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Abstract

Background: Modeling exchange rate volatility has remained crucially important
because of its diverse implications. This study aimed to address the issue of error
distribution assumption in modeling and forecasting exchange rate volatility
between the Bangladeshi taka (BDT) and the US dollar ($).

Methods: Using daily exchange rates for 7 years (January 1, 2008, to April 30, 2015),
this study attempted to model dynamics following generalized autoregressive
conditional heteroscedastic (GARCH), asymmetric power ARCH (APARCH),
exponential generalized autoregressive conditional heteroscedstic (EGARCH),
threshold generalized autoregressive conditional heteroscedstic (TGARCH), and
integrated generalized autoregressive conditional heteroscedstic (IGARCH) processes
under both normal and Student’s t-distribution assumptions for errors.

Results and Conclusions: It was found that, in contrast with the normal distribution,
the application of Student’s t-distribution for errors helped the models satisfy the
diagnostic tests and show improved forecasting accuracy. With such error
distribution for out-of-sample volatility forecasting, AR(2)–GARCH(1, 1) is considered
the best.
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Background
In an era of globalization and of flexible exchange rate regimes in most economies, an

analysis of foreign exchange rate volatility has become increasingly important among

academics and policymakers in recent decades. Volatile exchange rates are likely to

affect countries’ international trade flow, capital flow, and overall economic welfare

(Hakkio, 1984; De Grauwe, 1988; Asseery & Peel, 1991). It is also crucially important

to understand exchange rate behavior to design proper monetary policy (Longmore &

Robinson, 2004). As a result, researchers, stakeholders, and policymakers are very

interested in analyzing and learning about the nature of exchange rate volatility, which
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can help to design policies to mitigate the adverse effects of exchange rate volatility on

important economic indicators.

Accordingly, beginning with Engle’s (1982) autoregressive conditional heteroscedasti-

city (ARCH) model, several models have already been developed to model volatility.

Different models have aimed to capture different features of volatility. For example,

while some models are only used to model “volatility clustering,”1 others are used to

capture the “leverage effect.”2 However, it is widely recognized among researchers that

because of increased kurtosis, along with an increase in data frequency, the rate of

return in financial or macroeconomic variables as exchange rates might have a levy

distribution, or a fat tail (Mandelbrot, 1963). Thus, volatility models should not be

considered under the general normality assumption for errors, because if the errors are

not thus, then volatility forecasting based on such models will be misleading. The

current study makes an effort to appropriately model and forecast the volatility of the

exchange rate return of the taka against the US dollar, taking into account the issue of

error distribution assumption.

The rest of this paper is organized as follows. Literature review presents a review of

previous literature that has attempted to model and forecast exchange rate volatility

using various ARCH and generalized autoregressive conditional heteroscedasticity

(GARCH) models. Methods describes the data and the theoretical methodology.

Estimation results and findings analyzes and compares the results of different ARCH

and GARCH models. Forecasting exchange rate return volatility is discussed in

Volatility Forecasting, and Conclusion concludes the paper.

Literature review
Modeling exchange rate volatility has remained crucially important because of its

diverse implications. Bala and Asemota (2013) examined exchange rate volatility using

GARCH models. They used monthly exchange rate return series for the naira (Nigerian

currency) against the US dollar ($), British pound, and euro. To compare the estimates,

various GARCH models were estimated with and without volatility breaks. It was

revealed that most of the models rejected the existence of a leverage effect, except for

those with volatility breaks. Since it was observed that results improved when the vola-

tility models considered breaks, incorporating significant events in the GARCH models

was suggested. Clement and Samuel (2011) also aimed to model Nigerian exchange rate

volatility. They used the monthly exchange rate of the naira against the US dollar and

British pound for the period from 2007 to 2010. They found that the exchange rate

return series was nonstationary and that the series residuals were asymmetric. Since

return volatility was found to be persistent, the study recommended further investiga-

tion of the impact of government policies on foreign exchange rates.

Rofael and Hosni (2015) aimed to forecast and estimate exchange rate volatility in

Egypt using ARCH and state space (SS) models. Using daily exchange rate data cover-

ing about 10 years, they found volatility clustering in Egypt’s exchange rate returns, as

well as a risk of mismatch between exchange rates and the stock market. Similar results

were obtained by Choo, Loo, and Ahmad (2002), who used GARCH model variants to

capture the exchange rate volatility dynamics of the Malaysian ringgit (RM) against the

pound sterling. They used daily data for the period from 1990 to 1997 and concluded

that the volatility of the RM–sterling exchange rate was persistent. For within-sample
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modeling, they found the GARCH models to be the best, while for forecasting, almost

all the GARCH – in - mean models outperformed ordinary GARCH models.

Dhamija and Bhalla (2010) argued that conditionally heteroscedastic models can be

used to model exchange rate volatility. They found that integrated generalized autore-

gressive conditional heteroscedsticity (IGARCH) and threshold generalized autoregres-

sive conditional heteroscedsticity (TGARCH) models performed better than others

when forecasting the volatility of five daily currencies: the British pound, German mark,

Japanese yen, Indian rupee and Euro. Later, Ramasamy and Munisamy (2012) concluded

that GARCH models were efficient for predicting exchange rate volatility. They exam-

ined the daily exchange rates of four currencies—the Australian dollar, Singapore dollar,

Thai bhat, and Philippine peso—using GARCH, Glostern – Jagannathan – Runkle

GARCH (GJR–GARCH), and exponential generalized autoregressive conditional het-

eroscedsticity (EGARCH) models. They argued that the improvements made by lever-

aging in EGARCH and GJR–GARCH models did not improve forecasting accuracy.

Meanwhile, Brooks and Burke (1998) used modified information criteria to select

models from the GARCH family. Using weekly exchange rate returns for the Canadian

dollar, German mark, and Japanese yen against the US dollar for the period from

March 1973 to September 1989, they compared the performance of different out-of-

sample models. They found that the out-of-sample forecasting accuracy of the models

compared favorably on mean absolute errors but less favorably on mean squared errors

with those generated by commonly used GARCH(1, 1) models. However, Hansen and

Lunde (2005) did an out-of-sample comparison of 330 different GARCH family models

using two types of assets: daily exchange rates (Deutsche Mark (DM)–US dollar) and

IBM stock prices. They found that different models were the best for forecasting the

volatility of the two types of assets. In terms of forecasting accuracy, GARCH(1, 1) out-

performed the other models. For IBM stock prices, however, the models with leverage

effects performed better than GARCH(1, 1).

Herwartz and Reimers (2002) analyzed daily exchange rate changes between the

Deutsche mark (DM) and the US dollar and the DM and the Japanese yen (JPY) for

the period from 1975 to 1998. They used a GARCH(1, 1) model with leptokurtic inno-

vations to capture volatility clustering, and they found that the identified points of

structural change were subject to changes in monetary policies in the US and Japan.

Similarly, Çağlayan, Ün, and Dayıoğlu (2013) modeled the exchange rate volatility of

MIST (Mexico, Indonesia, South Korea, and Turkey) countries against the US dollar

using asymmetric GARCH models. They used monthly exchange rate data for the

period from 1993 to 2013 to investigate leverage effects and fat-tailed features. They

identified the existence of asymmetrical and leveraging effects in the exchange rates of

MIST countries against the US dollar. Vee, Gonpot, and Sookia (2011) also examined

the forecasting accuracy of GARCH(1, 1) using Student’s t and generalized error

distribution (GED). Using daily data for exchange rates between the US dollar and the

Mauritian rupee, they compared the mean absolute error (MAE) and root mean

squared error (RMSE) of the models based on forecasting estimates. They found that

GARCH(1, 1) with GED had better forecasting accuracy compared to that using

Student’s t-distribution.

In contrast, Tse (1998) examined the conditional heteroscedasticity of yen–US dollar

exchange rates using daily observations for the period from 1978 to 1994. Extending
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APARCH models to a process that was fractionally integrated; they found that, unlike

the stock market, the appreciation and depreciation shock of the yen against the US

dollar affected future volatility in a similar fashion. They argued that there is no

substantial difference between fractionally integrated models and stable models. More

recently, Pelinescu (2014) analyzed exchange rates between the Romanian leu and the

euro considering the influence of other macroeconomic variables. Using daily

observations for the period from 2000 to 2013, the study found that the exchange rates

consisted of ARCH processes, and exchange returns were correlated with volatility.

To the best of our knowledge, relatively few studies have aimed to model BDT–US

dollar exchange rates. In one recent example, Alam and Rahman (2012) modeled the

aforementioned exchange rates using daily data for the period from July 2006 to April

2012. That study has limitations since excess skewness and kurtosis issues were de-

tected but not addressed. Further, the lag specification of the mean equation was not

properly addressed. Such serious flaws can result in misleading conclusions. Therefore,

finding a proper model with an appropriate assumption for the distribution of errors

would be a valuable contribution to the field of exchange rate modeling in Bangladesh

regarding the BDT against the US dollar.

Methods
Data and variable construction

The data used for this study covered January 1, 2008 to April 30, 2015. These were

daily observations of the nominal exchange rate of the Bangladeshi taka (BDT) against

the US dollar supplied by Bangladesh Bank, the country’s central bank. Since the nom-

inal exchange rate series is usually nonstationary, and hence is not appropriate for ana-

lysis, we converted the series into the rate of return on exchange rate by following

logarithmic transformation. In particular, we used the following formula to calculate

the rate of return on exchange rate:

rt ¼ ln
f xt
f xt−1

� �
or; rt ¼ lnðf xtÞ−lnðf xt−1Þ

Here, rt stands for exchange rate return at period t; f xt and f xt–1 stand for the nom-

inal exchange rate of the BDT–US dollar at period t and (t–1). The statistical software

EViews 9 (Econometric Views Version 9, IHS Markit Ltd.) was used to perform the

quantitative exercise.

Specification of different models

It is well established that when modeling volatility using GARCH family models, the

appropriate specification of the mean equation is vitally important. The misspecifica-

tion of that equation could fail to address the autocorrelation problem that could

arise in the volatility model. Therefore, we estimated all of the GARCH family models

using three different specifications for the mean equations. The first is with a

constant only, the second is with a constant and one autoregressive variable (i.e.,

AR(1)), and the third is constant and has two autoregressive variables (i.e., AR(2)).

They can be expressed as follows:
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Mean Equations : rt ¼ μþ εt ð1Þ
rt ¼ μþ ρ1rt−1 þ εt ð2Þ
rt ¼ μþ ρ1rt−1 þ ρ2rt−2 þ εt ð3Þ

To specify the variance equation to model volatility presence in differenced logarith-

mic exchange rates (i.e., exchange rate returns), we used five different GARCH family

models, each of which has a different purpose. In particular, we modeled the variance

for the above three mean equations using GARCH, APARCH, EGARCH, TGARCH,

and IGARCH models. The sensitivity of the estimation results of the models was

checked by changing the distribution assumptions. More specifically, the sensitivity and

appropriateness of the estimation results were observed by changing the distribution

assumption from normal to Student’s t-distribution. The reason for this is that in the

literature on financial asset returns, it is established that the return variable is more

likely to follow a “levy distribution” with “fat tails,” and kurtosis is likely to increase

with data frequency (Alexander, 1961; Andersen & Bollerslev, 1998).

Engle (1982) pioneered modeling volatility using conditionally heteroscedastic

regression with the autoregressive conditional heteroscedasticity (ARCH) model. One

major problem with such modeling is that the required lag length usually remains large,

which means it needs to estimate a large number of parameters to predict volatility. In

contrast, the generalized autoregressive conditional heteroscedasticity (GARCH)

models proposed by Bollerslev (1986) allow conditional variance to depend upon

its own lag. This typically reduces the number of required ARCH lags when

predicting volatility.

Nevertheless, we assumed the following general form for the variance equation:

Variance Equation : εt ¼
ffiffiffiffiffi
ht

p
vt ;where vt ∼ iidð0; 1Þ ð4Þ

Depending on the specification of ht in Eq. (4), we can have several possible models

within the GARCH family. In particular, we estimated the following specification of

GARCH family models for estimating volatility in logarithmic exchange rates:

GARCHð1; 1Þ : ht ¼ ηþ αε2t−1 þ βht−1

APARCHð1; 1Þ : hδt ¼ ηþ αðjεt−1j−γεt−1Þ
δ þ βhδt−1

EGARCHð1; 1Þ : lnht ¼ ηþ α

����� εt−1ffiffiffi
h

p
t−1

�����þ γ
εt−1ffiffiffi
h

p
t−1

0
@

1
Aþ βlnht−1

TGARCHð1; 1Þ : ht ¼ ηþ αε2t−1 þ λdt−1ε
2
t−1 þ βht−1; dt−1 ¼

(
1; if εt−1 < 0
0; if εt−1 ≥ 0

IGARCHð1; 1Þ : ht ¼ αε2t−1 þ ð1−αÞht−1

Here, the GARCH(1, 1) model consists of one ARCH term denoted as ε2t−1 and one

GARCH term denoted as ht−1. For the variance to remain well behaved, some

restrictions needed to be imposed: η > 0, α ≥ 0, and β ≥ 0. The sum of the ARCH

coefficient and GARCH coefficient governs the persistency of volatility shocks. Their

sum should be less than the unit (α + β < 1) to ensure that series εt is stationary and

the variance is positive.
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To allow for possible nonlinearities in the parameters of the variance equation, Ding,

Granger and Engel (1993) developed the asymmetric power autoregressive conditional

heteroscedasticity (APARCH) model. In the above APARCH model, δ denotes the

power parameter that requires the condition δ > 0, and γ is the parameter capturing

asymmetry or leverage effect, which requires the condition |γ| ≤ 1.

The standard GARCH(1, 1) model suggests that the shock in εt−1 has the same effect

regardless of whether εt−1 > 0 or εt−1 < 0. Nevertheless, a typical feature of financial

data is that negative shocks generate more volatility compared to positive shocks. Aim-

ing to incorporate this asymmetrical effect in financial data, Nelson (1991) proposed

the exponential generalized autoregressive conditional heteroscedasticity (EGARCH)

model. In the EGARCH specification, γ is the asymmetry parameter measuring leverage

effect, α is the size parameter measuring the magnitude of shocks, and persistency is

captured through β. An important feature of the EGARCH specification is that

conditional variance is an exponential function, thus there is no need for nonnegetivity

restrictions, as in earlier GARCH specifications.

Introduced by Zakoian (1994) and Glosten, Jagannathan, and Runkle (1993),

threshold generalized autoregressive conditional heteroscedasticity (TGARCH) is

another model developed to analyze leverage affects. In the above TGARCH(1, 1)

model, εt−1 > 0 (good news) and εt−1 < 0 (bad news) produce a differential effect on

volatility. Here, good news has an impact of α while bad news has an impact of (α + γ).

Thus, when γ > 0, the increase in volatility due to bad news is greater than that for

good news, and we can conclude that there is a leverage effect. Similar to standard

GARCH models, we also need nonnegative restrictions here for α, γ, and β.

A nonstationary GARCH model (i.e., GARCH model with unit roots) can be regarded

as an integrated generalized autoregressive conditional heteroscedasticity (IGARCH)

model. This model was originally developed by Engle and Bollerslev (1986). In practice,

when the parameters of the GARCH model are restricted to a sum equal to one and

ignore the constant term, a standard GARCH model is transformed into an IGARCH

model. In the above IGARCH model, the additional constraints are {α + (1 − α)} = 1

and 0 < α < 1.

Estimation Results and Discussion
Table 1 shows the estimation results of the different conditional mean models for the

differenced logarithmic exchange rate using Ordinary Least Squares (OLS) method.

OLS was applied to estimate regression since the series was observed to be mean

reverting (Table 9 in Appendix). In particular, three different conditional mean

equations were estimated: one with the constant only, one with the AR(1) term, and

one with AR(2) terms. The models were not augmented with further AR terms since

they were not significant (Fig. 1 in Appendix). As the results show, in Model 1, the

constant term is significant, and the F-statistic, testing the null of the absence of the

ARCH effect in the differenced logarithmic exchange rate, is statistically significant at

the 1% level. In Model 2, the conditional mean model was augmented with the AR(1)

term, which was found to be statistically significant along with the test for heterosce-

dastic ARCH effects. The conditional mean model was augmented further with AR(2)

terms in Model 3. The estimation results reveal that both AR(1) and AR(2) terms are
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significant along with the F-statistic for the heteroscedastic ARCH effect. Thus, it is

established that the differenced logarithmic exchange rate of the taka against the US

dollar is conditionally heteroscedastic, and this remains crucially important for model-

ing volatility clustering. The existence of volatility clustering in the taka–US dollar ex-

change rate is also evident in the residual plot in Fig. 2 (Appendix).

Since the ARCH effect was detected in the model, GARCH estimation was performed

with different specifications. In particular, the GARCH(1, 1) and APARCH(1, 1) models

were initially estimated with normal error distribution assumption. While the GARCH

model was applied for the purpose of capturing variance dynamics, the APARCH

model was applied to test for the presence of asymmetric volatility effects in the

variance dynamics of exchange rate returns.

Table 2 shows the estimation results. Here, it is evident that the autoregressive

coefficients of the lagged dependent variables for mean equations ρ1 and ρ2 are

statistically significant. In all of the specifications, the coefficients of the GARCH

components (i.e., α and β) are positive and statistically significant at the 1% level. How-

ever, as their sum exceeds 1, the residuals of the regressions would be nonstationary,

and hence variance would be indefinite. Since the residual of the GARCH model should

be white noise, a diagnostic test was performed in the form of the Ljung–Box Q-test

under the null hypothesis (H0: No Serial Correlation in the Error Term). We calculated

Q-statistics for the standardized residuals (Q1) and for their squared values (Q2)

(especially testing for the fourth and eighth lag, inspired by Tse (1998)). All of the

Q1-statistics were significant at the 5% level. Thus, there was not enough evidence to

reject the null hypothesis of no serial correlation in the error term. Also, the F-statistic

confirmed that the models still had ARCH effects.

From the APARCH specification in Table 2, it is evident that the autoregressive

coefficients of the lagged dependent variables for mean equations ρ1 and ρ2 are

Table 1 Estimation of different conditional mean models and testing for ARCH effect

Variables Coefficients

(1) (2) (3)

Dependent Variable, rt

μ 0.007039* 0.002324*** 0.00200

(0.001770) (0.001325) (0.001315)

rt − 1 0.670082* 0.577656*

(0.017550) (0.023430)

rt − 2 0.137930*

(0.023430)

ARCH Effect (Dependent Variable, ε2t )

Constant 0.001824** 0.001964* 0.001852*

(0.000779) (0.000417) (0.000419)

ε2t−1 0.677218* 0.369592* 0.394310*

(0.017396) (0.021975) (0.021739)

HO: No ARCH Effect

F- Statistic 1515.543* 282.8792* 328.9958*

Probability 0.000000 0.000000 0.000000

Standard Errors are in Parenthesis. *** indicates significant at 10% level, ** significant at 5% level and * indicates that at
1% level
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statistically significant. The coefficients α and β were again found to be positive and

statistically significant, having a sum exceeding 1 for all of the specifications. The

coefficient δ is positive and significant, and not equal to 2, establishing that it is not a

standard GARCH model (Ding, Granger, & Engle 1993). The significance and sign of

the coefficient γ determine the leverage effect.

The positive significant value of γ indicates the existence of a leverage effect where

negative past values of εt increase volatility more than positive past values of the same

magnitude. Meanwhile, the negative significant value of γ indicates the existence of a

leverage effect in the opposite direction: positive past values of εt increase volatility

more than negative past values of the same magnitude. As the table shows, the leverage

coefficient is negative and significant. Thus, an asymmetric volatility effect exists for

exchange rate returns. More specifically, the appreciation and depreciation of the taka

against the US dollar does not necessarily cause symmetric variation in the exchange

rate return. However, the test results for detecting serial correlation establish that all of

the specifications have a serial correlation problem, and the F-statistic shows that an

ARCH effect still exists. Figure 3 (Appendix) shows that none of the above models have

normally distributed errors on the basis of the Jarque–Bera test statistic.

Table 2 Estimation results of GARCH and APARCH models with normal distribution

Coefficients GARCH APARCH

(1) (2) (3) (4) (5) (6)

μ −0.000226 −0.000221 −0.000187** −3.93E-06 0.000107 0.000226

(0.000286) (0.000294) (0.000277) (0.000219) (0.000231) (0.000235)

ρ1 0.193417* 0.140156** 0.224911* 0.176892*

(0.054895) (0.058168) (0.045801) (0.047702)

ρ2 0.219073* 0.191613*

(0.069243) (0.054318)

η 2.33E-06*** 2.37E-06*** 2.52E-06*** 2.52E-05 3.22E-05 2.48E-05

(1.22E-06) (1.31E-06) (1.36E-06) (3.80E-05) (4.72E-05) (3.97E-05)

α 0.180840* 0.182424* 0.208203* 0.175477* 0.167971* 0.180086*

(0.033305) (0.035090) (0.044322) (0.032685) (0.032557) (0.038836)

γ −0.289609* −0.332848* −0.34263**

(0.084911) (0.113350) (0.140916)

δ 1.533712* 1.485285* 1.541664*

(0.270681) (0.266742) (0.294524)

β 0.873895* 0.875357* 0.865345* 0.885786* 0.889983* 0.882629*

(0.019489) (0.019747) (0.021975) (0.020222) (0.020219) (0.022510)

Q1(4) 172.59* 79.968* 35.571* 161.98* 59.366* 28.906*

Q1(8) 241.95* 124.84* 60.316* 224.18* 96.379* 50.349*

Q2(4) 6.3326 4.982 3.8738 19.204* 20.390* 19.377*

Q2(8) 7.3836 6.1325 4.8640 20.747* 22.297* 21.219*

Log Likelihood 4052.775 4065.950 4087.309 4104.165 4127.830 4152.042

F Stat. 5.6784** 4.1581** 3.029272*** 17.0974* 15.8075* 14.90734*

Prob. 0.0173 0.0416 0.0819 0.0000 0.0001 0.0001

Robust Standard Errors are in Parenthesis. *** indicates significant at 10% level, ** indicates significant at 5% level and
* indicates that at 1% level
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Since it was established that the distribution of error terms in different models

was not normal, we checked the estimation results using the assumption of

Student’s t-distribution for the error terms. To justify this, we also checked the

skewness and kurtosis of the exchange rate return series. Table 10 (Appendix) shows that

the exchange rate return is highly skewed. The distribution is also leptokurtic, implying

that its central peak is higher and sharper with longer and fatter tails. This finding is in

line with Mandelbrot (1963), who found fat-tailed and excess kurtosis for the rate of

return, which has been further clarified for different financial assets in other studies. Thus,

following Bollerslev (1987); Vee, Gonpot, and Sookia (2011); and Çağlayan, Ün, and

Dayıoğlu (2013), we examined the estimation results using Student’s t-distribution for the

error terms. Table 3 shows the results. The autoregressive coefficients in both GARCH

and APARCH specifications were found significant, as before. Here, the ARCH parameter

denoted by β measures the reaction of conditional volatility to market shocks (i.e., it

measures the variance response in exchange rate returns against appreciation or

depreciation). On the other hand, the GARCH parameter denoted by β measures the

persistence of conditional volatility, regardless of shocks to the market. Both coefficients

were found to be positive and significant, implying that variance in exchange rate returns

Table 3 Estimation results of GARCH and APARCH models with Student’s t-distribution

Coefficients GARCH APARCH

(1) (2) (3) (4) (5) (6)

μ 1.79E-07 6.72E-08 −4.08E-08 7.92E-10 4.36E-09 2.25E-09

(1.37E-07) (1.42E-07) (1.56E-07) (1.84E-07) (1.03E-07) (6.09E-08)

ρ1 0.227924* 0.246680* 0.149727* 0.095646*

(0.022967) (0.018652) (0.016292) (0.011675)

ρ2 0.166564* 0.073848*

(0.016849) (0.009821)

η 2.76E-13 2.01E-13 1.78E-13 0.000808 2.70E-05 0.000190

(2.08E-13) (1.50E-13) (1.12E-13) (0.000809) (6.55E-05) (0.000549)

α 0.926099* 1.889860* 1.633760* 1.421359** 1.707541* 1.445461*

(0.073253) (0.426702) (0.452555) (0.669212) (0.501460) (0.506596)

γ −0.068862** −0.078959*** −0.106666**

(0.032925) (0.041074) (0.044544)

δ 0.611742* 0.671478* 0.530577*

(0.021520) (0.028684) (0.019776)

β 0.464984* 0.514459* 0.503470* 0.653877* 0.574994* 0.593071*

(0.004546) (0.004297) (0.004305) (0.008688) (0.012415) (0.009463)

Q1(4) 0.0032 0.0015 0.0015 0.0002 0.00002 0.000004

Q1(8) 0.0064 0.0029 0.0030 0.0231 0.00003 0.00001

Q2(4) 0.0321 0.0268 0.0270 0.0802 0.0569 0.0551

Q2(8) 0.0644 0.0538 0.0542 0.1603 0.1142 0.1105

Log Likelihood 6606.627 6622.211 6690.907 6717.160 7694.906 7809.244

F Statistic 0.007976 0.00666 0.006713 0.01994 0.01414 0.013687

Probability 0.9288 0.9349 0.9347 0.8877 0.9053 0.9069

Robust Standard Errors are in Parenthesis. *** indicates significant at 10% level, ** indicates significant at 5% level and
*indicates that at 1% level
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for the taka against the US dollar is responsive and persistent against shocks defined as

appreciation or depreciation. However, in all of the models, since their sum exceeds a

value of 1, the variance is arguably infinite and nonstationary. The existence of an

asymmetric volatility effect is again established in the APARCH model.

Nonetheless, the diagnostic indicators reveal that there is no ARCH effect in either

the GARCH and APARCH specifications; also, all models successfully passed the no-

autocorrelation test in residuals. Therefore, it is more appropriate to perform further

analysis using Student’s t-distribution. It is worth noting that in all of the types of

models, regardless of different distribution assumptions for the residuals, the

coefficients for the ARCH and GARCH components sum to more than 1. Also, the

constant terms in the variance equations of the GARCH and APARCH models using

Student’s t-distribution were not significantly different from 0. Thus, as the necessary

nonnegativity restrictions have not been satisfied, the variance is not well behaved.

Thus, to incorporate the asymmetric volatility effect and eliminate the problem of

nonnegativity restrictions, we estimated an EGARCH model. Table 4 shows the

estimation results of the EGARCH model with different specifications for the mean

equations, using both normal and Student’s t-distribution for the residual. The

autoregressive coefficients were significant when we estimated EGARCH using

normally distributed errors. Here, in the variance equation, γ represents what is

Table 4 Estimation results for EGARCH model

Variables EGARCH with normal distribution EGARCH with t-distribution

(1) (2) (3) (4) (5) (6)

μ 2.04E-08 3.27E-09 −3.66E-08 4.29E-08 2.57E-08 −1.85E-08

(1.17E-06) (1.43E-06) (4.97E-07) (1.93E-06) (1.61E-06) (1.64E-06)

ρ1 0.263417* 0.350785** 0.161735* 0.146973*

(0.051723) (0.153884) (0.015344) (0.014631)

ρ2 0.350488* 0.119350*

(0.125083) (0.013932)

η −0.565951* −0.678004* −0.605468* −0.636386* −0.696469* −0.758190*

(0.065684) (0.066833) (0.065839) (0.210477) (0.226475) (0.151225)

α 0.322317* 0.381764* 0.342639* 1.743955 2.628468 2.047842

(0.045776) (0.050371) (0.078282) (3.064486) (4.199223) (2.094103)

γ 0.057201 0.066029 −0.031695 0.167936 0.409331 0.302450

(0.037783) (0.054214) (0.221024) (0.295404) (0.651932) (0.311216)

β 0.945939* 0.934308* 0.942450* 0.941501* 0.931442* 0.929085*

(0.006794) (0.006133) (0.007135) (0.001939) (0.002482) (0.002585)

Q1(4) 293.54* 102.11* 14.129* 44.070* 26.663* 17.440*

Q1(8) 397.12* 160.61* 19.778** 65.108* 42.640* 29.617*

Q2(4) 15.604* 3.4865 1.1215 0.3888 0.7209 0.7762

Q2(8) 397.12* 6.3806 2.2757 0.7328 1.3139 1.4064

Log Likelihood 4159.549 4155.077 4087.921 5186.759 5205.489 5213.334

F Statistic 13.99454* 2.877947*** 0.888492 0.081133 0.167294 0.180243

Probability 0.0002 0.0900 0.3460 0.7758 0.6826 0.6712

Robust Standard Errors are in Parenthesis. *** indicates significant at 10% level, ** indicates significant at 5% level and
* indicates that at 1% level
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popularly known as the “asymmetry parameter,” and α represents the “size parameter.”

The former measures the asymmetric effect on volatility while the latter measures the

effect of the magnitude of shocks about their mean. It can be observed that though the

size parameter is significant, the asymmetric parameter is insignificant, establishing the

possible absence of an asymmetric effect on volatility.

A look at the diagnostic indicators reveals that the model still contains an ARCH

effect and has a serial correlation problem. Furthermore, when the model is reestimated

using Student’s t-distribution for residuals, both the asymmetry and size parameters

become statistically insignificant. Therefore, according to the EGARCH specification,

the taka–US dollar exchange rate return exhibits symmetric volatility; appreciation and

depreciation could possibly have a similar effect on future volatility. This is in line with

Diebold and Nerlove (1989); Bollerslev, Chou, and Kroner (1992); and Tse (1998) since

the diagnostic indicators showed no ARCH effect, and the model overcame the auto-

correlation problem based on the Ljung–Box Q-test using squared residuals. However,

the autocorrelation problem remained when regular residuals were used for the test.

Since EGARCH disregarded the possible existence of an asymmetric volatility effect,

we tried another parameterization—namely, TGARCH. Table 5 shows the estimation

results. All of the nonnegativity restrictions required for model validity were satisfied.

Also, the parameter λ, which captures the asymmetric response of volatility to shocks,

Table 5 Estimation results for TGARCH model

Variables TGARCH (Normal distribution)

(1) (2) (3)

μ −3.67E-05 4.94E-05 0.000154

(0.000235) (0.000254) (0.000234)

ρ1 0.222718* 0.169813*

(0.045755) (0.020729)

ρ2 0.214483*

(0.020328)

η 2.39E-06** 2.41E-06*** 2.46E-06*

(1.21E-06) (1.28E-06) (7.95E-08)

α 0.293310* 0.303622* 0.341319*

(0.042445) (0.048643) (0.014608)

γ −0.194578* −0.215880* −0.254191*

(0.039799) (0.047940) (0.016232)

β 0.864521* 0.866679* 0.859486*

(0.020969) (0.021193) (0.002350)

Q1(4) 164.03* 63.817* 29.131*

Q1(8) 230.46* 102.16* 48.891*

Q2(4) 8.8747*** 8.6272*** 10.023*

Q2(8) 10.346 10.343 11.764

Log Likelihood 4096.761 4118.817 4145.995

F Statistic 7.942155* 6.577262*** 7.433103*

Probability 0.0049 0.0104 0.0065

Robust Standard Errors are in Parenthesis. *** indicates significant at 10% level, ** indicates significant at 5% level and
* indicates that at 1% level
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was found to be negative and consistently significant for all of the models, indicating

the possible existence of an asymmetric volatility effect. However, the findings should

be regarded with caution since this estimation is valid only under normal error

distribution.3 Furthermore, this model also shows an autocorrelation problem, and

there is still an ARCH effect.

Finally, since it has been observed that the sum of the persistence parameters exceeds

the unitary value in earlier GARCH estimations, it can be deduced that the variance

might not be well behaved in such models. Therefore, it would be interesting to model

volatility clustering with such models while imposing restrictions on the persistence

parameters. One popular restriction on the persistence parameters of GARCH

models is referred to as “persistence parameters sum up to unit.” The estimation

of GARCH models with this restriction leads to IGARCH specifications. Table 6

shows IGARCH estimation with normally distributed errors as well as errors

following Student’s t-distribution.

It can be observed from the estimation results of the IGARCH models that the

restriction that was applied is valid. Moreover, the IGARCH specifications

successfully overcame all of the diagnostic tests when Student’s t-distribution,

rather than normal distribution, was used as the error distribution. There was no

ARCH effect and no autocorrelation detected in the regular and squared

residuals.

Finally, the evidence indicates that all of the models (GARCH, APARCH, EGARCH,

and IGARCH) satisfy the required diagnostic standard under Student’s t-distribution as

the assumption for residuals. Further, the log-likelihood for all of the models was im-

proved when the aforementioned distribution was used.

Table 6 Estimation results for IGARCH model

Variables IGARCH with normal distribution IGARCH with t-distribution

(1) (2) (3) (4) (5) (6)

μ 0.002930* 0.002884* 0.002865* 7.55E-07* 1.53E-09 −1.19E-07

(0.000839) (0.000920) (0.000928) (8.18E-08) (9.17E-06) (1.01E-07)

ρ1 0.205516* 0.173207* 0.265356* 0.243118*

(0.056778) (0.060553) (0.011288) (0.011705)

ρ2 0.170491* 0.161135*

(0.059969) (0.011974)

α 0.081458* 0.075343* 0.073077* 0.116127* 0.043758* 0.058008*

(0.012647) (0.011661) (0.011584) (0.003518) (0.002359) (0.002924)

(1-α) 0.918542* 0.924657* 0.926923* 0.883873* 0.956242* 0.941992*

(0.012647) (0.011661) (0.011584) (0.003518) (0.002359) (0.002924)

Q1(4) 326.39* 162.39* 90.175* 0.0026 0.0025 0.0024

Q1(8) 482.09* 263.11* 158.89* 0.0052 0.0049 0.0047

Q2(4) 38.485* 33.945* 31.662* 0.0022 0.0022 0.0022

Q2(8) 39.551* 35.027* 32.720* 0.0045 0.0045 0.0045

Log Likelihood 3861.589 3877.619 3889.840 5261.522 5069.878 5134.113

F Statistic 36.02953* 31.22263* 29.47090* 0.000558 0.000559 0.000559

Probability 0.0000 0.0000 0.0000 0.9812 0.9811 0.9811

Robust Standard Errors are in Parenthesis. *** indicates significant at 10% level, ** indicates significant at 5% level and
* indicates that at 1% level
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Volatility forecasting
In-sample estimation accuracy

To check whether the accuracy of volatility forecasting among the different

models varied with distribution assumptions, we compared the log-likelihood,

Schwarz Bayesian information criterion (SBC), and Akaike information criterion

(AIC) for all of the models, estimating for whole-sample observations under

normal and Student’s t-error distribution. Table 7 shows the results. It is clear

that the performance and goodness of fit of each model improved when Student’s

t-distribution was used for the residuals. This is because likelihood increased

while both SBC and AIC decreased compared to when normal distribution was

used for the residuals. Considering the Student’s t-distribution for the residuals, a

comparison of indicators reveals that among all of the models used for in-sample

estimation, AR(2)–APARCH(1, 1) is the best since it has maximum likelihood and

minimal SBC and AIC.

Out-of-sample forecasting accuracy

To check the forecasting accuracy of the models, we created a pseudo sample

using the period from June 1, 2008 to December 31, 2012. All of the models were

estimated for the pseudo sample period and then employed to estimate the

variance in exchange rate returns for the period from January 1, 2013 to April 30,

2015. The forecasting performance of the models was compared on the basis of

four different indicators under normal distribution and Student’s t-distribution: root

mean square error (RMSE), mean absolute error (MAE), mean absolute percent

error (MAPE), and Theil inequality (TI).

Table 8 shows the comparative forecasting accuracy of the different models

under normal and Student’s t-distribution for the residuals. For the AR(2)–

GARCH(1, 1) model, RMSE and TI decreased while MAE remained constant and

MAPE increased when changing the distribution assumption. Thus, this model’s

forecasting accuracy was improved under Student’s t-distribution. Likewise, the

forecasting accuracy of AR(2)–IGARCH(1, 1) was improved with the above distri-

bution (all of the four indicators decreased when Student’s t-distribution was

used). Meanwhile, AR(2)–APARCH(1, 1), which had the best in-sample estimation

accuracy under Student’s t-distribution, showed lower accuracy when such distri-

bution was used for out-of-sample forecasting. Similarly, the forecasting accuracy

of AR(2)–EGARCH(1, 1) also became poor when Student’s t-distribution was used;

Table 7 Comparison of models in within sample estimation accuracy

Models Normal distribution Student’s t-distribution

Log likelihood SBC AIC Log likelihood SBC AIC

AR(2) – GARCH(1, 1) 4087.309 −4.5410 −4.560 6690.907 −7.4044 −7.4259

AR(2) – APARCH(1, 1) 4152.042 −4.6056 −4.6302 7809.244 −8.5490 −8.5664

AR(2) – EGARCH(1, 1) 4087.921 −4.5382 −4.5596 5213.334 −5.7914 −5.8160

AR(2) – TARCH(1, 1) 4145.995 −4.6031 −4.6245 – – –

AR(2) – IGARCH(1, 1) 3889.840 −4.3294 −4.3417 5134.113 −5.7155 −5.730
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of the four indicators, one (MAE) remained constant while the other three

(RMSE, MAPE, and TI) increased. Figures 4 and 5 in the Appendix show the

forecasted volatility and confidence intervals for the above models, with the

residuals following normal and Student’s t-distribution.

Conclusion
Bangladesh, which the World Bank recently promoted from a low-income country

to a lower-middle-income one, is moderately dependent on trade, but remittance

holds high importance. In 2014, trade accounted for about 45% of Bangladesh’s

GDP (about 55% for other low-middle-income countries) while remittance

accounted for 8.7% of the GDP (only 1.5% for other low-middle-income countries).

Moreover, most exports from Bangladesh are destined for the US. Therefore,

exchange rate volatility will have a significant effect on trade and remittance, and

consequently on the whole economy. For this reason, it is extremely important to

properly model and forecast exchange rate volatility. This study aimed to model

the volatility of the taka–US dollar exchange rate return using daily observations

over a span of 7 years. The leptokurtic fat-tailed nature of the exchange rate return

series usually establishes a rationale for using skewed distribution—such as

Student’s t—rather than normal distribution to estimate volatility models. The main

focus was on whether the same nature exists in the taka–US dollar exchange rate

return and whether the results were improved with Student’s t-distribution. In

particular, this study tried to model the volatility dynamics of the taka–US dollar

exchange rate return using GARCH, APARCH, EGARCH, TGARCH, and IGARCH

models. The findings from the models were compared under the regular normal

distribution assumption for the residuals against Student’s t-distribution. All of the

models successfully passed the diagnostic tests when Student’s t-distribution was

used for the residuals. Further, in-sample estimation accuracy was observed to be

improved when such a distribution was used. For modeling in-sample volatility

dynamics, AR(2)–IGARCH(1, 1) was found to be the most accurate. We also tried

to find the appropriate model for volatility forecasting, and we found that the

forecasting accuracy of AR(2)–GARCH(1, 1) and AR(2)–IGARCH(1, 1) was

improved with Student’s t-distribution against normal distribution. However, in

terms of out-of-sample forecasting accuracy, AR(2)–GARCH(1, 1) is considered the

best compared to AR(2)–IGARCH(1, 1) since MAE, MAPE, and TI were all

observed to be lower for the former model. That said, the issue of structural

change presents a potential limitation of this exercise. During the data span,

however, there was no regime shift in exchange rates, which minimizes its likelihood.

Table 8 Comparison of models in out of sample forecasting accuracy

AR(2)-GARCH(1, 1) AR(2)-APARCH(1, 1) AR(2)-EGARCH(1, 1) AR(2)-IGARCH(1, 1)

Normal Student’s t Normal Student’s t Normal Student’s t Normal Student’s t

RMSE 0.0184 0.0183 0.0183 0.0187 0.0182 0.0185 0.0192 0.0183

MAE 0.0093 0.0093 0.0094 0.0094 0.0093 0.0093 0.0110 0.0094

MAPE 42.8555 43.5405 43.0390 43.1409 43.5094 42.8045 45.7949 43.7528

TI 0.6858 0.6436 0.6656 0.7243 0.6438 0.6951 0.7056 0.6496
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Endnotes
1“Volatility clustering,” as defined by Mandelbrot (1963), refers to a situation where

large changes tend to be followed by large changes, and small changes tend to be

followed by small changes.
2There is a negative correlation between current return and future volatility

(Black, 1976). This means that increased volatility for “bad news” will be more so

in relation to “good news.” This typical phenomenon in financial data is popularly

known as the “leverage effect.”
3The standard errors of the TGARCH model with Student’s t-distribution as the

assumption for the errors are not well defined in EViews 9, which restricts its

application here.

Appendix

Table 9 Stionarity test results for the exchange rate return series

Augmented Dickey Fuller (ADF) test Kwiatkowsk –Philips–Schmidt–Shin (KPSS) test
H0: exchange rate return has a unit root H0: exchange rate return is stationary

Intercept Trend and intercept Intercept Trend and intercept

Test
statistic

Probability Test
statistic

Probability Test
statistic

1% critical
value

Test
statistic

1% critical
value

−14.9439 0.000 −14.9552 0.000 0.4630 0.7390 0.1913 0.2160

Table 10 Skewness and Kurtosis of exchange rate return

Variable Skewness Kurtosis

Exchange Rate Return 3.6624 62.8792

Fig. 1 Correlogram of exchange rate return
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Fig. 2 Volatility clustering of Taka/US dollar exchange rate return

Fig. 3 Distribution of the error term in different models in Table 2
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Fig. 4 Volatility forecasting with normal distribution
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