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Abstract
The calculation of the overall profit Malmquist productivity index (MPI) requires precise
and accurate information on the input, output, input-output prices of each decision
making unit (DMU). However, in many situations, some inputs and/or outputs and
input-output prices are imprecise. As such, we consider the overall profit MPI problem
when the input, output, and input-output prices are imprecise and vary over intervals,
showing that method (MCM 54: 2827–2838, 2011) has some shortfalls. To remedy
these shortfalls, we propose another method for measuring the overall profit MPI when
the inputs, outputs, and price vectors vary over intervals. That is, to calculate the overall
profit efficiency intervals, cone-ratio data envelopment analysis models can be applied
to the incorporated information as weight restrictions. Further, we provide a new
approach to calculating the upper bound of the overall profit efficiency of each DMU. A
numerical example is provided for illustrating the proposed method.

Keywords: Data envelopment analysis, Imprecise data, Profit Malmquist productivity
index

Introduction
The Malmquist productivity index (MPI) is one of the most popular approaches to mea-
suring productivity changes over time and was introduced by Malmquist (1953). Under
data envelopment analysis (DEA), productivity is defined as the ratio between efficiency
and is measured by MPI for the same decision making unit (DMU) in two different
periods. Caves et al. (1982a;1982b) proposed an MPI as the ratio of two input distance
functions to calculate the relative performance of a DMU in different periods. Färe et al.
(1994) extended the approach of Caves et al. (1982a) and constructed an MPI directly
using input and output data as the geometric mean of the MPIs calculated in the two base
periods. Using Farrell’s (1957) methodology for the measurement of efficiency and that of
Caves et al. (1982a) on the measurement of productivity, Färe et al. (1994) constructed an
MPI directly from input and output data using DEA. However, this conventional profit
MPI requires the input-output quantity and exact input-output prices to be available.
However, in many situations, some inputs and/or outputs and input-output prices have
imprecise data. Therefore, conventional profit MPI models are not suitable or applicable
to measuring overall profit MPI.
Asmild et al. (2007) presented a framework in which DEA was used to measure the

overall efficiencies of different behavioral objectives. Furthermore, they showed how this
framework could be applied to assess the effectiveness of more general behavioral goals.
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These objectives are revenue maximization, cost minimization, and profit maximization.
Asmild et al. (2007) clarified the relationships between various cone-ratio DEA (CR-
DEA) models and those used to measure overall efficiency. Aghayi et al. () evaluated the
MPI of DMUs with desirable and undesirable interval outputs. To deal with data uncer-
tainty, a fuzzy approach was proposed by Wanke et al. (2016), who also calculated the
efficiency of banks. Mashayekhi and Omrani (2016) used a fuzzy approach for sorting
genetic algorithms with uncertain data. Salehpour and Aghayi (2015) calculated revenue
efficiency under price uncertainty to find a solution to minimizing the worst-case per-
formance with uncertain data. Hatami-Marbini et al. (2018) developed an overarching
evaluation process for estimating the RTS of DMUs under imprecise DEA (IDEA), where
the input and output data lie within bounded intervals. For more on IDEA, see Shabani
et al. (2019), Ebrahimi (2018), Fazelabdolabadi (2019), Toloo et al. (2018), Shokouhi et al.
(2014), Hatami-Marbini et al. (2017), Ureña et al. (2019), Zhang et al. (2019), Kao et al.
(2014) and the references therein.
The MPI computation using DEA with uncertain data has not been studied widely in

the literature. For instance, Emrouznejad et al. (2011) studied the overall profit MPI using
DEA with fuzzy and interval data. They extended the model (39) of Asmild et al. (2007)
and proposed two methods for measuring the overall profit MPI when the input, output,
and price vectors are fuzzy or vary over intervals (see Emrouznejad et al. (2011), models
(3a) and (3b)). To the best of our knowledge, to compute the overall profit MPI of each
DMU, the profit efficiency at time period t [(t + 1) must be computed using the technol-
ogy and input-output prices at time period t + 1] (t) (see (Tohidi et al. 2010; Tohidi et al.
2014). However, in Emrouznejad et al.’s (2011) method, the input-output prices in periods
t and t+1 are used simultaneously, meaning the results are not reasonable (see subsection
2.2. for details). As such, this paper overcomes the shortfall of Emrouznejad et al.’s model
(3b) (Emrouznejad et al. 2011). Park (2001) introduced an approach to deal with IDEA
involving variable input and output. He considered the multiplier and envelopment IDEA
models (Cooper et al. 1999; Lee et al. 2002) and clarified the relationships between them.
These models yield an upper and a lower bound on efficiency, respectively. Mostafaee and
Saljooghi (2010) extended the classical cost efficiency models to include data uncertainty.
However, Fang and Li (2012) showed that Mostafaee and Saljooghi’s (2010) approach had
some drawbacks. Then, Fang and Li (2013) extended Park’s approach and presented an
alternative IDEA method to calculate an upper and a lower bound of cost efficiency mea-
surement in the presence of imprecise price inputs. Based on the studies of Park (2001)
and Emrouznejad et al. (2011), this paper introduces alternative methods for measuring
the overall profit MPI when the input, output, and input-output prices are uncertain and
also measures the lower and upper bounds of overall profit MPIs. We show that the upper
bound of the overall profit efficiency is obtained by incorporating uncertain data as inter-
val data directly into the overall profit efficiency models. In addition, the lower bound
of the overall profit efficiency is achieved by incorporating the same uncertain data as
weight restrictions into a CR-DEAmodel. The main contributions of this paper are as fol-
lows: (a) we calculate the overall profitMPI assuming that input, output, and input-output
prices are imprecise; (b) we characterized these imprecise data with interval methods; (c)
we propose models to measure the overall profit efficiency in adjacent periods, which has
a reasonable interpretation (see model (4)); (d) we establish new models to compute the
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upper bounds for the profit efficiency measures; (e) we extend the model using CR-DEA;
and (f ) we demonstrate the practical aspects of our model using a numerical example.
The remainder of this paper is organized as follows. “Overall profit efficiency andMPIs”

section presents an overview of overall profit efficiency and Malmquist indices.
“Main results” section proposes models to calculate the lower and upper bounds of
the profit efficiency of each DMU within the period and for adjusted periods. In
“Computational aspects” section, we develop newmethods to calculate the upper bounds
of the overall profit efficiency of each DMU. A numerical example is also provided in
“Computational aspects” section. Finally, “Conclusions” section concludes the paper.

Overall profit efficiency andMPIs
MPIs measure the productivity change of a DMU between two different time periods.
Färe et al. (1994, 1992) developed an input based non-parametric Malmquist index using
DEA. This DEA-based Malmquist productivity can be extended to measure the produc-
tivity changes of DMUs over time. Here, we discuss the overall profit efficiency and overall
profit MPIs.

Overall profit efficiency

Consider a set of n DMUs associated with m inputs and s outputs. Particularly, DMUj
(j ∈ J = 1, ..., n) consumes amount xij of input i and produces amount yrj of output
r. Let Xj = (x1j, ..., xmj), where Xj ≥ 0 & Xj �= 0 and Yj = (y1j, ..., yrj) and where
Yj ≥ 0 & Yj �= 0. In addition, c and r are the input and output price vectors, respec-
tively, for DMUj (j ∈ J = 1, ..., n), where c ≥ 0 and r ≥ 0, c �= 0, and r �= 0.
Asmild (2007) presented the followingmodel for measuring the overall profit efficiency of
DMUo = (xo, yo), (o = 1, ..., n):

max rTo y
rTo yo

− cTo x
cTo xo

s.t. − ∑
j∈J λjyj + y ≤ 0

∑
j∈J λjxj − x ≤ 0

∑
j∈J λj = 1,

λj ≥ 0

(1)

where x, y, and λj, j ∈ J are variables and the objective function of this linear program is
to maximize the difference between the revenue and cost ratios for a given price vector
pTo = (

cTo , rTo
)
for the DMUo under assessment. Superscript T stands for a transposed

vector.
The following definition and theorem refer to (Toloo et al. 2008).

Definition 1 DMUo is overall profit efficient if in model (1), r
T
o y∗
rTo yo

− cTo x∗
cTo xo

= 0.

Theorem 1 For every optimal solution (x∗, y∗, λ∗) of (1), we have rTo y∗
rTo yo

− cTo x∗
cTo xo

≥ 0.

Overall profit MPIs

Emrouznejad et al. (2011) used the following model to measure the overall profit
efficiency in the adjacent period:
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Dp
o
(
xqo , y

q
o|p, q = t, t + 1, p �= q

) = max ϕ − θ

s.t. ϕ

[(
rpj

)T
yp0

]

≤
(
rqj

)T
Yqλ, ∀j,

θ

[(
cpj

)T
xp0

]

≤
(
cqj

)T
Xqλ, ∀j,

λ ≥ 0,

(2)

where Xp and Yp are the input and output matrices of the observed data for period p,
respectively. To the best of our knowledge, to compute the overall profit MPI of DMUo,
the profit efficiency of DMUp

o = (
xpo , y

p
o
)
must be computed using the technology and

input-output prices at period q, (p, q = t, t + 1, p �= q) (see Tohidi et al. (2010; 2014).
However, in (2), the input-output prices in period p and q are used simultaneously.
To overcome this shortfall, this paper introduces variable returns to scale overall profit
efficiency in the within and adjacent periods as (3) and (4), respectively:

Bp
o
(
xpo , y

p
o |p = t, t + 1

) = max
(
rpo

)T
y

(
rpo

)T
ypo

−
(
cpo

)T
x

(cpo)Tx
p
o

s.t. − ∑
j∈J λjy

p
j + y ≤ 0

∑
j∈J λjx

p
j − x ≤ 0

∑
j∈J λj = 1,

λ ≥ 0

(3)

Dq
o
(
xpo , y

p
o |p, q = t, t + 1, p �= q

) = max
(
rqo

)Ty
(
rqo

)Typo
−

(
cqo

)Tx
(
cqo

)Txpo
s.t. − ∑

j∈J λjy
q
j + y ≤ 0

∑
j∈J λjx

q
j − x ≤ 0

∑
j∈J λj = 1,

λ ≥ 0

(4)

where xpj and ypj are the input and output of DMUj in period p, respectively.
Models (3) and (4) have clear interpretations. Model (3) calculates the profit efficiency

of DMUp
o using the technology and input-output prices in period p and model (4) cal-

culates the profit efficiency of DMUp
o using the technology and input-output prices in

period q, (p, q = t, t + 1, p �= q).
The following definitions and theorem refer to (Emrouznejad et al. 2011).

Theorem 2 For every optimal solution (x∗, y∗, λ∗) of (3), we have
(
rpo

)T
y∗

(
rpo

)T
ypo

−
(
cpo

)T
x∗

(
cpo

)T
xpo

≥ 0.

Proof Model (3) has a feasible solution λo = 1, λj = 0, j �= o. Hence, the optimal objec-

tive, denoted by
(
rpo

)T
y∗

(
rpo

)T
ypo

−
(
cpo

)T
x∗

(
cpo

)T
xpo
, is greater than or equal to 0, i.e.,

(
rpo

)T
y∗

(
rpo

)T
ypo

−
(
cpo

)T
x∗

(
cpo

)T
xpo

≥
0.

Remarks 1 The objective function values for model (4) can be less than or equal to zero.

Definition 2 DMUo is overall efficient if Dt+1
o

(
xt+1
o , yt+1

o
) = 0 and Dt

o
(
xto, yto

) = 0.

Definition 3 The efficiency scores of models (3) and (4) are respectively computed as
follows:
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(i) If
(
rpo

)T
y∗

(
rpo

)T
ypo

−
(
cpo

)T
x∗

(
cpo

)T
xpo

≥ 0, then ρ = 1

1+
(
rpo

)T
y∗

(
rpo

)T
ypo

−
(
cpo

)T
x∗

(
cpo

)T
xpo

.

(ii) If
(
rqo

)Ty∗
(
rqo

)Typo
−

(
cqo

)Tx∗
(
cqo

)Txpo
≤ 0, then ρ = 1 +

(
rqo

)Ty∗
(
rqo

)Typo
−

(
cqo

)Tx∗
(
cqo

)Txpo
.

Obviously, if ρ = 1 DMUo is efficient and if ρ < 1, DMUo is inefficient.

Definition 4 The overall profit MPI of DMUo is defined as follows:

Mo =

√
√
√
√
√

ρt
o

(
xt+1
o , yt+1

o
)

ρt
o
(
xto, yto

) ×
ρt+1
o

(
xt+1
o , yt+1

o
)

ρt+1
o

(
xto, yto

) .

Therefore, the following three conditions hold:

(i) Mo > 1, increase productivity and observe progress;
(ii) Mo < 1, decrease productivity and observe regress; and
(iii) Mo = 1, no change in productivity at time t + 1 compared to t.

Main results
Here, we consider the overall profit efficiency and overall profit MPI ofDMUo, o = 1, ..., n
when input, output, and input-output prices are uncertain and also define an inter-
val for the overall profit MPI of DMUo. We reiterate that there are n DMUs under
consideration.
Assume that

[
xpLij , x

pU
ij

]
and

[
ypLkj , y

pU
kj

]
are the intervals of input i and output k ofDMUj,

(j ∈ J) in period p, respectively. Additionally,
[
cpLio , c

pU
io

]
, and

[
rpLko , r

pU
ko

]
are the intervals

of the input-output prices of input i and output k of DMUo, o = 1, ..., n in period p,
respectively. Models (3) and (4) can be extended to the overall profit efficiency models (5)
and (6) with data uncertainty, respectively:

Within − period time

Bp
o
(
xpo , y

p
o |p = t, t + 1

) = max
(
rpo

)T
y

(
rpo

)T
ypo

−
(
cpo

)T
x

(
cpo

)T
xpo

s.t. − ∑
j∈J λjy

p
j + y ≤ 0

∑
j∈J λjx

p
j − x ≤ 0

∑
j∈J λj = 1

cpio ∈
[
cpLio , c

pU
io

]
, i = 1, ...,m

rpko ∈
[
rpLko , r

pU
ko

]
, k = 1, ..., s

xpij ∈
[
xpLij , x

pU
ij

]
, i = 1, ...,m

ypkj ∈
[
ypLkj , y

pU
kj

]
, k = 1, ..., s

λj ≥ 0, j ∈ J .

(5)
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Adjacent-period time

Dq
o
(
xpo , y

p
o |p, q = t, t + 1, p �= q

) = max
(
rqo

)Ty
(
rqo

)Typo
−

(
cqo

)Tx
(
cqo

)Txpo
s.t. − ∑

j∈J λjy
q
j + y ≤ 0

∑
j∈J λjx

q
j − x ≤ 0

∑
j∈J λj = 1

cqio ∈
[
cqLio , c

qU
io

]
, i = 1, ...,m

rqko ∈
[
rqLko , r

qU
ko

]
, k = 1, ..., s

xqij ∈
[
xqLij , x

qU
ij

]
, i = 1, ...,m

yqkj ∈
[
yqLkj , y

qU
kj

]
, k = 1, ..., s

xpio ∈
[
xpLio , x

pU
io

]
, i = 1, ...,m

ypko ∈
[
ypLko , y

pU
ko

]
, k = 1, ..., s.

λj ≥ 0, j ∈ J

(6)

It can be observed that models (5) and (6) are nonlinear programming programs because
of data uncertainty.
Of particular importance is how to solve the newly constructed profit efficiency models

with data uncertainty in (5) and (6). To illustrate these issues, we introduce the following
definitions, which are similar to those of Park (2001).

Definition 5 (Potential profit efficiency in the within-period time) The DMUo to be eval-
uated is potentially profit efficient in the within-period if and only if there exists at least
one set of prices cpo ∈

[
cpLo , cpUo

]
and rpo ∈

[
rpLo , rpUo

]
and at least one set of input-output

data satisfying xpij ∈
[
xpLij , x

pU
ij

]
and ypkj ∈

[
ypLkj , y

pU
kj

]
(j ∈ J), so that Bp∗

o = 01 in model (5).

Definition 6 (Perfect profit efficiency in the within-period time) The DMUo to be evalu-
ated is perfectly profit efficient in the within-period if and only if, for all cpo ∈

[
cpLo , cpUo

]
and

rpo ∈
[
rpLo , rpUo

]
and all input-output data, xpij ∈

[
xpLij , x

pU
ij

]
and ypkj ∈

[
ypLkj , y

pU
kj

]
(j ∈ J),

Bp∗
o = 0 are satisfied in model (5).

Definition 7 (Potential profit efficiency in the adjacent period) The DMUo to be eval-
uated is potentially profit efficient in the adjacent period if and only if there exists at
least one set of prices cqo ∈

[
cqLo , cqUo

]
and rqo ∈

[
rqLo , rqUo

]
and at least one set of input-

output data satisfying xqij ∈
[
xqLij , x

qU
ij

]
, yqkj ∈

[
yqLkj , y

qU
kj

]
(j ∈ J), xpio ∈

[
xpLio , x

pU
io

]
and

ypko ∈
[
ypLko , y

pU
ko

]
(p, q = t, t + 1, p �= q), so that Dq∗

o = 0 in model (6).

Definition 8 (Perfect profit efficiency in the adjacent period) The DMUo to be evaluated
is perfectly profit efficient in the adjacent-period time if and only if, for all cqo ∈

[
cqLo , cqUo

]

and rqo ∈
[
rqLo , rqUo

]
and all input-output data, xqij ∈

[
xqLij , x

qU
ij

]
, yqkj ∈

[
yqLkj , y

qU
kj

]
(j ∈ J),

xpio ∈
[
xpLio , x

pU
io

]
and ypko ∈

[
ypLko , y

pU
ko

]
(p, q = t, t + 1, p �= q) are satisfied so that Dq∗

o = 0
in model (6).

1Superscript * indicates optimality.
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In definitions 5 and 7, the profit efficiency of DMUo is measured for some data, while
definitions 6 and 8 refer to the profit efficiency of DMUo for all data. Therefore, perfect
profit efficiency is measured in amore rigid manner than potential profit efficiency. In the
spirit of Park (2001), we can represent these definitions using the following mathematical
formulations, where term UPEW-S (UPEW-P) refers to the uncertain profit efficiency
of DMUp

o = (
xpo , y

p
o
)
with the technology and prices at time p, the within period, for

some (for perfect (all)). Additionally, term UPEA-S (UPEA-P) refers to uncertain profit
efficiency of DMUp

o = (
xpo , y

p
o
)
with technology and prices at time q, the adjacent period,

for some (for perfect (all)) (p, q = t, t + 1, p �= q):

The UPEW-S model:

Bp
o
(
xpo , y

p
o |p = t, t + 1

) = max
(
rpo

)T
y

(
rpo

)T
ypo

−
(
cpo

)T
x

(
cpo

)T
xpo

s.t. − ∑
j∈J λjy

p
j + y ≤ 0

∑
j∈J λjx

p
j − x ≤ 0

∑
j∈J λj = 1

for some{cpio ∈
[
cpLio , c

pU
io

]
, i = 1, ...,m}

for some{rpko ∈
[
rpLko , r

pU
ko

]
, k = 1, ..., s}

for some{xpij ∈
[
xpLij , x

pU
ij

]
, i = 1, ...,m}

for some{ypkj ∈
[
ypLkj , y

pU
kj

]
, k = 1, ..., s}

λj ≥ 0.

(7)

The UPEW-P model:
Model (7) with Bp

o in place of Bp
o and “for all”

in place of “for some.”
(8)

The UPEA-S model:

Dq
o
(
xpo , y

p
o |p, q = t, t + 1, p �= q

) = max
(
rqo

)Ty
(
rqo

)Typo
−

(
cqo

)Tx
(
cqo

)Txpo
s.t. − ∑

j∈J λjy
q
j + y ≤ 0

∑
j∈J λjx

q
j − x ≤ 0

∑
j∈J λj = 1

for some
{
cqio ∈[ cqLio , cqUio ] , i = 1, ...,m

}

for some
{
rqko ∈[ rqLko , rqUko ] , k = 1, ..., s

}

for some
{
xqij ∈[ xqLij , xqUij ] , i = 1, ...,m

}

for some
{
yqkj ∈[ yqLkj , yqUkj ] , k = 1, ..., s

}

for some
{
xpio ∈[ xpLio , xpUio ] , i = 1, ...,m

}

for some
{
ypko ∈[ ypLko , ypUko ] , k = 1, ..., s

}

λj ≥ 0.
(9)

The UPEA-P model:
Model (9) with Dq

o in place of Dq
o and “for all”

in place of “for some.”
(10)
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Clearly, Bp
o ≥ Bp

o (Dq
o ≥ Dq

o) because the feasible region of model (8) (10) is always
contained within the feasible region of model (7) (9).
Using models (7) and (8), we can obtain the interval of profit efficiency of DMUo in the

within-period as
[
Bp
o ,B

p
o

]
. Additionally, by models (9) and (10), the interval of profit effi-

ciency of DMUo in the adjacent period can be obtained as
[
Dq
o ,D

q
o
]
. Bp

o
(
Dq
o
)
is the lower

bound of the interval overall profit efficiency of DMUo from the pessimistic viewpoint in
the within period (adjacent period) and Bp

o
(
Dq
o
)
is the upper bound of the interval overall

profit efficiency of DMUo from the optimistic viewpoint in the within period (adjacent
period).

Remarks 2 It is clear that model (5) is equivalent to the UPEW-S model (7) and model
(6) is equivalent to the UPEA-S model (9).

Because of the notion of maximization “for some” and “for all” in the permissible data,
the UPEW-S (7), UPEW-P (8), UPEA-S (9), and UPEA-P models (10) are equivalent to the
two-level mathematical programs (11), (12), (13), and (14), respectively:

Bp
o = max max

(
rpo

)T
y

(
rpo

)T
ypo

−
(
cpo

)T
x

(
cpo

)T
xpo

cpio ∈
[
cpLio , c

pU
io

]

rpko ∈
[
rpLko , r

pU
ko

]

xpij ∈
[
xpLij , x

pU
ij

]

ypkj ∈
[
ypLkj , y

pU
kj

]

s.t. − ∑
j∈J λjy

p
j + y ≤ 0

∑
j∈J λjx

p
j − x ≤ 0

∑
j∈J λj = 1

λj ≥ 0.

(11)

Model (11) but with “Bp
o = min” in place of “Bp

o = max”. (12)

Dp
o = max max

(
rqo

)Ty
(
rqo

)Typo
−

(
cqo

)Tx
(
cqo

)Txpo
cqio ∈

[
cqLio , c

qU
io

]

rqko ∈
[
rqLko , r

qU
ko

]

xqij ∈
[
xqLij , x

qU
ij

]

yqkj ∈
[
yqLkj , y

qU
kj

]

xpio ∈
[
xpLio , x

pU
io

]

ypko ∈
[
ypLko , y

pU
ko

]

s.t. − ∑
j∈J λjy

q
j + y ≤ 0

∑
j∈J λjx

q
j − x ≤ 0

∑
j∈J λj = 1

λj ≥ 0.

(13)

Model (13) but with “Dp
o = min” in place of “Dp

o = max”. (14)
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In model (11), the inner program calculates the overall profit efficiency for each given
set of

(
xpo , y

p
o
)
for a price vector

(
rpo , c

p
o
)
defined in the outer program, using the technology

of period p, while the outer program determines the set of
(
xpo , y

p
o
)
and price vector

(
rpo , c

p
o
)

that generate the highest overall profit efficiency. Additionally, in model (13), the inner
program calculates the overall profit efficiency for each given set of

(
xpo , y

p
o
)
for a given

price vector
(
rqo , c

q
o
)
using the technology of period q (p, q = t, t+1, p �= q), defined in the

outer program, while the outer program determines the set of
(
xpo , y

p
o
)
and price vector

(
rqo , c

q
o
)
that generate the highest overall profit efficiency. A similar explanation can be

provided for models (12) and (14).
By duality, models (11)-(14) are equivalent to the following models:

Bp
o = max min μo

cpio ∈
[
cpLio , c

pU
io

]

rpko ∈
[
rpLko , r

pU
ko

]

xpij ∈
[
xpLij , x

pU
ij

]

ypkj ∈
[
ypLkj , y

pU
kj

]

s.t.
∑s

k=1 μ
p
ky

p
kj −

∑m
i=1 v

p
i x

p
ij + μo ≥ 0, j = 1, ...n

μ
p
k = rpko(

rpo
)T

ypo
, k = 1, ..., s

vpi = cpio(
cpo

)T
xpo
, i = 1, ...,m

μ
p
k ≥ 0, k = 1, ..., s

vpi ≥ 0, i = 1, ...,m
μ0 free,

(15)

Model (15) but with “Bp
o = min” in place of “Bp

o = max”. (16)

Dp
o = max min μo

cqio ∈
[
cqLio , c

qU
io

]

rqko ∈
[
rqLko , r

qU
ko

]

xqij ∈
[
xqLij , x

qU
ij

]

yqkj ∈
[
yqLkj , y

qU
kj

]

xpio ∈
[
xpLio , x

pU
io

]

ypko ∈
[
ypLko , y

pU
ko

]

s.t.
∑s

k=1 μ
q
ky

q
kj −

∑m
i=1 v

q
i x

q
ij + μo ≥ 0, j = 1, ...n

μ
q
k = rqko

(
rqo

)Typo
, k = 1, ..., s

vqi = cqio
(
cqo

)Txpo
, i = 1, ...,m

μ
q
k ≥ 0, k = 1, ..., s

vqi ≥ 0, i = 1, ...,m
μ0 free.

(17)

Model (17) but with “Dp
o = min” in place of “Dp

o = max”. (18)
First, we proceed to models (16) and (18). Their inner and outer programs have the

same objective of minimization. Therefore, they can be combined into a one-level model
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by considering all constraints of the two programs simultaneously. The one-level models
equivalent to (16) and (18) are (19) and (20), respectively:

Bp
o = min μo

s.t.
∑s

k=1 μ
p
ky

p
kj −

∑m
i=1 v

p
i x

p
ij + μo ≥ 0, j = 1, ...n

μ
p
k = rpko(

rpo
)T

ypo
, k = 1, ..., s

vpi = cpio(
cpo

)T
xpo
, i = 1, ...,m

cpio ∈
[
cpLio , c

pU
io

]

rpko ∈
[
rpLko , r

pU
ko

]

xpij ∈
[
xpLij , x

pU
ij

]

ypkj ∈
[
ypLkj , y

pU
kj

]

μ
p
k ≥ 0, k = 1, ..., s

vpi ≥ 0, i = 1, ...,m
μo free
λj ≥ 0,

(19)

Dp
o = min μo

s.t.
∑s

k=1 μ
q
ky

q
kj −

∑m
i=1 v

q
i x

q
ij + μo ≥ 0, j = 1, ...n

μ
q
k = rqko

(
rqo

)Typo
, k = 1, ..., s

vqi = cqio
(cqo)Tx

p
o
, i = 1, ...,m

cqio ∈
[
cqLio , c

qU
io

]

rqko ∈
[
rqLko , r

qU
ko

]

xqij ∈
[
xqLij , x

qU
ij

]

yqkj ∈
[
yqLkj , y

qU
kj

]

xpio ∈
[
xpLio , x

pU
io

]

ypko ∈
[
ypLko , y

pU
ko

]

μ
q
k ≥ 0, k = 1, ..., s

vqi ≥ 0, i = 1, ...,m
μo free
λj ≥ 0.

(20)

Evidently the abovemodels (19) and (20) are nonlinear programming problems and thus
difficult to solve. To linearize model (19), we introduce variables zp and τp, defined by:
zp = 1

(
cpo

)T
xpo
,

τp = 1
(
rpo

)T
ypo
,

so that
vpi = cpiozp ⇐⇒ cpLio zp ≤ vpi ≤ cpUio zp,
μ
p
k = rpkoτ

p ⇐⇒ rpLko τp ≤ μ
p
k ≤ rpUko τp,

∑s
k=1 r

p
koτ

pypko = 1 ⇐⇒ ∑s
k=1 μ

p
ky

p
ko = 1,

∑m
i=1 c

p
iozpx

p
io = 1 ⇐⇒ ∑m

i=1 v
p
i x

p
io = 1.

Similarly, to the linearization of model (20), we introduce variables zq and τ q,
defined by:
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zq = 1
(
cqo

)Txpo
,

τ q = 1
(
rqo

)Typo
,

so that
vqi = cqiozq ⇐⇒ cqLio zq ≤ vqi ≤ cqUio zq,
μ
q
k = rqkoτ

q ⇐⇒ rqLko τ q ≤ μ
q
k ≤ rqUko τ q,

∑s
k=1 r

q
koτ

qypko = 1 ⇐⇒ ∑s
k=1 μ

q
ky

p
ko = 1,

∑m
i=1 c

q
iozqx

p
io = 1 ⇐⇒ ∑m

i=1 v
q
i x

p
io = 1,

where p, q = t, t + 1, p �= q.
Using the above variable alterations, models (19) and (20) can be converted into the

following programming problems, whose optimal objective values coincide with those of
(19) and (20), respectively:

Bp
o = min μo

s.t.
∑s

k=1 μ
p
ky

p
kj −

∑m
i=1 v

p
i x

p
ij + μo ≥ 0, j = 1, ...n

∑s
k=1 μ

p
ky

p
ko = 1

∑m
i=1 v

p
i x

p
io = 1

cpLio zp ≤ vpi ≤ cpUio zp

rpLko τp ≤ μ
p
k ≤ rpUko τp

xpij ∈
[
xpLij , x

pU
ij

]

ypkj ∈
[
ypLkj , y

pU
kj

]

zp ≥ 0
τp ≥ 0
μ
p
k ≥ 0, k = 1, ..., s

vpi ≥ 0, i = 1, ...,m
μo free
λj ≥ 0,

(21)

Dp
o = min μo

s.t.
∑s

k=1 μ
q
ky

q
kj −

∑m
i=1 v

q
i x

q
ij + μo ≥ 0, j = 1, ...n

∑s
k=1 μ

q
ky

p
ko = 1

∑m
i=1 v

q
i x

p
io = 1

cqLio zq ≤ vqi ≤ cqUio zq

rqLko τ q ≤ μ
q
k ≤ rqUko τ q

xqij ∈
[
xqLij , x

qU
ij

]

yqkj ∈
[
yqLkj , y

qU
kj

]

xpio ∈
[
xpLio , x

pU
io

]

ypko ∈
[
ypLko , y

pU
ko

]

zq ≥ 0
τ q ≥ 0
μ
q
k ≥ 0, k = 1, ..., s

vqi ≥ 0, i = 1, ...,m
μo free
λj ≥ 0.

(22)

Similar to Lemma (1) of (Podinovski 2001), we propose the following Lemma, which
refers to the general weight bound problem:
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Lemma 1 Imposing the absolute bounds of cpLio zp ≤ vpi ≤ cpUio zp, (i = 1, ...,m, zp ≥ 0)
and rpLko τp ≤ μ

p
k ≤ rpUko τp, (k = 1, ..., s, τp ≥ 0) is equivalent to imposing bounds on the

ratios of the weights of the following form:
czLio
czUko

≤ vzi
vzk

≤ czUio
czLko

i, k = 1...,m, k > i, z = p, q,
rzLlo
rzLκo

≤ μz
l

μz
κ

≤ rzUlo
rzLκo

l, κ = 1, ..., s, κ > l, z = p, q.

Let ykj = αkyUkj + (1 − αk)yLkj and xij = βixUij + (1 − βi)xLij for some αk ∈[ 0, 1] and
βi ∈[ 0, 1]. It is easy to show that the first three constraints of models (21) and (22) can be
written as (23) and (24), respectively:

s∑

k=1
γk

(
yUpkj − yLpkj

)
+

s∑

k=1
μ
p
ky

Lp
kj −

m∑

i=1
vpi x

Lp
ij −

m∑

i=1
ωi

(
xUpij − xLpij

)
+ μo ≥ 0, j = 1, ...n

s∑

k=1
γk

(
yUpko − yLpko

)
+

s∑

k=1
μ
p
ky

Lp
ko = 1

m∑

i=1
ωi

(
xUpio − xLpio

)
+

m∑

i=1
vpi x

Lp
io = 1,

(23)

s∑

k=1
γk

(
yUqkj − yLqkj

)
+

s∑

k=1
μ
q
ky

Lq
kj −

m∑

i=1
vqi x

Lq
ij −

m∑

i=1
ωi

(
xUqij − xLqij

)
+ μo ≥ 0, j = 1, ...n

s∑

k=1
γk

(
yUpko − yLpko

)
+

s∑

k=1
μ
q
ky

Lp
ko = 1

m∑

i=1
ωi

(
xUpio − xLpio

)
+

m∑

i=1
vqi x

Lo
io = 1,

(24)

where γk = μkαk and ωi = viβi for each i and k.
By applying Lemma 1 and constraints (23) and (24) to models (21) and (22), we obtain

the equivalent linear formulations of models (21) and (22), called the CR-DEA models, as
follows:

Bp
o = min μo

s.t.
s∑

k=1
γk(y

Up
kj − yLpkj ) +

s∑

k=1
μ
p
ky

Lp
kj −

m∑

i=1
vpi x

Lp
ij −

m∑

i=1
ωi(x

Up
ij − xLpij ) + μo ≥ 0, j = 1, ...n

s∑

k=1
γk(y

Up
ko − yLpko ) +

s∑

k=1
μ
p
ky

Lp
ko = 1

m∑

i=1
ωi(x

Up
io − xLpio ) +

m∑

i=1
vpi x

Lp
io = 1

cpLio
cpUko

≤ vpi
vpk

≤ cpUio
cpLko

, i, k = 1...,m, k > i

rpLlo
rpLκo

≤ μ
p
l

μ
p
κ

≤ rpUlo
rpLκo

, l, κ = 1, ..., s, κ > l
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0 ≤ γk ≤ μ
p
k

0 ≤ ωi ≤ vpi
μ
p
k ≥ 0, k = 1, ..., s

vpi ≥ 0, i = 1, ...,m

μ0, free ,

(25)

Dp
o = min μo

s.t.
s∑

k=1
γk

(
yUqkj − yLqkj

)
+

s∑

k=1
μ
q
ky

Lq
kj −

m∑

i=1
vqi x

Lq
ij −

m∑

i=1
ωi

(
xUqij − xLqij

)
+ μo ≥ 0, j = 1, ...n

s∑

k=1
γk

(
yUpko − yLpko

)
+

s∑

k=1
μ
q
ky

Lp
ko = 1

m∑

i=1
ωi

(
xUpio − xLpio

)
+

m∑

i=1
vqi x

Lp
io = 1

cqLio
cqUko

≤ vqi
vqk

≤ cqUio
cqLko

, i, k = 1...,m, k > i

rqLlo
rqLκo

≤ μ
q
l

μ
q
κ

≤ rqUlo
rqLκo

, l, κ = 1, ..., s, κ > l

0 ≤ γk ≤ μ
q
k

0 ≤ ωi ≤ vqi
μ
q
k ≥ 0, k = 1, ..., s

vqi ≥ 0, i = 1, ...,m

μo, free.

(26)

Now, we proceed to models (15) and (17). By applying the mentioned variable alterations
to (15) and (17), we have:

Bp
o = max min μo

vpi
vpk

∈
[
cpLio
cpUko

, c
pU
io
cpLko

]

μ
p
l

μ
p
κ

∈
[ rpLlo
rpLκo

, r
pU
lo
rpLκo

]

xpij ∈
[
xpLij , x

pU
ij

]

ypkj ∈
[
ypLkj , y

pU
kj

]

s.t.
∑s

k=1 μ
p
ky

p
kj −

∑m
i=1 v

p
i x

p
ij + μo ≥ 0, j = 1, ...n

∑s
k=1 μ

p
ky

p
ko = 1

∑m
i=1 v

p
i x

p
io = 1

μ
p
k ≥ 0, k = 1, ..., s

vpi ≥ 0, i = 1, ...,m
μ0 free,

(27)
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Dp
o = max min μo

μ
q
l

μ
q
κ

∈
[ rqLlo
rpLκo

, r
qU
lo
rqLκo

]

μ
q
l

μ
q
κ

∈
[ rqLlo
rqLκo

, r
qU
lo
rqLκo

]

xqij ∈[ xqLij , xqUij ]
yqkj ∈[ yqLkj , yqUkj ]
xpio ∈[ xpLio , xpUio ]
ypko ∈[ ypLko , ypUko ]

s.t.
s∑

k=1
μ
q
ky

q
kj −

m∑

i=1
vqi x

q
ij + μo ≥ 0, j = 1, ...n

s∑

k=1
μ
q
ky

p
ko = 1

m∑

i=1
vqi x

p
io = 1

μ
q
k ≥ 0, k = 1, ..., s

vqi ≥ 0, i = 1, ...,m

μ0 free.

(28)

Models (27) and (28) are two-level models. Several authors have proposed methods
for solving two-level programs (see, e.g., (Bialas and Karwan 1984; Vicente and Cala-
mai 1994)). However, due to the special structure of models (27) and (28), we introduce
another solution in “Computational aspects” section.
We summarize the facts in the above propositions as follows:

1. If we enclose uncertain data into the profit efficiency model (3) as within-period
model (5), this model measures the upper bound on the profit efficiency of DMUo
in time periods t and t + 1. If we enclose the same uncertain data into the CR-DEA
DEA model in the form of weight restrictions as model (25), this model measures
the lower bound on the profit efficiency of DMUo in time periods t and t + 1.

2. If we enclose uncertain data into the profit efficiency model (4) as adjacent-period
model (6), this model measures the upper bound on the profit efficiency of DMUo
at time t (t + 1) relative to the frontier at time t + 1 (t). If we enclose uncertain
data into the CR-DEA DEA model in the form of weight restrictions as model (26),
this model measures the lower bound on the profit efficiency of DMUo at time t
(t + 1) relative to the frontier at time t + 1 (t).

3. Profit efficiency model (5), model UPEW-S (7), and two-level model (27) yield the
same profit efficiency as potential profit efficiency or the upper bound of profit
efficiency in the within period. Model (5) incorporates uncertain data directly into
the envelopment model. Model (7) measures the same profit efficiency for the
most optimistic viewpoint. A similar argument can be put forward for models (6),
(9), and (28).

4. UPEW-P model (8), two-level model (12), and CR-DEA model (25) yield the same
efficiency as perfect efficiency or the lower bound of the profit efficiency of DMUo
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at time periods t and t + 1 (in the within period). Model (8) calculates the same
profit efficiency of DMUo from the pessimistic viewpoint. A similar argument can
be put forward for model UPEA-P (10), two-level model (14), and CR-DEA model
(26) (in the adjacent period).

Definition 9 The lower and upper bounds of the overall profit MPIs are obtained as
follows:

M =
√

ρt+1
t
ρt
t

× ρt+1
t+1

ρt
t+1

,

M =
√

ρt+1
t
ρt
t

× ρt+1
t+1

ρt
t+1

, where ρ
p
p

(
ρp
p

)
, p = t, t + 1 represents the optimistic (pessimistic)

efficiency in the within period and is computed by model (7)(8) and definition 3. Addition-
ally, ρp

q
(
ρp
q

)
, p, q = t, t + 1, p �= q represents the optimistic (pessimistic) efficiency in the

adjacent-period time, and is computed by model (9)(10) and definition 3.

Theorem 3 Any M ≤ M ≤ M can be considered as the overall profit MPI for DMUo.

Proof See (Emrouznejad et al. 2011).

Emrouznejad et al. (2011) divided the overall MPI of any DMUo into six classes, as
follows:

• No change in productivity class. This class includes all the DMUs with constant
productivity, that is, Eo = {DMUj : Mj = Mj = 1}.

• Fully increasing productivity class. This class includes all the DMUs with increasing
productivity and observed progress under the pessimistic viewpoint, that is,
E++ = {DMUj : 1 < Mj ≤ Mj}.

• Fully decreasing productivity class. This class includes all the DMUs with decreasing
productivity and observed regress under the optimistic viewpoint, that is,
E−− = {DMUj : Mj ≤ Mj < 1}.

• Partially increasing productivity class. This class includes all the DMUs with
increasing productivity under the optimistic viewpoint and no change in productivity
under the pessimistic viewpoint, that is, E+ = {DMUj : Mj = 1,Mj > 1}.

• Partially decreasing productivity class. This class includes all the DMUs with
decreasing productivity under the pessimistic viewpoint and no change in
productivity under the optimistic viewpoint, that is, E− = {DMUj : Mj < 1,Mj = 1}.

• Partially increasing–decreasing productivity class. This class includes all the DMUs
with increasing productivity under the optimistic viewpoint and decreasing
productivity under the pessimistic viewpoint, that is, E = {DMUj : Mj < 1 < Mj}.

Computational aspects
As mentioned in the previous section, we can use CR-DEA models (25) and (26)
to obtain the lower bounds of the overall profit efficiency of DMUo from the
pessimistic viewpoint in the within

(
Bp
o
)

and adjacent periods (Dq
o), respectively.

Regarding the upper bounds, models (27) and (28) are nonlinear two-level pro-
grams and cannot be converted to linear one-level programs. Therefore, we pro-
pose new methods to achieve the upper bounds as follows. We define θ(v,μ) =
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min
{
μo | μo ≥ ∑m

i=1 v
p
i x

p
ij −

∑s
k=1 μ

p
ky

p
kj, v

p
i ,μ

p
k ≥ 0

}
. It can be shown that θ(v,μ) is

piecewise linear, piecewise continuous, and a convex function. Moreover, the feasible
spaces of (27) and (28) are bounded. As such, models (27) and (28) have bounded optimal
solutions that occur on boundary of the feasible spaces. Therefore, we have the following
propositions:

Proposition 1 The optimal objective value of (27) is equal to:

max
{ s∑

k=1
γ (j)∗k

(
yUpkj − yLpkj

)
+

s∑

k=1
μ(j)p∗k yLpkj −

m∑

i=1
v(j)p∗i xLpij −

m∑

i=1
ω(j)∗i

(
xUpij − xLpij

)
, j = 1, ..., n

}

,

(29)

where
(
γ (j)∗, v(j)p∗,μ(j)p∗,ω(j)∗

)
(j = 1, ..., n) are the optimal solutions of the following

linear model:

max
{ s∑

k=1
γk

(
yUpkj − yLpkj

)
+

s∑

k=1
μ
p
ky

Lp
kj −

m∑

i=1
vpi x

Lp
ij −

m∑

i=1
ωi

(
xUpij − xLpij

)
}

, j = 1, ..., n

s.t.
s∑

k=1
γk

(
yUpko − yLpko

)
+

s∑

k=1
μ
p
ky

Lp
ko = 1

m∑

i=1
ωi

(
xUpio − xLpio

)
+

m∑

i=1
vpi x

Lp
io = 1

cpLio
cpUko

vpk ≤ vpi ≤ cpUio
cpLko

vpk i, k = 1...,m, k > i

rpLlo
rpUκo

μ
p
κ ≤ μ

p
l ≤ rpUlo

rpLκo
μ
p
κ l, κ = 1, ..., s, κ > l

0 ≤ γk ≤ μ
p
k

0 ≤ ωi ≤ vpi
μ
p
k ≥ 0, k = 1, ..., s

vpi ≥ 0, i = 1, ...,m.
(30)

Proposition 2 The optimal objective value of (28) is equal to:

max
{ s∑

k=1
γ (j)∗k

(
yUqkj − yLqkj

)
+

s∑

k=1
μ(j)q∗k yLqkj −

m∑

i=1
v(j)q∗i xLqij −

m∑

i=1
ω(j)∗i

(
xUqij − xLqij

)
, j = 1, ..., n

}

,

(31)

where
(
γ (j)∗, v(j)q∗,μ(j)q∗,ω(j)∗

)
(j = 1, ..., n) are the optimal solutions of the following

linear model:

max
{ s∑

k=1
γk

(
yUqkj − yLqkj

)
+

s∑

k=1
μ
q
ky

Lq
kj −

m∑

i=1
vqi x

Lq
ij −

m∑

i=1
ωi

(
xUqij − xLqij

)
}

, j = 1, ...n
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Table 1 Input and output data for the five DMUs in Example 1 at times t and t + 1. Extracted from
Emrouznejad et al. (2011)

DMUj x1j x2j y1j y2j

t t + 1 t t + 1 t t + 1 t t + 1

1 (12, 15) (10, 14) (0.21, 0.48) (0.32, 0.5) (138, 144) (130, 140) (21, 22) (20, 23)

2 (10, 17) (11, 15) (0.1, 0.7) (0.21, 0.4) (143, 159) (137, 150) (28, 35) (24, 30)

3 (4, 5) (3, 7) (0.16, 0.35) (0.22, 0.42) (157, 198) (146, 160) (21, 29) (20, 30)

4 (19, 22) (14, 23) (0.12, 0.19) (0.31, 0.39) (158, 181) (159, 170) (21, 25) (25, 32)

5 (14, 15) (17, 18) (0.06, 0.09) (0.1, 0.17) (157, 180) (160, 189) (28, 40) (18, 35)

s.t.
s∑

k=1
γk

(
yUpko − yLpko

)
+

s∑

k=1
μ
q
ky

Lp
ko = 1

m∑

i=1
ωi

(
xUpio − xLpio

)
+

m∑

i=1
vqi x

Lp
io = 1

cqLio
cqUko

vqk ≤ vqi ≤ cqUio
cqLko

vqk i, k = 1...,m, k > i

rqLlo
rqUκo

μ
q
κ ≤ μ

q
l ≤ rqUlo

rqLκo
μ
q
κ l, κ = 1, ..., s, κ > l

0 ≤ γk ≤ μ
q
k

0 ≤ ωi ≤ vqi
μ
q
k ≥ 0, k = 1, ..., s

vqi ≥ 0, i = 1, ...,m

μ0 free.

(32)

In model (30) (32) we maximize the linear objective functions individually and then
calculate the highest using (29) (31).

Example. We consider five DMUs with two inputs and two outputs, as per Table 1.
Table 2 shows the interval price vectors at time t and t + 1. Using models (25) and
(30), the interval of profit efficiency for DMUo in the within period is

[
Bp
o ,B

p
o

]
and

using models (26) and (32) the interval of profit efficiency for DMUo in the adja-
cent period time is

[
Dq
o ,D

q
o
]
. The overall profit MPIs are shown in Table 3. As per

Table 3, DMU4 is classified in the fully increasing productivity class, which is the

Table 2 Numerical example 1

DMUj (r1j, r1j) (r2j, r2j) (c1j, c1j) (c2j, c2j)

t t + 1 t t + 1 t t + 1 t t + 1

1 [10, 12] [11, 15] [30, 35] [23, 30] [100, 110] [110, 115] [50, 55] [40, 50]

2 [9, 10] [8, 9] [27, 28] [24, 29] [110, 115] [114, 117] [40, 44] [42, 45]

3 [8, 9] [5, 9] [25, 27] [25, 26] [105, 110] [102, 109] [42, 45] [42, 50]

4 [9, 11] [7, 12] [29, 31] [23, 26] [107, 115] [114, 115] [50, 57] [49, 52]

5 [10, 11] [10, 14] [28, 31] [24, 30] [111, 117] [110, 114] [47, 62] [42, 52]
The price vector data for the five DMUs in Example 1 at times t and t + 1
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observed progress under the pessimistic viewpoint. Other DMUs are classified in the
partially increasing–decreasing productivity class and they thus have increasing produc-
tivity under the optimistic viewpoint and decreasing productivity under the pessimistic
viewpoint. DMU3 has the highest productivity progress of 2.975 under the optimistic
viewpoint and DMU5 the highest productivity decrease of 0.217. According to the opti-
mistic viewpoint, all DMUs can be ranked by their productivity progress in the order
DMU3 
 DMU1 
 DMU4 
 DMU5 
 DMU2. However, according to the pessimistic
viewpoint, the productivity regress is in the order DMU4 
 DMU1 
 DMU3 
 DMU5 

DMU2. Obviously, the productivity increase ranking may differ from the productivity
decrease one.

Conclusions
Conventional DEA can be used to compute the productivity changes of a DMU over
time under the profit MPI model, provided that the input, output, input costs, and out-
put prices are known and exact for each DMU. However, in many situations, some inputs
and/or outputs and input-output prices are imprecise. However, the conventional profit
MPI model is not suitable to deal with inexact prices. Emrouznejad et al. (2011) studied
the overall profit MPI using DEA with imprecise data and proposed two novel methods
for measuring overall profit MPI. In this paper, we showed their method has some short-
falls. To overcome these shortfalls, we reformulated the conventional profit MPI model as
an IDEA model by incorporating the available information into profit efficiency models
and the same information into CR-DEAmodels in the form of a cone-ratio weight restric-
tion. Additionally, the lower bounds of profit efficiency were easily calculated by solving
a linear one-level program. Regarding the upper bounds, we proposes a new approach
of solving n linear programming problems for each bound. This is the penalty we pay
to calculate the upper bound of the overall profit efficiency when the data are inexact.
We also presented a numerical example to demonstrate the applicability of the proposed
framework.
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