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Abstract

This study examines emerging market (EM) local bonds from a portfolio risk
perspective and suggests methodologies for risk evaluation, on which the literature
is limited. Despite the growth of EM bond funds in recent years, comprehensive
studies regarding this industry have been scarce. In light of this, 203 different local
bonds of EM countries—Indonesia, Brazil, India, South Africa, Mexico, and Turkey—
are elaborated in terms of return, volatility, and cross-correlation features. This study
focuses on an untouched field—long memory properties—and the application of
fractional models to EM bond portfolios. Based on the outcomes of a dynamic
conditional correlation and fractionally integrated generalized autoregressive
conditional heteroscedasticity approach and related value at risk analysis, the study
finds that fractional models are useful tools for risk management, as they deliver
satisfactory empirical results for several static and dynamic versions of EM bond
portfolios.

Introduction and literature review
In the last decade, surging capital flows to emerging market (EM) bonds and the popu-

larity of EM funds have made research in this field valuable. In recent years, due to

extraordinary shifts in the monetary policies of developed market (DM) and country-

specific macroeconomic developments, EM currencies and interest rates have fluctu-

ated sharply. Although the composition of EM bond funds is heterogeneous because

the countries involved have different economic and market structures, these countries’

asset prices are correlated to each other. Unhedged bond portfolios that are affected by

both currencies and interest rates have suffered, and having an effective risk manage-

ment strategy has become more critical.

The literature on risk analysis of EM fixed income has been limited and scattered.

Early research mostly focused on the risk–reward profile and showed the diversifica-

tion benefits of EM bonds, along with other asset classes (Burik and Ennis 1990, Erb

et al. 1999, etc.). Similarly, research on systemic risk, risk transmission, or financial

network touched on EM bonds as part of the whole investment universe (see Kou
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et al. 2019). Some others considered immunization strategies in this area (see Ortobelli

and Sebastiano 2018, etc.).

In the extensive literature, value at risk (VaR) and related volatility modeling are the

prominent risk management concepts that have been applied frequently. Nevertheless,

applications of this approach to EM bond portfolios are insufficient. Therefore, refer-

ring to studies on other asset classes, especially those dealing with the developed mar-

ket bonds, is the only plausible way.

Guo et al. (2007) applied quantile VaR to U.S. corporate bond indices and incorpo-

rated treasury interest rates as information variables. Although using these information

variables was beneficial, the estimated confidence intervals for VaRs were wide, thus

downgrading the applicability of the model. Tu and Chen (2018) evaluated U.S. bond

indices with a factor-based approach. VaR estimations of the study present that market

shocks (not macroeconomic developments) primarily cause the variations. Vlaar (2000)

compared the out of sample performances of volatility models with different distribu-

tions and stated that generalized autoregressive conditional heteroscedasticity (GARC

H) models deliver the best results under a normal distribution assumption. Yet, the

analysis considered only the univariate volatilities in Dutch bond portfolios.

In the literature, there are also other advanced techniques to consider such as the

novel Markov-switching (MS) models. Although EM bonds have not been part of the

scope, the MS model framework has been applied to fixed income markets, as well as

other asset classes, in recent years (Escobar et al. 2017, Elliott and Nishide 2014, Dimpfl

and Peter 2016, Guidolin et al. 2014, Hevia et al. 2015, Kim et al. 2019, etc.). Business

cycles in long-term data series and bull and bear markets are the usual concepts for the

MS models. As such, the necessity of separating the impacts of the global financial cri-

sis has been one of the motivations behind the recent popularity of MS models.

Meanwhile, in fractal (self-similar) structures, MS models have some drawbacks in

terms of capturing the long memory because assumed regime changes reduce the per-

sistence impact. Furthermore, in the literature, most studies have focused on univariate

or bivariate time series with two-state models. In the case of multivariate data series,

with time variant probabilities and possible multi-state model selection, the process be-

comes cumbersome, and with too many explanatory variables, the inference could be-

come complicated.

In the data series of bonds, especially in the volatilities, fractal features can be ob-

served. Apart from the pricing dynamics of the bonds, as the coupon payments or the

accrued interests slowly change over time, they become integrated in the returns.

Under these conditions, regarding volatility, we evaluate based on a relatively new con-

cept, that is, fractional modeling. The preliminary analysis justifies this type of ap-

proach. It considers the fractal (self-similar) features of datasets and quantifies the

persistence of shocks in financial markets. The volatility model, fractionally integrated

GARCH (FIGARCH), was proposed by Baillie (1996) after the introduction of the mean

model alternative auto-regressive fractionally integrated moving average (ARFIMA; see

Granger and Joyeux 1980 and Hosking 1981).

The FIGARCH model focuses on the hyperbolic decay of the impacts of previous in-

novations in the volatility. It extends the application of the integrated GARCH model

(IGARCH), thereby providing an opportunity to determine the true level of the hyper-

bolic decay at the impact of the previous shocks. Unlike regime-switching models, the
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number of explanatory variables increases slightly, which makes it easy to incorporate

and interpret. Subsequently, various models have been proposed in this “fractional”

framework. In this field, fractionally integrated exponential GARCH (FIEGARCH),

hyperbolic GARCH (HYGARCH) and fractionally integrated asymmetric power ARCH

(FIAPARCH) are some examples that cover additional features of volatility such as le-

verage or asymmetry.

Tsung and Shieh (2007) conducted a VaR analysis for Treasury bond futures with

fractional volatility models and showed the superior performance of FIGARCH under

normal, Student-t, and skewed Student-t distributions. Martinez et al. (2016) used fluc-

tuation analysis (i.e., detrended fluctuation analysis; DFA) to investigate the long mem-

ory in European stock and bond markets. The major finding of the study is the fractal

structure of corporate bonds, which implies that modeling the data has to consider long

memory properties. In similar studies, Zunino et al. (2015) and Ferreira (2018) pre-

sented evidence of long-range dependence in the returns of various sovereign and cor-

porate bond markets as a factor of market inefficiency. Cotter (2004) applied several

GARCH type models to U.K. financial markets. He stated that the highest level of long

range-dependence is observed in bond futures.

On EM bonds, as one of a few examples, Jung and Kim (2012) analyzed high-

frequency data of Korean Treasury bond futures and concluded that the return

volatility of this asset class has persistence. As another example, Mendoza (2005)

successfully revealed long memory features in Latin American sovereign bonds. Al-

though its application is rare in fixed income assets, the efficiency of fractional

volatility modeling has been demonstrated for other asset classes several times.

(See Ding et al. 1993, Lardic and Mignon 1999, Serletis and Andreadis 2004, Jin

and Frechette 2004, Baillie and Morana 2007, Tabak and Cajueiro 2007, Kasman

2009, Ksaier and Cristiani-D’ornano 2010, Manap and Kassim 2011, Chang et al.

2012, Wang 2013, Sensoy and Sobaci 2014, etc.)

For the second point, we deploy the dynamic conditional correlation (DCC) model of

Engle (2002) to examine the co-movements. Dynamic copulas or wavelet transforma-

tions are the other advanced techniques that have been applied in recent literature.

Copulas focus on the interdependence of individual distributions and the linkage be-

tween individual and multivariate distributions; they have various forms including para-

metric and/or regime switching. Nevertheless, as copulas deal with distributions, solo

applications can be used for tail dependence, risk budgeting, and related tools such as

option pricing. Moreover, since model alternatives are relatively limited for multivariate

cases (Archimedean and elliptical) and having too many parameter estimations is bur-

densome, most of the literature have focused on bivariate cases. Furthermore, optimal

parametric copula model selection (related goodness-of-fit tests), which affects tail de-

pendence, is another discussion point (see also Weiß 2013). Recent applications in the

fixed income market have usually been through developed markets or credit risks (see

Kim et al. 2020, Yang et al. 2020, Chao and Zou 2018, Otani and Imai 2018, Bekiros

et al. 2018, Benlagha 2014, Chen et al. 2014 etc.)

The other technique, wavelet transformation, also drew attention, in recent years. Es-

pecially in stock markets and commodities, the wavelet method has been frequently ap-

plied to investigate interdependence and coherence. However, there has been limited

application on EM bonds (Najeeb et al. 2017). As in the case of copulas, wavelet

Demirel and Unal Financial Innovation            (2020) 6:50 Page 3 of 29



transformation needs additional model for forecasting. Application, extracting, and

model selection needs intensive computation for a meaningful analysis. Moreover, in

multivariate cases, as the number of data series increases, the process becomes highly

complicated. Gulerce and Unal (2016) reached, at most, five different time series for co-

herence of the analysis.

Meanwhile, our selection of the DCC model is not only useful for risk budgeting but

also easy to implement for forecasting and portfolio optimization. Furthermore, unlike

the aforementioned approaches, under this method, estimation results are easy to

comprehend.

Most of the existing DCC applications to bonds are specific to regional submar-

kets and tackle the concept of market integration. Applying the DCC-GARCH

model, Tsukuda et al. (2017) revealed that integration within the Asian bond mar-

ket is shallow. Champagne et al. (2017) showed strong market interdependence be-

tween the U.S. and Canadian corporate bond markets. Kenourgios et al. (2013)

investigated the contagion effects of the global financial crisis (GFC) by applying

an asymmetric generalized DCC (AG-DCC) model to Brazilian long-term bond in-

dices, along with other asset classes, and found contagion links of the bonds with

U.S. stocks, real estate, and commodities. In a similar framework, Kenourgios and

Padhi (2012) covered the bond markets of a wide range of EM countries and found

the co-integration levels and diversification benefits of EM bonds during well-

known crises, including the late 1990s. By applying DCC-GARCH models, Sclip

et al. (2016) and Bhuiyan et al. (2018) revealed the diversification benefits of

sukuks (Islamic bonds) within given samples (see also Goeij 2004, Kenourgios et al.

2011, Celik 2012, Christiansen 2010, Benlagha 2014, Bessler et al. 2016, and Fang

et al. 2018).

Regarding other asset classes of EM, Dimitriou et al. (2013) applied a DCC-FIAPAR

CH model to Brazil, Russia, India, China and South Africa stock markets and showed

an increasing contagion effect during the GFC. Other studies revealed the superior per-

formance of multivariate applications regarding volatility persistence properties (e.g.,

Engle and Colacito 2006; Harris and Nguyen 2013; Selmi and Hachicha 2015).

To summarize, there has been a literature gap in covering EM bonds from the portfo-

lio management standpoint. Furthermore, despite findings of the long memory feature

of bond markets (and many other markets such as stocks and commodities) it has not

been taken into account in this framework. This study contributes by filling this gap.

Specifically, it covers EM local bonds (as well as the currencies) of a wide range of

countries and derives satisfactory model outcomes.

Because this study targets funds or portfolio investments, it deals with institutional

investors. For the retail side, there are other concepts to deal with (see Wen et al.

2019). As another assumption, this study leaves out matters related to cost, as further

analysis may be required regarding cost efficiency. Particularly for the credit-risk side,

cost sensitive analysis may affect the strategies (see Wang et al. 2020).

This study mainly presents risk management tools that are versatile and comprehen-

sive for EM local bond portfolios. For this purpose, modern time series approaches that

consider fractal data structures and correlation dynamics are sought. The study primar-

ily focuses on three aspects: return–volatility dynamics, correlation features, and VaR

performances.
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The remainder of this paper is organized as follows. The next section explains the

compilation method of the bonds and the construction of the proxy time series that are

suitable for evaluating the portfolios. Section 3 briefly covers specific long memory

models and the DCC approach to be employed in the empirical analyses. In Section 4,

together with a basic analysis of the data, the results of four different multivariate

models are presented. In this section, using the selected model, out-of-sample VaR per-

formances are examined for static and dynamic portfolio samples, including portfolio

optimization. In Section 5, inferences of the analyses are compiled and the main find-

ings of this study are presented.

Data
For the portfolio construction, the local bonds of Indonesia, Brazil, India, South Africa,

Mexico, and Turkey’s treasuries are examined. All bonds traded in the last 10 years are

considered, and a total of 203 different bonds are selected. Every selected bond is either

in the discounted form or has a fixed coupon payment. The selected bonds are in their

local currencies.

The bond selection is based on maturity and liquidity criteria. Bonds that have ma-

turities close to either 2 or 10 years are filtered. Bonds that are not liquid and not

traded every working day are omitted. Coupon payments are assumed to be reinvested

in the same bond. As time passes, when a bond in the portfolio fails to match the cri-

teria, it is changed with a new one.

Although, daily prices of the selected bonds are recorded, the returns are com-

pounded on a weekly basis. In financial markets, determination of the data frequency

can affect the results of empirical analysis (see Narayan and Sharma 2015; Narayan

et al. 2015). Nevertheless, as in the case of security selection, the main motivation for

using weekly returns is to reflect the performance of an EM bond portfolio, that is,

practicality. Because EM bonds are usually traded in over-the-counter platforms, and

there are primary dealing advantages, higher frequencies, like daily data, are prone to

distortions. Sometimes, liquidity is scarce with few transactions; as such, observed

noises are cleaned only the following sessions. Although, these kinds of noises are dis-

regarded by real investors, they can distort our volatility analysis. Furthermore, as we

focus on portfolio analysis, applying portfolio weights to daily returns may not be real-

istic because in the real world it can be difficult and costly to rebalance EM bond port-

folios on a daily basis. By contrast, lower frequencies, like on monthly basis, can lower

the number of observations and lower the degrees of freedom in the analysis. Because

available data are limited in EM, the number of out-of sample observations can be too

small to perform a reliable VaR analysis. Again, regarding a sensible rebalancing period

in the portfolios, using weekly data for analyses is considered more appropriate than

using lower frequencies.

The local currency returns of bonds are converted to U.S. dollar returns based on the

exchange rates of USD/IDR, USD/BRL, USD/IND, USD/ZAR, USD/MXN, and USD/

TRY, at the respective dates of the transactions. The pricing source for the bonds, as

well as the currencies, is Bloomberg, and daily closing prices are used. Portfolio data

are constructed to reflect the structure of USD-denominated EM local bond funds.

Bonds are grouped as short-term (ST) and long-term (LT) bonds to construct two

different portfolios. In the literature or in the industry, there is no direct definition of
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short-term or long-term bonds. Meanwhile, to construct proxy portfolios, the holdings

or classifications of available developed market funds are useful guides. In the market,

bonds with less than five-year maturity (or particularly, 1–3 year maturity) are conven-

tionally accepted as short-term bonds.1 For long-term bonds, the interval is much

wider: bonds with maturities (durations) of more than 10 years (7 years) are evaluated

as long-term bonds in the major indices or funds in Europe and the United States.2

Under these conditions, it is plausible to assign bonds that have close to a two-year

maturity (approximately 1.7 years duration) to the short-term bond portfolio. For the

long-term bond portfolio, bonds with maturities (approximate durations) close to 10

years (6.5 years) are chosen. The duration of the long-term bond portfolio can be evalu-

ated with a little bit shorter maturity, but for some EMs such as in Brazil and Turkey

there is an insufficient number of available long-term securities.

The portfolio data cover the period January 1, 2008 to August 31, 2018 and con-

sist of 2784 observations. A weekly rebalancing is assumed for the portfolios. The

ISIN (International Securities Identification Number) codes of the selected bonds

are listed in the Appendix.

In Table 1, the average duration of Turkish bonds is up to 1 year shorter than the

other bonds in the long-term bond portfolio because before 2011, the Turkish treasury

did not issue long term bonds. Moreover, as can be observed below, the average yields

of Mexican bonds are below average, as Brazilian and Turkish bonds have exceptionally

high yields.

Methodology
In the data sample, every return series has periods that are riskier than the others (see

Figures 1 and 2 in Appendix). In other words, there exist periods of sharp movements

and small changes. Further statistical analyses of the data are shown in the next section.

Table 1 Basic features of the selected bonds

Selected Markets Average Yield (Cmpd.) Average Duration (Yrs.) Base Currency Coupon Type

Short-Term Bonds

Indonesia 7.12 1.75 IDR Fixed

Brazil 11.31 1.81 BRL Fixed

India 7.32 1.81 INR Fixed

South Africa 7.11 1.73 SA Fixed

Mexico 5.32 1.75 MXN Fixed

Turkey 9.25 1.50 TRY Fixed

Long-Term Bonds

Indonesia 8.23 6.82 IDR Fixed

Brazil 12.08 5.57 BRL Fixed

India 7.77 6.79 INR Fixed

South Africa 8.36 6.87 SA Fixed

Mexico 6.73 7.02 MXN Fixed

Turkey 9.5 5.59 TRY Fixed

1See the fund classification of the European Fund and Asset Management Association (EFAMA) at www.
efama.org and the fund databases such as www.etfdb.com.
2See Vanguard Long-Term Bond Index (VBLTX) and Fidelity Long-Term Treasury Bond Index (FNBGX).
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However, the marks of volatility clustering and autocorrelation (also of the squared resid-

uals) have to be considered to ensure the assumptions of classical linear regression

models. Since in the case of conditional heteroskedasticity, the efficiency rule is not en-

sured, checks on the parameter estimations are unreliable. In other words, in such cases,

linear regression estimations will still be unbiased but less certain. Variations in the esti-

mations are high, and standard errors are biased, which can lead to dealing with statisti-

cally insignificant coefficients. Conditional heteroscedasticity can lead to wrong

hypothesis testing if the null hypothesis is mistakenly rejected (see Gauss–Markov the-

orem; Engle 1982 and the assumptions of the classical linear regression model). Consider-

ing related findings in the literature, the estimations are performed by applying ARIMA

and ARFIMA mean models, together with GARCH and FIGARCH volatility models.

Moreover, each return series has distinctive behaviors: periods of jumps and calms

are different for each country, and co-movements are not stable at first glance. Again,

based on relevant literature, a multivariate model is applied with a dynamic conditional

correlation approach.

First, for the return estimation of each asset, the ARIMA method is defined as

follows:

a Lð Þ 1 − Lð ÞD yt − cð Þ ¼ b Lð Þut ð1Þ

where L is the lag operator with a(L) = 1 − a1L
1 −… − apL

p; b(L) = 1 + b1L
1 +… + bqL

q; D

is a positive integer; ut = σtet; et ~ i. i. d. f(.) assuming N(0, 1); and σ2t is the variance

(see Box and Jenkins 1976).

The ARFIMA model introduces fractional integration on the conditional mean model

to measure the long memory dependence of time series. Furthermore, ARFIMA (p,D,q)

is a generalized form of ARIMA, where the integration does not have to be a positive

integer. The model expression is as follows:

a Lð Þ 1 − Lð ÞD yt − cð Þ ¼ b Lð Þut ð2Þ

where a(L) and b(L) are usual AR(p) and MA(q) expressions, and all the roots are in

the unit circle. D is the fractional differencing parameter that defines the fractional dif-

ferencing filter as ð1 − LÞD ¼ ð j − D − 1Þ!
j!ð − D − 1Þ! L

j , and j = 1, 2, 3… (see Granger and Joyeux

1980; Hosking 1981).

Regarding volatility, univariate volatilities and cross-correlations are to be estimated,

as the portfolio variance is defined as follows:

σ2p;t ¼
XN

i¼1

XN

j¼1
wiwjσ i;tσ j;tρij;t ; ð3Þ

where wi is the weight, and σi, t is the conditional volatility of the i th asset in the port-

folio at time t, and ρi, j, t is the conditional correlation of the i th asset with the j th

asset at time t (see the modern portfolio theory or Markowitz 1952).

The GARCH model is, in general, in the following form (Bollerslev 1986):

σ2t ¼ wþ α Lð Þu2t þ β Lð Þσ2t ; ð4Þ

where L is the lag operator with φ(L)(1 − L)d(yt − μ) = θ(L)ut; β(L) ≡ L + β2L
2 +… + βpL

p;

and ut is the residual of the mean model, with ut = σtet, et ~ i. i. d. f(.). f(.) is assumed to

be a strong white noise process. w > 0; αi ≥ 0; βi ≥ 0;
Pmaxðp;qÞ

i¼1
ðαi þ βiÞ < 1; and
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αi, βi ≡ 0 for i > p and j > q for a general GARCH(p, q) model.

Meanwhile, Baillie (1996) defines the FIGARCH model as follows:

φ Lð Þ 1 − Lð Þd yt − μð Þ ¼ θ Lð Þut ; ð5Þ

where d is the fractional differencing parameter, and using its properties, the equation

reduces to (see Hosking 1981):

σ2t ¼
w

½1 − βðLÞ� þ λðLÞu2t ;whereλðLÞistheinfinitelagoperatorwith ð6Þ

λ(L) = λ1L
1 + λ2L

2 + λ3L
3…, and the features of the fractional differencing filter are the

same as in the case of ARFIMA.

To estimate the portfolio risk together with individual volatilities, contemporaneous

correlations also need to be estimated. In this step, with the DCC model, pairwise cor-

relations are modeled in a way similar to the modeling of volatilities. Let ut = rt − μt be

the residuals vector, with rt as the vector of individual returns and μt as the expected

returns.

In the DCC model, the covariance matrix of the residuals vector can be split as Σt ≡

DtRtDt, where Rt is the conditional correlation matrix, and Dt is the diagonal matrix of

individual volatilities. Bollerslev (1990) defines the estimator of the constant conditional

correlation as follows:

�R ¼ 1
T

PT
t¼1ηtη

0
t , where ηt is the vector of standardized residuals as in ηt ¼ D − 1

t ut .

The dynamic correlation generalization is similar to the GARCH approach:

Qt ¼ �Rþ γ ηt − 1η
0
t − 1 − �R

� �
þ δ Qt − 1 − �Rð Þ; ð7Þ

where the elements of Qt are from the estimated pairwise correlations at time t.

The estimation of a DCC (1,1) model is performed through the log-likelihood

function

L θð Þ ¼ −
1
2

XT

t¼1
nlog 2πð Þ þ log DtRtDtj jð Þ þ r

0
tD

− 1
t R − 1

t D − 1
t rt

� �
ð8Þ

where θ = (ω, α, β, φ, γ, δ), and the parameters of univariate GARCH models and

pairwise correlations are estimated separately (see Engle and Sheppard 2001 and

Engle 2002).

Analysis and results
Preliminary analysis

For both short- and long-term bonds, Brazil’s bonds have the best returns, in line with

their average yields. From Table 2, regarding the means and the standard deviations, it

is difficult to observe the expected risk–return relationship. For the short-term portfo-

lio, Turkish bonds are the riskiest assets, but they do not offer the best return. For the

long-term portfolio, although Indonesian bonds have the highest risk, with a maximum

of 13.5% weekly loss and 1.95% standard deviation, it ranks third in terms of mean

returns.

Regarding the normality checks, except for the short-term bonds of Turkey and

Indonesia and the long-term bonds of South Africa, all bonds are negatively skewed. As

almost all bonds are fat-tailed with high Kurtosis levels, the Jarque–Bera test results
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reject the null hypothesis that distributions are in Gaussian form. Similarly, Figures 1

and 2 in Appendix show that distributions are fat-tailed; thus, it is more convenient to

use Student t-distribution for further analysis.

The Q-statistics of the returns and squared returns also confirm the model selection

process mentioned in the previous section. The tests of squared returns are all signifi-

cant, which implies the existence of autoregressive conditional heteroskedasticity for all

data series. This situation indicates the need for ARIMA and GARCH models.

The Hurst exponents of the volatility series are also listed in Table 2. Since the expo-

nents are higher than 0.5 and especially for some series they are close to 1, it can be de-

duced that there exist strong fractal features that imply long memory in the volatilities

Table 2 Preliminary analysis of the assets

Indonesia ST Brazil ST India ST S. Africa ST Mexico ST Turkey ST

Number of Observations 557 557 557 557 557 557

Mean 0.156% 0.230% 0.134% 0.146% 0.111% 0.179%

Std. dev. 0.46% 0.43% 0.22% 0.34% 0.23% 0.59%

Maximum 3.3% 2.2% 1.2% 1.8% 1.9% 3.4%

Minimum −2.5% − 2.9% − 1.5% − 2.5% − 1.8% −4.6%

Skewness 0.24 − 1.22 − 0.52 − 0.05 − 0.18 1.13

Kurtosis 9.65 10.20 19.69 9.90 7.84 13.94

Jarque-Bera 2187.5*** 2576.1*** 9099.2*** 2297.4*** 1444.7*** 64074***

Q(12) 43.12*** 34.12*** 9.18 40.53*** 36.30*** 22.03**

Q2(12) 633.57*** 59.17*** 129.21*** 452.48*** 283.18*** 106.21***

H 0.8848 0.8128 0.7351 0.7106 0.7203 0.7521

Unit Root Tests

ADF − 80849*** − 72705*** − 70150*** − 89878*** − 66742*** − 92934***

PP − 468.41 −576.72*** − 539.54*** − 546.7*** − 679.5*** − 632.68***

Indonesia LT Brazil LT India LT S. Africa LT Mexico LT Turkey LT

Number of Observations 557 557 557 557 557 557

Mean 0.165% 0.251% 0.118% 0.167% 0.145% 0.124%

Std. dev. 1.95% 1.65% 0.86% 1.27% 1.38% 1.25%

Maximum 10.8% 8.9% 4.5% 7.1% 16.7% 5.3%

Minimum − 13.5% −7.5% −5.2% − 11.4% −13.0% −8.8%

Skewness −0.93 −1.37 − 0.90 0.07 −0.99 − 1.33

Kurtosis 8.42 14.21 13.75 5.55 13.35 7.07

Jarque-Bera 1743.5*** 4906.2*** 4499.4*** 722.28*** 4265.5*** 1335.8***

Q(12) 33.71*** 4.12 40.63*** 17.23 13.79 30.74**

Q2(12) 136.51*** 84.30*** 114.86*** 77.65*** 51.41*** 104.46***

H 0.9534 0.7943 0.7867 0.6683 0.7432 0.6982

Unit Root Tests

ADF − 68632*** − 76801*** − 76948*** − 76179*** − 90997*** − 76642***

PP − 671.63*** − 596.52*** − 527.2*** − 660.63*** − 606.47*** − 591.73***

The Jarque-Bera tests the normality assumption of the time series with the null hypothesis of normality in the sample.
Q(12) and Q2(12) are the Ljung Box statistical tests for the serial correlation of returns and squared returns up to the lag
12. H refers to the Hurst exponent of volaility; corresponds to the level of fractality. H > 0.5 implies persistence. ADF and
PP are augmented Dickey-Fuller test and Philips Perron unit root tests respectively. Both tests based on the lowest AIC
value. *** refers to rejection of the null hypothesis at 1% significance level

Demirel and Unal Financial Innovation            (2020) 6:50 Page 9 of 29



(see Mandelbrot 1977). Under these conditions, long memory models can be evaluated

as proper approaches.

Augmented Dickey–Fuller and Philips–Perron tests reject the null hypothesis and

show that the series are stationary and thus, are appropriate for time series modeling.

As can be seen in Appendix Fig. 1, all returns have very high volatility at the initial

100 observations. EM assets started in 2013 with solid performances. However, in May

2013, with the Fed announcement implying a policy normalization process, EM assets

got under pressure. As the core rates went up, both currencies and bonds depreciated

dramatically. This situation was common for almost all EMs.

However, for the rest of the observation, there is decoupling. The periods when the

volatility levels have risen or declined differ from one country to another. In particular,

Turkish bonds are seen to move in a distinct form at the latest part of the observation.

Empirical results

In-sample analysis

The sample data for empirical analysis is formed by the total return series of the bonds

for the period January 1, 2008 to September 1, 2017. The return series of short-term

bonds and long-term bonds are separated to construct the short- and long-term bond

portfolios. In the tables below, the short- and long-term bonds are indicated as ST and

LT, respectively. The data from September 1, 2017 to October 31, 2018 (52 weeks) are

left for the out-of-sample performance analysis.

Four different time series models: DCC–ARIMA GARCH, DCC–FIGARCH, DCC–

ARFIMA FIGARCH, and DCC–ARIMA FIGARCH are applied to the samples. Model

estimations are performed with both the normal and Student’s t distributions. Never-

theless, only the estimations based on the Student’s t-distribution are shown below.

Furthermore, although not presented here, each model is tested under different condi-

tions (samples). All test results under various conditions are evaluated to check the ro-

bustness of the models.

First, the estimations of the benchmark model, DCC–ARIMA GARCH, are presented

in Table 3. In the mean model, seven out of 12 return series exhibit the features of

auto-regression, as their related estimations are statistically significant. Notably, the

auto-regression terms for both the short- and long-term bonds of India, South Africa,

and Mexico are statistically significant. For the long-term bonds, almost all auto-

regression estimations are negative, and except for Brazil, there also seems to be a sig-

nificant level of moving average effect.

Regarding volatility, the β parameters are statistically significant for all series, provid-

ing clues about the memory in the volatilities. Since the α coefficients of the volatility

modeling are statistically significant, except for the short-term bonds of Indonesia and

India and the long-term bonds of Brazil, the impacts of the most recent innovations are

also noteworthy.

Moreover, in the diagnostic checking, in line with the QQ-plots and the preliminary

analysis of the raw data, the models based on a Student’s t-distribution deliver way better

information criteria (IC) and residual test results than the normal distribution for each

data series. Thus, the results from the Student’s t-distribution are shown in this section.

In Table 3, the values of AIC (Akaike information criterion) and Bayesian IC are below −
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30.000. Although the number of parameters is the same for both portfolios, the IC for the

short-term bond portfolio are lower, implying a higher level of goodness of fit.

Meanwhile, the multivariate residual tests of the long-term bond portfolio deliver

higher values.3 These results imply that the model has limitations in solving the re-

sidual autocorrelation and heteroscedasticity.

The empirical results of the next application are shown in Table 4. Here, without

modeling the return series, FIGARCH is directly applied to all bonds but in the DCC

framework again. For 10 out of the 12 data series, the long memory coefficient d is sta-

tistically significant.

For the fractional based models, the level of the d parameter is also critical. If the d

coefficient is close to 1, then the shocks will diminish very slowly, and the model will

look like an IGARCH model. However, if the level of this parameter is close to 0, it will

be difficult to see the memory impact, and the model will approach to the plain GARC

H model. Nevertheless, in Table 4, statistically significant long-memory parameters lie

in the 0.31–0.66 interval. The d parameters, which are close to 0.5, also justifies the ap-

plication of long memory models to this kind of data structure.

Meanwhile, we observe fewer statistically significant β parameters in Table 4,

compared with that of the previous application: DCC–ARIMA GARCH. For ex-

ample, for the long-term bonds, only Indonesia and Turkey have these statistically

significant parameters. In the previous model, all the β coefficients were statistically

significant. Two factors are effective in this situation. First, in the previous estima-

tion, we applied the volatility model to the residuals of a mean model that pro-

vided healthier volatility estimations. Nevertheless, here in the DCC–FIGARCH

estimation the model is directly applied to the data, and the expected return is as-

sumed constant. The second factor relates to the role of d. In straightforward

GARCH models, the level of α reflects the impact of the recent innovation, as β

carries the memory that shows the impact of past volatility. However, in FIGA

RCH, the impact of previous shocks is exhibited by an adjustable hyperbolic rate

d. As memory is partially held by d, we come up with a lower number of signifi-

cant β parameters.

When we examine the values of d in Table 4 and in the following models (see Ta-

bles 5 and 6), we find that Indonesian bonds have the highest numbers, which means

that the highest level of persistence is observed in the Indonesian bonds (this situation

is also observed in the Hurst exponents, see Preliminary Analysis). Mexico and India

are the other two countries with high persistence figures.

Particularly during the post-GFC period, foreign capital flows have been one of the

major determinants of EM assets. At the initial stage, unprecedented liquidity actions

from the central banks of DMs, particularly the Fed, and low GDP growth rates in the ma-

ture economies induced historical amounts of capital flows to EM. However, this situation

made the countries that have high external deficits vulnerable to liquidity conditions.

From this viewpoint, the current account balances of Indonesia and Mexico have

been much more stable compared with the other countries. For the observation

period, the average current account deficit (CAD) to GDP figures of Indonesia and

Mexico were 1.1% and 1.7%, respectively. The deterioration in India had been

3See Hosking (1980) and McLeod and Li (1983).
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Table 4 DCC FIGARCH estimation

c w d α β

Short Term Bond Portfolio

IDR ST 0.001*** (2.704) 14.206 (0.832) 0.655*** (4.852) −0.37 (−1.365) 0.079 (0.391)

BRL ST 0.002** (2.153) 6.347 (1.537) 0.419** (2.259) 0.226 (1.556) 0.507*** (3.071)

IND ST 0.001*** (3.294) 2.774 (0.919) 0.571** (2.504) 0.181 (0.403) 0.614 (1.456)

SA ST 0 (0.066) 7.31 (1.569) 0.331** (2.115) −0.032 (− 0.038) 0.227 (0.269)

MXN ST 0 (0.475) 6.602 (1.157) 0.601*** (2.745) 0.123 (1.156) 0.649*** (3.439)

TR ST 0 (0.11) 5.513 (0.837) 0.48 (1.026) 0.383* (1.597) 0.714*** (3.126)

AIC SIC Shibata H-Q Hosking McLeod-Li

−35.0974 −34.6733 −35.1158 −34.9305 792.6** 791.8**

Long Term Bond Portfolio

IDR LT 0.002** (2.218) 28.827 (0.843) 0.587*** (4.204) −0.425* (−1.658) 0.05 (0.227)

BRL LT 0.002* (1.887) 8.421*** (2.979) 0.32*** (2.846) 0.112 (0.558) 0.346 (1.521)

IND LT 0.001** (2.18) 3.271 (1.509) 0.389*** (4.217) −0.756*** (−6.497) − 0.608* (−1.745)

SA LT 0.001 (0.909) 11.914 (1.378) 0.263 (1.212) −0.457 (−1.28) − 0.28 (− 0.81)

MXN LT 0.002 (1.408) 8.969 (1.536) 0.403** (2.361) −0.352 (− 0.415) −0.051 (− 0.053)

TR LT 0.001 (0.713) 5.693*** (3.495) 0.315** (2.345) 0.303* (1.801) 0.532*** (2.7)

AIC SIC Shibata H-Q Hosking McLeod-Li

−31.0374 −30.6133 −31.0558 −30.8705 760.1 759.8

Conditional Correlation

ρ2,1 0.374*** (0.05) ρ8,7 0.348*** (7.29)

ρ3,1 0.479*** (0.04) ρ9,7 0.371*** (7.98)

ρ4,1 0.391*** (0.05) ρ10,7 0.445*** (10.32)

ρ5,1 0.286*** (0.05) ρ11,7 0.362*** (7.56)

ρ6,1 0.379*** (0.05) ρ12,7 0.418*** (10.21)

ρ3,2 0.39*** (0.05) ρ9,8 0.278*** (5.42)

ρ4,2 0.542*** (0.04) ρ10,8 0.529*** (13.02)

ρ5,2 0.501*** (0.04) ρ11,8 0.471*** (11.16)

ρ6,2 0.489*** (0.04) ρ12,8 0.447*** (10.73)

ρ4,3 0.436*** (0.05) ρ10,9 0.374*** (7.96)

ρ5,3 0.407*** (0.05) ρ11,9 0.352*** (6.98)

ρ6,3 0.443*** (0.05) ρ12,9 0.327*** (6.78)

ρ5,4 0.52*** (0.04) ρ11,10 0.553*** (13.49)

ρ6,4 0.589*** (0.04) ρ12,10 0.583*** (17.15)

ρ6,5 0.506*** (0.05) ρ12,11 0.5*** (12.57)

α 0.021*** (0.01) α 0.015** (1.99)

β 0.912*** (0.03) β 0.905*** (21.42)

df 7.999*** (0.98) df 8.683*** (7.35)

Notes: Values in the paranthesis are t-statistics. *, **, *** refer to statistically significant in 10%, 5% and 1% confidence
levels. c, a and b parameters refer to the coefficients of mean model. AIC, SIC, Shibata, H-Q, refer to Akaike, Schwarz, and
Hannan-Quinn information criteria, respectively. Hosking is the residual portmanteau test and Mcleod-Li is the
heteroskedasticity test. Parameter indices (1,…12) refer to the data series of IDR ST, BRL ST, IND ST, SA ST, MXN ST, TR ST,
IDR LT, BRL LT, IND LT, SA LT, MXN LT, TR LT in order
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limited, and its recovery was fast. However, Brazil, South Africa, and Turkey have

been evaluated as the weakest members of the major EMs, with sharply widening

external deficits.

The events that changed the conditions of easy liquidity, such as the taper tantrum

or the lift-off decision,4 significantly affected the fund flows to these countries since

their economies had become much more dependent on external capital. Particularly,

the South African and Turkish economies sharply oscillated during this period. The

CAD figures of South Africa had tested 6% of GDP, and as of 2011 year end, Turkish

figures had reached all-time-high levels of 9%. Moreover, apart from these countries’

political developments (like election cycles) were other events that affected the volatility

structure.

To summarize, vulnerabilities to global liquidity conditions had partially diminished

the impact of long memory in the volatilities, as the liquidity conditions sharply chan-

ged during this period. As a result of the economic situation, even the d parameters of

Turkey’s short-term bonds and South Africa’s long-term bonds failed to be statistically

significant in the fractional models below.

In terms of goodness of fit, the Schwarz and Hannan–Quinn IC are lower than

those in the previous model. Because the number of observations is large enough,

the better results of these Bayesian approaches are noteworthy. However, as in the

previous case, residual portmanteau test results are high for the short-term bond

portfolio; thus, further modeling is needed to lower the autocorrelation and hetero-

scedasticity values.

In the third example, fractional models are applied to both the mean and the volatil-

ity. A single-step ARFIMA is applied on the mean, as FIGARCH is used for the volatil-

ity modeling. The parameter estimations and t-statistics are listed in Table 5. In the

mean equation, the long memory parameters are statistically significant for the short-

term and long-term bonds of South Africa. The auto-regression and moving average

parameters of the mean models are statistically significant only for one-third of the data

series. The short-term bonds of South Africa and Mexico and the long-term bonds of

India and Mexico are some of the examples.

In the volatility modeling, similar to the previous application, most of the d coeffi-

cients are statistically significant. In Table 5, only the volatilities of Turkish bonds and

the long-term bonds of South Africa do not exhibit long memory impact. Meanwhile,

the modeling could not be performed for the Indonesian long-term bonds because the

d coefficient is negative, and all of the mean and volatility parameters are statistically

insignificant.

The DCC–ARFIMA FIGARCH model has a lower Shibata IC for the short-term

bond portfolio, and the Akaike IC for both short-term and long-term portfolios. The

residual diagnostics here are also better, as compared with the previous applications.

Considering the test results of the fractional parameters in Table 5, the long-memory

impact in the mean model is questionable. Thus, plain and fractional models are com-

bined in the last application below. The empirical results of the fourth application are

listed in Table 6. In this last step, the mean model is estimated under the plain ARIMA

approach, and the fractional modeling is performed only for the volatility.

In Table 6, most of the mean model parameters (especially for the long-term bond

portfolio) show statistically significant auto-regressive and moving average coefficients.
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Meanwhile, the volatilities show a long memory feature, as the d coefficients are sta-

tistically significant for 10 out of the 12 samples. These parameters are estimated at

around 0.5 levels; the definite necessity of the fractional modeling is observed again.

Furthermore, six out of the 12 data series still have statistically significant β coefficients,

together with long-range dependence.

The model’s diagnostic check also shows sufficient IC and residual diagnostics.

The residual diagnostics imply that fractional volatility modeling is better in terms

of overcoming heteroskedasticity. For each case, the fractional based models deliver

better results compared with the benchmark model. However, DCC ARIMA–FIGARCH

has the lowest values of the Akaike and Shibata IC for both portfolios. Among the

eight goodness of fit tests for each model the DCC ARIMA–FIGARCH model de-

livers the lowest level of IC for four times. Applying the parameter tests and IC

contribute to the robustness of the model. Specifically, the levels of the statistically

significant fractional parameter d under various conditions (for two different distribution

assumptions and various samples) are also supportive of the model selection. Moreover,

the residual tests show that the autocorrelation and the heteroscedasticity are untangled

for both portfolios.

In the framework of this study, the correlations are evaluated as being dynamic,

and the estimations of each model are listed in each of the tables. Apart from

standard correlations, DCC estimation is composed of three parts, and two of them

are time-varying. All coefficients add up to 1 (i.e., constitute the estimated correl-

ation matrix), and in the table, the time-varying α and β coefficients are listed. β

shows the level of dependence of the correlation matrix to the most recent esti-

mated matrix, while α determines the contribution of the most recent residuals of

the GARCH model. In other words, α adjusts the estimation with the most recent

innovations. In the DCC, the remaining part, the covariance matrix of the error

terms (which is the average product of the standardized residuals of the model) is

constant.

The outputs of the short- and long-term bonds are listed separately in Tables 3, 4, 5

and 6. In the tables, the left- (right-) hand side of each headline refers to the short-

(long-) term bond portfolio. The β and pairwise coefficients are statistically significant

for all data series. For the short-term bond series, the α parameters are also significant

at the 1% level. However, the α parameters in the DCC estimations of the ARIMA–

GARCH and ARFIMA–FIGARCH models are not statistically significant under the 5%

threshold.

The parameter estimations of the DCC models are close to each other (see Tables 3,

4, 5 and 6). As the β levels are above 90%, and the α levels are around 2% for all

models, we can infer that the correlations are persistent; the change caused by the re-

cent innovations is slow. The values and related tests exhibit signs of long memory in

the correlation part as well.

In the ρ parameters, the highest figures are observed in the cross-correlation

estimations of South Africa’s and Turkey’s bonds. Since these parameters are

constant, this adds additional persistence impact on the estimations. In line with

our economic interpretation about the volatility estimations above, this situation

seems plausible. During the observation period, the macroeconomic dynamics of
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Turkey and South Africa were similar, making their bond markets behave

similarly.

Meanwhile, from the perspective of forecasting, the parameters for each model are

very similar. This implies that the level of individual volatilities, not the conditional cor-

relations, is the determinant of the difference in the conditional covariance matrices. In

other words, the risk estimation is mostly based on the forecasting of the individual

volatilities.

Out-of-sample value at risk analysis

Out-of-sample performances are examined for a period of 1 year, based on a rolling

window analysis. Conditional mean, conditional volatility, and dynamic correlation

forecasts of a model based on rolling samples are generated for 52 weeks, covering the

period September 1, 2017 to August 31, 2018. From these forecasts, the expected

returns of the portfolios are calculated; correlation matrices and individual volatilities

are used to construct manually the portfolio variances.

For each week, 54 parameters (12 individual returns, 12 volatilities, and 30 pairwise

correlations) are forecasted and taken for further calculation. This burdensome process

is repeated for each of the 52 weeks. As further computations are required for the port-

folio weighting strategies at each step, the process becomes even more complicated.

As a broader analysis, the process can be performed under different distribution con-

ditions such as the normal and t-distributions for all of the models. However, in this

section, due to the intensive process involved, one model is examined under a selected

distribution condition, and the rest is left for future studies. The model and distribution

selections are based on the in-sample test results. In line with the outcomes of the pre-

vious section for the models and particularly the IC results under the normal and t-dis-

tributions, DCC ARIMA–FIGARCH is chosen for further analysis. The statistical

analysis of the individual assets and the model outcomes that are examined for both

distributions particularly pointed to the selection of a t-distribution.

The VaR analysis of these forecasts is performed with respect to five different weight-

ing methods, as shown in Table 7. The weighting strategies consider both static and dy-

namic approaches. As examples of static approaches, equally weighted, GDP-weighted,

and market cap- (MCAP) weighted strategies are adopted. These strategies can reflect

(or develop) the structures of the related passive investments.

For the dynamic portfolios, biweekly-changing efficient portfolios are considered.

The mean-variance method of the modern portfolio theory is a common approach

that covers the dynamic hedging ratios among different asset classes (see Marko-

witz 1952). Each week, model forecasts of the mean, volatility, and dynamic correl-

ation variables are evaluated for portfolio optimization. The optimizations are

performed with the objective of mean-variance (MV) efficiency, thereby maximizing

the portfolio return per additional risk. The portfolios comprise only long posi-

tions; the possibility of short sales and leverage are restricted. There are no indi-

vidual constraints on assets. In this way, for every period, asset weights for the

short- and long-term bond portfolios are calculated. In Table 7, the average values

from the weights of 52 different portfolios for short- and long-term bonds (total of

104) are listed.
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In Table 8, for all portfolios, there is supposed to be five and two failures out of 52

observations in the 90% VaR and 95% VaR, respectively.

For the short-term bond portfolios, the model estimated six failures in the 90% VaR

and four failures in the 95% VaR (three for the MCAP weighted portfolio). The num-

bers are close to actual failures, and some of the exceedances occurred with tiny

breaches, for example, 2 bps. Moreover, we can conclude that the estimations are

relatively cautious.

For the long-term bond portfolios, the model’s results are better: the 95% VaR is

crossed two times, as it is supposed to be in the GDP-weighted, MCAP-weighted, and

Table 7 Sample portfolios

Asset Weights

Bonds Homogen (Short-Term,
Long-Term)

GDP Weighted (Short-
Term, Long-Term)

MCAP Weighted (Short-
Term, Long-Term)

Indonesia 17% 13% 5%

Brazil 17% 26% 52%

India 17% 33% 21%

South Africa 17% 4% 6%

Mexico 17% 14% 12%

Turkey 17% 11% 4%

MV-Optimal Portfolios
Average (Short-Term)

MV-Optimal Portfolios
Average (Long-Term)

Indonesia 29% 22%

Brazil 19% 17%

India 41% 34%

South Africa 5% 10%

Mexico 3% 15%

Turkey 3% 2%

Notes: For the GDP weighted portoflios, IMF 2017 year end nominal GDP levels are considered. On the MCAP Weights,
total outstanding amount of bonds for each country is taken into account. For the MV-Optimal portfolios, the weights
are averages of the optimal portfolios that are calculated for each week. Risk-free rate is assumed as zero and the
optimizations are done by Markowitz approach with the bi-weekly mean and volatility forecasts of the model estimations

Table 8 VaR statistics

Failure Kupiec Test Christoffersen Test

90% 95% 90% 95% 90% 95%

ST Bond Portfolios

Homogen Portfolio 6/5 4/2 0.131 (0.717) 0.686 (0.407) 1.736 (0.42) 1.368 (0.505)

GDP Weighted Portfolio 6/5 4/2 0.131 (0.717) 0.686 (0.407) 1.736 (0.42) 1.368 (0.505)

MCAP Weighted Portfolio 6/5 3/2 0.131 (0.717) 0.062 (0.804) 1.736 (0.42) 0.437 (0.804)

MV-Optimal Portfolios 6/5 4/2 0.131 (0.717) 0.686 (0.407) 1.453 (0.48) 1.368 (0.505)

LT Bond Portfolios

Homogen Portfolio 6/5 4/2 0.131 (0.717) 0.686 (0.407) 1.736 (0.42) 1.368 (0.505)

GDP Weighted Portfolio 7/5 2/2 0.632 (0.427) 2.868 (0.238) 0.158 (0.691) 0.321 (0.852)

MCAP Weighted Portfolio 6/5 2/2 0.131 (0.717) 0.158 (0.691) 1.736 (0.42) 0.321 (0.852)

MV-Optimal Portfolios 6/5 2/2 0.131 (0.717) 0.158 (0.691) 1.736 (0.42) 0.321 (0.852)

Numbers in the parantheses are p- values. All results are statistically significant; star signs are not added
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MV-efficient long-term bond portfolios. For the GDP-weighted long-term portfolio, there

are two more failures than the assumption of 90% VaR (although, one of the failures oc-

curred with only 0.4 bps, which is a negligible level of exceedance). For the homogenous,

MCAP-weighted, and MV-efficient portfolios, only one more breach happened.

In line with these outcomes, the Kupiec and Christoffersen test results are shown in

Table 8. The unconditional coverage test of Kupiec deals with the accuracy of breaches.

In the Kupiec test, the log-likelihood function, LRPoF ¼ − 2 logð ð1 − αÞN − sαs

ð1 − s
NÞN − sð sNÞs

Þ, is asymp-

totically chi-squared, where s is the number of failures and N is the number of observa-

tions. The (1 − α) VaR method fails if the function exceeds the critical value (see

Kupiec 1995). The conditional coverage test of Christoffersen (1998) elaborates on the

independence of failures. The log-likelihood function, LRCCI ¼ − 2 logfð pp0Þ
s00ð 1 − p

1 − p0
Þs01

ð pp1Þ
s10ð 1 − p

1 − p1
Þs11g , similarly follows a chi-squared distribution with special counting pa-

rameters. s00 refers to the number of two consecutive periods without failure, and s11
refers to the number of two consecutive periods with failure. s01 and s10 represents the

number of the periods without failure followed by a period of failure, and the other

way round, respectively. p0, p1, p are the probabilities or the share of the counts;

p0 ¼ s01
s00þs01

; p1 ¼ s11
s10þs11

; and p ¼ ðs01 þ s11Þ=ðs00 þ s01 þ s10 þ s11Þ.
The test results are presented in Table 8. The number of failures and their independ-

ence are in-line with the VaR assumptions. The model performance for each one of the

static and dynamic portfolios is sufficient. With high p-values, these results imply that

the DCC ARIMA–FIGARCH is a good application from the VaR perspective.

As an additional assessment, the results are also compared with the estimations of

the plain approaches: delta-normal and historical simulation. Although it is not pre-

sented here, especially for the long-term bond portfolios, the time series model delivers

performance that is significantly better than both of these basic approaches.

Conclusion
Bonds and bills have been one of the major asset classes in almost all portfolios. In the

post-millennium era with the yield-hunting motivation becoming prevalent, EM bonds

have received the attention of global investors. These days, all of the major asset man-

agement houses provide EM bond funds for their investors. However, there is a lack of

literature about the management of EM bond portfolios, especially from the risk

perspective.

This study covers all the local bonds of six major EM economies that have been ac-

tively traded in the last 10 years. We filter 203 different bonds and constructed hypo-

thetical portfolios to study the performance of certain risk management tools.

Volatility modeling is a critical part of this study, and relatively new approaches are

applied, together with common methods. Fractionally integrated models are evaluated

in this manner. In the academic literature, these models have been used in a univariate

framework and applied to specific asset classes such as the commodity and stock mar-

kets. For the other asset classes, especially those concerning the fixed income market,

there is a limited number of univariate applications. In the academic literature, this

study is the first to tackle the multivariate analysis of EM bonds and apply the frac-

tional modeling concept.
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We deploy four models in the DCC framework: ARIMA–GARCH, FIGARCH, ARFI

MA–FIGARCH, and ARIMA–FIGARCH. The parameter estimations and in-sample

performances of these four models are examined. All analyses are made under the nor-

mal and t-distributions.

First, for the mean models, more than half of the data series show auto-regressive fea-

tures. The AR coefficients of both the short- and long-term bonds of India, South Af-

rica, and Mexico and the long-term bonds of Indonesia are statistically significant.

Moreover, except for Brazil, the returns of all long-term bonds have moving average

impacts at statistically significant levels.

Meanwhile, regarding the return series, it is difficult to determine the impact of long

memory. Unlike in the case of the plain ARIMA model, for most of the other cases, the

parameters of the ARFIMA model have no statistical significant.

Regarding volatility, the GARCH model have statistically significant β coefficients,

which indicates the impact of memory. Furthermore, except for three data series, the α

parameters are also significant. The fractionally integrated volatility models are applied

to the residuals of the approaches: unconditional mean, ARIMA, and an ARFIMA

model. In the applications, evidence of long memory is detected, at least once for al-

most all the assets. Most of the time d coefficients are statistically significant. Further-

more, for each case, the level of d lies at around 0.5; this indicates the need for

fractionally integrated modeling.

Third, for the DCC part of each mean and volatility modeling, almost all model pa-

rameters of conditional correlations are statistically significant. For almost all models,

the individual coefficients, as well as the α and β parameters of the DCC models, are

positive at the 1% significance levels, which signifies dependence on the previous

innovations.

From the diagnostic checking results, the IC and residual test outputs of the fraction-

ally integrated models are better than those of the benchmark ARIMA–GARCH model.

In conclusion, the DCC ARIMA–FIGARCH model have better goodness of fit results

for both the short- and long-term bonds, in line with the results of the tests of param-

eter estimations.

For the out-of-sample performance evaluation, the VaR analysis is conducted

based on one-year rolling window forecasts. The portfolios are populated in static

and dynamic forms. Homogeneously weighted, GDP weighted, and market-cap-

weighted portfolios are considered as static proxies. Furthermore, mean-variance ef-

ficient portfolios (optimal weighting strategy) for each week are also taken into

consideration.

The Kupiec and Christoffersen tests indicate that DCC ARIMA–FIGARCH is a suffi-

cient VaR model for various static and dynamic EM portfolios. The VaR analysis is per-

formed only for the DCC ARIMA–FIGARCH model due to the intensiveness of the

process.

This study provides implications for both investors and policymakers. The ana-

lysis results suggest that the risk management of EM bond investments should

consider the long memory concept, as the empirical findings are from direct appli-

cations. Not only index-tracking static portfolios but also dynamically managed ac-

tive portfolios should consider the fractional methods when conducting risk

analysis.
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Second, in the academic literature, persistence of shocks is usually observed in

high-risk assets such as commodities or equities. Meanwhile, government bonds,

especially the short-term ones, are usually perceived as low-risk assets, and their

yields are considered as the benchmarks of local interest rates. In most countries,

the volatility of bonds and their yields affecthe policies of the governments and

the central banks. As a liquidity tool, it is common for central banks to intervene

actively in the bond markets. Although the situation is not the same for emerging

countries and their assets, the evidence of volatility persistence in government

bonds is noteworthy from this viewpoint. Once a shock in government bonds

takes place, it takes a long time for its effects to diminish, and this may require

specific approaches. The application of fractional models can be useful for this

core asset class, which has a significant role in liquidity policies.

For future work, the application of the other fractional models, which cover an asymmet-

ric power or leverage effects, can be evaluated. In addition, risk analysis can be conducted

using different approaches such as risk metrics and variance–covariance. Regarding correl-

ation, this study only dealt with dynamic correlation. An analysis of constant correlation

models and other multivariate models can also be performed in the EM bonds universe.

Appendix

Table 9 ISIN codes of the bonds

Indonesia: IDG000006206, IDG000006701, IDG000010901, IDG000008202, IDG000010604, IDG000005901,
IDG000009408, IDG000005802, IDG000005703, IDG000008400, IDG000006404, IDG000005406, IDG000004805,
IDG000005406, IDG000005604, IDG000004607, IDG000005208, IDG000004102, IDG000010307, IDG000009804,
IDG000009507, IDG000007204, IDG000012006, IDG000010208, IDG000010000, IDG000009101, IDG000006206,
IDG000006701, IDG000008202, IDG000006305

Brazil: BRSTNCLTN7J0, BRSTNCLTN7H4, BRSTNCLTN7G6, BRSTNCLTN764, BRSTNCLTN7E1, BRSTNCLTN7A9,
BRSTNCLTN780, BRSTNCLTN707, BRSTNCLTN6X3, BRSTNCLTN749, BRSTNCLTN6W5, BRSTNCLTN715,
BRSTNCLTN6S3, BRSTNCLTN6Y1, BRSTNCLTN6N4, BRSTNCLTN6R5, BRSTNCNTF071, BRSTNCNTF0J3,
BRSTNCNTF063, BRSTNCLTN6C7, BRSTNCLTN6B9, BRSTNCLTN699, BRSTNCLTN681, BRSTNCNTF1Q6,
BRSTNCNTF1P8, BRSTNCNTF170, BRSTNCNTF0N5, BRSTNCNTF147, BRSTNCNTF0G9, BRSTNCNTF0N5,
BRSTNCNTF0G9, BRSTNCNTF071, BRSTNCNTF0J3

India: IN0020180017, IN0020140029, IN0020100015, IN0020120054, IN0020140029, IN0020100015, IN0020020171,
IN0020130038, IN0020080068, IN0020130038, IN0020110014, IN0020120021, IN0020020031, IN0020120021,
IN0020020031, IN0020120021, IN0020090059, IN0020060219, IN0020090059, IN0020100023, IN0020090018,
IN0020100023, IN0020020122, IN0020020056, IN0020010057, IN0020020213, IN0020020155, IN0020030030,
IN0020170174, IN0020170026, IN0020160035, IN0020150093, IN0020150036, IN0020140045, IN0020130061,
IDG000012006, IN0020130061, IN0020130012, IN0020120013, IN0020110030, IN0020070051, IN0020110030,
IN0020110022, IN0020100015, IN0020020171, IN0020020098, IN0020070010, IN0020060219, IN0020080019,
IN0020020163, IN0020070010, IN0020060219

South Africa: ZAG000024738, ZAG000021841, ZAG000021833, ZAG000099870, ZAG000021833, ZAG000021841,
ZAG000010547, ZAG000024720, ZAG000044132, ZAG000010539, ZAG000016320, ZAG000096165,
ZAG000030396, ZAG000024738, ZAG000021841

Mexico: MX0MGO0000L1, MX0MGO0000V0, MX0MGO0000G1, MX0MGO0000F3, MX0MGO0000S6,
MX0MGO0000O5, MX0MGO0000M9, MX0MGO0000K3, MX0MGO0000A4, MXM0GO000011, MX0MGO0000E6,
MX0MGO000052, MX0MGO000094, MX0MGO000037, MXM7GO000014, MX0MGO0000D8, MX0MGO0000Y4,
MX0MGO000078, MX0MGO000003, MX0MGO0000Q0, MX0MGO0000N7, MX0MGO0000L1, MX0MGO0000G1,
MX0MGO0000F3, MX0MGO0000C0

Turkey: TRT080720T19, TRT050220T17, TRT131119T19, TRT150120T16, TRT100719T18, TRT141118T19,
TRT110718T18, TRT140218T10, TRT080317T18, TRT140617T17, TRT080317T18, TRT161116T19, TRT130716T18,
TRT071015T12, TRT130515T11, TRT070115T13, TRT060814T18, TRT050314T14, TRT041213T23, TRT091013T12,
TRT090113T13, TRT071112T14, TRT080812T26, TRT070312T14, TRT030811T14, TRT020211T11, TRT031110T10,
TRT140410T16, TRT071009T51, TRT050809T16, TRT080328T15, TRT110827T16, TRT240227T17, TRT110226T13,
TRT120325T12, TRT240724T15, TRT200324T13, TRT080323T10, TRT140922T17, TRT120122T17, TRT150120T16,
TRT210721T11, TRT060121T16, TRT150120T16, TRT060814T18, TRT070312T14, TRT140410T16, TRT070312T14
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Fig. 1 Return series of the bonds
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