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Abstract

In this study, we analyze three portfolio selection strategies for loss-averse investors:
semi-variance, conditional value-at-risk, and a combination of both risk measures.
Moreover, we propose a novel version of the non-dominated sorting genetic algorithm
Il'and of the strength Pareto evolutionary algorithm 2 to tackle this optimization
problem. The effectiveness of these algorithms is compared with two alternatives from
the literature from five publicly available datasets. The computational results indicate
that the proposed algorithms in this study outperform the others for all the examined
performance metrics. Moreover, they are able to approximate the Pareto front even in
cases in which all the other approaches fail.

Keywords: Multi-objective portfolio optimization, Semi-variance, CVaR, NSGA-II, SPEA
2, Intermediate crossover, Gaussian mutation

Introduction

The portfolio selection problem can be defined as the optimal allocation of wealth among
a finite number of assets that follows careful processing of all available information about
both investors and markets (Meucci 2009). Markowitz’s mean-variance model is by far
the most popular procedure in asset allocation (Guerard 2009). Even if it is considered the
cornerstone in this field, the mean-variance portfolio optimization model presents two
serious drawbacks from a theoretical point of view. First, when asset returns are skewed
and fat-tailed, they tend to include only a limited proportion of stochastically dominant
assets in the efficient solutions, and prematurely preclude asset with negatively skewed
returns. Second, risk is measured by variance, which treats both the above and below
target returns equally, while investors are more concerned about the probability of invest-
ment returns falling below the target return. Consequently, risks are under-estimated and
portfolios that are downside efficient are ruled out.

A solution proposed in the literature to make Markowitz’s approach more effective is
to replace the variance with a downside risk measure in order to model the loss aver-
sion of investors properly. In this context, semi-variance has been studied extensively
(Nawrocki 1999; Sing and Ong 2000). Two main reasons justify these efforts. First, semi-
variance is an approximation of the skewness for the return distribution, since it measures
below-target returns. The higher is the value of semi-variance, the greater are both the
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degree of negative skewness and the risk of the investment. Second, semi-variance effi-
cient portfolios closely approximate the stochastic-dominance efficient set. However, the
computation of portfolio semi-variance is a difficult task owing to the endogenous nature
of the portfolio co-semi-variance matrix, which depends on the weights assigned to each
asset, that is, changes in the weights affect the periods in which the portfolio under-
performs the target level, which, in turn, affects the evaluation of the co-semi-variance
matrix itself. Some attempts have been proposed to solve this problem directly (Hogan
and Warren 1972; Konno et al. 2002; Markowitz 1959; Markowitz et al. 1993). Other
studies have focused on the definition of an exogenous co-semi-variance matrix that sat-
isfactorily approaches the endogenous one (Ballestero and Pla-Santamaria 2005; Cumova
and Nawrocki 2011; Estrada 2008; Nawrocki 1991). Nowadays, because of the regulatory
importance of quantifying large losses in banking and insurance, another class of down-
side risk measures, called quantile-based measures, occupies a leading position in the risk
management sector. One of the most popular examples is value-at-risk (VaR), defined as
the maximum loss occurring over a given period at a given confidence level. Although
VaR is apparently easy to use and intuitive, it presents several disadvantages. Primarily, it
ignores losses exceeding VaR and is not sub-additive, that is, diversification of the port-
folio may increase VaR (Artzner et al. 1999). From a computational perspective, VaR is
difficult to use when investors want to optimize their portfolios, since it is represented
by a non-linear, non-convex, and non-differentiable function with multiple local optima
(Gaivoronski and Pflug 2005). Moreover, rational agents wishing to act on their deci-
sions according to expected utility theory may be misled by the information related to
the portfolio VaR (Yamai et al. 2002). To deal with these shortcomings, (Rockafellar et al.
2000) introduced the conditional value-at-risk (CVaR), which is defined as the conditional
expectation of losses above the VaR (Sarykalin et al. 2008). CVaR is a coherent risk mea-
sure in the sense of (Artzner et al. 1999) and, because it is a convex function, optimization
problems with CVaR as the minimization objective and/or constraints can be efficiently
handled (Krokhmal et al. 2002; Larsen et al. 2002; Rockafellar and Uryasev 2002).
Increasing complexity of practical applications has led researchers to develop heuristic
procedures for solving their portfolio optimization problems. These techniques require
less domain information to be considered than the standard gradient-based mathemati-
cal programming methods do. Moreover, they guarantee satisfactory approximations to
solutions in a fair computational time even when they deal with non-convexity, discon-
tinuity, and integer decision variables. The approaches that have been proposed in the
soft-computing literature can be categorized into the following two groups. On one hand,
single objective methods optimize a weighted sum of the portfolio objectives. On the
other hand, multi-objective evolutionary algorithms (MOEAs) attempt to tackle the allo-
cation problem directly in its multi-objective form by simultaneously optimizing risk and
reward. In the first case, the complete set of risk-return profiles is obtained by varying
a parameter that represents the risk aversion of the investor (Chang et al. 2000; Crama
and Schyns 2003; Cura 2009; Woodside-Oriakhi et al. 2011). In the second case, the
complete efficient frontier is represented in a single run (Anagnostopoulos and Mama-
nis 2011a; Meghwani and Thakur 2017; Mishra et al. 2014). Both categories pay great
attention to encoding types and constraint—handling techniques (Liagkouras and Metax-
iotis 2015; Meghwani and Thakur 2017; Metaxiotis and Liagkouras 2012; Ponsich et al.
2013). Some real-life situations, which are not considered in Markowitz’s model, have
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been analyzed recently by (Eftekharian et al. 2017) and (Meghwani and Thakur 2018).
(Eftekharian et al. 2017) include as constraints some restrictions on the number of assets
in the portfolio, limitations on investing in assets from a given industry, and cardinality,
class, and quantity constraints. Furthermore, they developed an improved version of the
NSGA II algorithm, called 2-Phase NSGA II, to solve the resulting optimization prob-
lem. Meghwani and Thakur (2018) focus on the problem of handling equality constraints,
like self-financing constraints, and constraints arising from the inclusion of transaction
cost models using MOEAs. Researchers have also focused on so-called swarm intelligence
methods to overcome the computational difficulties of realistic portfolio designs. Unlike
evolutionary algorithms that utilize the principle of natural selection, these approaches
are inspired by the behavior and self-organizing interaction among agents, such as forag-
ing of ant and bee colonies, bird flocking, and fish schooling (see Ertenlice and Kalayci
(2018) for a detailed review of the subject).

Over the past few decades, machine-learning algorithms have been widely used to
explore financial data and make data-driven predictions (Chao et al. 2019; Kou 2019). For
instance, (Huang and Kou 2014) present a kernel entropy manifold learning algorithm to
measure the relationships between two financial data points in order to describe the char-
acteristics of a financial system by deriving the dynamic properties of the original data
space. Similarly, (Huang et al. 2017) propose an information metric-based manifold learn-
ing algorithm to extract the intrinsic manifold of a dynamic financial system and to detect
impending crises. (Ergu et al. 2014) focus on the use of the analytical network process in
risk assessment and decision analysis of an emergent event. They propose a new consis-
tency index to assess the key factors of risks and analyze the impacts and preferences of
decision alternatives. Zhang et al. (2019) develop three soft minimum cost models based
on different weighted average operators for resolving consensus decision—making prob-
lems. The usefulness of the proposed models is validated in a real-world loan consensus
problem, using data from a Chinese P2P platform.

Kalayci et al. (2019) review state—of-the-art methods dedicated to mean-variance
portfolio optimization.

Evolutionary computations are made by iterations and, in each iteration, the weights
of the portfolios are known a priori because they are generated by the algorithm. Thus,
it is possible to directly determine in which periods the portfolio underperforms the tar-
get level. In this manner, the difficulty of computing the ex-post portfolio semi-variance
can be fruitfully resolved by the use of an evolutionary algorithm. One of the first studies
to attempt this is (Dueck and Winker 1992), who reformulate the bi-objective optimiza-
tion problem into a single-objective and solve it through a local search technique, called
threshold accepting. In a similar way, (Arnone et al. 1993) propose a solution to a para-
metric programming problem with the objective of optimizing a convex combination of
mean and semi-variance. The algorithm is based on Whitley’s GENITOR system (Whit-
ley 1988) and uses a steady-state breeding strategy and elitist selection. Chang et al.
(2009) apply a genetic algorithm to portfolio optimization problems in different risk mea-
sures, namely variance, semi-variance, absolute deviation, and variance with skewness.
Recently, (Liagkouras and Metaxiotis 2013) address the mean-semi-variance portfolio
optimization problem from a multi-objective perspective by developing an ad-hoc evo-
lutionary algorithm. Evidence of the robustness of the algorithm is accomplished in
out-of-sample testing during both bull and bear market conditions on the FTSE 100.
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Macedo et al. (2017) compare the non-dominated sorting genetic algorithm II (NSGA-
11, Deb et al. (2002)) and the strength Pareto evolutionary Algorithm 2 (SPEA 2, Zitzler
et al. (2001)) within the mean-semi-variance portfolio optimization framework. Numer-
ical experiments indicate that NSGA-II outperforms SPEA 2 in-sample. Senhaji et al.
(2016) propose to resolve the problem by combining the continuous Hopfield neural
network with NSGA-II. The effectiveness of this strategy is proved using a portfolio
of 20 assets.

Regarding the quantile-based minimization problems involving many financial instru-
ments, a large number of price scenarios is necessary to estimate risk correctly. As the
dimension of the problems increases, this operation can be time consuming (Lim et al.
2010) and the use of heuristics may be advisable or even necessary to detect a solution. An
example is provided by the multi-purpose data-driven optimization heuristic proposed
in Gilli M and Hysi (2006), which deals with different risk functions, such as VaR, CVaR,
maximum loss, and Omega, as well as with practical constraints on the portfolio com-
position. An evolutionary computation approach is developed by (Hochreiter 2007) to
solve the general scenario-based risk-return portfolio optimization problem when stan-
dard deviation, VaR, or CVaR are used to represent the risk of the investment. A variant
of the NSGA-II algorithm based on differential operators is developed by (Krink and
Paterlini 2011) for portfolio optimization involving real-world constraints and quantile-
based risk measures. Meanwhile, a comparison of the capabilities of different MOEAs
to adapt in any addition of new constraints and/or replacement of the risk function is
given in (Anagnostopoulos and Mamanis 2011b), and (Baixauli-Soler et al. 2012) focus
on SPEA 2 performance. Recently, hybrid stock trading systems based on evolutionary
metaheuristics and mean-CVaR models are proposed in Chen and Wang (2015) and
(Qin et al. 2014).

The contribution of this study is twofold. On one hand, based on the promising results
of (Subbu et al. 2005) and (Baixauli-Soler et al. 2010), we include in the same portfo-
lio optimization framework the loss-averse attitude of investors as well as the capital
requirements imposed by the regulator, and we investigate the relationship between semi-
variance and CVaR in quantifying the downside risk. On the other hand, we extend
the research of (Liu et al. 2010) and investigate the effectiveness of using the uniform
selection scheme, the extended intermediate crossover operator (Gen and Cheng 2000;
Miihlenbein and Schlierkamp-Voosen 1993), and the Gaussian mutation (Hinterding
1995; Schwefel 1987) in the NSGA-II and SPEA 2 algorithms in order to generate the
approximated Pareto fronts for the considered downside risk-based portfolio optimiza-
tion problems. In addition, the performance of the proposed algorithms is compared to
that of other variants of the NSGA-II and SPEA 2 algorithms that have already been
shown to be highly competitive in portfolio optimization problems. The results on five
publicly available datasets show that our procedures completely dominate the fronts pro-
duced by the counterparts from the literature. Furthermore, our variants of the NSGA-II
and SPEA 2 algorithms can generate the entire Pareto front for large-scale problems for
which the other Pareto-based approaches are unable to work properly.

The rest of the paper is organized as follows. In “The portfolio selection problem
under downside risk measures” section, we introduce three preference relations based on
the reward-downside risk principle and discuss the related portfolio selection problems.
“Pareto-based evolutionary algorithms” section presents a description of the MOEAs
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used for solving the resulting optimization problems. “Experimental analysis” section out-
lines the numerical experiments and “Concluding remarks and future research” section
presents concluding remarks and ideas for further research.

The portfolio selection problem under downside risk measures

Consider a financial market consisting of n risky assets, indexed from 1 to n, and mod-
eled by a probability space (2,5, P). Let agents act their investment decisions over a
one-period horizon with respect to the following set of feasible, or admissible, portfolios
defined according to the budget constraint and no-short selling:

n
X =1(x1,...,%,) € R": in=1,x,-20,i=1,...,n (1)
i=1
where x; represents the proportion of capital to be allocated to asset i, withi = 1,...,n.
The random rate of return of asset i at the end of the investment period, denoted as
R;, is assumed to have a continuous probability density function (pdf). Hence, the rate of
n

return of a portfolio x = (x,... ,xn)T € X is the random variable R(x) = )_ Rix; with

i=1
pdf frx) induced by that of (Ry, . .., R,). R(x) is measurable in (R, .. ., R,) with expected
rate of return defined as

n
E(RX) = Y ER)x; 2)
i=1

where E(-) denotes the expectation and E(R;) is the expected rate of return of asset i.
Given a level z for the rate of return, the cumulative distribution function (cdf) of R(x) is
defined as Frx)(z) = P(R(x) < z) = f{ RX)<2) Jfroo (r)dr. 1t is also assumed that Frey) is
continuous and strictly increasing with respect to z € R!. The portfolio loss distribution
is defined as the negative of the portfolio return distribution, that is, L(x) = —R(x).

To identify the portfolio in A" that guarantees the “best” rate of return, a model for
preferences under uncertainty needs to be defined. We adopt the so-called reward-risk
approach that relates the portfolio selection problem to a multi-objective optimization
problem in two steps. First, a set of objectives that the investor perceives as beneficial is
identified, and second, a set of objectives he or she considers damaging is identified in
relation to R(-). Then, a preference relation is defined based on these criteria as follows.

Definition 1 Letfy,...,fp: X — Randg,...,g;: X — R be the reward-type and the
risk-type objective functions, respectively. Then for all X,y € X, we say that R(x) dominates
(is preferred to) R(y) if and only if f;(x) > fi(y) foralli = 1,...,p and gi(x) < g(y) for
allj=1,...,q with at least one strict inequality. Alternatively, we can say that portfolio x
dominates portfolio y.

According to this definition, a portfolio x* € X is (Pareto) optimal if and only if it is
non-dominated with respect to &, that is, another X € X that dominates x* does not
exist. Thus, an efficient portfolio in the reward-risk model is a Pareto optimal solution of
the following multi-objective problem:

minimize F(X) = (—ﬁ(x), e = (x),81(%), . .. ,gq(x)) 3)

subjectto xe X.
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The solutions to Problem (3) form the so-called efficient set, or Pareto optimal set, of
which image in the reward-risk space is called efficient frontier, or Pareto front. Under
certain smoothness assumptions, it can be induced from the Karush—Kuhn—Tucker con-
ditions that, when the p + g objectives are continuous, the efficient frontier defines a
piecewise continuous (p + g — 1)-dimensional manifold in the decision space (Li and
Zhang 2009). Therefore, the efficient frontier of a continuous bi-objective portfolio opti-
mization problem is a piecewise continuous 1-D curve in R?, while, in the case of a
problem with three objectives, it is a piecewise continuous 2-D surface in R,

We now specialize this general reward-risk framework by considering investors that
focus on the mean rate of return (2) as the reward criterion and employ different measures
to assess the downside risk of their investments.

The mean-semi-variance model
One of the most well-known downside risk measures of a portfolio x is its semi-variance,
already introduced in the seminal paper of (Markowitz 1959) and defined as

V=R =E (R0 — b17)°) @

where [#]” = max{0, —u} and b represents a given benchmark, for example, the portfolio
expected rate of return, the Roy’s safety first criterion, or a Treasury rate of return. In our
analysis, we set the target level b equal to 0 in order to estimate the variance of portfolio
losses. As proved in Fishburn (1977), this downside risk measure is consistent with utility
theory
An investor that operates her or his decisions according to the mean-semi-variance
model is interested in maximizing the expected rate of return of her or his portfolio and,
simultaneously, minimizing its semi-variance:
minimize (—E (R(x)), V™ (R(x))) -

subjectto x e X.

The mean-CVaR model

The CVaR of a portfolio x at the confidence level «, with « € (0, 1), represents the average
of losses in the 100(1 — )% worst scenarios (Acerbi and Tasche 2002). According to
our assumptions about the cdf of R(x) and the definition of the portfolio loss L(x) as the
opposite of R(x), this downside risk measure is defined as

CVaRy (L(x)) = E (LX) [L(x) = VaRy(L(x))) , (6)

where VaRy (L(x)) = sup {z|P (L(x) > 2) < a} = FZ&)(I — «) is the value-at-risk at the
confidence level « of the portfolio x.
An agent whose preferences are dictated by the mean-CVaR model would select her or
his portfolio weights according to the following bi-objective optimization problem:
minimize (—E (R(x)),CVaR,(L(x))) -

subjectto xe X.

The mean-semi-variance-CVaR model
Using only one criterion to model risk in a portfolio selection model may provide a
restricted picture of the assessment process (Steuer et al. 2005). It is advisable to include
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multiple risk measures in order to cover the different facets of an investor’s preferences.
In this study, we analyze the combined effects of CVaR and semi-variance. The related

tri-objective optimization problem is

minimize  (—E (R(x)), V™ (R(x)), CVaR, (L(x)))

subjectto xe X,

where V™ and CVaR, are the same as the definitions in (4) and (6), respectively.

In this manner, the preferences are modeled as follows.

Definition 2 Portfolio x is preferred to portfolio y if and only if ER(X)) >
E (R(y)), CVaRy (L(x)) < CVaRy(L(y)) and V™~ (R(x)) < V™ (R(y)), with at least one strict

inequality.

This model may produce improved solutions when a mean-CVaR efficient portfolio has
an excessively large semi-variance or when a mean-semi-variance efficient portfolio has

an excessively large CVaR.

Scenario-based framework for portfolio optimization
A practical way to handle the random variables that represent assets and portfolio rates of

return is to treat them as discrete. Therefore, let Q = {wy, ..., ws}, P(ws) = ps, with s =
N
1,...,Sand ) ps = 1, F be a given o -field and assume the following table of scenarios is
s=1
available

r ... prgs
)
p1...ps
where S represents the number of involved scenarios, rs = (r1is, . . ., ns)” is the n-vector of

rates of return for the s-th scenario, and p; is the associated probability of occurrence, with
s=1,...,S. Assume that p; = 1/S for all s. Thus, the rate of return of x € X may assume
n

S values calculated as 4 (x) = " 75x;. Analogously, assuming that the distribution of the
i=1
portfolio rate of return R(x) is such that P (R(x) = rf(x)) =1/Swiths =1,...,S, since

the expected rate of return for the i-th security can be computed as the mean rate of
S
return over the S scenarios (i.e., E(R)) = % > ris), the expected rate of return of portfolio

s=1
x becomes

n S
1
E(RxX) =Y E(r)x; = 3 » A). (10)
i=1 s=1

Now it is possible to reformulate the previously introduced downside risk-based portfolio
allocation models in terms of the scenarios conveyed in (9).

Based on the findings of (Cumova and Nawrocki 2011), we estimate V'~ (R(x)) by means
of the so-called co-semi-variance matrix, henceforth denoted as C~ = CL;. , which is
defined element-wise as



Kaucic et al. Financial Innovation (2019) 5:26 Page 8 of 28

S
_ 1
Cij =3 Z (ris — b) min{r;s — b, 0} (11)
s=1
1 S
C; =3 Z Fis — min{ris —b,0} (12)
s=1
for all i,j = 1,...,n. It can be noted that C™ is an asymmetric matrix, since in general,

assets i and j do not have the same below—target returns during the same period, that is,
C; #Ci. The semi-variance of portfolio x can then be calculated as

VIRE) =Y Y Cjan. (13)

i=1 j=1

In this manner, Problem (5) translates into the maximization of a linear objective function,
given by Eq. (10), and the simultaneous minimization of a quadratic objective function,
given by Eq. (13), over the unit standard n-dimensional simplex. Regarding Problem (7),
the CVaR expression (6) can be evaluated as an arithmetic mean over scenarios as fol-
lows. Let £ (x) = —r¥ (x) be the portfolio loss in the s-th scenario, after sorting losses in
ascending order, that is, lfl)(x) < 1(2) (x) <... <P, (x),the VaR, can then be defined as

(S
(Lasj) (x) and CVaR,, can be estimated as

58001 ()00 = VaR, ()

CVaRy (L) = =
Zs:l I (l(s) (x) > VaR, (x))
1 N
T _[XS;H () + ([aS] - aS)l;,s) () (14)

where I(-) represents the indicator function. In this case, the investor maximizes the
expected rate of return as given in Eq. (10) and minimizes the risk calculated according to
Eq. (14).

Finally, Problem (8) simultaneously exploits Egs. (10), (13), and (14) in the optimization
process.

Pareto-based evolutionary algorithms

The capabilities of MOEAs to generate reasonably good approximations of the Pareto
front in a single run and within a limited computational time have already been shown in
the literature on the mean-variance portfolio selection problem.

In this study, we focus on two variants of popular algorithms, NSGA-II and SPEA 2, and
investigate their effectiveness in solving the portfolio optimization problems formulated
in the previous section. These algorithms belong to the family of Pareto-based MOEAs
and include a two-level ranking scheme to guide the search toward the true Pareto front
(Emmerich and Deutz 2018). The first ranking is provided by the Pareto dominance rela-
tion, while the second concerns the diversity of the solutions and applies to the individuals
that share the same position in the first ranking. However, the methods by which NSGA-
II and SPEA 2 approximate the true Pareto front differ and the corresponding procedures

are described in the following overview?.
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NSGA-II

The NSGA-II procedure is described in Algorithm 1. The crowding distance mech-
anism is employed to preserve the diversity of solutions. It evaluates the volume
of the hyper-rectangle defined by two nearest neighbors (Zitzler and Thiele 1999).
New solutions, called offsprings, are generated using a selection mechanism and a
set of variation operators. Based on the values provided by the ranking scheme, the
best individuals from the combination of the current population Py and the off-
spring pool Qi are detected and those with lower rank and higher crowding distance
are saved in the next population Pi;;. In case some candidate solutions are of the
same rank and not all of them enter the next population, the less crowded individu-
als from that particular rank are selected to fit the next population, thereby ensuring

elitism.

Algorithm 1: NSGA-II (Deb et al. 2002)

1 Setk=0
2 Initialize Py and set Qy = ¥
3 while k < Gdo

4 Calculate fitness for P and assign rank based on Pareto dominance

5 Perform selection on Py to fill mating pool

6 Apply recombination and mutation operators to obtain the offspring population
Qx

7 Select the best N non-dominated solutions from P; U Qi by the two-step
procedure to form Py
8 Setk=k+1

9 end

[

o return Py

SPEA 2

As reported in Algorithm 2, SPEA 2 first initializes a population of candidate solutions
Py, then stores the best solutions in an explicit archive Ay, separate from the population.
To emphasize non-dominated individuals, SPEA 2 uses a combination of the dominance
count and the dominance rank methods. Each individual is assigned a raw fitness value
depending on both the number of individuals it dominates and the number of individ-
uals by which it is dominated. The density information is expressed as a function of the
k-th smallest Euclidean distance in the objective space to the k-th nearest neighbor. The
non-dominated individuals from the union of the archive and the current population
are then updated. In particular, if the number of non-dominated individuals is less than
the pre-established archive size, some dominated individual from the current pool form
part of the archive. Otherwise, some individuals are removed from the archive using a
truncation operator. This procedure recursively removes individuals based on the nearest
neighbor Euclidean distance. If there is more than one candidate solution with the same
minimum distance, then the decision is made by considering the second nearest neigh-
bor, and so forth. The mating pool used to generate the next population Py is filled by
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the individuals of the updated archive selected on the basis of a given selection mecha-
nism. The offsprings are then generated by a set of variation operators as in the algorithm
NSGA-IIL.

Algorithm 2: SPEA 2 (Zitzler et al. 2001)

1 Setk=0

2 Initialize Py and set Ag = @

3 while k < G do

4 Calculate fitness for Py and Ay

5 Copy all non-dominated solutions from Py U Ay to Ag41

6 Use the truncation operator to remove elements from A1, if its capacity has
been extended

7 Use dominated individuals from Ay to fill Ag, 1, if the capacity of Ag4; has not
been exceeded

8 Perform selection on A1 to fill mating pool

9 Apply recombination and mutation operators to obtain Py
10 Setk=k+1
11 end

12 return Ay

Solution approaches

NSGA-II and SPEA 2 cannot be directly implemented in their standard format for the
solution of real-world portfolio selection problems and special treatments need to be
adopted in relation to a number of issues, like the encoding type, genetic operators, and

constraint—handling procedures.

Solution representation and initialization

We represent a portfolio by a real vector of size #, denoted by x = (xy,...,x,)7 € R”,
where x; is the proportion of budget invested in asset i, with i = 1, ..., n. Each candidate
solution in the initial population is generated by following Rubistein’s (1982) procedure,
which consists of the following steps:

i) generate n independent unit-exponential random variables Y7, ..., Y, and compute
T, = 2?21 Y;
ii) define x; = Yi/T,.

It is evident that, in this manner, all the individuals in the initial population are feasible.

Reproduction process
Two variants of the reproduction process are compared in this study, both employing a
selection procedure, a crossover, and a mutation operator.

The first configuration is based on that proposed by (Anagnostopoulos and Mamanis
2011a)3.

1. Binary tournament selection is used for selecting the parents. In this process, two
individuals are chosen randomly from the population and compete against each
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other. The individual with the highest fitness wins and is included as one parent for
the next steps of the reproduction.

The uniform crossover operator is then applied to the population of parents to
produce the offspring population. Two parents generate a single child and its value
for each array is selected with equal probability from one or another parent.

The set of children is finally subject to the Gaussian mutation. A percentage Py
of these individuals is selected. Then, each member x of this subset has a
probability u,, that a gene x; mutates according to the following rule:

o x; + oyrandy, ifrandy < iy,

X otherwise.

where oy, is the mutation step size, and randy, rand; represent two independent

random numbers from a standard normal distribution, withi =1,...,n.

In the numerical comparisons, the algorithms using this set up are denoted by NSGA-IIb

and SPEA 2b. The alternative we propose is as follows.

1.

Uniform selection is used to generate two sub-populations of parents. The first of
these sets contains the fraction P of the original population that is involved into
the recombination step. The second set contains the fraction P, of the original
population that is subject to mutation. These sets cannot be separated, in that the
same individual can enter the crossover stage and can mutate.

The intermediate crossover is applied to the first sub-population of parents to
generate a first set of offsprings. Differently from the uniform crossover, this
operator generates two children for each pair of parents x;, X2, as follows

Xy = csf i — (1= of ;) %2
x/zi = Céfixzi — (1 - Céfi) X1i

where csf, called the crossover scaling factor, is a random number in the interval
[—d,1+d], d € Ris a parameter to be tuned, and x/, x), are the associated
children, with i = 1,. .., n. The second population of parents is modified by the
Gaussian mutation as in the first configuration.

The sub-populations of children are finally gathered together to form the offspring
population.

The variants of the considered MOEAs involving this reproduction design are denoted by
NSGA-IIa and SPEA 2a.

Constraint-handling procedure

There are several techniques proposed to handle constraints in MOEAs (see Mezura-

Montes and Coello (2011) and references therein). Since the feasible set in our portfolio

optimization problems is represented by the unitary simplex (1), the best procedure is to

use the following two-step repair mechanism (Liagkouras and Metaxiotis 2015).

()

Each candidate solution x € R" is first clamped by projecting it onto [0, 1]":

0, ifx; <0
x=11, ifx; > 1
x;, otherwise

Page 11 of 28



Kaucic et al. Financial Innovation (2019) 5:26 Page 12 of 28

withi = 1,...,n. In this manner,X = (%1, ...,%,) satisfies the lower bound
constraints.

(b)  The projected vector X is then normalized through the transformation

R = i=1....n
= i=1,...,n.
21 %

. T =~ ~ =~\T s .
After this step, the individual X = (;1, .. ,xn) also verifies the budget constraint.

This procedure makes all the individuals involved in the search feasible. The correspond-
ing objective function values can now be computed and the MOEAs described above can
be applied to identify an approximation of the Pareto set.

Computational complexity

Let us assume that the size of the population and the size of the external archive are
equal to N, the number of objectives is m, the number of generations is G, and the
dimension of the vector of decision variables is #n. Based on the analysis presented by
(Deb et al. 2002) for one generation, and taking into account the different definition
of the parent population for the two configurations, the NSGA-IIb algorithm requires
O(m(2N)?) computations while the NSGA-IIa algorithm has a running time bounded
by O (m (1 + 2Pcross + Praut)? NZ). In a similar manner, the time complexity of SPEA 2b
is O ((2N)3) and that of SPEA 2a is O ((1 + 2Peross + Prut)® NB) for each generation.
Both the procedures used for the selection step require O(IN) computations. The uni-
form crossover operator runs in time O (ND), while the intermediate crossover needs time
O (2P105sND), since it is applied to a fraction P of the individuals and generate two
offsprings for each pair of parents. The Gaussian mutations can be undertaken in time
O(ND) for the first configuration and in time O(Py,,:ND) for the second one. Table 1
summarizes the worst run-time complexities of the algorithms treated in this section in
G generations.

Experimental analysis
In this section, we assess the effectiveness of the two variants of NSGA-II and SPEA 2 in
solving the proposed instances of the portfolio optimization problem.

Description of the datasets

The experiments are based on five public datasets provided by (Bruni et al. 2016). They
include the weekly linear returns of the constituents of the following stock markets: Dow
Jones Industrial Average, Fama—French Market Industry, NASDAQ 100, S&P 500, and
NASDAQ Composite. As shown in Table 2, the test problems range from 28 assets for the
smaller case study to 1203 assets for the bigger one.

Table 1 Run time complexity for the algorithms

Algorithm Run-time

NSGA-Ilb OGMEQ2N)?)

NSGA-lla O (Gm (1 4 2Peross + Prut)* N?)
SPEA2b O (G(2N)%)

SPEA 2a (@) (G (T + 2Pcross + Pmur)3 Ns)
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Table 2 Datasets of weekly returns considered in this study (Bruni et al. 2016)

Dataset name Stock market index Assets (n) Time interval # of obs.
DowJones Dow Jones Industrial Average 28 Feb 1990 — Apr 2016 1363
FF49Industries Fama and French 49 Industry 49 Jul 1969 - Jul 2015 2325
NASDAQ100 NASDAQ 100 82 Nov 2004 — Apr 2016 596
SP500 S&P 500 442 Nov 2004 — Apr 2016 595
NASDAQComp NASDAQ Composite 1203 Feb 2003 — Apr 2016 685

From Table 3, it can be pointed out that, in all the datasets, an asset with a moder-
ately or highly negative skewed return distribution (Skew < —0.5) presents a value of
the standard semi-deviation (Stsd), that is, the squared root of the semi-variance, which
is higher than the corresponding value of the standard deviation (Std). Conversely, an
asset with a moderately or highly positive skewed return distribution (Skew > 0.5) has
a Stsd value less than the value of the Std. Assets with a skewness between — 0.5 and 0.5
present approximately symmetric return distributions, resulting in very similar Stsd and
Std values.

Consequently, loss-averse investors can use standard semideviation (or, equivalently,
semi-variance) to capture the downside risk conveyed in skewness properly. In this sense,
the portfolio selection models designed in the previous section are more appealing than
the mean variance model for acting investment choices.

Performance metrics and statistical testing

It is non-trivial to evaluate the quality of the solution sets of MOEAs for two main rea-
sons. First, the presence of multiple conflicting goals makes the definition of a “better
algorithm” vague. Second, the stochastic nature of these optimizers suggests that com-
parisons based on the approximation sets from a single run of each algorithm are not
correct.

Regarding the first problem, we can identify three major performance criteria in multi-
objective optimization: the capacity of a given algorithm to generate an appropriate
number of non-dominated solutions, the convergence of the solution set to the true
Pareto front, and the diversity of the solutions in the objective space. Accordingly, opti-
mal solution sets with a large number of non-dominated solutions, approaching the true
Pareto front and even scattering are generally desirable (Jiang et al. 2014).

The metrics proposed in the literature usually synthesize the information content of the
solution set by considering only one or two criteria at a time. Therefore, it is advisable to
employ a combination of different performance metrics in order to provide a complete
analysis of the experimental results. In this sense, we consider the following four metrics.

Table 3 Classification of the assets belonging to each dataset in terms of skewness (Skew), standard
semideviation (Stsd) and standard deviation (Std)

Skew < —0.5 Skew > 0.5
Dataset name Assets Stsd > Std Assets Stsd < Std
DowlJones 2 2 1 1
FF49Industries 2 2 6 6
NASDAQ100 2 2 20 20
SP500 25 25 109 108

NASDAQComp 19 15 668 668
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(i)

(i)

(i)

Schott’s spacing metric (S) (Schott 1995)
The spacing metric measures how evenly the solutions are distributed in the
approximate efficient front A and it is expressed as

1 |A] 9
SA = | > (di - d)
Al
where d; represents the minimum value of the sum of the absolute difference in
objective function values between the i-th solution and any other solution in the
obtained non-dominated set and d is the mean value of these distance measures.
When the solutions are equidistantly spaced, the corresponding distance measure
is small. Thus, an algorithm finding a set of non-dominated solutions with smaller
spacing is better.
Generalized spread metric (A*) (Zhou et al. 2006)
The generalized spread metric is a generalization of the well-known A metric of
(Deb et al. 2002) and simultaneously gauges the distribution and spread of an
optimal solution set A for high dimensional multi-objective optimization
problems. It takes the form:

Seadpy + Y0 1di — d|
M de, +|Ald

where d; denotes the Euclidean distance between neighboring solutions with the

A*(A,P) =

mean value d. The term dﬁ; is the distance between the extreme (bounding)
solutions of A and of the true Pareto front P corresponding to the m-th objective
function.

An algorithm finding a smaller value of A* generates a better uniformly distributed
set of non-dominated solutions.

Inverted generation distance (IGD) (Zhang and Li 2007)
The IGD index has the following formulation
/NP g2
IGD(A, P) = VZdi
1P|

where d; is the Euclidean distance (in the objective space) between the i-th
member of the true Pareto front P and the closest solution in A. If | P| is large
enough to represent the Pareto front very well, IGD(A, P) could measure both the
diversity and convergence of A.
A low value of IGD(A, P) means A is very close to the Pareto front and does not
miss any part of it. Thus, an algorithm with a lower value of IGD is better.

Hypervolume (HV) (Zitzler and Thiele 1999)
Similar to the IGD index, the hypervolume indicator evaluates both diversity and
convergence of an approximation set A. It is defined as the size of the portion of
objective space that is dominated by at least one point of A relative to a reference
set R, which is formed by points worse than (or equal to) every point in A in every
objective. Formally, we define it as

|A]

HV (A, R) = volume U Vi
i=1

Page 14 of 28
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where v; is the hypercube constructed with the reference set R and the solution

a; € A as the diagonal corners.

Large values of HV indicate the approximate solutions are closer to the true Pareto
front and, at the same time, scattered more evenly in the objective space. Thus, an

algorithm with a large value of the HV metric is desirable.

The second question posed at the beginning of this section can be resolved by com-
paring the algorithms through a sample of approximation sets from multiple runs. In this
manner, we obtain a sample of values for each performance metric and for each port-
folio optimization problem. A rigorous comparison between the algorithms can then be
performed based on non-parametric inference testing (Coello et al. 2007).

Since the true Pareto front is a (continuous) manifold in the decision space, we approx-
imate it by a surrogate front, given by the non-dominated points from the union of the
solution sets of all the algorithms for all the simulations. This set is used to calculate
the A* and IGD metrics. Furthermore, before conducting the performance analysis, we
normalize each objective function value F;(x),i = 1,...,p + ¢, in (3) according to the
following transformation
Fi(x) — F/"™

max min
Fi Fi

F(x) =

where F/" and F/"** are the minimum and maximum values of the i-th objective function
for the corresponding surrogate Pareto front. In this manner, the objectives contribute
almost equally to each performance metric and the results from the different algorithms
can be fairly compared.

Parameter settings

Let us assume that the distribution of historical returns acts as a good proxy of the returns
faced over the next holding period. Then, the historical simulation method is used to
compute the financial scenarios rj, with i = 1,...,mand s = 1,...,S, as well as the
co-semi-variance matrix C.

All the variants of NSGA-II and SPEA 2 use identical population and archive sizes of
250, and 400 iterations for all the experiments as in (Anagnostopoulos and Mamanis
2011a). For the remaining parameters, the algorithms NSGA-IIb and SPEA 2b use the val-
ues proposed by the same authors. Instead, for NSGA-IIa and SPEA 2a, the parameters are
tuned over the DowJones, FF49Industries, and NASDAQ100 datasets for each of the three
portfolio optimization problems, for a total of nine test problems. For each pair of parents
the intermediate crossover produces two offsprings while the uniform crossover provides
a single child, and thus, to make fair comparisons among algorithms, we select the per-
centage of crossover Py from the set {0.35,0.45} and the parameter d, related to the
crossover scaling factor, from {0, 0.5, 1}. The mutation percentage P,,,; varies in {0.3, 0.5},
the mutation probability i, can assume a value in the set {0.1, 0.3}, while the mutation
step size oy, is checked in {0.1,0.15,0.2}. In this manner, there are 72 possible combina-
tions of these parameters. All the experiments are conducted 20 times for each algorithm
and the hypervolume values corresponding to the final populations are recorded. Finally,
since we search for a parameter set up that is widely applicable in finding suitable approx-
imation fronts for all the test problems, the best group of parameter settings is selected
based on the average ranking of the Friedman test for the values of the HV index over the
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simulations (Derrac et al. 2011). Tables 4 and 5 report the configurations with the highest
average rankings for the proposed MOEAs.

Overall, the results show that the best choices are higher values for P, and d and,
at the same time, lower values for p,, and o,,. However, SPEA 2a needs a larger sample
of mutants to achieve the best rankings with respect to NSGA-Ila. The configurations in
bold are the best parameter settings and are used in the experiments.

Computational results and discussion

We perform a multi-problem analysis in which the four MOEAs are tested on 15 opti-
mization problems (the three instances of the portfolio selection problem over the five
datasets introduced in Table 2). To check the robustness of the results, 20 simulations for
each algorithm and for each test problem are used. The algorithms are implemented in
MATLAB R2018b and the experiments are carried out on a 2.2 GHz Intel Core i7 laptop
with 4 GB RAM.

Table 6 reports the average number of nondominated solutions provided by the algo-
rithms in the final approximated optimal sets, divided by problem and dataset involved.
It can be noticed that including the proposed configuration in the reproduction process
increases the search capabilities of both NSGA-II and SPEA 2 with respect to the standard
configuration. In particular, NSGA-Ila and SPEA 2a can identify sets of optimal solutions
with a size almost equal to the pre-defined threshold of 250 individuals in all the test prob-
lems, while NSGA-IIb and SPEA 2b produce much smaller optimal sets as the complexity
of the problems increases.

Tables 7, 8 and 9 focus on the distribution of the values for the performance metrics,
averaged over the 20 simulations for each portfolio optimization problem. Overall, the
superiority of NSGA-IIa and SPEA 2a is evident with respect to all the criteria used in the
comparisons. Regarding the S metric, for small- to medium-sized optimization problems,
NSGA-IIa produces approximate efficient fronts with the smallest spacing. However, as
the dimension of the problems increases, the standard versions of the algorithms become
competitive. In terms of the generalized spread metric, NSGA-IIa confirms its good per-
formance while SPEA 2a guarantees a better uniformly distributed set of non-dominated
solutions for large-scale problems. Similar analysis can be undertaken for the inverted
generation distance and for the hypervolume indicator. In these cases, NSGA-Ila and
SPEA 2a are the best choices, and SPEA 2a is preferred for large-scale problems.

We check whether the differences in the performance are significant by using the R
package called “scmamp” (Calvo and Santafé 2016). First, we apply the Friedman aligned
omnibus test to detect if at least one of the algorithms performs differently to the others.
The results reported in Table 10 show that the differences are significant for three out of

Table 4 Average rankings achieved by the Friedman test for the NSGA-lla algorithm with different
parameter settings

NSGA-Ila Rankings
Peross = 045,d = 0.5, Pmyr = 0.5, um = 0.1,0p = 0.15 58.89
Pcross = 045,d = 1,Pqmyt = 0.3, um = 0.1,0m = 0.10 5933
Peross = 045,d = 1,Pmyt = 03, um = 0.1,0m = 0.15 58.00
Peross = 045,d = 1,Pmye = 03, um = 03,0m = 0.10 57.89
Peross = 045,d = 1,Pmye = 0.5, um = 03,0m = 0.20 59.22

@The highest ranking is shown in bold
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Table 5 Average rankings achieved by the Friedman test for the SPEA 2a algorithm with different
parameter settings

SPEA 2a Rankings
Peross = 045,d = 1,Pmye = 03, um = 0.1,01 = 0.10 64.89
Peross = 045,d = 1,Pmyr = 03, um = 0.1,0 = 0.20 63.44
Pcross = 0.45,d = 1,Pmut = 0.5, tm = 0.1,0m = 0.10 69.22
Peross = 045,d = 1,Pmyr = 05, um = 0.1,0 = 0.15 67.89
Peross = 045,d = 1, Py = 0.5, um = 0.1, 0y = 020 67.56

@The highest ranking is shown in bold

four criteria. The algorithms have comparable performance only for the spacing metric.
Thus, the analysis can proceed to characterize the differences found for the A*, IGD,
and HV indicators using a post-hoc procedure. As suggested in (Derrac et al. 2011), we
use the Friedman aligned post-hoc test with the correction of (Bergmann and Hommel
1988). Table 11 lists the five hypotheses of equality among the four algorithms and the
corresponding adjusted p-values. With a 1% level of significance, we find an improvement
in the performance of NSGA-II and SPEA 2 when they involve the second selection and
reproduction scheme.

The contrast between the medians of the samples of the results is finally computed
considering all the pairwise comparisons (Garcia et al. 2010). This test points out the
quantitative difference between two algorithms over multiple test problems, allowing us
to estimate how much an algorithm outperforms another one. Table 12 lists the compar-
isons of the proposed algorithms, divided by the performance metric used. Notably, an
estimator with a negative value for A* and IGD, and a positive value for HV indicates
that the algorithm in that row outperforms the algorithm in the corresponding column.
The estimators highlight that SPEA 2a is the best performing algorithm, although the
difference with NSGA-IIa is negligible.

Table 6 Average number of nondominated solutions in the approximated Pareto front (Mean) with
the corresponding standard deviation (Std) for each algorithm

Problem Dataset NSGA-IIb NSGA-lla SPEA 2b SPEA 2a
Mean std Mean Std Mean Std Mean Std
Mean-SV DowJones 52.10 575 248.06 493 55.65 6.12 250 0
FF49Industries 16.65 461 250 0 15.20 3.68 250 0
NASDAQ100 14.25 290 250 0 1340 2.89 250 0
SP500 11.55 3.22 250 0 11.50 332 250 0

NASDAQComp ~ 13.60 293 20250 2097  13.60 293 24520 929

Mean-CVaR DowJones 49.70 6.24 247.33 4.86 51.15 6.66 250 0
FF49Industries 16.10 3.80 24995 022 17.25 3.19 250 0
NASDAQ100 16.45 3.27 250 0 16.80 3.86 250 0
SP500 12.60 284 250 0 1245 268 250 0
NASDAQComp 15.80 343 238.60 13.18 16.10 391 24905 221

Mean-CVaR-SV  DowlJones 92.90 1462 24633 757 91.75 11.96 250 0
FF49Industries 22.25 7.04 250 0 21.25 6.70 250 0
NASDAQ100 2245 582 250 0 22.50 3.90 250 0
SP500 18.20 6.18 250 0 18.85 7.51 250 0
NASDAQComp ~ 25.65 6.03 250 0 2565 5.59 250 0
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Table 10 Statistics and related p-values for the Friedman aligned omnibus test for each of the four
performance metrics

Performance metric Statistic p-value

S 0443 0.9312

A* 29.59 1.681e — 06
IGD 3042 1.124e — 06
HV 335 2.528e — 07

For illustrative purposes, Figs. 1 and 2 show a comparison of the Pareto fronts obtained
by the four algorithms analyzed for the DowJones, NASDAQ100, and NASDAQCom-
posite datasets corresponding to the simulations that attain the highest values of the
hypervolume metric. The proposed versions of the algorithms NSGA-II and SPEA 2 can
identify frontiers with more evenly scattered and spread out points than the standard
alternatives in all the test problems. The differences among the algorithms are already
marked for problems with 83 decision variables. As the size of the investible universe
increases, NSGA-IIb and SPEA 2b no longer cover the shape of the Pareto front and
tend to produce highly inefficient solutions, with higher risks and lower expected returns.
Moreover, for the three-objective portfolio optimization problem, the charts on the left of
Fig. 2 highlight the relationship between Stsd and CVaR, which is almost linear for higher
values of risk.

Figure 3 displays the mean processing time of the four algorithms for each portfolio
model and for each dataset. The procedures implementing the proposed configuration
demand more computational resources owing to the use of larger offspring populations.
The difference becomes more evident as the number of decision variables increases.
Moreover, the total run time is greatly influenced by the time spent evaluating the CVaR
objective function. The time spent on the management of the archive for the SPEA 2
algorithms is another cost to take into account.

In summary, balancing the results from the statistical analysis and those concerning
the computational complexity, we suggest that the NSGA-II algorithm with the proposed
configuration should be used to solve the portfolio optimization problems involving
downside risk measures. In fact, it produces approximated sets similar to the SPEA 2a
algorithm but takes less time to do so.

Concluding remarks and future research

In this study, we described three instances of the portfolio selection problem designed to
handle the downside risk of an investment properly. A flexible multi-objective reward-to-
risk framework was presented in which expected returns, semi-variance, and CVaR of a

Table 11 Adjusted p-values for the Friedman aligned post-hoc test with Bergmann and Hommel's
correction for multiple comparisons among the four algorithms

Hypothesis Adj. p-values

A* IGD HV
NSGA-IIb versus NSGA-lla 6.276e — 05 6.889% — 05 9.857e — 06
NSGA-IIb versus SPEA 2b 1 1 1
NSGA-IIb versus SPEA 2a 3.098¢ — 05 1.692e — 05 8.199¢ — 06

NSGA-lla versus SPEA 2a 1 1 1
SPEA 2b versus SPEA 2a 3.098e — 05 1.692e — 05 8.19% — 06
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Table 12 Contrast estimation results for the performance metric
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Performance metric Estimation NSGA-IIb NSGA-Ila SPEA 2b SPEA 2a
A* NSGA-IIb 0 0.206 0.0037 02158
NSGA-lla -0.206 0 -0.2023 0.0098
SPEA 2b -0.0037 0.2023 0 02121
SPEA 2a -0.2158 -0.0098 -0.2121 0
IGD NSGAIlIb 0 04151 -0.0001 04157
NSGAlla -04151 0 -04161 0.0006
SPEA 2b 0.0001 04161 0 04167
SPEA 2a -04157 -0.0006 -04167 0
HV NSGA-lib 0 -0.7012 0.0054 -0.7032
NSGA-lla 0.7012 0 0.7066 -0.002
SPEA 2b -0.0054 -0.7066 0 -0.7086
SPEA 2a 0.7032 0.002 0.7086 0
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Fig. 1 Approximated Pareto fronts for the Mean-semi-variance (on the left) and Mean-CVaR (on the right)
portfolio optimization problems corresponding to the simulations with the highest HV values obtained by
NSGA-IIb, NSGA-lla, SPEA 2b and SPEA 2a for the datasets DowJones (charts at the top), NASDAQ100 (charts
in the middle) and NASDAQComposite (charts below)
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Fig. 2 Approximated Pareto fronts for the Mean-Stsd-CVaR portfolio optimization problem (on the left) and
their projections onto the Stsd-CVaR plane (on the right) corresponding to the simulations with the highest
HV values obtained by NSGA-Ilb, NSGA-lla, SPEA 2b and SPEA 2a for the datasets DowJones (charts at the
top), NASDAQ100 (charts in the middle) and NASDAQComposite (charts below)

portfolio can be optimized simultaneously. These problems were tackled using two non-
dominated sorting algorithms, namely, NSGA-II and SPEA 2, which have already showed
competitive performance for the mean variance problem. In particular, we proposed a
novel combination of operators for the selection and reproduction phases to be included
in both algorithms. A comparative analysis was undertaken with respect to a second vari-
ant of the same algorithms, involving another configuration design. We used five publicly
available datasets ranging from small- to large-sized portfolio optimization problems. The
capabilities of the procedures were assessed in terms of four performance metrics. Finally,
a set of statistical tests checked the robustness of these findings. Overall, the numerical
experiments showed that the proposed algorithms outperformed the others with respect
to all the criteria. Even if the algorithms with the novel variation configuration demanded
the use of more computational time as the dimension of the problems increased, they

Page 23 of 28



Kaucic et al. Financial Innovation (2019) 5:26
- Mean-semivariance
—8— NSGA-lIb
45 —@—NSGA-lla o
ks © SPEA2b
§40» s o —@— SPEA 2a 1
S L 3
2 35 - == & 7
= La &2
<301 .
@
=
S
o
O 2t
]
L el
=15
8§ q o
S10F
5 = ®
o i i i
ones wies Q00 500 onmp
pow? ‘:FAQ\ndus NPSDA sF NI\SDP‘QC
Mean-CVaR
600 - . .
—8—NSGA-Ilb
—@—NSGA-lla ?
500} © SPEA2b .
@ —@— SPEA2a
©
= =]
(=]
Q
3 400 |
£
(]
E
S 300
o
(5]
B
B 200f 8
[ =4
©
<5}
= 100 |
N o
o = ;
Locd 8
b i . e . ;
powo™®  gaust R 5 NP\SDAOCONP
Mean-semivariance-CVaR
600 : ; .
—8— NSGA-lIb ?
—8—NSGA-lla
__500F| © SPEA2b _
2 —@— SPEA 2a
=
8
3 400
£
[}
E
= 300
o
(5]
Il
S 200
{ =
©
<5}
=~
00— g
@
= : =—¢ .
jones sxies AO‘BQ 895()0 Qcom?
pow F;mg\‘\d“ 0 Né\SOP‘
Fig. 3 Mean total CPU times (in seconds) for the Mean-semi-variance (charts at the top), Mean-CVaR (charts
in the middle) and Mean-semi-variance-CVaR (charts below) portfolio optimization problems for 100,000
function evaluations of the algorithms NSGA-IIb, NSGA-lla, SPEA 2b and SPEA 2a for the considered datasets
over 20 simulations
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nonetheless yielded reasonable results for the cases in which the other algorithms failed
to capture the shape of the Pareto front properly.

These research findings can be put in practice to improve the risk management infras-
tructure of an investment company. The inclusion of several risk measures in the portfolio
optimization process can increase the capabilities of the system to describe the risk,
providing more attractive investment opportunities.

Future research work on the topic includes the analysis of out-of-sample effectiveness
for this type of strategy, which is expected to be improved by the incorporation of other
simulation techniques to estimate semi-variance and CVaR. We are also interested in
exploring mechanisms that adaptively exploit several selection schemes and reproduc-
tion operators to accelerate convergence and allow the search to be stopped automatically
when a suitable level of quality for the approximated set has been attained.

Endnotes

! Under these assumptions, the distribution function Fg(y is such that no jumps and
no flat parts occur, implying that the equation Fg(x)(z) = « has a unique solution for any
a € (0,1),sayz* = FI;&) (), where FE&) denotes the inverse of Fp().

2The terms solution and individual will be used interchangeably, since individuals in
the population represent solutions to the problem that is being optimized.

3The original study uses a mixed-integer solution encoding and two sets of variation
operators to solve the mean variance optimization problem with cardinality constraints.
In our paper, we only focus on the procedures concerning the real part of their encoding
for the reproduction process.

Abbreviations

The following abbreviations are used in this paper:

A*: Generalized spread metric; A: Approximate Pareto front; C~: Co-semi-variance matrix; CVaR: Conditional value-at-risk;
HV: Hypervolume; IGD: Inverted generation distance; MOEA: Multi-objective evolutionary algorith; NSGA-II:
Non-dominated sorting genetic algorithm II; NSGA-lla: Proposed version of the NSGA-II algorithm; NSGA-IIb: Version of
the NSGA-II algorithm with selection and reproduction as in (Anagnostopoulos and Mamanis 2011a); P: True Pareto front;
S: Schott's spacing metric; SPEA 2: Strength Pareto evolutionary algorithm 2; SPEA 2a: Proposed version of the SPEA 2
algorithm; SPEA 2b: Version of the SPEA 2 algorithm with selection and reproduction as in (Anagnostopoulos and
Mamanis 2011a); Stsd: Standard semideviation; V~: Semi-variance; VaR: Value-at-risk; X: Set of admissible portfolios
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