statistics for Breaks: 01/01/2019–06/30/2020

Table 9 reports the results of modified CUSUM and LM tests for structural breaks in volatilites of both S&P 500 and DJIA over 
the period January 1st, 2019 to June 30th, 2020. The modified CUSUM test allows for multiple structural breaks while the 
modified LM test only allows for a single break. The bandwidth is selected by cross validation. Q̂ is the modified CUSUM test 
statistic and L̂  is the modified LM test statistic

**indicates significance at the 5% level

Model Q̂ Statistic L̂  Statistic Breakpoint No of Obs.

Panel A: S&P 500

GARCH (1,1) 1.3766** 9.8543** 2020.02.21 377

Panel B: DJIA

GARCH (1,1) 1.3699** 9.7405** 2020.02.21 377
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0.0140
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Fig 3. Difference of Volatility between Subsamples: 02/01/2019–05/31/2020. Notes: Figure 3 plots the 
difference of the realized volatility between two subsamples partitioned at a given date
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As with Geanakoplos (2003) who argues that bad news tends to cause panic among 
investors such that a crisis is usually accompanied by high volatility, COVID-19 creates 
better investment opportunities for investors with volatility timing ability (especially 
those who have plenty of liquidity at hand) than the public. This however may enlarge 
income and wealth inequality.

Conclusion
In this paper we examine the association between COVID-19 and the instability of the 
U.S. stock market performance (i.e., return predictability and price volatility). Using 
daily data from January 1st, 2019 to June 30th, 2020 and methodologies developed by 
Bai and Perron (1998, 2003), Elliot and Mullier (2004) and Xu (2013), we find that return 
predictability and price volatility of both S&P 500 and DJIA underwent a single struc-
tural break. The break can be related to COVID-19 or more specifically the stock sell-
ing-offs by the U.S. senate committee members before COVID-19 crashed the market. 
Moreover, both return predictability and price volatility increased significantly after the 
derived break.

Important implications are provided as follows. On one hand, crises may be associated 
with opportunities. COVID-19 is an important cause for market inefficiency, creating 
profitable opportunities for traders and speculators. Rational investors seeking to maxi-
mize returns may need to pay close attention to insider trading before taking any deci-
sions in the stock market. On the other hand, crises may also induce income and wealth 
inequality as market participants with plenty of liquidity at hand can seek for profitabil-
ity in the stock market.

Future research avenues might consider testing whether the structural shift is tran-
sient or permanent given its important policy implications. Furthermore, extending the 
analysis to more countries and comparing their similarities and differences would offer 
more insightful outcomes.
Acknowledgements
We would like to thank the Editor and three anonymous referees for their highly constructive comments.

Authors’ contributions
HH was writing responsible for conceptualization, investigation, and writing of original draft and analysis. ZB collected, 
analyzed and interpreted the data regarding stock price index and predictor variables. C‑CL was responsible for the 
investigation and formal analysis. All authors read and approved the final manuscript.

Funding
This research was supported by the Social Science Foundation of Jiangxi Province (Grant No: 20YJ09) and the National 
Social Science Foundation of China (Grant No: 17ZDA037).

Availability of data and materials
Data available from the authors upon request.

Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests
All authors declare that they have no competing interests.

Author details
1 Research Center for Central China Economic and Social Development, Nanchang University, Nanchang, Jiangxi, China. 
2 School of Economics and Management, Nanchang University, Nanchang, Jiangxi, China. 3 School of Finance, Nanjing 
University of Finance and Economics, Nanjing, Jiangsu, China. 

Received: 6 December 2020   Accepted: 15 February 2021



Page 17 of 18Hong et al. Financ Innov            (2021) 7:12  

References
Andrews DWK (1991) Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 

59:817–858
Andrews DWK (1993) Tests for parameter instability and structural change with unknown change point. Econometrica 

61:821–858
Andrews DWK, Monahan JC (1992) An improved heteroskedasticity and autocorrelation consistent covariance matrix 

estimator. Econometrica 60:953–966
Andrews DWK, Lee I, Ploberger W (1996) Optimal change point tests for normal linear regression. J Econ 70:9–38. https ://

doi.org/10.1016/0304‑4076(94)01682 ‑8
Ang A, Bekaert G (2007) Stock return predictability: Is it there? Rev Finance Stud 20:651–707. https ://doi.org/10.1093/rfs/

hhl02 1
Ashley RA, Patterson DM (2010) A test of the GARCH (1,1) specification for daily stock returns. Macroecon Dyn 14:137–

144. https ://doi.org/10.1017/S1365 10051 00000 15
Ashraf BN (2020a) Stock market’s reaction to COVID‑19: Cases or fatalities? Res Int Bus Finance 54:1–7. https ://doi.

org/10.1016/j.ribaf .2020.10124 9
Ashraf BN (2020b) Stock markets’ reaction to COVID‑19: Moderating role of national culture. Finance Res Lett (forthcom‑

ing). https ://doi.org/10.1016/j.frl.2020.10185 7
Avramov D, Chordia T, Goyal A (2006) Liquidity and autocorrelation in individual stock returns. J Finance 61:2365–2394. 

https ://doi.org/10.1111/j.1540‑6261.2006.01060 .x
Bai JS, Perron P (1997) Estimation of a change point in multiple regression models. Rev Econ Stat 79:551–563. https ://doi.

org/10.1162/00346 53975 57132 
Bai JS, Perron P (1998) Estimating and testing linear models with multiple structural changes. Econometrica 66:47–78. 

https ://doi.org/10.2307/29985 40
Bai JS, Perron P (2003) Computation and analysis of multiple structural change models. J Appl Econ 18:1–22. https ://doi.

org/10.1002/jae.659
Baig AS, Butt HA, Haroon O, Rizvi SAR (2020) Deaths, panic, lockdowns and US equity markets: The case of COVID‑19 

pandemic. Finance Research Letters (Forthcoming).
Baker S, Bloom N, Davis SJ, Kost K, Sammon M, Viratyosin T (2020) The unprecedented stock market reaction to COVID‑19. 

Rev Asset Pricing Stud 10:742–758. https ://doi.org/10.1093/rapst u/raaa0 08
Bandi FM, Reno R (2012) Time‑varying leverage effects. J Econ 169:94–113. https ://doi.org/10.1016/j.jecon om.2012.01.010
Bogousslavsky V (2016) Infrequent rebalancing, return autocorrelation, and seasonality. J Finance 71:2967–3006. https ://

doi.org/10.1111/jofi.12436 
Brooks R (2007) Power arch modeling of the volatility of emerging equity markets. Emerg Markets Rev 8:124–133. https ://

doi.org/10.1016/j.emema r.2007.01.002
Brown RL, Durbin J, Evans JM (1975) Techniques for testing the constancy of regression relationships over time. J Roy Stat 

Soc 37:149–192. https ://doi.org/10.1111/j.2517‑6161.1975.tb015 32.x
Campbell JY (1987) Stock returns and the term structure. J Finance Econ 18:373–399. https ://doi.org/10.1016/0304‑

405x(87)90045 ‑6
Campbell JY, Shiller RJ (1988) Stock prices, earnings, and expected dividends. J Finance 43:661–676. https ://doi.

org/10.1111/j.1540‑6261.1988.tb045 98.x
Chang TY, Gupta R, Majumdar A, Pierdzioch C (2019) Predicting stock market movements with a time‑varying consump‑

tion‑aggregate wealth ratio. Inte Rev Econ Finance 59:458–467. https ://doi.org/10.1016/j.iref.2018.10.009
Chow GC (1960) Tests of equality between subsets of coefficients in two linear regression models. Econometrica 

28:591–605. https ://doi.org/10.2307/19101 33
Cujean J, Hasler M (2017) Why does return predictability concentrate in bad times? J Finance 72:2717–2757. https ://doi.

org/10.1111/jofi.12544 
Elliot G, Mueller U (2004) Optimal testing general breaking processes in linear time series models. University of California 

at San Diego Economic Working Paper.
Emenogu NG, Adenomon MO, Nweze NO (2020) On the volatility of daily stock returns of total Nigeria Plc: Evidence from 

GARCH models, value‑at‑risk and backtesting. Innov 6:1–25. https ://doi.org/10.1186/s4085 4‑020‑00178 ‑1
Engelhardt N, Krause M, Neukirchen D, Posch PN (2020) Trust and stock market volatility during the COVID‑19 crisis. 

Finance Res Lett (Forthcoming). https ://doi.org/10.1016/j.frl.2020.10187 3
Fama EF, French KR (1988) Dividend yields and expected stock returns. J Finance Econ 22:3–25. https ://doi.

org/10.1016/0304‑405X(88)90020 ‑7
Fama EF, French KR (1989) Business conditions and expected returns on stocks and bonds. J Finance Econ 25:23–49. https 

://doi.org/10.1016/0304‑405X(89)90095 ‑0
Geanakoplos J (2003) Liquidity, default, and crashes: Endogenous contracts in general equilibrium. Adv Econ Economet 

Theory Appl Eighth World Conf 2:170–205
Gil‑Alana LA, Claudio‑Quiroga G (2020) The COVID‑19 impact on the Asian stock markets. Asian Econ Lett. https ://doi.

org/10.46557 /001c.17656 
Glosten L, Milgrom P (1985) Bid, ask, and transaction prices in a specialist market with heteterogeneously informed trad‑

ers. J Finance Econ 14:71–100. https ://doi.org/10.1016/0304‑405X(85)90044 ‑3
Gokcan S (2000) Forecasting volatility of emerging stock markets: Linear versus non‑linear GARCH models. J Forecast 

19:499–504. https ://doi.org/10.1002/1099‑131X(20001 1)19:63.0.CO;2‑P
Goodell JW (2020) COVID‑19 and finance: Agendas for future research. Finance Res Lett 35:1–5. https ://doi.org/10.1016/j.

frl.2020.10151 23
Hong H, Chen NW, O’Brien F, Ryan J (2018) Stock return predictability and model instability: evidence from mainland 

China and Hong Kong. Q Rev Econ Finance 68:132–142. https ://doi.org/10.1016/j.qref.2017.11.007
Hou AJ (2013) Asymmetry effects of shocks in Chinese stock market volatility: a generalized additive nonparametric 

approach. J Int Financ Markets Inst Money 23:12–32. https ://doi.org/10.1016/j.intfi n.2012.08.003

https://doi.org/10.1016/0304-4076(94)01682-8
https://doi.org/10.1016/0304-4076(94)01682-8
https://doi.org/10.1093/rfs/hhl021
https://doi.org/10.1093/rfs/hhl021
https://doi.org/10.1017/S1365100510000015
https://doi.org/10.1016/j.ribaf.2020.101249
https://doi.org/10.1016/j.ribaf.2020.101249
https://doi.org/10.1016/j.frl.2020.101857
https://doi.org/10.1111/j.1540-6261.2006.01060.x
https://doi.org/10.1162/003465397557132
https://doi.org/10.1162/003465397557132
https://doi.org/10.2307/2998540
https://doi.org/10.1002/jae.659
https://doi.org/10.1002/jae.659
https://doi.org/10.1093/rapstu/raaa008
https://doi.org/10.1016/j.jeconom.2012.01.010
https://doi.org/10.1111/jofi.12436
https://doi.org/10.1111/jofi.12436
https://doi.org/10.1016/j.ememar.2007.01.002
https://doi.org/10.1016/j.ememar.2007.01.002
https://doi.org/10.1111/j.2517-6161.1975.tb01532.x
https://doi.org/10.1016/0304-405x(87)90045-6
https://doi.org/10.1016/0304-405x(87)90045-6
https://doi.org/10.1111/j.1540-6261.1988.tb04598.x
https://doi.org/10.1111/j.1540-6261.1988.tb04598.x
https://doi.org/10.1016/j.iref.2018.10.009
https://doi.org/10.2307/1910133
https://doi.org/10.1111/jofi.12544
https://doi.org/10.1111/jofi.12544
https://doi.org/10.1186/s40854-020-00178-1
https://doi.org/10.1016/j.frl.2020.101873
https://doi.org/10.1016/0304-405X(88)90020-7
https://doi.org/10.1016/0304-405X(88)90020-7
https://doi.org/10.1016/0304-405X(89)90095-0
https://doi.org/10.1016/0304-405X(89)90095-0
https://doi.org/10.46557/001c.17656
https://doi.org/10.46557/001c.17656
https://doi.org/10.1016/0304-405X(85)90044-3
https://doi.org/10.1002/1099-131X(200011)19:63.0.CO;2-P
https://doi.org/10.1016/j.frl.2020.1015123
https://doi.org/10.1016/j.frl.2020.1015123
https://doi.org/10.1016/j.qref.2017.11.007
https://doi.org/10.1016/j.intfin.2012.08.003


Page 18 of 18Hong et al. Financ Innov            (2021) 7:12 

Hsu PH, Hsu YC, Kuan CM (2010) Testing the predictive ability of technical analysis using a new stepwise test without 
data snooping bias. J Empir Finance 17:471–484. https ://doi.org/10.1016/j.jempfi n.2010.01.001

Inclan C, Tiao G (1994) Use of the cumulative sums of squares for retrospective detection of changes of variance. J Am 
Stat Assoc 89:913–923. https ://doi.org/10.1080/01621 459.1994.10476 824

Ioannidis C, Kontonikas A (2008) The impact of monetary policy on stock prices. Journal of Policy Modeling 30:33–53. 
https ://doi.org/10.1016/j.jpolm od.2007.06.015

Kandel S, Stambaugh RF (1996) On the predictability of stock returns: an asset‑allocation perspective. J Finance 51:385–
424. https ://doi.org/10.1111/j.1540‑6261.1996.tb026 89.x

Kou G, Peng Y, Wang GX (2014) Evaluation of clustering algorithms for financial risk analysis using MCDM methods. Inf Sci 
275:1–12. https ://doi.org/10.1016/j.ins.2014.02.137

Kou G, Xu Y, Peng Y, Shen F, Chen Y, Chang K, Kou SM (2021) Bankruptcy prediction for SMEs using transactional data and 
two‑stage multiobjective feature selection. Decis Support Syst 140:113429. https ://doi.org/10.1016/j.dss.2020.11342 9

Landfear MG, Lioui A, Siebert MG (2019) Market anomalies and disaster risk: evidence from extreme weather events. J 
Financ Markets 46(1004–1017):1. https ://doi.org/10.1016/j.finma r.2018.10.003

Lee C‑C, Chen M‑P (2020) The impact of COVID‑19 on the travel & leisure industry returns: Some international evidence. 
Tour Econ. https ://doi.org/10.1177/13548 16620 97198 1

Lee S, Park S (2001) The CUSUM of squares test for scale changes in infinite order moving average processes. Scand J Stat 
28:625–644. https ://doi.org/10.1111/1467‑9469.00259 

Lee C‑C, Ranjbar O, Lee C‑C (2021) Testing the persistence of shocks on renewable energy consumption: evidence from a 
quantile unit‑root test with smooth breaks. Energy. https ://doi.org/10.1016/j.energ y.2020.11919 0

Lettau M, Ludvigson S (2001) Consumption, aggregate wealth, and expected stock returns. J Financ 56:815–849. https ://
doi.org/10.1111/0022‑1082.00347 

Liu J, Wu SY, Zidek JV (1997) On segmented multivariate regression. Statistica Sinica 7:497–525. https ://doi.org/10.1007/
s0044 00050 098

Liu M, Lee C‑C, Choo W‑C (2020) An empirical study on the role of trading volume and data frequency in volatility fore‑
casting. J Forecast Early View. https ://doi.org/10.1002/for.2739

Liu M, Choo W‑C, Lee C‑C (2020) The response of the stock market to the announcement of global pandemic. Emerg 
Markets Finance Trade 15:3562–3577. https ://doi.org/10.1080/15404 96X.2020.18504 41

Mallikarjuna M, Rao RP (2019) Evaluation of forecasting methods from selected stock market returns. Financ Innov 5:1–16. 
https ://doi.org/10.1186/s4085 4‑019‑0157‑x

Mazur M, Dang M, Vega M (2020) COVID‑19 and the March 2020 stock market crash: Evidence from S&P500. Finance Res 
Lett 38:101690

McMillan DG, Speight AEH (2004) Daily volatility forecasts: reassessing the performance of GARCH models. J Forecast 
23:449–460. https ://doi.org/10.1002/for.926

Mohanty S, Nandh M, Bota G (2010) Oil shocks and stock returns: the case of the Central and Easter European (CEE) oil 
and gas sectors. Emerg Markets Rev 11:358–372. https ://doi.org/10.1016/j.emema r.2010.06.002

Narayan PK (2020a) Has COVID‑19 changed exchange rate resistance to shocks? Asian Econ Lett. https ://doi.org/10.46557 
/001c.17389 

Narayan PK (2020b) Did bubble activity intensify during COVID‑19? Asian Econ Lett. https ://doi.org/10.46557 /001c.17654 
Narayan PK, Devpura N, Wang H (2020) Japanese currency and stock market—What happened during the COVID‑19 

pandemic? Econ Analy Policy 68:191–198
Paye BS, Timmermann A (2006) Instability of return prediction models. J Empir Finance 13:274–315. https ://doi.

org/10.2139/ssrn.73084 4
Phan DHB, Narayan PK (2020) Country responses and the reaction of the stock market to COVID‑19: a preliminary exposi‑

tion. Emerg Mark Finance Trade 56:2138–2150. https ://doi.org/10.1080/15404 96x.2020.17847 19
Rapach DE, Strauss JK (2008) Structural breaks and GARCH models of exchange rate volatility. J Appl Econ 23:65–90. https 

://doi.org/10.1002/jae.976
Rapach DE, Wohar ME (2006) Structural breaks and predictive regression models of aggregate U.S. stock returns. J Financ 

Econ 4:238–274. https ://doi.org/10.1093/jjfin ec/nbj00 8
Schwert GW (1989) Business cycles, financial crises and stock volatility. Carnegie‑Rochester Conf Ser Public Policy 31:83–125
Schwert GW (2011) Stock volatility during the recent financial crisis. Eur Financ Manag 17:789–805. https ://doi.

org/10.1111/j.1468‑036X.2011.00620 .x
Sharma SS (2020) A note on the Asian market volatility during the COVID‑19 pandemic. Asian Econ Lett. https ://doi.

org/10.46557 /001c.17661 
Topcu M, Gulal OS (2020) The impact of COVID‑19 on emerging stock markets. Finance Res Lett 36:1–4. https ://doi.

org/10.1016/j.frl.2020.10169 1
Vijh AM (1994) S&P 500 trading strategies and stock betas. Rev Financ Stud 7:215–251. https ://doi.org/10.1093/rfs/7.1.215
Welch I, Goyal A (2008) A comprehensive look at the empirical performance of equity premium prediction. Rev Financ 

Stud 21:1455–1508
Wen FH, Xu LH, Ouyang GD, Kou G (2019) Retail investor attention and stock price crash risk: Evidence from China. Int Rev 

Financ Anal 65:101376. https ://doi.org/10.1016/j.irfa.2019.10137 6
Xu KL (2008) Testing against nonstationary volatility in time series. Econ Lett 101:288–292. https ://doi.org/10.1016/j.econl 

et.2008.09.006
Xu KL (2013) Powerful tests for structural changes in volatility. J Econ 173:126–142. https ://doi.org/10.1016/j.jecon 

om.2012.11.001
Yao YC (1988) Estimating the number of change‑points via Schwarz’ Criterion. Stat Probab Lett 6:181–189. https ://doi.

org/10.1016/0167‑7152(88)90118 ‑6

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.jempfin.2010.01.001
https://doi.org/10.1080/01621459.1994.10476824
https://doi.org/10.1016/j.jpolmod.2007.06.015
https://doi.org/10.1111/j.1540-6261.1996.tb02689.x
https://doi.org/10.1016/j.ins.2014.02.137
https://doi.org/10.1016/j.dss.2020.113429
https://doi.org/10.1016/j.finmar.2018.10.003
https://doi.org/10.1177/1354816620971981
https://doi.org/10.1111/1467-9469.00259
https://doi.org/10.1016/j.energy.2020.119190
https://doi.org/10.1111/0022-1082.00347
https://doi.org/10.1111/0022-1082.00347
https://doi.org/10.1007/s004400050098
https://doi.org/10.1007/s004400050098
https://doi.org/10.1002/for.2739
https://doi.org/10.1080/1540496X.2020.1850441
https://doi.org/10.1186/s40854-019-0157-x
https://doi.org/10.1002/for.926
https://doi.org/10.1016/j.ememar.2010.06.002
https://doi.org/10.46557/001c.17389
https://doi.org/10.46557/001c.17389
https://doi.org/10.46557/001c.17654
https://doi.org/10.2139/ssrn.730844
https://doi.org/10.2139/ssrn.730844
https://doi.org/10.1080/1540496x.2020.1784719
https://doi.org/10.1002/jae.976
https://doi.org/10.1002/jae.976
https://doi.org/10.1093/jjfinec/nbj008
https://doi.org/10.1111/j.1468-036X.2011.00620.x
https://doi.org/10.1111/j.1468-036X.2011.00620.x
https://doi.org/10.46557/001c.17661
https://doi.org/10.46557/001c.17661
https://doi.org/10.1016/j.frl.2020.101691
https://doi.org/10.1016/j.frl.2020.101691
https://doi.org/10.1093/rfs/7.1.215
https://doi.org/10.1016/j.irfa.2019.101376
https://doi.org/10.1016/j.econlet.2008.09.006
https://doi.org/10.1016/j.econlet.2008.09.006
https://doi.org/10.1016/j.jeconom.2012.11.001
https://doi.org/10.1016/j.jeconom.2012.11.001
https://doi.org/10.1016/0167-7152(88)90118-6
https://doi.org/10.1016/0167-7152(88)90118-6

	COVID-19 and instability of stock market performance: evidence from the U.S.
	Abstract 
	Introduction
	Literature review
	Determination of future stock return and volatility
	Major events and stock market performance
	Structural break tests

	Data
	COVID-19 and instability of stock return predictability
	Stock return predictions
	Tests for breaks and their significance
	Nature of the break

	COVID-19 and instability of price volatility
	Price volatility modeling
	Tests for breaks and their significance
	Nature of the break

	Conclusion
	Acknowledgements
	References


