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Abstract

Market data for financial studies typically derives from either historical transactions or
contemporaneous surveys of sentiment and perceptions. The research communities
analyzing data from these opposing categories of source data see themselves as
distinct, with advantages not shared by the other. This research investigates these
latter claims in an information theoretic context, and suggests where methods and
controls can be improved. The current research develops a Fisher Information metric
for Likert scales, and explores the effect of particular survey design decisions or
results on the information content. A Fisher Information metric outperforms earlier
metrics by converging reliably to values that are intuitive in the sense that they
suggest that information captured from subjects is fairly stable. The results of the
analysis suggest that varying bias and response dispersion inherent in specific
surveys may require increases of sample size by several orders of magnitude to
compensate for information loss and in order to derive valid conclusions at a given
significance and power of tests. A prioritization of quality of design, and the factors
relevant to survey design are presented in the conclusions, and illustrative examples
provide insight and guidance to the assessment of information content in a survey.
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Mathematical models

Survey response paradigms
Market data for financial studies typically derives from one of two broad categories of

source material: (1) records and summaries of historical transactions offered from

sources such as Compustat, CRSP, government statistics, and raw market transactions;

and (2) survey data of sentiment and perceptions from a variety of demographics of-

fered from sources such as Harte Hanks, Valassis, Acxiom and Experian Simmons.

The research communities analyzing data from these opposing categories of source

data see themselves as distinct, with advantages not shared by the other. Survey data

researchers argue that they have access to relevant data on topics that are financially

important, but difficult or impossible to directly observe. Transaction data researchers

argue that their information is objective, since money has changed hands (Miller 1999;

Miller 2000). They may disparage survey datasets as potentially biased and lacking in

accuracy due to the subjectivity of responses and faults of measurement instruments

Bennett et al. (2012). Countering this, behavioral finance researchers who almost ex-

clusively rely on survey data contend that they have evolved methodologies and

© 2015 Westland. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

Westland Financial Innovation  (2015) 1:10 
DOI 10.1186/s40854-015-0011-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s40854-015-0011-8&domain=pdf
mailto:westland@uic.edu
http://creativecommons.org/licenses/by/4.0/


controls that mitigate biases. This research investigates these latter claims in an infor-

mation theoretic context, and suggests where methods and controls can be improved.

Likert scales represent a widely used approach to scaling responses in survey research,

such that the term is often used interchangeably with rating scale. Likert scales require sub-

jects to project qualitative or quantitative beliefs or opinions onto a discrete set of Likert

items – fundamental observations from such experiments – typically containing between

three and nine categories. The survey researchers’ challenge is to record subject responses

in mappings that are balanced, properly scaled, meaningful, informative, accurate and un-

biased. There is considerable discussion as to the exact meaning of Likert scaling

(Alphen et al. 2008; Bond and Fox 2007; Fitzpatrick et al. 2004; White and Velozo 2002;

Likert 1974). Likert scales are sometimes considered an implementation of a Rasch model,

though not every set of Likert scaled items can be used for Rasch measurement, but in

practice data has to be thoroughly checked to fulfill the strict formal axioms of the Rasch

model (Norquist et al. 2004, Bond and Fox 2007). Likert scale data can, in principle, be

used as a basis for obtaining interval level estimates on a continuum by applying the poly-

tomous Rasch model, when data can be obtained that fit this model. In addition, the poly-

tomous Rasch model permits testing of the hypothesis that the statements reflect

increasing levels of an attitude or trait, as intended.

Much of this uncertainty in application and interpretation arises from its history of

development. Rather than being a direct product of statistical modeling or measure-

ment theory, it was initially developed as an ad hoc, readily implementable method for

capturing otherwise unobservable ‘personal belief ’ information. Rensis Likert developed

the ‘Likert scale’ during his PhD thesis work in the 1930s (Likert 1974; Jöreskog and

Sörbom 1982). Since its development, the Likert scale has become popular and extensively

applied in survey research – in marketing, sociology, psychology and other fields – allowing

respondents to express both the direction and strength of their knowledge and opinions,

albeit couched in an artificial form and non-intuitive recording structure.

Open questions on the nature and interpretation of Likert scales make it difficult to as-

sess the adequacy of experimental or survey design, or generate reliable statistics concern-

ing the unobservable sentiments that Likert scales supposedly measure. Even were it

possible to consistently and accurately verify the truthfulness of subject responses, theory

is still lacking on ways to assess whether this is accurately translated into research conclu-

sions. Though we assume that there must be some information loss in translation from

presumably continuous personal beliefs to discrete and ordered response scales, the

causes and forms of loss have not been widely studied.

This paper contributes to the understanding of design trade-offs and requirements

which are required to be able to assert that a particular Likert sample contains a spe-

cific amount of information concerning the specific research question that the survey is

designed to answer.

Section 2 of this research reviews the prior literature, describing where the literature

has provided information measures for Likert scales, and where needed guidance in sur-

vey design and Likert response statistical analysis is still wanting. Section 3 applies a

standard Fisher Information measure of information content to Likert scales, and explores

the consequences of particular survey design decisions or results. Section 4 pro-

vides exact solutions with Gaussian beliefs, and these are compared and contrasted with

results from earlier work of (Srinivasan and Basu 1989) which also assumes Gaussian
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beliefs. Section 5 provides an example, comparing to Srinivasan and Basu’s (1989)

(Stevens and Galanter 1957) results which are often cited in support of survey statistics.

Section 6 discusses the implications of a Fisher Information criterion for Likert scale

interpretation, and draws conclusions germane to future survey design.

Prior research

Ordered categorical scales are widely used in marketing and the behavioral sciences to

measure a variety of human responses and performance. A metric z is ordered categorical if

it takes on a countable set of values {z1… zm} which are ordered such that zi > zj for all i >

j. Ordered categorical metrics are special cases of ordinal metrics where the numbers

assigned to categories are consecutive, and are not considered to be rankings (Srinivasan

and Basu 1989). Ordered categorical scales subsume a wide range of commonly encoun-

tered metrics; e.g., semantic differential scale ratings, such as the ‘luxuriousness’ of a car;

Likert scale responses, such as level of agreement with a statement about an attitude or per-

ception; and school assessment such as grades ‘A’, B’, etc.

Ordered categorical scales are almost always used to simplify the task of measuring a

completely or partially unobservable phenomenon, such as personal utilities associated

with usage of a particular product. With this justification comes an assumption that an

ordered categorical measurement will not be as accurate or desirable as the more pref-

erable continuous measurement, but that the simplicity and cost-savings inherent in re-

search implementations using ordered categorical metrics offsets the inaccuracies

introduced by using a less than perfect measurement instrument. The argument is typ-

ically made that any inaccuracies introduced by the ordered categorical simplification

of measurement can be counterbalanced with a larger sample size, and a regression to

means of the continuous population distribution as the sample size expands to infinity

(Stevens and Galanter 1957).

Unfortunately, there is little prior research that has explored the information loss –

and commensurate inaccuracies injected into a research study – that comes from sub-

stituting ordered categorical metrics for continuous metrics. (Srinivasan and Basu

1989) developed what they called an “index of metric quality” for an ordered categorical

metric Z that they called Iz implying that Iz somehow captured the information content

of Z (thus the I notation). They assume that random variable Z is a transformation of

some underlying ‘true score’ τ with the relationship X = τ + ε where X and ε (the error)

are both Normally distributed. This is a somewhat convoluted way of describing the a

situation where there are two measurement tools – an ordered categorical tool generat-

ing Z and a (hypothetical) continuous counterpart generating X where τ is unobserv-

able and ε is a measurement error, though (Srinivasan and Basu 1989) are not clear

whether error supposedly occurs in measuring Z or the (hypothetical) continuous

counterpart X or both. Thus the transformation is T : (X − ε)→ Z. They are also mute

on which of several correlation coefficients, for example ρ or r, should be used, though

it is made clear from the context that they intended to measure the coefficient of deter-

mination R2 , whose usual purpose is the prediction of future outcomes on the basis of

other related information. In case of a single regressor, fitted by least squares, R2 is the

square of the Pearson product–moment correlation coefficient relating the regressor

and the response variable.
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(Srinivasan and Basu 1989) define a metric in their study: “the descriptive measure of

the ability of Z or X to predict the ‘true score’ “τ which has value:

IZ ¼ r2 Z; τð Þ
r2 X; τð Þ

They claim that Iz “provides an upper bound on the explanatory power (population R2) of

multiple regression models in which the ordered categorical variable is regressed against a

set of predictors.” Interpreting their notation of R2 = r2(., τ) to mean a measure of the fit for

a particular sample, this implies that they are trying to measure the information content of

the (hypothetical) continuous predictors generating X with respect to the value of the or-

dered categorical variable Z as the “gold” standard of informativeness or predictive power

against which ordered categorical scales should be judged. Yet r2(X, τ) is dimensionless, and

therefore at best can only be used to assess relative performance of particular metrics. If the

value r2(Z, τ) is 90 % of r2(X, τ) that does not mean that Z captures 90 % of the information

in either X or τ. In fact, the general interpretation of predictive value or information content

associated with any particular r2(., τ) is not particularly meaningful. (Srinivasan and Basu

1989) also assume that IZ ∈ [0, 1] but if τ were in fact ordinal, one could envision cases

where values in excess of 1 could obtain. Nonetheless, it doesn’t seem unreasonable to as-

sume that continuous metrics will improve on prediction of ordered categorical metrics in

their system. A reinterpretation of their intention would be that they want to find the infor-

mation loss in using a measure Z(τ) instead of the more accurate and desirable X(τ). The

authors’ use of an R2 based metric inherently assumes a linear model with a single regressor,

fitted by least squares. This is a very restrictive set of assumptions, that we could reasonably

assume would be tested often when measuring human response, which, in turn, is notori-

ously non-linear. Fundamentally r2(., τ) is the squared correlation – the normalized version

of the covariance, obtained by dividing covariance by the standard deviations of each of the

variables. Correlations are dimensionless and range from − 1 to + 1. Several different formu-

las are used to calculate correlations, but the most familiar measure is the Pearson

product–moment correlation coefficient, or Pearson's correlation. Correlations are

simple to interpret and to compare to each other because of their normalized

range. Correlations between unobserved (latent) variables are called canonical (for

continuous data like X) or polychoric (for ordinal data like Z) correlation and are

distinct from the Pearson product–moment correlation coefficient that was used in

(Srinivasan and Basu 1989). Correlations provide useful summarizations of large datasets

into single metrics; unfortunately their parsimony comes which a significant loss of

information about the sample as (Anscombe 1973) demonstrated in Fig. 1.

An example of the correlation of x and y for various distributions of (x,y) pairs was

provided in Fig. 2 by (Brandstätter et al. 2002) which clearly illustrates how R2 summa-

rizations can mislead.

Clearly all of the scatterplots on the bottom row contain significant information

about Z, X and τ, but in all cases r2(X, τ) = 0 and for any positive value of r2(Z, τ) then

IZ =∞. Unfortunately, Srinivasan and Basu’s metric misrepresents the informativeness

– i.e., their “explanatory power of multiple regression models in which the ordered cat-

egorical variable is regressed against a set of predictors” – when those predictors and

categorical variables are about X and Z.
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Information metrics for likert scaled data

Srinivasan and Basu (1989) couch their information metric Iz in terms of the context of

a linear combination of unobserved Gaussian predictors X, and a Likert scaled observa-

tion Z. Because of the flaws inherent in using functions of R2 as information measures,

it seems productive to seek an alternative statistical measure of information that has
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Fig. 1 Anscombe's (1973) Quartet: Four Distinct Datasets with Identical R2
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been successfully applied elsewhere. Fortunately a widely applied measure of ‘informa-

tion’ exists in the form of Fisher Information which is applicable to both linear-least

squares contexts, and to highly non-linear, non-normal context using loss functions

other than squared error.

In mathematical statistics and information theory, the Fisher information (sometimes

simply called information) can be defined as the variance of the score, or as the ex-

pected value of the observed information. In Bayesian statistics, the asymptotic distri-

bution of the posterior mode depends on the Fisher information and not on the prior.

When there are N parameters, Fisher information takes the form of an N ×N Fisher In-

formation Matrix positive semidefinite symmetric matrix, defining a Riemannian metric

on the N-dimensional parameter space; in that context, this metric is known as the

Fisher information metric, and the topic is called information geometry. The metric is

interesting in several ways; it can be derived as the Hessian of the relative entropy; it

can be understood as a metric induced from the Euclidean metric, after appropriate

change of variable; in its complex-valued form, it is the Fubini-Study metric. Thus

Fisher Information offers a generalizable and mathematically consistent measure of the

‘informativeness’ of a Likert data item in measuring an underlying set of continuous pa-

rameters – the original goal of Srinivasan and Basu’s metric.

There is no loss of generality in assuming that the underlying values being measured

are a set of continuous phenomena. Such assumptions are widely found in consumer

and behavioral research where Likert scaled survey responses typically serve as the data

fed into classical statistical summarization and reporting models such as regression,

ANOVA, factor analysis and summarization models. More recently, it has become

popular to analyze Likert survey items with path analysis structural equation model

software such as AMOS, LISREL and PLS path analysis software where there is an im-

plicit assumption that multiple measurements need to be taken to, in effect, ‘triangulate’

an underlying latent or unobserved phenomenon. The classical approaches, in particu-

lar, were designed around measurements from astronomy, agriculture and physics, and

were not initially formulated for highly subjective, indirectly measured constructs such

as human behavioral, performance and opinion constructs. In these cases, it is common

to make implicit assumptions that the underlying opinions or beliefs of subjects – the

ones that are mapped into the Likert item data – are Gaussian distributed. Clearly a

Fig. 2 Pairs of random variables with correlations of 0, −1 and +1 (Brandstätter et al. 2002)
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five or seven value discrete scale will not be Gaussian distributed, but this is often as-

sumed to be a useful approximation. It is common to find authors finessing this as-

sumption by invoking Central Limit Theorem convergence, for example invoking

asymptotic conditions to justify this (e.g., consider the assumption that a random vari-

able ~x ∼Poisson (λ) ⇒ ~x ≈ℕ μ ¼ λ; σ2 ¼ λð Þ for λ > 20). They may alternatively make the

weaker and inclusive assumption that the discrete mappings of the Likert scale are ap-

proximations of the subjects’ continuous belief or value systems, which either in fact or

in convergence are Gaussian distributed. The latter assumption is often cited in the

modeling assumption where there are social science applications of the highly popular

LISREL, AMOS and PLS path analysis software packages.

On the other hand, there is a body of research that lends support to alternatives to con-

tinuous or Gaussian beliefs. For example (Kühberger 1995; Kühberger 1998; Kühberger et

al. 2002; Kühberger et al. 1999; Clarke et al. 2002) conclude that people do not generally

hold strong, stable and rational beliefs – that their responses are very much influenced by

the way in which decisions are framed, which might serve as a caveat in the design of sur-

vey instruments.

Where Likert scale variables are modeled as a response and predictor, it is possible to

use an ordered logit or probit model to handle the dependent variable; the independent

variable would be categorical. If the researcher is inured to the assumption of Gaussian

belief distributions, then it may be consistent to invoke the probit function or quantile

function associated with the standard Gaussian distribution. But in the context of

Likert scales, the logit model is probably philosophically more accurate (though in

practice there is very little difference between the two models). The logit model is

philosophically consistent with Likert scales for two reasons: The logit is also central to

the probabilistic Rasch model for measurement, which has applications in psychological

and educational assessment, among other areas. Though the modeling assumption of

Gaussian distributed beliefs is widespread, justifications for the assumption are difficult to

find. It may be that this has simply grown to be a research design convention, or is just

convenient. In particular in LISREL, AMOS, PLS path analysis it is unlikely that Central

Limit Theorem convergence is directly applicable given the structure of these models; nor

is it clear what sample sizes would be necessary to assure this convergence.

Likert data summarizing gaussian beliefs

With a choice of a Fisher Information metric, we can explore the implications of the

widespread assumption that survey subject beliefs or other phenomena are Gaussian

distributed, but are elicited, measured and analyzed as Likert scaled data. Consider fur-

ther the purpose of a Likert scale – to allow respondents to express both the direction

and strength of their opinion about a topic (Likert 1974; Jöreskog and Sörbom 1982).

Thus a Likert item is a statement which the respondent is asked to evaluate according

to any kind of subjective or objective criteria; generally the level of agreement or dis-

agreement is measured.

Likert scales are metrics on Likert items – i.e., mathematical distance functions which

define a distance between elements of a set; generally the level of agreement or dis-

agreement is measured. Survey researchers often impose various regularity conditions

on the metrics implied in the construction of their survey instruments to eliminate
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biases in observations, and help assure that there is a proper matching of survey results

and the analysis (Roberts et al. 2001; McArdle and Epstein 1987; Reips and Funke 2008).

A Likert item in practice is generally considered symmetric or balanced when obser-

vations contain equal amounts of positive and negative positions. The ‘distance’ be-

tween each successive Likert item is traditionally assumed to be equal – i.e., the

psychometric distance between 1 and 2 is equidistant to 2 to 3. In terms of good re-

search ethics, an equidistant presentation by the researcher is important; otherwise it

will introduce a research bias into the analysis. A good Likert scale will present a sym-

metry of Likert items about a middle category that have clearly defined linguistic quali-

fiers for each item. In such symmetric scaling, equidistant attributes will typically be

more clearly observed or, at least, inferred. It is when a Likert scale is symmetric and

equidistant that it will behave like an interval-level measurement (Akaike 1974) showed

that interval-level measurement better achieved by a visual analogue scale. Another

perspective applies a polytomous Rasch model to infer that the Likert items are interval

level estimates on a continuum, and thus that statements reflect increasing levels of an

attitude or trait – e.g., as might be used in grading in educational assessment, and scor-

ing of performances by judges.

Any approximation suffers from information loss; specifying the magnitude and nature

of that loss, though, can be challenging. Fortunately, information measures of sample ad-

equacy have a long history. These were perhaps best articulated in the ‘information criter-

ion’ published in (Ludden et al. 1994) using information entropy. The Akaike information

criterion (AIC) measures the information lost when a given model is used to describe

population characteristics. It describes the tradeoff between bias and variance (accuracy

and complexity) of a model. Given a set of candidate models for the data, the preferred

model is the one with the minimum AIC value (minimum information loss); it rewards

goodness of fit, while penalizing an increasing number of estimated parameters. The

Schwarz criterion (Pauler 1998; Dhrymes 1974) is closely related to AIC, and is sometimes

called the Bayesian information criterion.

Ideally, responses to survey questions should yield discrete measurements that are

dispersed and balanced – this maximizes the information contained in responses. Re-

searchers would like respondents to make a definite choice rather than choose neutral

or intermediate positions on a scale. Unfortunately, cultural, presentation and subject

matter idiosyncrasies can effectively sabotage this objective (Dietz et al. 2007; Dhrymes

et al. 1972; Lee et al. 2002). Cox (1980) to be more closely compressed around the

central point than Western responses; superficially, this suggests that Asian surveys

may actually yield less information (dispersion) than Western surveys. To improve

responses, some researchers suggest that a Likert scale without a mid-point would be

preferable, provided it does not affect the validity or reliability of the responses

Devasagayam (1999) Friedman et al. (1981) Friedman and Amoo (1999); Matell and

Jacoby (1972) Komorita and Graham (1965); Komorita (1963); Wildt and Mazis

(1978) Chan (1991) have all demonstrated that as the number of scale steps is in-

creased, respondents' use of the mid-point category decreases. Additionally, (Roberts

et al. 2001; McArdle and Epstein 1987; Reips and Funke 2008) (Dawes (2012) (Dawes

et al. 2002; Sparks et al. 2006) (Friedman and Amoo 1999; Allen and Seaman 2007)

have found that grammatically balanced Likert scales are often unbalanced in interpret-

ation; for instance, 'tend to disagree' is not directly opposite 'tend to agree'. Worcester and
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Burns also concluded that a four point scale without a mid-point appears to push more

respondents towards the positive end of the scale. The previously cited research concludes

that Likert scales are subject to distortion from at least three causes. Subjects may:

1. Avoid using extreme response categories (central tendency bias);

2. Agree with statements as presented (acquiescence bias); or

3. Try to portray themselves or their organization in a more favorable light (social

desirability bias).

Designing a balanced Likert scale (with an equal number of positive and negative state-

ments) can obviate the problem of acquiescence bias, since acquiescence on positively keyed

items will balance acquiescence on negatively keyed items, but there are no widely accepted

solutions to central tendency and social desirability biases. Likert items are considered sym-

metric or 'balanced' where there are equal amounts of positive and negative positions.

The number of possible responses may matter as well. Likert used five ordered re-

sponse levels, but seven and even nine levels are common as well. Allen and Seaman

(2007) concluded that a five or seven point scale may produce slightly higher mean

scores relative to the highest possible attainable score, compared to those produced

from a ten point scale, and concluded that this difference was statistically significant.

In terms of the other data characteristics, there was very little difference among the

scale formats in terms of variation about the mean, skewness or kurtosis.

From another perspective, a Likert scale can be considered as a grouped form of a

continuous scale. This is important in path analysis, since you implicitly treat the vari-

able as if it were continuous for correlational analysis. Likert scales are clearly ordered

category scales, as required for correlational work, but the debate among methodolo-

gists is whether they can be treated as equal interval scales.

When a Likert scale approximates an interval-level measurement, we can summarize

the central tendency of responses using either the median or the mode, with ‘dispersion’

measured by standard deviations, quartiles or percentiles. Characteristics of the sample

can be obtained from non-parametric tests such as a chi-squared test, Mann–Whitney

test, Wilcoxon signed-rank test, or Kruskal–Wallis test (Jamieson 2004; Chan et al.

2000; Hill 1995).

Likert mappings may also be analyzed with respect to their resolution or granularity

of measurement. Clearly a nine-point scale mapping has more resolution (or finer

granularity) than a three point one. Measurement in research consists in assigning

numbers to entities otherwise called concepts in compliance with a set of rules. These

concepts may be ‘physical’, ‘psychological’ and ‘social’. The concept length is physical.

But the question remains, 'if I report length as 6 feet in a case, what exactly does that

mean? Even with physical scales, there is an implied granularity; if I say that something

is 6 feet long, this implies less precision than length of 183 centimeters. In scientific

pursuits, finer granularities can be pursued to almost unimaginable levels – for

example, the international standard for length, adopted in 1960, is derived from the

2p10-5d5 radiation wavelength of the noble gas Krypton-86. The influence of choice

of measuring stick on the results of modeling is responsible for phenomena such as

Benford's Law (Mandelbrot 1982) and fractal scaling (Mandelbrot 1982, Burns and

Bush 2000).
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The assumption of Gaussian distribution of opinions or beliefs is common in the ana-

lysis of survey research, as mentioned previously. The assumption tends to be applied

in the analysis stage, rather than in the design of the survey instrument. The question

of whether underlying beliefs are continuous or discrete, distributed one way or an-

other doesn’t tend to come up in the design of Likert scaled surveys, because there a

few conventions that could use this information to improve the survey design. None-

theless, the current research will argue that it matters in assessing the informativeness

of Likert scaled data, which in turn can have a large impact on significance, power and

other statistics reported from the research.

Information clearly is lost in the mapping of beliefs to a Likert scale; how much informa-

tion is lost is probably unknowable in practice. But the loss in information from that that

would exist if our modeling assumptions (e.g., Gaussian beliefs) were actually true can be

assessed. At this point, let me more precisely define the concepts of (1) informativeness, (2)

bias, and (3) dispersion in Likert representations of survey subject belief distributions, start-

ing with graphical depictions of bias and dispersion in Figs. 3 and 4 respectively.

Figures 3 and 4, standardize Likert responses so that one standard deviation of the

actual distribution of beliefs will shift the Likert score one point higher – this is com-

parable to the process of keeping the survey instrument 'on scale' measuring beliefs in

similar units to the subjects normal conventions. In addition, the mode of subject

beliefs (i.e., what the largest number of people believe or agree upon) is presumed

to center somewhere in the range 2 through 4 of the 5-point scale, with all other

values being the 'extremes' – response '1' or response '5'. This is more or less what

survey researchers aspire to, where the level of agreement or disagreement is measured

(i.e. is 'on scale') and the scaling is considered symmetric or 'balanced' because there are

equal amounts of positive and negative positions (Kühberger 1995; Kühberger 1998;

Kühberger et al. 1999; Kühberger et al. 2002; Lydtin et al. 1975; Jöreskog 1971a).

Most of the weight of the Gaussian belief distribution should lie within the Likert

range 2 through 4 of the 5-point scale. Survey researchers can credibly move the

range around, but probably should not try to alter the subject beliefs if they are

trying to conduct an objective survey.

Weaknesses in data can be effectively addressed by increasing the sample size. This

works for multicolinear data, non-Gaussian data, and for Likert data as well. But since

data collection is costly, it is desirable to increase sample size as little as possible. The

path analysis literature is surprisingly vague on how much of an increase is needed.

(Jöreskog 1971b; Joreskog 1970) suggest increases of two orders of magnitude, but

without offering causes or mitigating factors. If we assume that survey costs increase

commensurately with sample size, then for most projects two orders of magnitude is

likely to be prohibitive.

For example, in the path analysis approaches implemented in LISREL and AMOS

software, for reasonably large samples, when the number of Likert categories is 4 or

higher and skew and kurtosis are within normal limits, use of maximum likelihood is

justified. In other cases some researchers use weighted least squares based on polychoric

correlation. (Jöreskog 1971b; Joreskog 1970; Jöreskog 1970; Jöreskog 1969; Jöreskog 1993;

Westland 2010) in Monte Carlo simulation, found phi, Spearman rank correlation, and

Kendall tau-b correlation performed poorly whereas tetrachoric correlation with

ordinal data such as Likert scaled data was robust and yielded better fit.
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Fisher Information (denoted here as Isample parameterð Þ is additive; the information

yielded by two independent samples is the sum of the separate sample's information: Ix;y
θð Þ ¼ Iy θð Þ þ Ix θð Þ. Furthermore, the information in n independent sample observations

is n times that in a single observation In θð Þ ¼ nI θð Þ . Assume a survey collects n inde-

pendent k − point Likert-scale observations for each of the survey questions. Let the Likert

scale represent a polytomous Rasch model, with say 5, 7 or 9 divisions (Alphen et al.

2008; Bond and Fox 2007; Fitzpatrick et al. 2004; White and Velozo 2002; Likert 1974).

We can take the perspective of a polytomous Rasch model, assuming that the responses

to the survey map an underlying Gaussian ℕ(μ, σ2) belief distribution to a Likert item

across the population of subjects surveyed for a particular question on the survey. A map-

ping of a Gaussian ℕ(μ, σ2) belief distribution to the k − point Likert-scale mapping

Fig. 3 Dispersion in balanced, unbalanced and mis-scaled Likert mappings
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imposed by the survey instrument might be visualized in terms of one of the four graphs

in Fig. 5.

In Fig. 5, survey responses are assumed yield an equidistant scaling of Likert items so

that one standard deviation of the actual distribution of beliefs will shift the Likert

score one point higher. In addition, the mean value of the mean of beliefs is presumed

to center somewhere in the range 2 through 6 of the 7-point scale, with all other values

being the 'extremes' – response '1' or response '7'. This is more or less what survey re-

searchers aspire to, where the level of agreement or disagreement is measured (i.e. is

'on scale') and the scaling is considered symmetric or 'balanced' because there are equal

amounts of positive and negative positions (e.g., see (Kühberger 1995; Kühberger 1998;

Kühberger et al. 1999; Kühberger et al. 2002; Jöreskog 1971a)). Most of the weight of

the Gaussian belief distribution should lie within the Likert support (we presumably

can move the Likert support around, but we probably should not try to alter the subject

beliefs if we are running an objective survey).

Fig. 4 Continuously varying strength of belief is approximated with 5 levels of Likert scale belief

Fig. 5 Mapping Subject Beliefs to a Likert Scale
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Let F(μ, σ) and f(μ, σ) be cdf and pdf respectively of the underlying belief distri-

bution. Presume we use a metric scale that sets σ2 = 1 (or alternately that the

Likert 'bin' partitions are spaced σ units apart). Let the Likert 'bins' of the multi-

nomial response distribution be the set x1∈ −∞; 1ð �ð Þ; xi∈ i−1; ið �f gk−1i¼2 ; xk∈ 1;∞ð Þð Þ
n o

where k is the total number of bins (usually 5, 7 or 9). Then the parameters {pi}

of the multinomial distribution of the 'bin' summing of Likert-items will be the set

p1 ¼ F 1ð jμf Þ; pi ¼ F ið jμf Þ−F i−1ð jμÞgk−1i¼2 ; pk ¼ 1−F k−1ð jμÞg.
A particular bin i is filled with probability of pi and not filled with probability 1 − pi; let

n independent survey questions result in that bin being filled θi times, and not filled n − θi
times. If Bi is a logical variable that indicates whether the i

th bin of the Likert item was

chosen, then all possible outcomes for the Likert item can be represented B1∨B2∨⋯∨

Bk−1 ¼ ∨k−1i¼1Bi since if none of the first k − 1 bin must have been chosen. Let the Fisher

information in the ith bin of a sample of n Likert items be IBi . Since Bi is a logical variable,

it can be perceived as a Bernoulli trial – a random variable with two possible outcomes,

"success" with probability of pi and "failure", with probability of 1 − pi. The Fisher informa-

tion contained in a sample of n independent Bernoulli trials for Bi where there are m suc-

cesses, and where there are n −m failures is:

IBi pið Þ ¼ −Epi

∂2

∂pi2
ln f m; pið Þð Þ

2
4

3
5 ¼ −Epi

∂2

∂pi2
ln pi

m 1−pið Þn−m mþ n−mð Þð Þ!
m! n−mð Þ!

0
@

1
A

2
4

3
5 ¼

¼ −Epi

∂2

∂pi2
m ln pið Þ þ n−mð Þ ln 1−pið Þð Þ

2
4

3
5 ¼ −Epi

∂
∂pi

m
pi

þ n−mð Þ
1−pi

0
@

1
A

0
@

1
A

2
4

3
5 ¼

¼ −Epi

m
pi2

þ n−mð Þ
1−pið Þ2

0
@

1
A

2
4

3
5 ¼ npi

pi2
þ n 1−pið Þ

1−pið Þ2

0
@

1
A ¼ n

pi 1−pið Þ

This is the reciprocal of the variance of the mean number of successes in n Bernoulli

trials, as expected. The Fisher information contained in a sample of n independent

Bernoulli trials for all possible outcomes for n Likert items ∨k−1i¼1Bi is:

I∨k−1i¼1Bi
¼

Xk−1
i¼1

n
pið1−piÞ

� �

Compare this to the Fisher Information in a sample of n observations from a Gaussian

ℕ(μ, σ2) belief distribution, which is estimated I^n ¼ n
σ2 (and which incidentally is independ-

ent of location parameter μ as: I^n is the inverse of the variance). Then estimator ω^ can be

computed from the ratio of information content in these two different mappings from the

same survey sample:

ω≜
n
σ2Xk−1

i¼1

n
pið1−piÞ

� � ¼ 1

σ2
Xk−1

i¼1
1

pið1−piÞ
� �

Thus the lower bounds on a sample that uses a Likert mapping will need to be

ω^ times as large as one that assumes a full Gaussian belief distribution. Figure 6

shows how a particular Likert scale mapping of what is an inherently continuous
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distribution of beliefs in the population results in a significant increase in the sam-

ple size needed for estimation – by a factor of at least two orders of magnitude

(i.e., 100 times). Figure 7 shows how mis-scaling varies with sample size.

There are three things that should be noted concerning multipliers for sample size

estimates for processing Likert data when an assumption of Gaussian data has been

made in the data analysis:

First, any difference of the actual sample standard deviation from the equidistant scale of

the Likert items requires larger sample sizes; but the minimum sample size for any Likert

mapped data set will be at least 100 times as large as that that would be required if you

had all of the original information in the Gaussian distribution of beliefs. The information

loss from using Likert scaling is at least two orders of magnitude.

Second, the sample is most informative when location of the Gaussian mean coincides

with the central Likert bin. This emphasizes the importance of 'balanced' designs for

the Likert scaling in the survey instrument.

Fig. 6 Unbalanced Likert mappings cause sample size increases by the multiple shown on the y-axis when the
central category on the Likert mapping is biased by the number of standard deviations shown on the x-axis

Fig. 7 Mis-scaled Likert mappings cause sample size increases by the multiple shown on the y-axis when
the standard deviation of the actual belief distribution is mis-scaled by number of Likert scale intervals
shown on the x-axis
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Third, information in the underlying belief distribution, which has a support, does not

depend on the mean of an assumed underlying Gaussian distribution of data. The

Likert mapping information content does depend on the mean and is sensitive to the

Likert scale being 'balanced' – this is controlled in the survey design.

Examples

In order to gain a more intuitive understanding of how the metric in this paper functions in

comparison with the (Srinivasan and Basu 1989) metric, we can operationalize the Likert

mapping as a survey instrument T⊗ S that ‘bins’ Y values (i.e., the measure of unobservable

underlying phenomenon X) into responses Z on a 5-point scale; T : X→ðY þ ~θÞ and S : Y

→ðZ þ ~δÞ. Random variable ~ε describes the error (information loss) in the mapping of sur-

vey instrument T⊗S : X→ðZ þ ~εÞ. Conceptually, ~ε ¼ ~δ þ ~θ where ~θ is the part resulting

from misspecification of the survey instrument (bias and dispersion) and ~δ is the part

resulting from approximating a continuous variable into the five bins in the Likert scale.

The seven sets of responses (including a restatement of Anscombe’s (1973) Quartet) in

Fig. 8 and Table 1, encapsulate several challenges – skewness, kurtosis, outliers, non-

informative data, and a non-linear (parabolic) data.

(Srinivasan and Basu 1989) evaluated the information content of Likert data item Z

(an m-point Likert scale variable) that approximates some continuous variable ~Y that

in turn approximates some unobservable belief or phenomenon that the researcher

wishes to measure. They assume that ~Y is composed of a true ‘score’ ~X and error ~ε

(which in their formulation is additive, but which we will allow to take on more com-

plex functional forms). Then in their formulation.
~Y ¼ ~X þ ~ε where ~X∼Nð0; 1Þ and ~ε∼Nð0; θ2Þ and ρð~X ;~εÞ ¼ 0

Thus ~Y ∼Nð0; 1þ θ2Þ and using the fact that the Pearson correlation coefficient is

invariant (up to a sign) to separate changes in location and scale in the two variables,

we can recompute the (Srinivasan and Basu 1989) information metric IZ ¼ ρ2 Z;Xð Þ
ρ2 Y ;Xð Þ .

Since the correlation ρð~X ; ~Y Þ ¼ ρð~X þ ~ε; ~X Þ ¼ ρð~X ; ~X Þ þ ρð~ε; ~X Þ ¼ 1þ 0 ¼ 1 this metric

is identically IZ≡ρ2ð~Z ; ~X Þ.
A more general formulation allows ρð~X ; ~Y Þ∈½−1; 1�: . Figure 8 (based on data in

Table 1) show five possible outcomes for ~X ; ~Y and ~Z . In case A, F and G ρð~X ; ~Y Þ ¼ 1

as assumed in Srinivasan and Basu’s formulation; in cases B, C, D and E ρð~X ; ~Y Þ ¼ 0:666.

Table 2 shows demonstrates two weaknesses of the (Srinivasan and Basu 1989)

metric IZ

1. the value often converges outside the purported [0,1] range of the statistic (as in

C,D, F and G) and

2. even small changes in survey setup, or of question interpretation by subjects can

have a huge impact on reported information content.

The Fisher Information statistic does not have a value when R2 = 1, but otherwise

converges to values that are intuitive in the sense that they suggest that information

captured from subjects is fairly stable.
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Conclusion and discussion
This paper contributes to the understanding of design trade-offs and requirements

which are required to be able to assert that a particular Likert sample contains a spe-

cific amount of information concerning the specific research question that the survey is

designed to answer. The research developed a Fisher Information metric and compared

this to an earlier correlation based statistic. Illustrative examples using Gaussian beliefs

showed that the Fisher Information metric is more informative, stable, and reliable than

earlier approaches. They also accentuate the importance of balanced survey design, po-

tentially without a midpoint, as suggested by (Devasagayam 1999) (Friedman et al.

1981) (Friedman and Amoo 1999; Matell and Jacoby 1972) (Komorita and Graham

1965; Komorita 1963; Wildt and Mazis 1978) (Chan 1991). It also suggests that where

grammatically balanced Likert scales are unbalanced in interpretation, the impact on

survey conclusions may be significant (Roberts et al. 2001; McArdle and Epstein 1987;
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Fig. 8 ~X � ~Y : Four Datasets with R2 = 0.666 and Three Datasets with R2 = 1
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Reips and Funke 2008) (Dawes (2012) (Dawes et al. 2002; Sparks et al. 2006) (Friedman

and Amoo 1999; Allen and Seaman 2007). The research found that any difference of

the actual sample standard deviation from the equidistant scale of the Likert items re-

quires larger sample sizes; but the minimum sample size for any Likert mapped data

set will be at least 100 times as large as that that would be required if you had all of the

original information in the Gaussian distribution of beliefs. The information loss from

using Likert scaling is at least two orders of magnitude. Additionally, the sample is

most informative when location of the Gaussian mean coincides with the central Likert

bin. This emphasizes the importance of 'balanced' designs for the Likert scaling in the

survey instrument. Finally, information in the underlying belief distribution does de-

pend on the mean and is sensitive to the Likert scale being 'balanced'.

Additionally, the research example identified a practical issue in the implementation

of the (Srinivasan and Basu 1989) metric IZ, in that its value often converges outside

the purported [0,1] range of the statistic (as in examples C,D, F and G) and that even

Table 1 ~X � ~Y : 4 Datasets with R2 = 0.666 and 4 Datasets with R2 = 1 binned into Likert variable ~Z
Case A

Case B Case C Case D

Observation Bin 1,2,3x Bin 1y Bin 2y Bin 3y

1x 1 y 1z 2x 2y 2z 3x 3y 3z

1 10.00 10.00 8.04 10.00 10.00 9.14 10.00 10.00 7.46 8.00

2 8.00 8.00 6.95 8.00 8.00 8.14 10.00 8.00 6.77 8.00

3 10.00 13.00 7.58 8.00 13.00 8.74 10.00 13.00 12.74 10.00

4 10.00 9.00 8.81 10.00 9.00 8.77 10.00 9.00 7.11 8.00

5 10.00 11.00 8.33 10.00 11.00 9.26 10.00 11.00 7.81 8.00

6 10.00 14.00 9.96 10.00 14.00 8.10 10.00 14.00 8.84 10.00

7 6.00 6.00 7.24 8.00 6.00 6.13 8.00 6.00 6.08 8.00

8 4.00 4.00 4.26 6.00 4.00 3.10 4.00 4.00 5.39 6.00

9 10.00 12.00 10.84 10.00 12.00 9.13 10.00 12.00 8.15 10.00

10 8.00 7.00 4.82 6.00 7.00 7.26 8.00 7.00 6.42 8.00

11 6.00 5.00 5.68 6.00 5.00 4.74 6.00 5.00 5.73 6.00

mean 8.36 9.00 7.50 8.36 9.00 7.50 8.73 9.00 7.50 8.18

std dev 2.15744 3.316625 2.031568 1.747726 3.316625 2.031657 2.053821 3.316625 2.030424 1.401298

skewness -1.01393 -8.1E-17 -0.06504 -0.40869 -8.1E-17 -1.3158 -1.58382 -8.1E-17 1.855495 -0.12334

kurtosis -0.20589 -1.2 -0.5349 -1.62132 -1.2 0.846123 1.743956 -1.2 4.384089 -0.45267

Case E Case F Case G

Observation 4x 4y 4z 5x 5y 5z 6x 6y 6z

1 8.00 6.58 8.00 10.00 8.00 8.00 10.00 5.33 6.00

2 8.00 5.76 6.00 8.00 2.00 2.00 8.00 4.67 6.00

3 8.00 7.71 8.00 13.00 17.00 10.00 13.00 6.33 8.00

4 8.00 8.84 10.00 9.00 5.00 6.00 9.00 5.00 6.00

5 8.00 8.47 10.00 11.00 11.00 10.00 11.00 5.67 6.00

6 8.00 7.04 8.00 14.00 20.00 10.00 14.00 6.67 8.00

7 8.00 5.25 6.00 6.00 -4.00 2.00 6.00 4.00 6.00

8 19.00 12.50 10.00 4.00 -10.00 2.00 4.00 3.33 4.00

9 8.00 5.56 6.00 12.00 14.00 10.00 12.00 6.00 6.00

10 8.00 7.91 8.00 7.00 -1.00 2.00 7.00 4.33 6.00

11 8.00 6.89 8.00 5.00 -7.00 2.00 5.00 3.67 4.00

mean 9.00 7.50 8.00 9.00 5.00 5.82 9.00 5.00 6.00

std dev 3.316625 2.030579 1.549193 3.316625 9.949874 3.842348 3.316625 1.105431 1.264911

skewness 3.316625 1.506818 0 -8.1E-17 -8.1E-17 0.052992 -8.1E-17 2.96E-15 0

kurtosis 11 3.151315 -1.11111 -1.2 -1.2 -2.22488 -1.2 -1.2 0.416667
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small changes in survey setup, or of question interpretation by subjects can have a huge

impact on information content reported by metric IZ.

In contrast, the Fisher Information estimator ω^ developed in this research only fails

to compute in the limiting case where R2 = 1, but otherwise converges to values that

are intuitive in the sense that they suggest that information captured from subjects is

fairly stable. The contrasting information in, say, American versus Asian consumer sur-

veys can be assumed to be comparable, even though the manner of conveyance and ex-

pression of that information may vary because of culture and other factors. This

reinforces conclusions rendered by (Cox 1980) concerning survey designs across

cultures.

Results from exploring the Fisher Information estimator ω^ developed in this research

imply that sample sizes need to increase to offset the mapping losses. The lower

bounds on a sample that uses a Likert mapping will need to be many times as large as

one that assumes a full Gaussian belief distribution, as in (Crook and Good 1980).

There are three issues that should be considered in setting the scope of a study with

Likert measurements. First, the minimum sample size for any Likert mapped data set

could be several orders of magnitude larger one that would be required if you had all

of the original information in the Gaussian distribution of beliefs. Second, the sample is

most informative when it is balanced and centered in responses. And finally informa-

tion in the underlying belief distribution is independent from the mean/mode μ, as long

as this is properly controlled in the survey design.

The assumption of Gaussian belief distributions may or may not be justified in prac-

tice. Studies by (Kühberger 1995; Kühberger 1998; Kühberger et al. 2002; Kühberger

et al. 1999; Clarke et al. 2002) have concluded that people do not generally hold strong,

stable and rational beliefs, and that their responses are very much influenced by the

way in which decisions are framed. This would tend to indicate that a class of distribu-

tions besides Gaussian distributions would be most appropriate for human beliefs.

Nonetheless, the Gaussian assumption is widely used, especially in survey research

using tools such as AMOS or LISREL. Widespread use of this assumption, and the

amount of information loss implies that sample sizes need to increase to offset the

mapping loss.

An alternative approach to assessing the informativeness of Likert items, with signifi-

cantly reduced demands on sample size, could invoke Bayesian conjugate families of dis-

tributions. Such an approach would essentially pool prior research findings (potentially

both qualitative and quantitative) in the prior distribution, with a likelihood function built

from the data. Given the categorical nature of Likert mappings, a multinomial-Dirichlet

Table 2 Information content of seven cases

A B C D E F G

IZ ¼ ρ2 Z;Xð Þ
ρ2 Y;Xð Þ 0.894427 0.864447 1.014439 1.22563 0.274983 ? ?

ω̂ ≜
n
σ2Xk−1

i¼1
n

pi 1−pið Þ
� � ¼ 1

σ2
Xk−1

i¼1
1

pi 1−pið Þ
� � 0.144737 0.141026 0.166667 0.152778 0.141026 ? ?

Info per observation ¼
X5−1
i¼1

1
pi 1−pið Þ

� �
0.628099 0.644628 0.545455 0.595041 0.644628 0.628099 0.528926

FI ¼
X5−1
i¼1

n
pi 1−pið Þ

� �
6.909089 7.090908 6.000005 6.545451 7.090908 6.909089 5.818186
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conjugate family of distributions would be appropriate for Bayesian analysis of Likert sur-

vey data. Such approaches have been explored in the artificial intelligence and quality con-

trol fields (Dietz et al. 2007; Dhrymes et al. 1972; Lee et al. 2002) and statistics developed

in (Crook and Good 1980 Gupta 1969). So far, the multinomial-Dirichlet conjugate family

of distributions appears not to have been applied to the analysis of survey generated Likert

data.
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