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Introduction
Forecasting return volatility is a crucial task in investment, option pricing, and risk man-
agement. There are two main ways of forecasting return volatility: The first employs the 
implied volatility derived from option prices as a key predictor. Assessing this method, 
Latané and Rendleman (1976) and Chiras and Manaster (1978) show that implied vol-
atility performs better than historical standard deviations, where implied volatility is 
based on past volatility—e.g., realized volatility and jumps (Busch et  al. 2011; Chris-
tensen and Prabhala 1998). The second way is inferring information from historical data 
and incorporating data into a GARCH-type model (Bollerslev 1986; Glosten et al. 1993) 
and a stochastic volatility (SV) model (Harvey et al. 1994). However, these model types 
rely on low-frequency data—i.e., daily, weekly, or monthly data.

Notably, Andersen et al. (2003) found that models using high-frequency data outper-
form GARCH-type and SV models due to the fact that the low-frequency data omit 
important intraday information (Carnero et al. 2004). In light of the past frequently of 
collection of historical data, various variables and models have been proposed. Initially, 
Andersen and Bollerslev (1998) suggested using the realized volatility (RV), computed 
by summing the squared intraday returns. Following this, it was accepted that both the 
GARCH and SV models can be measured at a high-frequency level, but that the RV is 
more objective (Barndorff-Nielsen and Shephard 2001; Fleming et al. 2003). In any case, 
the Internet has fundamentally changed information diffusion patterns in the stock mar-
ket in the time since, such that scholars began to consider the Internet as one of the 
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most important information sources, incorporating this into the prediction models—
e.g., Internet news (Chua and Tsiaplias 2018; Zhang et  al. 2016), Twitter (Behrendt & 
Schmidt 2018; Li et al. 2017), Sina Weibo (Jin et al. 2016), Internet stock message boards 
(Li et al. 2018), and Google Trends (Da et al. 2011; Dimpfl and Jank 2016). Reflecting the 
present impact of Internet information sources, this paper employs Internet data to fore-
cast stock return volatility.

This paper focuses on the Chinese stock market because this market is dominated by 
individual investors and there is a large number of “netizens.” A recent survey of Shen-
zhen Stock Exchange (2018) shows that individual investors accounts for 75.1% of the 
total in Mainland China equities market. By contrast, individual investors account for 
only 27% and 12.4% of the U.S. equities market (U.S. Securities and Exchange Commis-
sion 2013) and the London Stock Exchange (U.K. Office of National Statistics 2020), 
respectively. According to the 44th China Statistical Report on Internet Development 
(China Internet Network Information Center 2019), there are about 854 million “neti-
zens” in China. These country-level characteristics provide a rare opportunity to inves-
tigate the predictability of individual investors’ information-seeking behavior for return 
volatility, where the Baidu Index is selected as an appropriate proxy for individual inves-
tors’ information-seeking behavior, given that, as illustrated by Zhang et  al. (2013), 
the Baidu Index provides more authentic, scientific, and objective results than Google 
Trends.1 For the empirical design, we consider the constituent stocks of the SSE 50 
Index, comparing various forecasting models deriving from Corsi’s (2009) heterogene-
ous autoregressive (HAR) model. The HAR-type models consider multiscaling features 
of financial data, where different market participant actions generate different volatil-
ity components. Thus, HAR-type models not only produce long-memory volatility (over 
months), but also deliver clear economic interpretations, which perform better than 
fractional integration models. Notably, standard GARCH and SV models are not able to 
reproduce all these features.

Specifically, we construct a novel HAR-type model by incorporating the Baidu Index—
i.e., the HAR-RSV-B model, which contains positive and negative realized semivariance, 
to forecast RV. Therefore, our paper contributes to the existing literature in two ways. 
Firstly, it contributes to the forecasting literature (e.g., Andersen et al. 2007; Corsi and 
Reno 2009; Shen et al. 2017) by advocating for the use of a novel and superior predic-
tor—i.e., a weighted Baidu Index. In particular, we find that its predictive ability is more 
accurate in the long-run, which is interesting as most studies analyzing the Internet 
communication effect focus on the performance of investor attention in the short term 
(e.g., Audrino et al. 2020; Bollen et al. 2011; Hamid and Heiden 2015; Ramos et al. 2020; 
Tantaopas et al. 2016; Vozlyublennaia 2014). Secondly, our findings accord with recent 
studies on the interdependence between Internet-based activities and stock market per-
formance (Ping and Li 2018; Wen et al. 2019; Yuan 2019). Our study analyzes the predic-
tive power of jump and continuous components, semivariance, and signed jumps that 
coexist with investor attention and provide evidence regarding the mechanisms of con-
tinuous (Andersen et al. 2007) and jump components (Martens et al. 2009).

1 For a detailed illustration, refer to Sect. Realized volatility: Description of Baidu Index of Zhang et al. (2013).
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The remainder of this paper is organized as follows. Section Literature review reviews 
the relevant literature; Sect.  Methodology outlines the methodological approach; 
Sect. Data describes the data used; Sect. Empirical results and discussion presents the 
results; and Sect. Conclusion concludes.

Literature review
With more and more frequently collected (intraday) historical data becoming common-
place in financial markets, more sophisticated methods of forecasting return volatil-
ity have recently been demanded. Although Blair et al. (2001) found that intraday data 
only provided little added benefit in implied volatility. The empirical results of Martens 
and Zein (2002) and Pong et  al. (2004) indicate that implied volatility is able to fore-
cast at least as accurately as GARCH models using high-frequency data. So, recent stud-
ies have identified a trend of convergence between various methods: Koopman et  al. 
(2005) introduced RV into a GARCH model to perfect the forecast performance, Deo 
et al. (2006) combined an ARFIMA model with a stochastic volatility model to forecast 
realized volatility, Dobrev and Szerszen (2010) estimated stochastic volatility by realized 
volatility measures, Hansen et al. (2012) proposed a measurement equation that added 
the realized measure to the conditional variance of returns, and Shin and Shin (2019) 
applied a vector error correction model to take advantage of the cointegration relation 
between realized volatility and implied volatility.

Intraday data contains many forms of disaggregated information that can improve the 
accuracy of volatility predictions. Andersen et al. (2004) showed that simple time series 
models based on RV outperform GARCH-class models. In their 2004 study, Barndorff-
Nielsen and Shephard produced an asymptotic model to separate quadratic variation 
into its continuous and jump components. When these two parts are incorporated into 
the HAR model, the relevant HAR-CJ models appear (Andersen et al. 2007). The litera-
ture initially considered jumps to exhibit weak forecasting ability because of their high 
prevalence and less enduring nature; but continuous components to be exactly opposite 
(Andersen et al. 2007; Forsberg and Ghysels 2006). However, in finding a small sample 
bias for bi-power variation in computing jumps, Corsi et al. (2010) proposed that jumps 
also have a significant impact on future volatility.

Additionally, semivariance is an important measurement. However, since numerous 
empirical studies (e.g., Chunhachinda et al. 1997; Fama 1965) show that security returns 
are not symmetrically distributed, a variable is needed to measure the investment risk. 
Semivariance, as introduced by Markovitz (1959), is one of the common downsides to 
risk measures (Huang 2008a). However, Choobineh and Branting (1986) specify optimal 
estimators for semivariance, and semivariance is applied in asset pricing models by Ang 
et al. (2006) and in portfolio choice by Huang (2008b), as well as in other sectors.

The use of realized volatility has advantages for long-memory models (Koopman et al. 
2005). These long-memory fractional integration models were popular in the past (Shin 
2018), but, more recently, diverse modifications based on the HAR model have been 
proposed by the literature. For instance, Corsi and Reno (2009) added negative returns 
to investigate the asymmetric leverage effect, a number of empirical analyses indicated 
that leveraged HAR models improve forecasting ability (e.g., Asai et al. 2012; Audrino 
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and Knaus 2016), and Patton and Sheppard (2015) constructed various HAR-type mod-
els with realized semivariance and jumps.

Through more recent studies, scholars continued to improve the ability of models to 
forecast stock market volatility. Wu and Hou (2019) and Yuan (2019) find that time-
varying parameters have greater forecasting accuracies than constant parameters, 
Wang et al. (2019) find that time-varying transition probabilities (TVTPs) also help the 
Markov-switching heterogeneous autoregressive (MS-HAR) model perform better, Ma 
et al. (2019) construct a new jump component in the U.S. stock market, and Ping and Li 
(2018) propose a truncated two-scale realized volatility (TTSRV) estimator as the con-
tinuous part of RV.

The study of the determinants of realized volatility is mainly divided into two aspects. 
The first relates to the investor agent and participant behavior. In this area of study, Lux 
and Marchesi (1999) found that noise trade can generate large fluctuations in periods of 
high volatility, Foucault et al. (2011) showed that retail traders contribute to about 23% 
of volatility in stock returns, and Barber and Odean (2008) discovered that individual 
investors are net buyers of attention-grabbing stocks. The second aspect is the effects of 
related factors on volatility. For instance, Peltomäki et al. (2018) estimate three practical 
innovations of the investor attention variable in equity and currency markets, Andrei 
and Hasler (2015) find that both attention and uncertainty are key determinants of asset 
prices, and Hervé et al. (2019) find investor attention and the participant structure of the 
market to be closely related.

There are two primary methods of measuring investor attention. The first is direct 
measurement from the asset itself. Avramov et  al. (2006) classify informed and unin-
formed traders by trade sizes. Many attention-grabbing events are proposed and con-
firmed, like unusual trading volumes and extreme returns (Barber and Odean 2008), and 
returns and record events of broader market indeces (Yuan 2015; Hu et al. 2020, 2021). 
The second is indirect proxies related to the asset. As investors now commonly use the 
Internet as a primary information channel, many recent studies have constructed novel 
proxies,2 linking them to investors’ psychological biases.

Methodology
This section provides an empirical definition of volatility and of the components 
extracted from intraday data and the Baidu Index that will be used in our models (i.e., 
continuous components, semivariance, signed jumps, and investor attention).

Realized volatility

For a given day t and sample frequency 1/N  , the daily realized volatility proposed by 
Andersen and Bollerslev (1998) is defined as:

(1)RV t,N =
N+1∑

j=2

r2t,j

2 Many novel proxies based on Internet information have been described in the Introduction. For brevity, we do not 
repeat them in this section.
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where rt,j = 100
(
lnPt,j − lnPt,j−1

)
 is an intraday return ( j = 2, . . . ,N + 1 ) on day t . Pt,j 

is the last price at time j on day t . Therefore, there are N  intervals and N + 1 intraday 
closing prices in one trading day. The call market dominates price discovery (Ellul et al. 
2009), and is also a part of daily variance. As such, we adjust the realized volatility to:

where rt,1 = 100
(
lnPt,1 − lnPt−1,end

)
 is the call auction variance on day t , Pt,1 is the 

opening price of continuous trading on day t , and Pt−1,end is the closing price on day 
t − 1 . RV t is the daily complete realized volatility on day t . The length of the supplemen-
tal return series rt,j is M = N + 1.

Jump and continuous components

We employ a standard jump-diffusion process to estimate the log price of the SSE 50 
index p(t) on a trading day:

where µ(t) and σ(t) denote the drift and instantaneous volatility, Wt is a standard Brown-
ian motion and κdqt is the pure jump component. Barndorff-Nielsen and Shephard 
(2004) prove that when M → ∞ daily realized volatility is a consistent estimator of 
quadratic variation QV t:

where 
∫ t
t−1σ

2
s ds is an integrated variation of the continuous component and 

∑
t−1<s≤t κ

2
s  

is the jump component. Meanwhile, the continuous component can be estimated by the 
realized bi-power variation (RBV) proposed by Barndorff-Nielsen and Shephard (2004):

where µp = E
(
|Z|p

)
= 2p/2

Ŵ((p+1)/2)
Ŵ(1/2)  is the mean of the absolute value of a standard 

normally distributed random variable and RBV  is a consistent estimator of integrated 
variation. Following Barndorff-Nielsen and Shephard (2006) and Huang and Tauchen 
(2005), we use Z-statistics to test the significance of the jump component:

where RTQt = Mµ−3
4/3(

M
M−4 )

∑M
j=5

∣∣rt,j−4

∣∣4/3∣∣rt,j−2

∣∣4/3∣∣rt,j
∣∣4/3 is the jump-robust real-

ized tri-power quarticity statistic, µ1 =
√
2/π  and µ4/3 = 2

2
3Ŵ( 76 )Ŵ(

1
2 )

−1.
Thus, the jump component Jt can be defined as:

(2)RV t = RV t,N + r2t,1 =
M∑

j=1

r2t,j

(3)dp(t) = µ(t)dt + σ(t)dWt + κdqt

(4)RVt
M→∞→ QV t =

∫ t

t−1
σ 2
s ds +

∑

t−1<s≤t

κ2s

(5)RBV t = µ−2
1

M

M − 2

M∑

j=3

∣∣rt,j
∣∣∣∣rt,j−2

∣∣

(6)
Zt =

(RV t − RBV t)RV
−1
t√

(µ−4
1 + 2µ−2

1 − 5) 1
Mmax(1,

RTQt

RBV2
t
)
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where I(•) is the indicator function used to identify the significance and the significance 
threshold α is 0.99, as per Andersen et  al. (2007). Thus, the remainder of the realized 
volatility is continuous variation Ct , which can be calculated as:

Semivariance and signed jumps

The realized semivariance is proposed by Barndorff-Nielsen et al. (2008). The negative 
realized semivariance estimator is defined as:

Whilst the positive realized semivariance estimator is written as:

The signed jumps defined by Patton (2011) can be constructed as:

Furthermore, the signed jumps can be divided into positive signed jumps �Jt I[�Jt>0] and 
negative signed jumps �Jt I[�Jt<0].

Investor attention based on the Baidu Index

The Baidu Index is based on the number of times users search for keywords, such that it 
reflects the interest of search engine users to content related to keywords. When inves-
tors are interested in one stock, they may search for the security name or its company 
name in a search engine. However, other users, who are not investors, are more likely 
to search the company name for contact or recruitment information rather than invest-
ment information. Therefore, as a proxy for investor attention, the search query volume 
of a company name is likely to include a lot of noise, such that the Baidu Index of a secu-
rity name is more effective. Thus, to investigate the attention given to a security mar-
ket index, we compute the capitalization-weighted sum of the aggregate Baidu Index of 
market index components, not market index name, as the proxy variable (Zhang and 
Wang 2015). Because individual investors are more likely to influence the market index 
fluctuations by dealing stocks than by trading stock index futures, and generally, institu-
tional investors also do not search for stock index futures before trading them. Thus, the 
proxy variable for investor attention, Bt , is defined as:

(7)Jt = (RV t − RBV t)× I[Zt>�α ]

(8)Ct = RBV t × I[Zt>�α ] + RV t × I[Zt≤�α ]

(9)RSV−
t =

M∑

j=1

r2t,j × I[rt,j<0]

(10)RSV+
t =

M∑

j=1

r2t,j × I[rt,j>0]

(11)�Jt = RSV+
t − RSV−

t

(12)Bt =
∑S

c=1(capc,t • ln(1+ bc,t))∑S
c=1 capc,t



Page 7 of 31Zhang et al. Financ Innov             (2021) 7:7  

where capc,t is the market capitalization of component security c in the given market 
index on day t and bc,t is the Baidu Index of the component security name. S is the num-
ber of shares in the market index.

Model specifications

This paper uses 22 models: 11 existing models and 11 models created for this analysis. 
These new models are nested models, formulated by adding B to previous models.

Model 1: HAR‑RV

The HAR model, as proposed by Corsi (2009), forms the basis of all the models used in 
our research because it reproduces the long-memory effect of asset volatility. It is speci-
fied as:

where h is the forecasting horizon, RV t+1,t+h is the average realized volatility from t + 1 
to t + h , and RV t+1,t+h = (RV t+1 + RV t+2 + · · · + RV t+h)/h . The forecasting result 
considers the last 1-day, 1-week, and 1-month realized variance, which, according to 
Corsi (2009), correspond to short-term, medium-term and long-term effects.

Model 2: HAR‑RV‑J

Andersen et al. (2007) developed their HAR-RV-J model to improve forecast accuracy, 
adding the last daily jump component to the HAR-RV model to produce:

where Jt is the jump variation on day t , as computed by Eq. (7).

Model 3: HAR‑CJ

The HAR-CJ model proposed by Andersen et al. (2007) is also based on the HAR-RV 
model, disaggregating realized volatility in each horizon into jump and continuous com-
ponents, as below:

where Ct is the continuous component on day t defined in Eq. (8), Ct−4,t is the average 
continuous variation over the period [t − 4, t] , and Ct−21,t is the average of the month-
lag continuous component. Jt−4,t and Jt−21,t are the average weekly and monthly jumps, 
respectively.

Model 4: PS

The PS model proposed by Patton and Sheppard (2015) decomposes daily realized vola-
tility into positive and negative realized semivariance, as below:

where RSV−
t  is the negative realized semivariance defined in Eq.  (9) and RSV+

t  is the 
positive realized semivariance specified in Eq. (10).

(13)RVt+1,t+h = β0 + β1RVt + β5RVt−4,t + β22RVt−21,t + εt

(14)RVt+1,t+h = β0 + β1RVt + β5RVt−4,t + β22RVt−21,t + βJ1Jt + εt

(15)
RVt+1,t+h = β0+βC1Ct+βJ1Jt+βC5Ct−4,t+βJ5Jt−4,t+βC22Ct−21,t+βJ22Jt−21,t+εt

(16)RVt+1,t+h = β0 + β−
1 RSV

−
t + β+

1 RSV
+
t + β5RVt−4,t + β22RVt−21,t + εt
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Model 5: PSLev

The PSLev model adds the leverage effect, as defined by Martens et al. (2009) and generated 
by negative returns, to the PS model. Patton and Sheppard (2015) proposed assessing if the 
leverage effect leads to a superior significance of the negative realized semivariance. The 
model is specified as:

where RV tI[ri<0] is the leverage effect and I[ri<0] is the indicator function that only a neg-
ative return is valid for computing realized volatility in Eq. (1).

Model 6: HAR‑RSV

The model developed by Patton and Sheppard (2015) divides realized volatility into positive 
realized semivariance and negative realized semivariance to assess whether positive and 
negative parts have different impacts on forecasting. The model is specified as:

where RSV+
t−4,t and RSV−

t−4,t are average weekly positive and negative semivariance, 
respectively. RSV+

t−21,t and RSV−
t−21,t are semivariance for the month horizon.

Model 7: HAR‑RSV‑J

Chen and Ghysels (2011) produce their HAR-RSV-J model by adding the daily lag jump 
component to the HAR-RSV model, such that this model can be specified as:

Model 8: HAR‑RV‑SJ

The HAR-RV-SJ model investigates the effect of signed jumps by replacing the daily real-
ized volatility with continuous component and signed jumps in HAR-RV models. It is spec-
ified as:

where �Jt is the signed jumps on day t , which is defined in Eq. (11).

Model 9: HAR‑CSJ

This model is identical to the HAR-CJ model except for the replacement of jump compo-
nents with signed jumps. We consider longer-period signed jumps than previous HAR-RV-
SJ models by specifying that:

where �Jt−4,t and �Jt−21,t are week-lag and month-lag signed jumps.

(17)
RVt+1,t+h = β0+β−

1 RSV
−
t +β+

1 RSV
+
t +βm1RVtI[rt<0]+β5RVt−4,t+β22RVt−21,t+εt

(18)
RVt+1,t+h = β0 + β−

1 RSV
−
t + β+

1 RSV
+
t + β−

5 RSV
−
t−4,t + β+

5 RSV
+
t−4,t

+ β−
22RSV

−
t−21,t + β+

22RSV
+
t−21,t + εt

(19)
RVt+1,t+h = β0 + β−

1 RSV
−
t + β+

1 RSV
+
t + β−

5 RSV
−
t−4,t + β+

5 RSV
+
t−4,t

+β−
22RSV

−
t−21,t + β+

22RSV
+
t−21,t + βJ1Jt + εt

(20)RVt+1,t+h = β0 + βδJ1�Jt + βC1Ct + β5RVt−4,t + β22RVt−21,t + εt

(21)
RVt+1,t+h = β0 + βδJ1�Jt + βC1Ct + βδJ5�Jt−4,t + βC5Ct−4,t

+ βδJ22�Jt−21,t + βC22Ct−21,t + εt
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Model 10: HAR‑RV‑SJd

The HAR-RV-SJd model represents an improvement over the HAR-RV-SJ model by 
dividing daily signed jumps into positive signed jumps and negative signed jumps, as 
below:

where �Jt I[�Jt<0] is the negative daily signed jump and �Jt I[�Jt>0] is the positive daily 
signed jump.

Model 11: HAR‑CSJd

The HAR-CSJd was proposed by Sévi (2014) and considers many previously stated fac-
tors, including dividing signed jumps into positive and negative parts, long-period vari-
ables and continuous components. It is written as:

Model 12: HAR‑RV‑B

The HAR-RV-B model is a new specification that adds investor attention to the HAR-
RV model. We concentrate on the forecast accuracy improvement that B provides, by 
specifying:

where Bt is the capital-weighted Baidu Index defined in Eq. (12).

Model 13 to 22: B Models

We then develop ten further models by adding Bt to Models (2) to (11) to make Models 
(12) to (22), which all end with “−B.” To avoid repetition, we omit the descriptions of 
these new models, but Table 1 displays the names and IDs of all 22 models.

Model comparison

The model comparison consists of in-sample analysis and out-of-sample analysis, with 
OLS regression applied to investigate the aptness of a linear explanation. According to 
Giot and Laurent (2007), an out-of-sample analysis is the only effective way to evaluate 
forecasting performance in realized volatility. Generally, the DMW statistic, developed 
by Diebold and Mariano (1995) and West (1996), is widely used within the forecasting 
literature.

The DMW test needs a loss function to measure the difference between a real value and 
a forecasted result in the out-of-sample period. As we use a proxy to estimate the volatility 

(22)
RVt+1,t+h = β0 + β−

δJ1�Jt I[�Jt<0] + β+
δJ1�Jt I[�Jt>0] + βC1Ct

+ β5RVt−4,t + β22RVt−21,t + εt

(23)

RVt+1,t+h = β0 + β−
δJ1�Jt I[�Jt<0] + β+

δJ1�Jt I[�Jt>0] + βC1Ct

β−
δJ5�Jt−4,t I[�Jt−4,t<0] + β+

δJ5�Jt−4,t I[�Jt−4,t>0] + βC5Ct−4,t

+ β−
δJ22�Jt−21,t I[�Jt−21,t<0] + β+

δJ22�Jt−21,t I[�Jt−21,t>0] + βC22Ct−21,t + εt

(24)RVt+1,t+h = β0 + β1RVt + β5RVt−4,t + β22RVt−21,t + βBBt + εt
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instead of observing it directly, a robust loss function is needed to rank two competing 
models unbiasedly (Patton 2011). As a result of its robustness, Patton (2011) proposes the 
Q-LIKE loss function, which is defined as:

where σ̂ 2 is a conditionally unbiased volatility proxy, such as realized volatility and v is 
the forecasted volatility. Then, the difference in loss function for Models A and B at time 
t is defined as:

With a given rolling window size, the moving process will compute a series of losses. The 
DMW statistic is then given by:

where 
−
d{A,B} is the mean of the difference and V̂ar

(
−
d{A,B}

)
 is an approximate asymptotic 

standard variance, which can be estimated as:

where P is the length of the loss series and h is the forecast horizon. γk is the autocovari-
ance of dt , which can be computed by:

(25)L
(
σ̂ 2, v

)
= logv +

σ̂ 2

v

(26)dt,{A,B} = L
(
σ̂ 2
t , v

A
t

)
− L

(
σ̂ 2
t , v

B
t

)

(27)
DM − QLIKE{A,B} =

−
d{A,B}√

V̂ar

(
−
d{A,B}

)

(28)V̂ar

(
−
d

)
=

1

P

(
γ̂0 + 2

h∑

k=1

γ̂k

)

Table 1 Models specifications

Existing models New models

ID Model name Reference Equation 
number

ID Model name Equation 
number

1 HAR-RV Corsi (2009) (13) 12 HAR-RV-B (24)

2 HAR-RV-J Andersen et al. (2007) (14) 13 HAR-RV-J-B

3 HAR-CJ Andersen et al. (2007) (15) 14 HAR-CJ-B

4 PS Patton and Sheppard (2015) (16) 15 PS-B

5 PSLev Patton and Sheppard (2015) (17) 16 PSLev-B

6 HAR-RSV Patton and Sheppard (2015) (18) 17 HAR-RSV-B

7 HAR-RSV-J Chen and Ghysels (2011) (19) 18 HAR-RSV-J-B

8 HAR-RV-SJ Patton and Sheppard (2015) (20) 19 HAR-RV-SJ-B

9 HAR-CSJ Sévi (2014) (21) 20 HAR-CSJ-B

10 HAR-RV-SJd Patton and Sheppard (2015) (22) 21 HAR-RV-SJd-B

11 HAR-CSJd Sévi (2014) (23) 22 HAR-CSJd-B
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However, the DMW statistic is inappropriate when comparing nested models. Clark 
and West (2007) adjust the mean squared prediction error (MSPE) and propose the CW 
statistic. The MSPE of a parsimonious model is expected to be smaller than that of a 
larger model, as an MSPE-adjusted model is needed to account for the noise (Clark and 
West 2007).

By way of explanation, we take Model B as the larger model which nests the smaller 
Model A. h-day ahead forecasts are conducted at time t , such that the real value at time 
t + h is yt+h and the forecasts of the two models are ŷ1t,t+h and ŷ2t,t+h with correspond-
ing forecast errors yt+h − ŷ1t,t+h and yt+h − ŷ2t,t+h . Generally, the sample MSPE is com-
puted by 

(
yt+h − ŷ1t,t+h

)2 and 
(
yt+h − ŷ2t,t+h

)2 . Improving on this form, the adjusted 
MSPE is defined as:

Letting 
−
f  be the sample average of f̂t+h , the test statistic becomes:

where P is the forecasting length. We reject the null hypothesis if the statistic is greater 
than + 1.282 at a 10% significant level and + 1.645 at a 5% level.

Data
This paper uses data from the SSE 50 Index of China’s securities market. The SSE 50 
Index contains 50 stocks of the Shanghai Stock Exchange that are sufficiently large in 
scale and have good liquidity, and are broadly representative of Chinese enterprises. The 
sampling frequency of realized variance is five minutes because very few frequencies 
can beat standard five-minute realized volatility measures in forecasting exercises (Liu 
et al. 2015). We downloaded all five-minute high-frequency price data from the RESSET 
dataset.

The Baidu Index data is taken from https ://index .baidu .com,3 which supplies separate 
indices for different client devices and geographical regions. However, we use the com-
plete index from all regions and devices to investigate the attention of the whole market. 
We downloaded the component security list, security name, and weight on each trading 
day from the RESSET dataset.

The investor attention Bt , defined in Eq. (12), is a weighted aggregate measure of the 
Baidu Index for all SSE 50 companies, except those securities whose names are not 
included in the keyword directory. Figure 1 illustrates the time series of Bt over the 

(29)γ̂k =
1

P

n∑

t=k+1

(
dt−

−
d

)(
dt−k−

−
d

)

(30)f̂t+h =
(
yt+h − ŷ1t,t+h

)2 −
[(
yt+h − ŷ2t,t+h

)2 −
(
ŷ1t,t+h − ŷ2t,t+h

)2]

(31)

√
P

−
f√

var

(
f̂t+h−

−
f

)

3 The Baidu Index (https ://index .baidu .com/Helpe r/?tpl=help) provides data updates daily. The previous day’s Baidu 
Index is usually available before the beginning of market trading.

https://index.baidu.com
https://index.baidu.com/Helper/?tpl=help
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entire sample period. It shows that investor attention boomed in 2015, when the Chi-
nese stock market was experiencing large fluctuations. In other periods, fluctuations 
are not as exaggerated and occur over shorter periods.

Since Baidu only began publishing its “Baidu Index” product in January 2011, the 
study’s sample period is from January 2011 to May 2019. We remove all non-trading 
days and obtain 2029 daily observations. Each record contains one realized volatility, 
RV t , the jump component, Jt , the continuous component, Ct , the positive semivari-
ance, RSV+

t  , the negative semivariance, RSV−
t  , signed jumps �Jt , and investor atten-

tion, Bt , for that day.

Fig. 1 Investor attention (B) based on Baidu Index

Fig. 2 Log-returns (top panel), realized volatility (middle panel) and sqrt root of signed jump (bottom panel) 
of SSE 50 over the period. We square the absolute value of signed jumps and keep the sign to reduce the 
data range
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The logarithm of daily returns, realized volatility and signed jumps for the SSE 50 are 
shown by Fig. 2. Periods of relatively low volatility clustering are observed in 2013 and 
2018, with a period of very high volatility in 2015. Daily returns and signed jumps are 
prone to large fluctuations, often moving in unison. Additionally, we find that negative 
signed jumps are more likely to cause higher volatility in 2013, 2015, and 2018, as would 
be expected when forecasting short-term volatility.

Figure  3 compares the autocorrelation of realized volatility ( RV  ), positive realized 
semivariance ( RSV+ ), negative realized semivariance ( RSV− ), continuous components 
( C ), jump components ( J  ), and signed jumps ( �J  ). The results for RV  , RSV+ , RSV− , and 
C all reveal autocorrelation and long-memory processes, but the continuous component 
displays a more regular autocorrelation. We observe that J  and �J  are only autocorre-
lated over only one day, indicating that long-term jumps and signed jumps are almost 
impossible to predict.

Table 2 reports the statistical properties of all variables for all models. It reveals that 
the average value of daily, weekly, and monthly variables is approximately equal, but 
that the variance gradually decreases as the timespan increases. According to the Ljung-
Box Q-statistic results, all the variables reject the null hypothesis, and show dynamic 
dependence at a lag of 5, 10, and 15 days. This phenomenon is beneficial for our regres-
sion models. The last column of Table 2 shows the results of an augmented Dickey-Fuller 
test, which indicates that all variables are stable time series except for monthly mean 
realized volatility, RV t−21,t , the monthly continuous component, Ct−21,t , and investor 
attention, Bt.

Empirical results and discussion
This section provides the main results. Firstly, an in-sample analysis of all 22 mod-
els forecasting average realized volatility for 1–66  days is provided. We then compare 
the out-of-sample performance of both existing models and new models. The number 
of daily observations in our sample is 2008 (from January 2011 to May 2019). These 
observations are divided into two subgroups: in-sample volatility data covering the first 
1000 days and out-of-sample data covering the remaining 1008 days.

In‑sample analysis

We estimate Models (1) to (22) introduced in the previous section through OLS regres-
sion for h =1–66 (a forecasting horizon ranging from 1 to 66 days that covers the short 
term, medium term and long term). This provides a clear picture of the performance of 
each model and the predictive power of various components.

First, Fig.  4 compares the performance of existing models and new models by plot-
ting the mean adjusted  R2 of each model type. These values are high in the short-term 
but are much lower when the forecast horizon is longer than 15 days. As the time range 
increases, the gap between existing models and new models is found to widen and the 
new models perform even better in long-term forecasting. Evidently, it is investor atten-
tion (Bt) that improves the precision of forecasts.

Table 3 presents more model-specific results over different time horizons. When pre-
dicting the realized volatility of the next day, the results of old models and new models 
are found to be very similar, as the Baidu Index only improves accuracy in poor models. 
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Table 2 Summary statistics for all variables

Q(5), Q(10) and Q(15) are the Ljung-Box Q-statistics with 5, 10, 15 trading days lag. The last column is augmented Dickey–
Fuller test statistic. ***, **, * indicate statistical significance at 1%, 5% or 10% level, respectively

Mean Std Skewness Kurtosis Q(5) Q(10) Q(15) ADF test

RV t 2.0356 4.3549 8.4772 102.1690 3000.5*** 4064.5*** 4600.5*** − 19.0158***

RV t−4,t 2.0302 3.5615 6.8019 61.1569 7072.3*** 9618.7*** 10,852*** − 4.9322***

RV t−21,t 2.0255 2.8059 4.3552 23.1870 9510.3*** 17,147*** 22,623*** − 1.5736

Jt 0.3226 2.0344 17.7191 409.9864 103.6*** 110.5*** 125.0*** − 41.3351***

Jt−4,t 0.3222 1.0651 9.6433 124.0903 3311.8*** 3392.5*** 3434.2*** − 11.6409***

Jt−21,t 0.3199 0.5934 4.3531 24.2468 8381.0*** 13,660*** 16,480*** − 4.2723***

Ct 1.7130 3.3405 7.0078 65.9576 4002.3*** 5655.4*** 6548.1*** − 15.6743***

Ct−4,t 1.7080 2.8584 6.0201 48.5859 7566.3*** 10,892*** 12,649*** − 4.1946***

Ct−21,t 1.7056 2.3411 4.2527 24.7815 9598.7*** 17,513*** 23,343*** − 1.3818

RSV
−
t 1.0354 2.7893 12.2875 225.3263 1110.0*** 1633.2*** 1890.0*** − 26.0836***

RSV
+
t

1.0002 2.2057 10.5777 183.2157 2551.0*** 3307.6*** 3640.3*** − 22.1200***

RSV
−
t−4,t 1.0330 1.9408 6.4176 53.8677 6129.0*** 8345.7*** 9478.0*** − 6.8134***

RSV
+
t−4,t

0.9972 1.7340 7.3391 72.0839 7034.2*** 9332.2*** 10,302*** − 5.2929***

RSV
−
t−21,t 1.0291 1.4850 4.0589 19.7200 9426.1*** 17,057*** 22,646*** − 2.0335**

RSV
+
t−21,t

0.9964 1.3459 4.6139 26.3499 9479.2*** 16,941*** 22,072*** − 1.6804*

RV t I[ri<0] 1.0137 3.5338 11.8799 196.9773 486.3*** 738.5*** 848.2*** − 33.4634***

�Jt − 0.0352 2.5151 − 5.7525 230.0335 143.8*** 163.2*** 175.3*** − 46.0637***

�Jt I[�Jt<0] − 0.3867 2.0237 − 17.4996 396.7764 49.81*** 85.92*** 107.4*** − 39.6309***

�Jt I[�Jt>0] 0.3515 1.3994 20.2655 603.1561 229.6*** 248.2*** 256.0*** − 39.8506***

�Jt−4,t − 0.0357 0.9291 − 3.2872 45.5140 1573.0*** 1600.9*** 1638.4*** − 18.6343***

�Jt−4,t I[�Jt−4,t<0] − 0.2219 0.7544 − 7.7952 77.4435 2286.1*** 2374.6*** 2393.1*** − 14.7598***

�Jt−4,t I[�Jt−4,t>0] 0.1861 0.4597 9.0984 145.1430 1075.6*** 1107.5*** 1113.3*** − 19.9480***

�Jt−21,t − 0.0327 0.4005 − 2.2144 8.2741 6750.3*** 10,805*** 12,539*** − 9.2129***

�Jt−21,t I[�Jt−21,t<0] − 0.1329 0.3298 − 3.6243 15.3696 6965.5*** 11,229*** 13,247*** − 8.1011***

�Jt−21,t I[�Jt−21,t>0] 0.1002 0.1581 2.3289 6.6759 6086.9*** 9600.1*** 11,392*** − 8.6667***

Bt 902.2128 39.2789 1.7131 3.1501 9498.5*** 18,584*** 27,309*** − 0.1618

Fig. 4 The mean adjusted  R2 of 11 existing models and 11 new models. Existing models are model (1) to (11) 
and new models denote model (12) to (22). While calculating the average, the weight of each model is the 
same
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In forecasting medium-term volatility, the Baidu Index plays a more important role, 
such that new models perform better. The HAR-CSJd-type models perform the best, 
producing the highest adjusted  R2 values either with or without the Baidu Index, but 
the gap between HAR-CJ-type, HAR-CSJ-type, and HAR-CSJd-type models is reduced. 
These three model types with continuous components offer improvements on all other 
models, whilst the positive and negative semivariance in the HAR-RSV-type and HAR-
RSV-J-type models also improve forecasting ability. This confirms the positive impact of 
disaggregating the realized volatility in prediction.

Finally, we choose the time ranges of 22, 44, and 66 days to assess the accuracy of long-
term predictions. As the time horizon increases, the contribution of Bt to all existing 
models is found to rise, which is consistent with the relationship observed in Fig. 4. For 
the long-term result, we can still discriminate between models with continuous com-
ponents, but disparities between new models decrease. The difference between the best 
new model and the worst new model is 0.050 when h = 5, but this value falls to 0.005 
when h = 66, which indicates the reduced importance of continuous components.

To be able to draw conclusions about the significance of coefficients, we also consider 
the estimated parameters of new models. Table 4 reports the estimated result for a 1-day 
horizon and shows that investor attention is statistically significant at the 5% level for 
all models. In the HAR-RV-B model, the mean realized volatility of the last day and the 
last week are significantly positive, but RV t−21,t is not. The HAR-CJ-B model leads to 
a significant increase in explanatory power due to the decomposition of realized vola-
tility. Jumps have a positive impact on the realized volatility in the short term but the 
coefficients of jumps over the medium and long term are negative, indicating that they 
offset the impact of short-term jumps, thereby shadowing the conclusions reached by 
Andersen et al. (2007).

The coefficient βJ1 in the HAR-RV-J-B and HAR-RSV-J-B models cannot show the real 
effect of Jt−1,t because realized volatility and semivariance also contain jump factors. As 
is defined in Eqs. (7) and (8), the realized volatility is the sum of jump and continuous 
components, such that, for example, the sum of β1 and βJ1 is the actual coefficient of the 
daily jump component of the HAR-RV-J-B model. In Table 3, we show that the HAR-CJ-
B, HAR-CSJ-B, and HAR-CSJd-B models with continuous components of each horizon 
possess the most explanatory power. The 1-day realized volatility is more closely related 
to the past short-term and medium-term continuous components.

In Table 4, Rows 4–7 report the results for models with positive and negative semivari-
ance. Comparing with the HAR-RV-B model, the decomposition by positive and nega-
tive semivariances contributes to the fit of the predictive regression. The 1-day-lagged 
negative semivariance has a positive effect on the realized volatility, in line with the sig-
nificance of the downside risk identified by Barndorff-Nielsen et  al. (2008). However, 
interestingly, the positive semivariance of the last week causes higher volatility, but this 
does not exhibit a strong leverage effect. In the HAR-RV-SJ-B, HAR-CSJ-B, HAR-RV-
SJd-B, and HAR-CSJd-B models, signed jumps defined by subtracting negative semivari-
ance from positive semivariance can be used to predict volatility. The higher adjusted 
 R2 of the HAR-CSJ-B and HAR-CSJd-B models fits the result obtained by Patton and 
Sheppard (2015), who find that the jump size and sign are the gains from realized jumps. 
The negative sign of coefficient βδJ1 matches the leverage effect of negative semivariance 
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RSV−
t  in the PS-B, PSLev-B, HAR-RSV-B, and HAR-RSV-J-B models. However, 1-day, 

1-week, and 1-month signed jumps have different effects on short-term volatility pre-
diction, which corresponds to the findings from the semivariance. Notably, but perhaps 
as a result of the nature of the asset assessed, this result contrasts with those obtained 
by Patton and Sheppard (2015) when analyzing oil future markets. In the stock market, 
a strong volatility appears likely to follow a positive medium-term semivariance. Thus, 
overall, the 1-day lagged and 1-week lagged variables are found to be the most important 
factors in short-term forecasting.

Table 5 reports the in-sample regression result when h = 5. The 1-month lagged real-
ized volatility is not statistically significant, but the continuous and jump components 
extracted from this variable are significant, which indicates that the volatility follows 
a jump process. The HAR-CJ-B, HAR-CSJ-B, and HAR-CSJd-B models, with differ-
ent horizons of continuous composition, are shown to outperform other new models, 
confirming the findings of Andersen et al. (2007) that almost all of the predictability in 
return volatility comes from non-jump components. Yet, we also find evidence that the 
long-term historical jump components or signed jumps are more important in market 
volatility forecasting. For 1-week horizon forecasting, the explanatory power of monthly 
realized volatility is not significant. As the main component of realized volatility, the 
continuous component C22 also has little predictive effect, and it is the monthly jump 
and signed jumps that contribute the most to the explanatory power. The opposite direc-
tion of the coefficient βC22 in the HAR-CJ-B and HAR-CSJ-B models also indicates 
that the jump and signed jumps are more dominant than the continuous component. 
However, as a result of daily and weekly realized volatility, the effect does not appear in 
short-term and medium-term parameters. For medium-term forecasting, we note that 
the coefficients of monthly semivariance and signed jumps are all statistically significant, 
and exhibit a stronger downside risk effect than signed jumps in other horizons. This 
result demonstrates that China’s stock markets have significant “negative effects” in the 
long period.

Table  6 reports the estimated parameters for the 1-month horizon. In forecasting 
long-term volatility, the coefficient of investor attention is larger, but those of other var-
iables are reduced. This change confirms that it is investor attention that narrows the 
gap between different HAR-type models in volatility forecasting. Many of the short- 
and medium-term lagged factors are not statistically significant, including 1-day lagged 
jumps and signed jumps, 5-day lagged semivariance, and realized volatility. However, we 
note that long-term factors still play a key role in prediction. In addition, comparing the 
PS-B and the HAR-RSV-B models, we observe that the decomposition of medium-term 
and long-term semivariance produces a result that is consistent with the long-memory 
features highlighted by Corsi (2009). We find that the daily signed jump component is 
insignificant at the 10% level and that the adjusted  R2 of the model is similar to that of 
the HAR-RV-J-B. This indicates that there is no specific gain to be made from consid-
ering signed jumps. However, all the continuous components remain significant with a 
strong explanatory potential in the long term.

Summarizing the results of the in-sample analysis, we find that investor attention can 
significantly improve prediction accuracy over the long-term horizon. Comparing dif-
ferent forecast horizons, we find that the range of historical data matches the prediction 
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period. For instance, the future long-term realized volatility depends upon historical 
monthly components, not 1-day lagged and 1-week lagged variables. This result also 
confirms the advantages of HAR-type models in forecasting long-term volatility. The 
decomposition of realized volatility advocated by Andersen et al. (2007) is found to have 
a significant impact on volatility forecasting (especially the continuous component), 
but signed jumps perform better than jump components in the SSE 50. Specifically, 
the HAR-CSJd-B model generates the highest adjusted  R2 over the 1-day and 1-week 
horizons and the HAR-CSJ-B model produces the highest adjusted  R2 over a 1-month 
horizon.

Out‑of‑sample analysis

In this section, we analyze the out-of-sample performance of the 11 existing models and 
the 11 new models. Specifically, we compare the existing models and their corresponding 
new models to identify the importance of investor attention. We then compare between 
different new models for short-term, medium-term, and long-term predictions. A roll-
ing window method is employed to estimate the volatility forecasting results of each 
model, by adding one new day and removing the most distant day in turn. Therefore, the 
sample used to estimate the models remains fixed at length w = 1000 and the forecasts 
do not overlap. The number of daily out-of-sample observations is T = 1008 . For each 
forecast horizon h , each model will re-estimated P = T − h+ 1 times, and its param-
eters are time varying with different samples. Following this process, we produce the loss 
series of each model with length τ , and evaluate their out-of-sample performance.

Table 7 The CW test between existing models and new models

A positive difference indicates the new model with investor attention performs better than its correspondent existing 
model. The forecasting horizon h (unit: day) covers short-term, medium-term and long-term. T-statistic is shown in 
parentheses. ***, ** and * denote the statistical significance at 1%, 5% and 10% level

h = 1 h = 5 h = 10 h = 22 h = 44 h = 66

HAR-RV-B 0.701***
(3.001)

1.750***
(4.657)

3.318***
(6.146)

4.665***
(7.120)

5.451***
(8.493)

7.748***
(9.674)

HAR-RV-J-B 0.460***
(2.550)

1.109***
(4.108)

2.417***
(5.733)

3.887***
(6.927)

4.835***
(8.188)

7.148***
(9.410)

HAR-CJ-B 0.118
(1.219)

0.397***
(2.969)

1.213***
(5.135)

2.400***
(6.373)

3.349***
(7.240)

5.564***
(8.579)

PS-B 0.814***
(3.217)

1.775***
(4.636)

3.439***
(5.818)

4.862***
(6.689)

5.631***
(8.120)

7.960***
(9.339)

PSLev-B 0.840***
(3.240)

1.837***
(4.736)

3.511***
(5.889)

4.903***
(6.657)

5.677***
(8.090)

8.018***
(9.323)

HAR-RSV-B 0.822***
(2.878)

1.858***
(4.378)

3.604***
(5.648)

5.039***
(6.522)

5.776***
(7.919)

8.055***
(9.172)

HAR-RSV-J-B 0.354**
(2.087)

1.139***
(4.002)

2.491***
(5.707)

3.989***
(6.763)

4.914***
(7.989)

7.194***
(9.251)

HAR-RV-SJ-B 0.443***
(2.705)

1.125***
(4.311)

2.472***
(6.064)

3.979***
(7.289)

4.925***
(8.479)

7.254***
(9.645)

HAR-CSJ-B 0.157*
(1.454)

0.692***
(3.627)

1.848***
(5.651)

3.229***
(6.774)

4.176***
(7.943)

6.469***
(9.222)

HAR-RV-SJd-B 0.423***
(2.554)

1.127***
(4.243)

2.461***
(5.980)

3.944***
(7.219)

4.879***
(8.382)

7.232***
(9.596)

HAR-CSJd-B 0.056
(0.764)

0.568***
(3.758)

1.649***
(5.744)

3.020***
(6.645)

4.157***
(7.557)

6.122***
(8.789)
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Table  7 reports the CW test result for the out-of-sample analysis between existing 
models and new models. Each new model is the nested model of its correspondent exist-
ing model—i.e., the HAR-RV-B model is the larger model which nests the smaller HAR-
RV model. There are only two non-significant values in Table 7, which are the HAR-CJ-B 
and HAR-CSJd-B models for the 1-day forecasting horizon, indicating that the inves-
tor attention in these two new models is unable to improve the accuracy of short-term 
prediction. In addition, the HAR-CJ-B and HAR-CSJd-B models outperform other new 
models in the in-sample analysis, which indicates that the continuous and jump com-
ponents have strong predictive power. As the forecasting horizon increases, the gap 
between existing models and new models widens. Investor attention is thus playing an 
increasingly important role in volatility forecasting, further verifying the conclusion 
drawn from the previous analysis.

Next, we compare the out-of-sample performance of new models and report the 
DMW statistics for various horizons in Tables 8 and 9. Table 8 presents the test result for 
h = 1, 5, and 10, which covers the short term and medium term. The results indicate that 
the differences between the new models are greater: In Panel A, the result obtained at 
Row HAR-RV-B Column HAR-RV-J-B is 4.0807, which indicates that the HAR-RV-J-B 
model performs better than the HAR-RV-B model when h = 1. The PS-B, PSLev-B, and 
HAR-RSV-B models, which only contain realized volatility and semivariance compo-
nents, were outperformed by most of the other models, including the original HAR-RV-
B model. Furthermore, the decomposition of realized volatility into semivariance does 
not contribute to volatility forecasting. As expected, given the results of the in-sample 
analysis, the jump and signed jump indeed play a significant role. The HAR-RSV-J-B 
model, with the help of the 1-day lagged jump component, outperforms the HAR-RSV-B 
model.

Considering the 1-week horizon in Panel B, we note that the gap between the mod-
els increases and the models with semivariance still do not offer improved performance. 
The HAR-CJ-B and HAR-CSJd-B model outperform most of the other models, espe-
cially in the 1-week lagged and 1-month lagged jumps and signed jumps over the 1-week 
horizon. At the same time, the HAR-RV-J-B, HAR-RV-SJ-B, and HAR-RV-SJd-B models 
are outperformed by the HAR-CJ-B and HAR-CSJd-B models. The HAR-CSJ-B model 
also demonstrates prediction accuracy, but not as effectively as the HAR-CSJd-B model, 
which indicates that dividing the signed jump into positive and negative aspects is an 
effective approach.

Panel C shows that the HAR-CSJd-B model is still the most appropriate in the two-
week forecasting horizon, but the HAR-CJ-B does not perform as well over the 1-day 
and 1-week forecasting horizon. The worst models are the PS-B, PSLev-B, and HAR-
RSV-B models, which underperform against other models in the short and medium 
forecasting horizon.

Table 9 reports the DMW statistics for 1-month, two-month and three-month fore-
casts, with results over the long term differing quite significantly to short-term results. 
Based on the conclusion that investor attention is a strong predictor over the long term, 
we note that when h ≥ 22 all new models mainly rely on the Baidu Index, not the com-
ponents extracted from realized volatility. In Panel A, the best model is the HAR-CSJ-B 
model, rather than the HAR-CJ-B or HAR-CSJd-B models. The HAR-RV-J-B model is 



Page 24 of 31Zhang et al. Financ Innov             (2021) 7:7 

Ta
bl

e 
8 

Th
e 

D
M

W
 s

ta
ti

st
ic

 fo
r n

ew
 m

od
el

s 
in

 fo
re

ca
st

in
g 

sh
or

t-
te

rm
 a

nd
 m

ed
iu

m
-t

er
m

 re
al

iz
ed

 v
ol

at
ili

ty

H
A

R‑
RV

‑J
‑B

H
A

R‑
CJ

‑B
PS

‑B
PS

Le
v‑

B
H

A
R‑

RS
V‑

B
H

A
R‑

RS
V‑

J‑
B

H
A

R‑
RV

‑S
J‑

B
H

A
R‑

CS
J‑

B
H

A
R‑

RV
‑S

Jd
‑B

H
A

R‑
CS

Jd
‑B

Pa
ne

l A
: f

or
ec

as
t h

or
iz

on
 h

 =
 1

H
A

R-
RV

-B
4.

08
07

1.
68

91
−

 2
.0

69
2

−
 1

.8
27

3
−

 2
.0

00
6

0.
18

23
3.

30
36

1.
13

39
2.

59
73

1.
23

50

H
A

R-
RV

-J
-B

0.
36

62
−

 3
.2

67
6

−
 3

.2
84

7
−

 3
.1

18
2

−
 1

.3
12

2
−

 1
.2

26
7

−
 0

.2
84

8
−

 1
.3

45
9

−
 0

.0
50

2

H
A

R-
C

J-
B

−
 2

.5
58

1
−

 2
.5

17
2

−
 4

.6
96

0
−

 4
.2

70
6

−
 0

.6
09

0
−

 2
.7

97
0

−
 0

.8
01

7
−

 1
.1

59
1

PS
-B

0.
44

89
−

 0
.6

84
2

1.
27

02
3.

00
70

2.
08

91
2.

81
85

2.
12

99
PS

Le
v-

B
−

 0
.7

77
5

1.
18

76
3.

04
41

2.
03

60
2.

84
54

2.
07

77
H

A
R-

RS
V-

B
3.

22
00

2.
92

14
4.

32
98

2.
96

54
4.

26
88

H
A

R-
RS

V-
J-

B
1.

03
24

3.
43

05
1.

01
11

2.
69

47
H

A
R-

RV
-S

J-
B

−
 0

.0
19

0
−

 0
.6

72
2

0.
19

24

H
A

R-
C

SJ
-B

−
 0

.1
22

7
0.

62
01

H
A

R-
RV

-S
Jd

-B
0.

34
05

Pa
ne

l B
: f

or
ec

as
t h

or
iz

on
 h

 =
 5

H
A

R-
RV

-B
5.

11
21

4.
03

09
1.

86
31

0.
28

15
−

 2
.5

43
3

3.
01

24
5.

15
43

5.
43

13
5.

12
84

5.
71

15
H

A
R-

RV
-J

-B
2.

51
38

−
 4

.7
52

5
−

 5
.2

39
5

−
 4

.8
42

8
−

 3
.0

51
1

1.
92

44
2.

44
14

−
 0

.0
39

3
4.

44
86

H
A

R-
C

J-
B

−
 3

.9
63

1
−

 4
.1

07
8

−
 4

.7
13

6
−

 3
.2

53
1

−
 2

.4
78

3
−

 1
.4

97
7

−
 2

.5
19

2
1.

89
71

PS
-B

−
 1

.7
91

4
−

 3
.1

35
4

2.
30

00
4.

79
37

4.
99

20
4.

79
13

5.
74

95
PS

Le
v-

B
−

 2
.6

95
3

3.
01

45
5.

27
91

5.
41

61
5.

27
41

5.
76

11
H

A
R-

RS
V-

B
4.

33
29

4.
87

65
5.

67
50

4.
84

99
6.

22
92

H
A

R-
RS

V-
J-

B
3.

16
23

4.
57

79
2.

96
45

5.
25

86
H

A
R-

RV
-S

J-
B

2.
37

13
−

 0
.3

99
6

4.
41

16
H

A
R-

C
SJ

-B
−

 2
.4

61
5

3.
68

27
H

A
R-

RV
-S

Jd
-B

4.
45

81



Page 25 of 31Zhang et al. Financ Innov             (2021) 7:7  

Ta
bl

e 
8 

(c
on

ti
nu

ed
)

H
A

R‑
RV

‑J
‑B

H
A

R‑
CJ

‑B
PS

‑B
PS

Le
v‑

B
H

A
R‑

RS
V‑

B
H

A
R‑

RS
V‑

J‑
B

H
A

R‑
RV

‑S
J‑

B
H

A
R‑

CS
J‑

B
H

A
R‑

RV
‑S

Jd
‑B

H
A

R‑
CS

Jd
‑B

Pa
ne

l C
: f

or
ec

as
t h

or
iz

on
 h

 =
 1

0

H
A

R-
RV

-B
3.

58
71

1.
60

59
−

 0
.2

26
5

0.
12

55
−

 1
.5

75
6

0.
01

65
3.

35
74

2.
55

26
3.

34
82

3.
51

80
H

A
R-

RV
-J

-B
0.

34
98

−
 3

.5
93

4
−

 3
.2

31
3

−
 3

.2
28

9
−

 3
.1

71
9

−
 2

.2
48

6
−

 0
.0

04
5

−
 0

.9
35

9
2.

19
56

H
A

R-
C

J-
B

−
 1

.6
13

3
−

 1
.6

03
9

−
 2

.1
19

4
−

 1
.6

00
5

−
 0

.5
23

4
−

 0
.3

21
7

−
 0

.4
41

7
0.

40
23

PS
-B

0.
26

70
−

 1
.6

18
2

0.
06

92
3.

40
80

2.
66

32
3.

34
60

3.
55

91
PS

Le
v-

B
−

 1
.6

40
8

−
 0

.0
35

7
2.

99
41

2.
33

07
3.

01
13

3.
30

22
H

A
R-

RS
V-

B
2.

16
74

3.
08

21
3.

67
86

3.
09

89
3.

73
85

H
A

R-
RS

V-
J-

B
2.

83
61

4.
21

23
2.

85
52

4.
11

97
H

A
R-

RV
-S

J-
B

0.
46

44
1.

11
62

2.
56

53
H

A
R-

C
SJ

-B
−

 0
.2

33
3

1.
91

45

H
A

R-
RV

-S
Jd

-B
2.

38
33

Sh
or

t-
te

rm
 c

ov
er

s 
fo

re
ca

st
 h

or
iz

on
 o

f o
ne

 d
ay

. M
ed

iu
m

-t
er

m
 c

ov
er

s 
fo

re
ca

st
 h

or
iz

on
 o

f 5
 a

nd
 1

0 
da

ys
. T

he
 n

ew
 m

od
el

s 
ar

e 
m

od
el

 (1
2)

 to
 (2

2)
 w

ith
 in

ve
st

or
 a

tt
en

tio
n.

 A
 p

os
iti

ve
 s

ta
tis

tic
 in

di
ca

te
s 

th
at

 th
e 

m
od

el
 in

 th
e 

he
ad

lin
e 

pe
rf

or
m

s 
be

tt
er

 th
an

 th
at

 in
 th

e 
fir

st
 c

ol
um

n.
 T

he
 s

ta
tis

tic
 is

 a
 c

on
si

st
en

t e
st

im
at

e 
of

 th
e 

as
ym

pt
ot

ic
 v

ar
ia

nc
e,

 w
ho

se
 fo

nt
 is

 b
ol

d 
fo

r s
ig

ni
fic

an
t r

es
ul

t



Page 26 of 31Zhang et al. Financ Innov             (2021) 7:7 

Ta
bl

e 
9 

Th
e 

D
M

W
 s

ta
ti

st
ic

 fo
r n

ew
 m

od
el

s 
in

 fo
re

ca
st

in
g 

lo
ng

-t
er

m
 re

al
iz

ed
 v

ol
at

ili
ty

H
A

R‑
RV

‑J
‑B

H
A

R‑
CJ

‑B
PS

‑B
PS

Le
v‑

B
H

A
R‑

RS
V‑

B
H

A
R‑

RS
V‑

J‑
B

H
A

R‑
RV

‑S
J‑

B
H

A
R‑

CS
J‑

B
H

A
R‑

RV
‑S

Jd
‑B

H
A

R‑
CS

Jd
‑B

Pa
ne

l A
: f

or
ec

as
t h

or
iz

on
 h

 =
 2

2

H
A

R-
RV

-B
2.

18
57

−
 0

.1
86

5
1.

78
12

0.
84

69
−

 0
.6

01
1

0.
24

62
1.

88
31

2.
32

38
1.

77
09

0.
85

47

H
A

R-
RV

-J
-B

−
 0

.5
46

0
−

 2
.1

10
5

−
 2

.1
35

6
−

 1
.0

84
1

−
 0

.6
96

6
−

 0
.6

87
9

1.
34

34
−

 0
.4

93
8

−
 0

.0
83

1

H
A

R-
C

J-
B

0.
20

94
0.

19
32

−
 0

.0
85

7
0.

22
65

0.
52

37
0.

85
73

0.
52

74
0.

41
66

PS
-B

−
 1

.6
39

1
−

 0
.6

41
7

0.
17

31
1.

81
57

2.
25

02
1.

69
91

0.
78

83

PS
Le

v-
B

−
 0

.6
17

3
0.

22
49

1.
83

25
2.

30
59

1.
72

41
0.

83
83

H
A

R-
RS

V-
B

1.
20

31
1.

00
17

2.
71

31
1.

00
23

1.
61

49

H
A

R-
RS

V-
J-

B
0.

59
03

2.
63

21
0.

59
33

1.
32

26

H
A

R-
RV

-S
J-

B
1.

35
99

0.
00

76
−

 0
.0

08
1

H
A

R-
C

SJ
-B

−
 1

.3
44

9
−

 1
.8

40
2

H
A

R-
RV

-S
Jd

-B
−

 0
.0

09
3

Pa
ne

l B
: f

or
ec

as
t h

or
iz

on
 h

 =
 4

4

H
A

R-
RV

-B
1.

05
21

−
 0

.0
46

1
−

 0
.1

17
1

−
 0

.2
26

4
1.

01
62

0.
98

96
0.

74
85

2.
89

47
0.

97
37

−
 1

.0
31

9

H
A

R-
RV

-J
-B

−
 0

.2
46

9
−

 1
.4

73
1

−
 1

.0
27

1
−

 0
.4

08
8

0.
27

33
−

 1
.3

72
5

2.
94

59
−

 1
.3

74
1

−
 1

.4
96

0

H
A

R-
C

J-
B

0.
03

89
0.

03
80

0.
16

22
0.

28
90

0.
18

28
1.

02
13

0.
22

81
−

 0
.4

78
4

PS
-B

−
 0

.0
09

4
0.

98
70

1.
23

98
1.

11
32

2.
98

92
1.

36
28

−
 1

.0
25

1

PS
Le

v-
B

0.
82

11
0.

97
78

0.
73

39
2.

78
63

0.
95

79
−

 0
.9

79
2

H
A

R-
RS

V-
B

0.
50

69
0.

06
33

3.
03

52
0.

31
55

−
 1

.3
11

7

H
A

R-
RS

V-
J-

B
−

 0
.9

66
8

2.
84

59
−

 0
.4

07
9

−
 1

.4
71

6

H
A

R-
RV

-S
J-

B
2.

90
98

0.
86

86
−

 1
.3

72
7

H
A

R-
C

SJ
-B

−
 2

.9
84

5
−

 2
.6

82
7

H
A

R-
RV

-S
Jd

-B
−

 1
.4

65
2



Page 27 of 31Zhang et al. Financ Innov             (2021) 7:7  

Ta
bl

e 
9 

(c
on

ti
nu

ed
)

H
A

R‑
RV

‑J
‑B

H
A

R‑
CJ

‑B
PS

‑B
PS

Le
v‑

B
H

A
R‑

RS
V‑

B
H

A
R‑

RS
V‑

J‑
B

H
A

R‑
RV

‑S
J‑

B
H

A
R‑

CS
J‑

B
H

A
R‑

RV
‑S

Jd
‑B

H
A

R‑
CS

Jd
‑B

Pa
ne

l C
: f

or
ec

as
t h

or
iz

on
 h

 =
 6

6

H
A

R-
RV

-B
1.

16
89

−
 0

.6
52

1
1.

66
37

1.
78

33
−

 1
.0

48
6

−
 0

.7
50

6
1.

36
46

0.
72

36
1.

05
24

0.
54

57

H
A

R-
RV

-J
-B

−
 0

.9
00

7
−

 1
.0

33
6

−
 1

.0
65

3
−

 1
.4

65
8

−
 1

.2
16

7
−

 0
.8

40
8

0.
08

08
−

 0
.9

47
0

0.
16

44

H
A

R-
C

J-
B

0.
69

02
0.

69
22

0.
21

02
0.

39
63

0.
74

89
1.

24
56

0.
87

17
1.

05
96

PS
-B

0.
41

27
−

 1
.1

37
1

−
 0

.8
36

4
0.

97
54

0.
65

80
0.

89
48

0.
50

46

PS
Le

v-
B

−
 1

.1
48

2
−

 0
.8

48
1

0.
75

36
0.

63
27

0.
91

39
0.

49
19

H
A

R-
RS

V-
B

0.
89

09
1.

21
88

2.
64

45
1.

38
28

1.
30

24

H
A

R-
RS

V-
J-

B
0.

94
89

2.
45

22
1.

11
37

1.
17

50

H
A

R-
RV

-S
J-

B
0.

52
16

0.
66

64
0.

42
32

H
A

R-
C

SJ
-B

−
 0

.1
87

6
0.

23
94

H
A

R-
RV

-S
Jd

-B
0.

22
72

Lo
ng

-t
er

m
 c

ov
er

s 
fo

re
ca

st
 h

or
iz

on
 o

f 2
2,

 4
4 

an
d 

66
 d

ay
s. 

O
th

er
 c

om
m

en
ts

 a
re

 th
e 

sa
m

e 
as

 T
ab

le
 8



Page 28 of 31Zhang et al. Financ Innov             (2021) 7:7 

only more effective than the worst two predictors—the PS-B and PSLev-B models. In 
Panel B, the HAR-CSJ-B model outperforms other models with significant results. How-
ever, the DMW statistic that compares between the HAR-CJ-B and HAR-CSJ-B models 
is not significant. In Panel C, even the HAR-CSJ-B model only outperforms two models 
and the jump component does not have a significant predictive impact over the long 
term, unlike the result of the in-sample analysis.

We conclude that these results are caused by two factors. Firstly, the jump compo-
nent often derives from macroeconomic events, which makes it difficult to predict and 
a major driver of short-term volatility. Secondly, the coefficient of the jump component 
may also be susceptible to external conditions. In the in-sample analysis, all observa-
tions are used to evaluate the parameters, but in the out-of-sample analysis, the model 
trained using historical data is unable to accurately forecast if the condition will change 
in the future. In addition, the HAR-CSJd-B model is also outperformed by the HAR-CSJ-
B model in regards to long-term forecasting. The positive and negative signed jumps can 
provide more information in short-term and medium-term forecasting but they lead to 
model overfit for the HAR-CSJd-B model when h is increasing.

To summarize, we conclude that investor attention is valuable in forecasting, but that 
positive and negative semivariance are not. Furthermore, the in-sample performance 
can be dramatically improved by disaggregating jump and continuous components over 
the entire forecasting horizon. However, in long-term forecasting, jumps do not contrib-
ute more than other factors extracted from realized volatility, whilst the predictive abil-
ity of jumps in long-term forecasting is also affected by other conditions in stock market.

Conclusion
This paper investigates the impact of investor attention on forecasting volatility in the 
Chinese stock market. Specifically, it adds the Baidu Index as a proxy for investor atten-
tion to existing HAR-type models to forecast SSE 50 Index volatility. Using five-minute 
high-frequency data and collating the Baidu indices of the component security names in 
the SSE 50 Index, we propose 11 new models by adding the investor attention variable 
to 11 previously existing models. We then compare their in-sample and out-of-sample 
predictive power.

The comparison of the models identifies the predictive ability of the variables when 
taking investor attention into account. The continuous component is found to play an 
important role in prediction, while the jump component only significantly improves 
models in the short- and medium-term. Over the long-term horizon, predictive power is 
reduced by macroeconomic shocks.

It is also shown that investor attention is a useful indicator in forecasting volatility, 
especially over the long-term horizon. Thus, for security investors, our findings offer an 
effective risk management and option pricing tool. Specifically, as more option prod-
ucts can be traded in the future, the weighted Baidu Index of component securities will 
greatly improve the accuracy of original models in predicting long-term volatility. This 
result is of particular interest because much of the previous research finds the impacts 
of search query data to be short lived. Consequently, our article provides a new form of 
evidence within the investor attention research field. Based on our results, it appears 
feasible that long-term forecasting ability may be related to a discovered long-memory 
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property (Fan et  al. 2017), but we leave the analysis of this potential relationship to 
future research.
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