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Abstract

This paper proposes a hybrid Bayesian Network (BN) method for short-term
forecasting of crude oil prices. The method performed is a hybrid, based on both the
aspects of classification of influencing factors as well as the regression of the out-of-
sample values. For the sake of performance comparison, several other hybrid
methods have also been devised using the methods of Markov Chain Monte Carlo
(MCMC), Random Forest (RF), Support Vector Machine (SVM), neural networks (NNET)
and generalized autoregressive conditional heteroskedasticity (GARCH). The hybrid
methodology is primarily reliant upon constructing the crude oil price forecast from
the summation of its Intrinsic Mode Functions (IMF) and its residue, extracted by an
Empirical Mode Decomposition (EMD) of the original crude price signal. The Volatility
Index (VIX) as well as the Implied Oil Volatility Index (OVX) has been considered
among the influencing parameters of the crude price forecast. The final set of
influencing parameters were selected as the whole set of significant contributors
detected by the methods of Bayesian Network, Quantile Regression with Lasso
penalty (QRL), Bayesian Lasso (BLasso) and the Bayesian Ridge Regression (BRR). The
performance of the proposed hybrid-BN method is reported for the three crude price
benchmarks: West Texas Intermediate, Brent Crude and the OPEC Reference Basket.

Keywords: Bayesian networks, Random Forest, Markov chain Monte Carlo, Support
vector machine

Introduction
The price of crude oil has a pivotal role in the global economy and remains at the core of

energy markets. As such, its fluctuations have the potential to impact economic develop-

ments worldwide. The ability to forecast the price of crude oil is therefore a useful tool in

the management of most industrial sectors (Shin et al. 2013). Nevertheless, crude oil price

forecasting has been a challenging task, owing to its complex behavior resulting from the

confluent influence of several factors on the crude oil market. In specific, the nonlinear

features exhibited in the dynamics of oil price volatilities present a quandary for predictive

techniques, making the issue of (long-term) crude price forecasting open to finance

research.

A wealth of literature exists on the topic of forecasting crude oil prices. These articles

are myriad, both in terms of the types of models and the number of methods being used

concurrently. Some studies use an approach with a single method (non-hybrid) and some

are defined by several methods (hybrid). In this regard, the generalized autoregressive
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conditional heteroskedasticity (GARCH) was amongst the first methods used because of

its ability to capture time-varying variance or volatility (Agnolucci 2009; Arouri et al.

2012; Cheong 2009; Fan et al. 2008a; Hou and Suardi 2012; Kang et al. 2009; Mohammadi

and Su 2010; Narayan and Narayan 2007; Sadorsky 2006; Wei et al. 2010). We attempted

to perform the GARCH model as a hybrid method by combining with other models, such

as the stochastic volatility (SV) model, the implied volatility (IV) model and the support

vector machine (SVM) model.

The neural network (NNET) method has been another approach for crude price

forecasting (Azadeh et al. 2012; Ghaffari and Zare 2009; Movagharnejad et al. 2011;

Shin et al. 2013; Wang et al. 2012; Yu et al. 2008; Zhang et al. 2008). However, it

reportedly bears the disadvantage of over-fitting, local minima and weak generalization

capability (Zhang et al. 2015). For this sake, its hybrid usage has been recommended

for the purposes of crude price forecasting.

Some authors opted to use the SVM model for price prediction, taking advantage of

its suitability for modeling small-sized data samples with nonlinear behavior (Guo et al.

2012). Others have reported on the merits of the wavelet technique for crude price

forecasting (Yousefi et al. 2005) with one major shortcoming being its sensitivity to the

sample size. However, the recent literature advocates for the use of hybrid methods to

improve on the accuracy of price forecasting. The use of the best of each technique in

a hybrid framework has been enhanced by combining the soft-computing or econo-

metric method or both (Fan et al. 2008b; Xiong et al. 2013). The reader is referred to

the excellent review by Zhang et al. (2015) for a more complete assessment of past

research on oil price forecasting.

The motivation behind the present work was to exploit the potential of Bayesian network

(BN) theory, in the context of crude price prediction, by constructing a network over

decomposed price components. As such, the present article contributes to the existing

literature in this field by proposing a novel hybrid method within a Bayesian network

framework. In addition, this article reports results on other devised hybrid methods, using

Random Forest (RF), Markov Chain Monte Carlo (MCMC), NNET and SVM. The rest of

the article is organized as follows. The next section will detail the methods being used. A

description of the results is provided in the third section, which will be followed by some

concluding remarks.

Methodology
The hybrid methodology followed in this article takes advantage of several concepts,

which are introduced in this section.

Bayesian network

A Bayesian network is an implementation of a graphical model, in which nodes repre-

sent (random) variables and arrows represent probabilistic dependencies between the

nodes (Korb and Nicholson 2004). The BN’s graphical structure is a directed acyclic

graph (DAG) that enables estimation of the joint probability distribution. For each

variable, DAG defines a factorization of the joint probability distribution into a set of local

probability distributions, where the form of factorization is given by the BN’s Markov

property, assuming a variable to be solely dependent on its parents (Scutari 2010). In this
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sake, the BN methodology initially seeks to find a DAG structure amongst the

variables being considered. The two classifications of the BN-structure-learning

process either treat the issue by analyzing the probabilistic relationships super-

vised by the Markov property of Bayesian networks with conditional independ-

ence tests and subsequently constructing a graph that satisfies the corresponding

d-separation statements (constraint-based algorithms), or by assigning a score to

each BN candidate and maximizing it with a heuristic algorithm (score-based

algorithms) (Scutari 2010).

By taking advantage of the fundamental properties of the Bayesian networks, approximate

inference (on an unknown value) is attainable. This approach should be able to avoid the

curse of dimensionality due to its usage of local distributions (Nagarajan et al. 2013). Given

the established BN network structure, the stochastic simulation can be applied to generate a

large number of cases from the distribution network, from which the posterior probability

of a target node is estimated. In this regard, the two prominent algorithms are logic

sampling (LS) and likelihood weighting (LW). The LS algorithm generates a case by selec-

ting values for each node, weighted by the probability of the values occurring at random.

The nodes are traversed from the parent (root) nodes down to children (leaf )

nodes. As a consequence, at each step, the weighting probability is either the prior

or the Conditional Probability Table entry for the sampled parent values. A

representation of all the nodes in the BN is created later on, once the full struc-

ture is visited. The collection of instantiation data enables estimation of the pos-

terior probability for node X given evidence E (Appendix 1). The LW algorithm is

similar to the former with a slight modification: adding the fractional likelihood of

the evidence combination to the run count, instead of one (Appendix 2).

Empirical mode decomposition (EMD)

As a signal develops over time, a time-series may possess several temporal features. As

such, exploring its characteristic behavior at different time scales should be informative.

The Empirical Mode Decomposition (EMD) (Huang et al. 1998) separates the original

signal into two parts: a fast-varying symmetric oscillation and a slow-varying local mean.

The former constitutes the Intrinsic Mode Functions (IMF) of the original signal while

the latter captures its residue. A repetitive sifting process is then implemented in order to

extract the residue and the IMFs (Appendix 3). The process terminates once no

more oscillations can be separated from the last residue. The EMD method has a

stronger local representative capability compared to the wavelet transform and is

more effective in processing non-linear or non-stationary signals (Hong 2011). In

this work, the EMD implementation was made using the EMD package (Kim and

Oh 2009; Kim and Oh 2014).

Quantile regression with lasso penalty (QRL)

Consider a problem of regression on a data set {(xi, yi); 1 ≤ i ≤ n; xi, yi ∈ℜ
p} of size N,

with predictors x and response values y. The conditional ξth quantile function, f(x) ξ, is

defined such that P(Y ≤ f ξ (X) X = x) = ξ, for 0 < ξ < 1. Additionally, the absolute loss

function, (r)ρξ, can be defined as (Koenker and Bassett 1978; Wu and Liu 2009):
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ρξ rð Þ ¼ fξr− 1−ξð Þr
r>0

otherwise
ð1Þ

The ξth conditional quantile function can be obtained by minimizing the following

(Koenker 2004):

min
f ξ

Xn
i¼1

ρξ yi− f ξ xið Þ� �þ λΞ f ξ
� � ð2Þ

, where λ ≥ 0 is a regularization parameter and () ξ Ξ f, is a roughness penalty of the ξ

f function. Assuming the conditional quantile function to be a linear function of the

regressor x – as it is in the case of linear quantile regression – the function can be

written as fξ(x) = xTβξ with βξ = (βξ, 1, βξ, 2,…, βξ, p)
T. There are several recommen-

dations for the penalty function in eq. 2. The Least Absolute Shrinkage and Selection

Operator (Lasso) (Tibshirani 1996; Tibshirani 2011) treats this minimization case by

constraining the L1-norm of the coefficients. In other words, the (classical) Lasso

formulation considers a form of
Pp

i¼1 jβξ;ij as the penalty function. Alternatively, the

functional form considered for the penalty function may account for an L2 norm con-

straint, the Ridge Regression method. The solution should yield a set of {β} regression

parameters for the problem of interest. The rqPen package (Sherwood and Maidman

2016) was used for the QRL implementation in this work.

Bayesian lasso (BLasso) and Bayesian ridge regression (BRR)

Recall the original problem of finding the regression parameters β for the model in eq. 3:

y ¼ μ1n þ Xβþ ε ð3Þ

where y is the n × 1 vector of responses, μ is the overall mean, X is the n × p matrix

of standardized regressors and ε is the n × 1 vector of independent and identically

distributes normal errors with mean 0 and unknown variance 2σ. Lasso achieves a solu-

tion for β by minimizing eq. 4 through L1-penalized least squares. As such, the method

should have a Bayesian interpretation, viewing the lasso estimate as the mode of the

posterior distribution of β (Hans 2009).

min
β

~y−Xβð ÞT ~y−Xβð Þ þ λ
Xp
i¼1

βi
�� ��~y ¼ y−y1n

ð4Þ

Assuming a conditional Laplace prior on β, πðβjσ2Þ ¼ Qp
i¼1

λ
2
ffiffiffiffi
σ2

p e−λjβij=
ffiffiffiffi
σ2

p
and a scale

invariant prior on σ2, πðσ2Þ ¼ 1
σ2 a hierarchical representation of the full model is

suggested as (Park and Casella 2008):

y μ;X; β; σ2 � Nn μ1n þ Xβ; σ2In
� ��� β σ2; τ21; τ

2
2;…; τ2p � Np 0p; σ2Dτ

� ���� Dτ

¼ diag τ21;…; τ2p
� �

σ2; τ21;…τ2p � π σ2
� �

dσ2
Yp
i¼1

λ2

2
e−λ

2τ2i =2dτ2i

ð5Þ

Consequently, a basis is formed for an efficient Gibbs sampler from the

Bayesian posterior distribution, updating each parameter one at a time condi-

tioned on all other parameters, with the block updating of the regression
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parameters. The Bayesian concept can be also extended to the ridge regression—the

Bayesian Ridge Regression (BRR) method—with an altered formulation for the priors. The

reader is, however, referred to the seminal work of Park and Casella (2008) for com-

prehensive details of the techniques. The monomvn package (Gramacy 2016) was used to

implement the BLasso/BRR methods in this work.

Markov chain Monte Carlo (MCMC)

Based on an assumption of a multivariate Gaussian () NK prior on β, and an inverse

Gamma (IG) prior on the conditional error variance ε (eq. 6), the MCMC method uses

Gibbs sampling to evaluate the posterior distribution of a linear regression model,

enabling Bayesian inference on the regression parameters:

y ¼ Xβþ ε
ε � N 0; σ2

� �
β � NK b0;B

−1
0

� �
σ2 � IG

c0
2
;
d0

2

� 	 ð6Þ

In this work, the parameters used during MCMC implementation were (0.001, 0.001)

c0 = d0 = for shape factor/scale parameter of the inverse gamma prior on σ 2, and (0, 0)

b0 = B0 = for the mean/precision of the prior on β, respectively. The latter choice corre-

sponds to a case of putting an improper uniform prior on β. A comprehensive treatment

of the MCMC method can be found in Robert and Casella (2004). The MCMC imple-

mentation was made using the R Language package, MCMCpack (Martin et al. 2011).

Random Forest (RF)

Developed upon the seminal work of Breiman (2001), the Random Forest (RF) method

is an extension of classification and regression trees with a modified leaning algorithm,

that is, selecting a random subset of the features at each candidate split during the

learning process. The algorithm exploits trees that use a subset of the observations

through bootstrapping techniques. For each tree grown on a bootstrap sample, the

error rate for observations left out of the bootstrap sample is monitored as the out-of-

bag (OOB) error rate, the accuracy of which indicates the RF predictor accuracy. The

Random Forest algorithm seeks to improve on bagging by de-correlating the trees,

implementing random feature selection at each node for the set of splitting variables

(Meyer et al. 2003). As such, the RF algorithm works with two main input parameters:

the number of trees and the number of variables. However, an in-depth description of

the method can be found in other useful literature (Breiman 2001). For the develop-

ment of results presented herein, the number of trees to grow was set to 500, in

accordance with the large-value recommendation in the literature (Breiman 2001;

Micheletti et al. 2014). The choice for the number of trees, however, was rendered after

conducting a series of runs over a grid in the range of [100–1100] (for the number of

trees) and [10–32] (for the number of variables randomly sampled) to select the

optimum values with minimum mean squared residuals. This resulted in the number

of variables randomly sampled as candidate at each split to be set to a 32, corres-

ponding to the maximum number of variables available. The RF implementation was

accomplished using the randomForest package (Liaw and Wiener 2002).
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The proposed hybrid forecasting methodology

The hybrid methodology proposed herein exploits the characteristics of the

IMFs as its mainstream. In other words, the predicted crude oil price at any

future point in time is assessed based on the summation of the corresponding

IMFs and the residue. Hence, forecasts of the IMFs/residue are required in the

time step(s) ahead. The regression forecast is attempted based on the two types

of regressors, namely internal and external, for each IMF/residue. The internal

regressors were considered to be those previous values of an IMF/residue, to

which the current value depends, which is determined through the Partial Auto-

correlation of the decomposed signal, whereas the external regressors were

considered to be the technical indicators, the volatility index (VIX), and the

implied oil volatility index (OVX). In this regard, the technical indicators taken

into account have been the Aroon indicator (aroon), the Commodity Channel

Index (CCI), the Double Exponential Moving Average (DEMA), the Exponential

Moving Average (EMA), the Moving Average Convergence/Divergence (MACD),

the Relative Strength Index (RSI), the Simple Moving Average (SMA), the

Traders Dynamic Index (TDI) and the Triple Exponentially Smoothed Moving

Average (TRIX).

The proposed methodology is hybrid in two different ways: classification and

regression. The initial classification step involves the determination of the set of

significant regressors, from the pool of regressors described using BN (con-

strained/scored), QRL, BLasso and as its methods, where the criterion of signifi-

cance differs for each method. In the BLasso/BRR classification, for instance, a

regressor is considered significant when the estimated posterior probability of the

individual component’s regression coefficient is returned as nonzero. In the BN

scenario, on the other hand, significance is recognized in the strength of the

corresponding arch—an arch strength coefficient of equal to or less than 0.05

when a conditional independence test is applied (constrained BN), or a strength

coefficient of less than zero threshold, when network scores are applied (scored

BN) (Scutari 2010). The final set of significant regressors is selected as the whole

set of significant parameters, determined by the BN-QRL-BLasso-BRR methods,

for each IMF/residue.

Table 1 Different predictive strategies tested

Name Strategy

Method-1 RF + GARCH

Method-2 SVM + GARCH

Method-3 MCMC+GARCH

Method-4 NNET+GARCH

Method-5 BN + GARCH

Method-6 RF

Method-7 SVM

Method-8 MCMC

Method-9 NNET

Method-10 BN
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Fig. 1 The Intrinsic Mode Functions- IMF.1 (a), IMF.2 (b), IMF.3 (c), IMF.4 (d), IMF.5 (e), IMF.6 (f), IMF.7 (g) -
and the residue (h), decomposed from WTI price data by the EMD method
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The second regression step, being hybrid in essence, involves predicting the

IMFs/residue from their corresponding regressors, in the time steps ahead. For

this reason, several strategies were devised and later tested for efficiency

(Table 1). The first five methods take advantage of the presence of time-varying

feature in the decomposed IMF signals. Under such circumstances, the GARCH

model is used to forecast the time-varying IMF components, while the rest of

the IMFs as well as the residue are predicted by the conjugate model listed. In

the second five strategies, the IMFs as well as the residue are computed by a

candidate model, in the time steps ahead, regardless of the time-varying aspect

of some of the IMFs. The procedures of the proposed hybrid method can be

summarized as follows:

(1) Apply the EMD method to the original crude price series. Decompose the series

into its IMFs and the residue.

(2) Extract the significant regressors for each IMF and residue by taking

the whole set of significant regressors determined by the BN-QRL-BLasso-

BRR methods.

(3) Under Schemes 1–5 in Table 1, if the corresponding IMF presents the

feature of time variation, use the GARCH model to predict its future

value. Use the conjugate model in the scheme to predict the future

values of other IMFs and the residue based on the regressors determined

in stage 2.

(4) Under Schemes 6–10 in Table 1, use the candidate model prescribed to

forecast the future values of the IMFs and residue, based on the regressors

determined in stage 2.

(5) Construct the final forecasted crude oil price by summing the future values IMFs

and the residue.

The general specification of the mean/variance in the GARCH model considered in

Schemes 1–5 of Table 1 is as follows, respectively:

Table 2 Descriptive statistics of the IMFs/residue of WTI, in the period between 06-July-2007 and
25-February-2019

Name augmented Dickey–
Fuller (ADF)a

Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) b

Jarque–Bera Kurtosis mean Standard
Deviation

IMF.1 −15.24 (0.01) 0.22 (0.1) 3781.20 (0.000) 8.567 0.0035 0.92

IMF.2 −16.79 (0.01) 0.03 (0.1) 3917.50 (0.000) 8.66 0.0008 0.97

IMF.3 −13.84 (0.01) 0.022 (0.1) 901.49 (0.000) 5.711 −0.0066 1.567

IMF.4 −8.63
(0.01)

0.062 (0.1) 81.49 (0.184) 3.622 −0.1983 2.266

IMF.5 −7.82
(0.02)

0.180 (0.1) 564.44 (0.000) 5.139 −0.1187 6.445

IMF.6 −3.70
(0.01)

0.276 (0.1) 878.23 (0.000) 5.682 0.2289 7.557

IMF.7 −2.30 (0.45) 1.519 (0.01) 244.24 (0.000) 2.127 −1.2018 10.844

RES −1.83 (0.64) 20.624 (0.01) 366.29 (0.000) 1.755 76.7498 16.129
a Alternative hypothesis: Data is stationary
b Null hypothesis: Data is level stationary
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xoil;t ¼ η1 þ η2xoil;t−1 þ η3xoil;t−2 þ…þ ηnþ1xoil;t−n þ ηnþ2xOVX;t−1 þ ηnþ3xVIX;t−1
þηnþ4xaroon;t−1 þ ηnþ5xCCI;t−1 þ ηnþ6xDEMA;t−1 þ ηnþ7xEMA;t−1

þηnþ8xMACD;t−1 þ ηnþ9xRSI;t−1 þ ηnþ10xSMA;t−1 þ ηnþ11xTDI;t−1
þηnþ12xTRIX;t−1 þ εt

ð7Þ

σ2oil;t ¼ ηnþ13 þ ηnþ14σ
2
oil;t−1 þ ηnþ15ε

2
t−1 ð8Þ

,where x i t, refer to the price/value of i at time t, and n refers to the number of

previous time steps to which the current oil price data is correlated. The final form

of the GARCH specification for the time-varying IMFs may adopt a truncated ver-

sion in mean, though, as they differ in their type/number of significant regressors,

to be incorporated into the equation for mean. The GARCH predictions were

made by the rugarch package (Ghalanos 2015). The accuracy of hybrid forecasting

methods was evaluated by several statistical criteria, namely, the mean absolute

error (MAE), the root mean square error (RMSE) and the mean absolute percent-

age error (MAPE).

Table 4 Descriptive statistics of the IMFs/residue of ORB, in the period between 06-July-2007 and
25-February-2019

Name augmented Dickey–
Fuller (ADF)a

Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) b

Jarque–Bera Kurtosis mean Standard
Deviation

IMF.1 −15.60 (0.01) 0.134 (0.1) 1185.2 (0.000) 6.11 0.0057 0.59

IMF.2 −18.54 (0.01) 0.035 (0.1) 1400.9 (0.000) 6.38 0.0201 0.85

IMF.3 −15.65 (0.01) 0.017 (0.1) 402.6 (0.000) 4.81 −0.0100 1.22

IMF.4 −7.751 (0.01) 0.212 (0.1) 1283.4 (0.000) 6.21 −0.0380 2.53

IMF.5 −7.084 (0.01) 1.806 (0.1) 3266.4 (0.000) 8.05 −1.1880 8.85

IMF.6 −2.993 (0.15) 2.168 (0.01) 1347.2 (0.000) 5.34 1.1660 7.97

IMF.7 −1.914 (0.61) 0.506 (0.04) 86.03 (0.951) 2.42 −0.426 4.50

IMF.8 −3.090 (0.11) 1.694 (0.01) 195.00 (0.000) 1.97 −1.026 8.96

RES −2.871 (0.20) 14.435 (0.01) 191.58 (0.000) 1.75 79.810 19.36
a Alternative hypothesis: Data is stationary
b Null hypothesis: Data is level stationary

Table 3 Descriptive statistics of the IMFs/residue of BRENT, in the period between 06-July-2007
and 25-February-2019

Name augmented Dickey–
Fuller (ADF)a

Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) b

Jarque–Bera Kurtosis mean Standard
Deviation

IMF.1 −14.78 (0.01) 0.204 (0.1) 554.27 (0.000) 5.132 0.0001 0.81

IMF.2 −18.008 (0.01) 0.067 (0.1) 870.12 (0.000) 5.674 0.0263 1.00

IMF.3 −16.059 (0.01) 0.024 (0.1) 1281.5 (0.000) 6.247 −0.0294 1.55

IMF.4 −10.714 (0.01) 0.023 (0.1) 152.74 (0.000) 4.115 0.0302 1.81

IMF.5 −5.140 (0.01) 0.127 (0.1) 511.08 (0.000) 4.914 0.094 5.57

IMF.6 −6.923 (0.01) 0.273 (0.1) 4365.10 (0.000) 8.566 0.0213 7.83

IMF.7 −3.055 (0.13) 2.841 (0.01) 28.49 (0.000) 2.802 0.597 11.88

IMF.8 −2.574 (0.33) 2.841 (0.01) 28.49 (0.000) 2.716 −2.403 7.51

RES −2.896 (0.19) 14.343 (0.01) 186.48 (0.000) 1.861 82.330 20.49
a Alternative hypothesis: Data is stationary
b Null hypothesis: Data is level stationary

Fazelabdolabadi Financial Innovation            (2019) 5:30 Page 9 of 21



Table 5 The set of significant regressors detected for each IMF/residue of WTI, with the BN-QRL-
BLasso-BRR techniques

Name Method Significant external regressors detected

IMF.1 BN (Constrained) aroon, CCI, RSI, SMA

BN (Scored) aroon, CCI, RSI, SMA

QRL aroon, CCI

BLasso aroon, CCI, DEMA, RSI, SMA

BRR aroon, CCI, DEMA, RSI, SMA

IMF.2 BN (Constrained) DEMA, EMA, MACD, RSI, TRIX

BN (Scored) DEMA, MACD, RSI, TRIX

QRL aroon, CCI, TDI

BLasso CCI, MACD, RSI, TRIX, VIX

BRR DEMA, EMA, MACD, RSI, SMA, TRIX, VIX

IMF.3 BN (Constrained) aroon, CCI, DEMA, MACD, OVX, RSI, SMA, TDI, VIX

BN (Scored) aroon, CCI, DEMA, MACD, OVX, RSI, SMA, TDI, VIX

QRL aroon, CCI, TDI

BLasso aroon, CCI, DEMA, EMA, MACD, OVX, RSI, SMA,
TDI, TRIX, VIX

BRR aroon, CCI, DEMA, EMA, MACD, OVX, RSI, SMA,
TDI, TRIX

IMF.4 BN (Constrained) aroon, MACD, RSI, TDI

BN (Scored) aroon, MACD, TDI

QRL aroon, CCI, TDI

BLasso aroon, DEMA, EMA, MACD, RSI, SMA, TDI, TRIX, VIX

BRR aroon, DEMA, EMA, MACD, RSI, SMA, TDI

IMF.5 BN (Constrained) DEMA, MACD, SMA, TDI, OVX, VIX

BN (Scored) DEMA, MACD, SMA, TDI, OVX, VIX

QRL aroon, CCI, DEMA, EMA, TDI

BLasso aroon, CCI, DEMA, EMA, MACD, OVX, RSI, SMA,
TDI, TRIX, VIX

BRR DEMA, EMA, MACD, OVX, RSI, SMA, TDI

IMF.6 BN (Constrained) MACD, OVX, SMA, TDI, TRIX, VIX

BN (Scored) MACD, OVX, SMA, TDI, TRIX, VIX

QRL CCI, DEMA, VIX

BLasso DEMA, EMA, MACD, OVX, RSI, SMA, TDI, TRIX, VIX

BRR DEMA, EMA, MACD, OVX, RSI, SMA, TDI, TRIX, VIX

IMF.7 BN (Constrained) MACD, RSI, TRIX, OVX, VIX

BN (Scored) MACD, RSI, TRIX, OVX, VIX

QRL aroon, CCI, DEMA, OVX, TDI

BLasso CCI, DEMA, EMA, OVX, SMA, TDI, VIX

BRR CCI, DEMA, EMA, OVX, SMA, TDI, TRIX, VIX

RES BN (Constrained) aroon, MACD, OVX, RSI, TDI, TRIX, VIX

BN (Scored) aroon, MACD, OVX, RSI, TDI, TRIX, VIX

QRL arron, CCI, EMA, TDI, VIX

BLasso aroon, DEMA, MACD, OVX, SMA, TDI, TRIX, VIX

BRR aroon, DEMA, MACD, OVX, SMA, TDI, TRIX, VIX
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Fig. 2 The Bayesian Network of significant (solid lines), insignificant (dashed lines) of external regressors for
the Intrinsic Mode Functions- IMF.1 (a), IMF.2 (b), IMF.3 (c), IMF.4 (d), IMF.5 (e), IMF.6 (f), IMF.7 (g) - and the
residue (h) of WTI, extracted through the constrained-based BN method
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Data and results
The price data of oil/OVX/VIX were acquired through the Quandl package (McTaggart et al.

2016). As for the crude price, the data related to three benchmarks were collected: West

Texas Intermediate (WTI), Brent crude (BRENT), and the OPEC Reference Basket (ORB).

A number of seven distinct IMFs (IMF.1, IMF.2, …, IMF.7) and one residue (RES)

were detected for WTI (Fig. 1), while for BRENT/ORB, eight IMFs were detected. In

this process, the S stoppage rule (Huang and Wu 2008) was considered, as for the

stopping rule of the sifting process. Tables 2, 3 and 4 report the statistics measured on

each IMF/residue in the time span between July 6, 2007 and February 25, 2019. The

subscripts in parenthesis indicate the corresponding p-values. The IMFs with lepto-

kurtic characteristic (Kurtosis > 3) were later used in Methods 1–5 (Table 1) as input

into the GARCH model. The statistics were measured using the tseries package

(Trapletti and Hornik 2015).

The technical indicators were computed using the TTR package (Ulrich 2016).

However, it should be noted that because the oil price data used contained the

closing price values, the CCI numbers obtained herein essentially receive an

altered meaning to their original definition. Table 5 lists the set of significant

external regressors, separately detected by the BN-QRL-BLasso-BRR methods, for

each IMF/residue of WTI. Figure 2 provides a graphical representation of the

extracted Bayesian network of significant/insignificant previous-time external

regressors of the IMFs/residue of WTI, obtained through the constraint-based BN

concept. The Rgraphviz package (Hansen et al. 2008) was used to plot the graph.

The final set of previous-time external regressors considered for each IMF/resi-

due was, however, taken as the whole of the significant detected parameters

(Tables 6, 7 and 8). Detection of the significant internal regressors was made by

following the standard procedure of considering the partial autocorrelation of the

decomposed signal (Fig. 3). The DAG graphs (Fig. 3) are important in the sense

that they reveal the influencing parameters on each intrinsic mode function. The

CCI, SMA and OVX parameters are not directly connected; the DAG assumes that

there is no possibility to revisit a given vertex after starting from that same vertex,

following a consistently directed sequence of edges. A connection between these

nodes (vertices) would violate this rule for the data involved, which is the reason

why they appear unconnected in the reported DAGs. Moreover, the CCI, SMA and

OVX can be considered to be the parents for most of intrinsic mode functions as

well as the residue.

Table 6 The final set of external regressors for each IMF/residue of WTI

Name Significant external regressors

IMF.1 aroon, CCI, DEMA, RSI, SMA

IMF.2 aroon, CCI, DEMA, EMA, MACD, RSI, SMA, TDI, TRIX, VIX

IMF.3 aroon, CCI, DEMA, EMA, MACD, OVX, RSI, SMA, TDI, TRIX, VIX

IMF.4 aroon, CCI, DEMA, EMA, MACD, RSI, SMA, TDI, TRIX, VIX

IMF.5 aroon, CCI, DEMA, EMA, MACD, OVX, RSI, SMA, TDI, TRIX, VIX

IMF.6 CCI, DEMA, EMA, MACD, OVX, RSI, SMA, TDI, TRIX, VIX

IMF.7 aroon, CCI, DEMA, EMA, MACD, OVX, RSI, TDI, TRIX, VIX

RES aroon, CCI, DEMA, EMA, MACD, OVX, RSI, TDI, TRIX, VIX
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The hybrid strategy optimization (Ghalanos 2015) was used within the GARCH

implementation in Methods 1–5. This ensures that a number of non-linear

solvers are called in a sequence in the case that the initial optimization fails. For

the SVM implementation (Methods 2 and 7 in Table 1), a grid-search was ini-

tially conducted over the parameter ranges so as to calibration the SVM model

(Meyer et al. 2015). This was followed by a kernel-based SVM regression, where

the hyperparameters of the kernel were taken as those obtained from the cali-

bration stage. The Laplacian kernel was used within the SVM regression with

bound constraint (Karatzoglou et al. 2004). For the NNET predictions (Methods

4 and 9), the k-nearest neighbor method was used without any preprocessing of

the predictor data (Kuhn et al. 2016). As for the MCMC (Methods 3 and 8), a

number of 1,000 burn-in iterations was elapsed, followed by 10,000 Metropolis

iterations for the sampler. Also, a number of 1,000 MCMC samples were collected for the

BLasso/BRR outputs. The initial lasso penalty parameter was taken as one and the Rao-

Blackwellized samples were used for σ2 (Gramacy 2016). The selection of the model for

the columns of the design matrix for regression parameters in BLasso/BRR was made

using the Reverse-Jump MCMC (Gramacy 2016).

Implementation of the graphical structure-learning of the Bayesian networks

was attempted using the bnlearn package (Scutari 2017). Both types of

constraint/score-based algorithms were tested in this work. For the constraint-

based type, the Monte Carlo permutation test was used for the conditional

Table 8 The final set of external regressors for each IMF/residue of ORB

Name Significant external regressors

IMF.1 aroon, CCI, DEMA, EMA, RSI, SMA, TRIX

IMF.2 aroon, CCI, DEMA, MACD, SMA, TDI, TRIX

IMF.3 aroon, CCI, DEMA, EMA, MACD, OVX, RSI,
SMA, TDI, TRIX, VIX

IMF.4 aroon, CCI, EMA, MACD, OVX, RSI, TRIX, VIX

IMF.5 aroon, CCI, DEMA, MACD, OVX, RSI, TDI,
TRIX, VIX

IMF.6 CCI, DEMA, EMA, MACD, OVX, RSI, SMA,
TDI, TRIX, VIX

IMF.7 CCI, DEMA, OVX, TDI, VIX

RES aroon, CCI, DEMA, EMA, MACD, OVX, SMA,
TDI, TRIX, VIX

Table 7 The final set of external regressors for each IMF/residue of BRENT

Name Significant external regressors

IMF.1 aroon, CCI, EMA, MACD, RSI, SMA, VIX

IMF.2 aroon, CCI, DEMA, MACD, TRIX

IMF.3 aroon, CCI, DEMA, EMA, MACD, OVX, RSI, SMA, TDI, TRIX, VIX

IMF.4 aroon, CCI, MACD, RSI, SMA, TDI, TRIX

IMF.5 aroon, CCI, DEMA, EMA, MACD, OVX, RSI, VIX

IMF.6 CCI, DEMA, EMA, MACD, OVX, SMA, TDI, TRIX, VIX

IMF.7 aroon, CCI, DEMA, MACD, OVX, RSI, TDI, VIX

RES aroon, CCI, EMA, MACD, OVX, RSI, TRIX, VIX
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Fig. 3 The partial autocorrelation of the Intrinsic Mode Functions- IMF.1 (a), IMF.2 (b), IMF.3 (c), IMF.4 (d),
IMF.5 (e), IMF.6 (f), IMF.7 (g) - and the residue (h) of WTI
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independence test. While in the score-based case, a score equivalent Gaussian

posterior density criterion was applied. For a BN inference, predictions were

obtained by applying the LW algorithm and extracting the expected value of the

conditional distribution of 500 simulation results. All the available nodes in the

structure were taken as evidence in that situation except the node related to the

variable being predicted.

The crude price forecasting was attempted from periods of time ten days ahead.

To test the performance of the methods, three random training sets were used

with a common beginning date of July 6, 2007 and ending dates of January 3,

2017, March 27, 2017 and February 8, 2019, respectively. In each case, the hybrid

methods were used to predict the crude prices for the ten out-of-sample days

immediately ahead. The average of the errors incurred is reported in Tables 9, 10

and 11. According to the results, Method-10 shows conspicuously better perfor-

mance when compared with the other methods, in all three statistics measured

(MAE, RMSE and MAPE). The superior performance of Method-10 is not merely

bounded to a single market, rather it is demonstrated over the three price types

(WTI, BRENT and ORB). Furthermore, the predictive accuracy of Method-10 is

compared by using a Diebold-Mariano test against other techniques. Table 12 lists

the Diebold-Mariano statistics for the 10-day forecast of WTI/BRENT/ORB, asses-

sing the alternative hypothesis that Method-10 is more accurate than the method

Table 9 The average errors of the 10-days-ahead forecasts of WTI
Name MAE RMSE MAPE (%)

Method-1 1.75 2.13 0.03

Method-2 1.79 2.16 0.03

Method-3 2.58 3.32 0.04

Method-4 3.02 3.37 0.05

Method-5 1.87 2.34 0.03

Method-6 0.95 1.17 0.01

Method-7 1.28 1.52 0.02

Method-8 7.26 7.88 0.12

Method-9 1.92 2.14 0.03

Method-10 0.75 0.81 0.01S

Table 10 The average errors of the 10-days-ahead forecasts of BRENT

Name MAE RMSE MAPE (%)

Method-1 18.59 32.08 0.28

Method-2 18.79 32.14 0.29

Method-3 18.16 31.86 0.28

Method-4 20.17 33.23 0.32

Method-5 19.05 32.62 0.29

Method-6 0.96 1.19 0.01

Method-7 1.19 1.47 0.01

Method-8 19.98 23.91 0.30

Method-9 4.39 5.17 0.06

Method-10 0.96 1.20 0.01
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of choice, clearly demonstrating the superior accuracy of the proposed hybrid tech-

nique. A close inspection of the results also indicates that, overall, Methods 6–10

achieve a better predictive success than Methods 1–5, which incorporate the

GARCH model. However, this should not rule out the application of GARCH in

hybrid price forecasting models.

The extracted Bayesian networks indicate that both OVX and VIX are influential on

different layers of IMF or the residue, which accounts for their impact on the value of

future crude prices. In addition, the established BN structure shows the previous-time

technical indicators to affect different layers of IMF and the residue of the decomposed

price signal.

The proposed hybrid methodology was chosen for short-term prediction of

crude prices, owing to the short-term viability of the regressors employed. The

method, however, deserves further investigation and merits being tested for its

long-term forecasting capability, for example incorporating regressors with longer

life spans.

Conclusions
The performance of the hybrid Bayesian network proposition was outstanding

compared to the other devised hybrid models, in all of the three crude price types

(WTI, BRENT and ORB) and against all of the three statistical benchmarks (MAE,

Table 11 The average errors of the 10-days-ahead forecasts of ORB

Name MAE RMSE MAPE (%)

Method-1 0.74 0.89 0.01

Method-2 1.29 1.42 0.01

Method-3 3.07 3.17 0.04

Method-4 2.06 2.25 0.03

Method-5 0.68 0.82 0.01

Method-6 0.55 0.63 0.00

Method-7 0.91 1.06 0.01

Method-8 23.60 26.96 0.36

Method-9 2.97 3.56 0.04

Method-10 0.49 0.58 0.00

Table 12 The Diebold-Mariano statistics for 10-day forecast of WTI/BRENT/ORB, for the alternative
hypothesis that Method-10 is better in terms of accuracy versus the method of choice

WTI BRENT ORB

Method-1 1.93 (0.04) 1.39 (0.09) 1.45 (0.08)

Method-2 1.99 (0.03) 1.39 (0.09) 2.80 (0.01)

Method-3 2.17 (0.02) 1.38 (0.09) 5.89 (0.00)

Method-4 3.32 (0.00) 1.44 (0.09) 3.47 (0.00)

Method-5 1.85 (0.04) 1.41 (0.08) 1.55 (0.07)

Method-6 1.05 (0.01) 0.06 (0.10) 0.33 (0.03)

Method-7 2.20 (0.02) 0.87 (0.20) 1.90 (0.04)

Method-8 4.56 (0.00) 2.35 (0.02) 3.06 (0.00)

Method-9 2.70 (0.01) 2.48 (0.01) 3.14 (0.00)
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RMSE and MAPE). The BN demonstrated that the volatility indices (OVX, VIX)

are influential on different decomposed signals of the crude price, affecting the

level-ahead price values. The predictive power of the hybrid methods adopting

GARCH was shown to be inferior to the other methods, which apply regressions

to all of the layers of the decomposed signal for crude price forecasting. Since the

proposed hybrid method makes use of regressors with short-term life spans (i.e.,

technical indicators, OVX, VIX and past price values), the method remains a valid

option for short-term forecasting. The question of its capability in handling long-

term price forecasts is yet to be answered by the future research using parameters

with longer-term viability.

Appendix 1
The Logic sampling algorithm

Consider an established Bayesian Network. Assume X to be node in this BN structure,

and E as a given evidence. The Logic sampling algorithm for estimation of the posterior

probability of node X given evidence E = e, is computed by the following procedure

(Korb and Nicholson 2004):
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Appendix 2
The Likelihood weighing algorithm

Consider an established Bayesian Network. Assume X to be node in this BN structure,

and E as a given evidence. The Likelihood weighing algorithm for estimation of the

posterior probability of node X given evidence E = e, is computed by the following pro-

cedure (Korb and Nicholson 2004):
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Appendix 3
The Empirical Mode Decomposition algorithm

Consider a time series, f(t), with t referring to time. The EMD fractionation of the ori-

ginal data is made following the below steps (Huang et al. 1998):
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