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Abstract

To avoid credit fraud, social credit within an economic system has become an
increasingly important criterion for the evaluation of economic agent activity and
guaranteeing the development of a market economy with minimal supervision
costs. This paper provides a comprehensive review of the social credit literature
from the perspectives of theoretical foundation, scoring methods, and regulatory
mechanisms. The study considers the credit of various economic agents within
the social credit system such as countries (or governments), corporations, and
individuals and their credit variations in online markets (i.e., network credit). A
historical review of the theoretical (or model) development of economic agents is
presented together with significant works and future research directions. Some
interesting conclusions are summarized from the literature review. (1) Credit theory
studies can be categorized into traditional and emerging schools both focusing on
the economic explanation of social credit in conjunction with creation and evolution
mechanisms. (2) The most popular credit scoring methods include expert systems,
econometric models, artificial intelligence (AI) techniques, and their hybrid forms.
Evaluation indexes should vary across different target agents. (3) The most pressing task
for regulatory mechanisms that supervise social credit to avoid credit fraud is the
establishment of shared credit databases with consistent data standards.

Keywords: Social credit; Literature review; Credit scoring; Regulatory mechanism;
Credit risk
Introduction
Increasing credit fraud has become the predominant problem disturbing normal eco-

nomic market activities (Longstaff et al. 2005; Prati et al. 2012). The most famous

cases of credit fraud are the US subprime mortgage crisis and the European sover-

eign debt crisis that caused substantial damage to global economic systems. Such

devastating effects increase the need for the study of social credit to evaluate credit

risk (i.e., credit rating or credit scoring) and to avoid further credit fraud. Credit

fraud has become a predominant subject of focus for academic researchers and prac-

titioners within the fields of economic and financial management. Therefore, this

paper particularly focuses on social credit analysis and provides a comprehensive litera-

ture review with an insightful perspective on social credit and methods to avoid possible

credit fraud at the global level.

Credit fraud problems stem from information asymmetries among economic

agents (Petersen and Rajan 2002); therefore, social credit evaluates the economic ac-

tivities of various economic agents such as countries (or governments), corporations,

and individuals and their credit variations in online markets (i.e., network credit).
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Credit risk discloses the likelihood of target agents reneging on promises (in terms of

contracts). Particularly, when investing in government debt or loans, country (or gov-

ernment) credit should be considered a primary risk factor, namely, country risk rep-

resents the debt paying capability of the government. Similarly, when trading in

commodity markets and investing in financial markets, the ability of the target corpo-

rations or individuals to meet debt obligations should be carefully estimated by credit

scoring or rating using information about history records, current economic state,

and other attributes (Huang et al. 2004; Huang et al. 2006). For example, commercial

banks make financial loan decisions and issue credit cards to customers dependent

on corporate (or individual) credit ratings or credit scores. Moreover, the rapid devel-

opment of online markets has facilitated economic activity through networks, and the

new concept of network credit has aroused increasingly wide interest concerning cor-

responding participant credit risk evaluation based on vast amounts of online historic

data (Xu and Zhang 2009).

The existing studies on country (or government), corporate, individual, and network

credit are based on three main perspectives: theoretical foundation, scoring methods, and

regulatory mechanisms. Credit theory, as the theoretical foundation of social credit, explores

the economic explanation of social credit in conjunction with creation and evolution mech-

anisms. The research approaches show that existing studies can be categorized according to

two main schools of thought – traditional and emerging credit theories. While the former

investigates credit theory based on various economics theories, e.g., institutional economics,

information economics, and game theory (Stiglitz and Weiss 1981; Jarrow and Xu 2010;

Brown and Zehnder 2010), the emerging studies utilize various current experimental tech-

niques for complex systems, such as multi-agent-based models, system dynamics, and other

simulation methods (Jankowitsch et al. 2007; Barnaud et al. 2008).

Credit scoring to quantify the credit risk of various agents has been and remains

the major concern in the field of social credit. To enhance evaluation accuracy, vari-

ous prediction techniques have been formulated and introduced, which can be cate-

gorized into four groups: expert system approaches (Altman 1968; Somerville and

Taffler 1995), traditional econometric models (Doumpos et al. 2001; Pasiouras and

Tanna 2010; Yim and Mitchell 2005), artificial intelligence (AI) techniques (Blanco

et al. 2013; Yu and Yao 2013; Han et al. 2013), and their hybrids (Yim and Mitchell

2005; Lee et al. 2002; Chen and Huang 2003; Lee and Chen 2005; Hsieh 2005). More-

over, the explanatory variables (or evaluation indexes) play an important role in credit

rating prediction and vary across different target agents. For example, country risk in-

cludes a country’s economic, financial, social, cultural, geographic, and political fields

and extends to its relationship with other countries (Li et al. 2012a; Balkan 1992;

Block and Vaaler 2004; Beirne and Fratzscher 2013). Evaluation indexes for corporate

credit can be divided into financial and nonfinancial indicators (Duffee and Zhou

2001; Min and Lee 2008). And individual credit considers the various inner and exter-

nal factors of the target customer (Avery et al. 2004; Bellotti and Crook 2009; Chuang

and Lin 2009).

Regulatory mechanisms supervise the credit risk of various agents to avoid credit

fraud. According to existing studies, establishing credit databases might be one of the

most pressing tasks, and consistent data standards have been thoroughly discussed as

a vital requirement (Zhang and Smyth 2009). Moreover, numerous existing studies
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focus on credit information sharing and the associated rules and regulations (Hunt

2005).

With respect to the literature reviews on social credit, numerous existing studies have fo-

cused on credit scoring techniques (Yim and Mitchell 2005; Blanco et al. 2013; Chen et al.

2009; Tseng and Hu 2010) while ignoring other important aspects of credit theory, evalu-

ation indices, and regulatory mechanisms. Moreover, the related studies have focused

mainly on the credit risk of one specific economic agent such as country credit (Doumpos

et al. 2001; Fioramanti 2006; Alp et al. 2011), corporate credit (Blanco et al. 2013; Zhou

et al. 2005; Tang and Chi 2005) or individual credit (Baesens et al. 2003a; Desai et al. 1996;

West 2000) while neglecting other agents. In this context, this study fills this literature gap

by providing a comprehensive review of literature on social credit from the perspectives of

theoretical foundation, scoring methods, and regulatory mechanisms, in which various eco-

nomic agents in the social credit system (i.e., countries (or governments), companies, indi-

viduals, and netizens) are considered.

This paper provides a comprehensive review of the social credit literature. The remain-

der of the paper is structured as follows. Section Analytical framework for the literature

review presents the analytical framework of social credit. A historical review of the theor-

etical (or model) development for all economic agents is presented in Sections Theoretical

foundation, Scoring methods, and Regulatory mechanisms from the perspectives of theor-

etical foundation, scoring methods, and regulatory mechanisms, respectively. Finally,

Section Summary and conclusions concludes the paper.
Analytical framework for the literature review
Although social credit lacks a uniform definition, it is widely considered a useful criter-

ion in assessing the risk of a target economic agent reneging on promises. A lower

credit score (or rating) indicates a greater risk of credit fraud. Therefore, various agents

in economic systems should be assessed within the social credit framework including

countries (or governments), corporations, and individuals. Social credit, therefore, en-

compasses country credit, corporate credit, and individual credit for different agents.

Moreover, the development of online markets has facilitated network economic activ-

ities by agents, and the new concept of network credit can be incorporated into the

social credit framework. Fig. 1 illustrates the social credit system.

Existing research for country (or government), corporate, individual, and network

credit has focused on three aspects: the theoretical foundation, scoring methods, and

regulatory mechanisms. Particularly, credit theory investigates the economic explan-

ation for the social credit of various agents in conjunction with the creation and evolu-

tion mechanisms. Credit scoring quantifies the credit risk of various agents using

various evaluation techniques and indexes, and regulatory mechanisms supervise the

credit risk of various agents to avoid further credit fraud. Fig. 2 shows the analytical

framework design for the literature review.

Using the analytical framework as shown in Fig. 2, Sections Theoretical foundation to

Regulatory mechanisms present a historical review of the theoretical (or model) develop-

ment of the economic agents, from the perspectives of theoretical foundation, scoring

methods, and regulatory mechanisms. Additionally, important works and future research

directions are outlined.



Fig. 1 Social credit and social credit system
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Theoretical foundation
Social theory investigates the economic explanations, creation mechanisms, and evolu-

tion mechanisms for social credit encompassing country, corporate, and individual

credit for different target agents.

Social theories for social credit can be classified into traditional and emerging theor-

ies that use different research techniques. Traditional theory incorporates various long-

standing economic theories into the social credit framework to explore the economic

explanations (or functions), creation, and evolution of credit. Some important works in-

clude Marx’s credit theory (Marx and Engels 1867), Adam Smith’s credit media theory

(Smith 2005), Magruder’s credit creation theory (Magruder 1923), Keynesian’s credit

expansion theory (Allen and Gale 2000), and Gurley’s financial intermediary theory
Fig. 2 Analytical framework for the literature review
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(Gurley and Shaw 1955; Gurley and Shaw 1956). Social credit theory is an indispensable

component of financial intermediary theory, which can be included in traditional the-

ory and modern theory (Chant 2003). Traditional financial intermediary theory includes

credit medium theory and credit creation theory. While credit medium theory con-

siders banks to be credit mediums, credit creation theory suggests that banks create

credit. The modern financial intermediary theory focuses on credit risk management

and argues that credit plays an important role in the economic system (Scholtens and

van Wensveen 2003).

Studies on emerging credit theory have performed analyses based on information

economics focusing on information mechanisms in the social credit system. For ex-

ample, Stiglitz and Weiss 1981 and Jarrow and Xu 2010 argued that credit fraud is

mainly caused by information asymmetry across different agents, and credit can be

used as an important tool to avoid problems such as fraud. Additionally, various experi-

mental simulation technologies, including multi-agent systems, system dynamics, and

game theory have been applied to credit systems simulation to explore the creation and

evolution mechanisms of credit. For example, Barnaud et al. 2008 employed multi-

agent system models with role-playing games (RPG) to simulate rural credit in a high-

land farming community of Northern Thailand. The authors found that an informal

credit system between friends reduced credit fraud. Jankowitsch et al. 2007 developed a

model of the economic value of credit rating systems based on statistical economic

models. Brown and Zehnder 2010 employed game theory and provided a systematic

analysis of information sharing mechanisms between lenders in the credit market with

asymmetric information and competition.

With respect to future research direction, although experimental simulation tech-

nologies have been introduced and have become potentially effective tools for exploring

social credit theory, the related studies remain insufficient compared with studies of

traditional credit theory. Moreover, because only one specific agent, such as corpora-

tions or individuals, is considered in most of the existing research, the various eco-

nomic agents under the social credit system (including countries (governments),

corporations, individuals, and netizens) and their interactions require investigation to

improve the existing research on social credit theory.
Scoring methods
Credit scoring is one of the most important components of social credit research. The

associated studies have attempted to enhance evaluation accuracy of the credit risk of

different agents. Regression techniques and evaluation indexes of scoring methods are

critical factors. The following subsections provide a comprehensive literature review of

each factor.
Regression techniques

Fig. 3 illustrates the various prediction techniques that have been introduced into social

credit risk evaluation for regression analysis. These can be summarized as the expert

system method, the econometric model, mathematical programming, AI tools, and

their hybrid forms (i.e., hybrid system).



Fig. 3 Scoring techniques for social credit

Yu et al. Financial Innovation  (2015) 1:6 Page 6 of 18
Expert systems

Expert systems might be the most basic method employing subjective analysis (the so-

called “expert” system) to assess credit risk. In expert systems, the evaluation index is

the predominant factor determining the final score results. For example, the most fam-

ous evaluation index system for corporate credit is the 5C system (Altman 1968) for

which the attributes of character, capacity, capital, collateral, and condition are subject-

ively judged (i.e., by expert judgment). Moreover, Somervile and Taffler 1995a com-

pared banker judgment with other forecasting models (e.g., multi-variate statistical

models) and considered Institutional Investor country credit ratings as other indicators

of banker judgment.

However, the expert system approach is highly dependent on subjective judgment;

therefore, the evaluation results for credit risk could be biased or discriminatory com-

pared with other quantitative methods based on historic data.

The econometric approach

Econometric approaches are the most popular quantitative methods within the re-

search fields of data analysis and prediction based on mathematics, statistics, and

computer science. The methods capture the interactive relations between different

variables (Pesaran 1987; Samuelson et al. 1954). According to the existing literature,

the most popular approaches for credit scoring are discriminant analysis (DA), logit

(or probit) models, cluster analysis, and k-nearest neighbor. Table 1 lists some signifi-

cant works.



Table 1 Typical works on credit scoring using econometric approaches

Agent Reference Technique

Country Frank and Cline (1971) DA

Grinols (1975)

Taffler and Abassi (1984)

Doumpos et al. (2001)

Feder and Just (1977) Logit

Rivoli and Brewer (1998)

Fisk and Rimlinger (1979) Probit

Balkan (1992)

Haan et al. (1997)

Corporation Altman (1968) DA

Beaver (1966)

Zhou et al. (2005)

Tang and Chi (2005) Logit

West (1985)

West (1985)

Individual Chatterjee and Barcun (1970) kNN

Henley and Hand (1997)

Baesens et al. 2003a, 2003b
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(1).Discriminant analysis

The DA method, one of the most basic methods, has been widely applied to credit

risk evaluation since 1966 with a simple metric for use and interpretation.

Numerous studies on credit risk have used DA (Altman 1968; Beaver 1966; Frank

and Cline 1971; Grinols 1975; Taffler and Abassi 1984; Doumpos et al. 2001). For

example, Zhou et al. (Zhou et al. 2005) constructed a clients’ credit model based on

Bayes discriminant method and verified the effectiveness of this model in classifying

clients according to different credit risk levels with low error-judgment. For country

credit risk, Frank and Cline 1971 used linear and quadratic DA methods to determine

the rescheduling abilities of countries. Grinols 1975 employed DA and showed

the effectiveness of DA in country risk evaluation. Taffler and Abassi 1984 predicted

developing countries’ debt rescheduling with monetary policy and debt servicing

indicators based on linear DA method and bankers’ judgments. Doumpos et al.

2001 proposed the Multi-group Hierarchical Discrimination (MHDIS) multi-criteria

decision aid method to classify 143 countries into four groups according to credit

ratings. For corporate credit, Altman 1968 and Baever 1966 applied a uni-variate

model and a multiple DA method to the classification and prediction of business

creditworthiness. Another significant case is the DA-based ZETA model with seven

variables proposed by Altman for credit risk. Altman and Narayanan 1997 further

improved the model developing a five-variable model. Scott 1981 utilized the ZETA

model to study bankruptcy prediction.

(2).The logit model

The logit model is a typical probabilistic statistical classification model. For

country risk, Feder and Just 1977 determined the debt servicing capacities of

countries and rescheduling probabilities with logit analysis. Rivoli and Brewer
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1998 employed a logistic regression model to evaluate country risk. For

corporate credit risk, Tang and Chi 2005 predicted firm credit risk in the

international trade context by applying receiver operating characteristic (ROC)

curve analysis to compare model performances of traditional logit and fuzzy

logic (FL) methods and supported FL as a more effective tool. West 1985

integrated factor analysis and logit estimation to propose a novel method for

assessing bank condition, and the empirical results showed that the combination

model was a potential method.

Additionally, some studies compared logit regression with other scoring techniques

in credit ratings. For example, in the work by Saini and Bates 1978, the results

showed that the logit model and the DA method performed similarly in country

credit evaluation. Schmidt 1984 compared logit analysis with DA and cluster

analysis and found that the logit model was superior to other methods of country

credit scoring. Pasiouras and Tanna 2010 used the DA and logit analysis to estimate

bank credit and showed that both estimation techniques achieved similar levels of

prediction accuracy.

(3).The Probit model

The probit model is also an important classification method under the assumption

that the cumulative probability distribution must be a standardized normal

distribution. Compared with other approaches, relatively few studies on credit

scoring used the probit model. Some significant works include Fisk and Rimlinger

1979, who studied long-term credit worthiness and rescheduling of developing

countries based on a probit model. Balkan 1992 predicted country credit default

using a probit model that included two important political risk variables (level of

democracy and political instability). Haan et al. 1997 employed the probit model for

government debt rescheduling.

(4). k-nearest neighbor method

The k-nearest neighbor (kNN) method is a standard nonparametric approach to

classification considering only the k-most similar data instances. Chatterjee and

Barcun 1970 first introduced the kNN method into credit scoring. Since this and

similar studies, the kNN method has been applied extensively to credit

evaluation. For example, Henley and Hand 1997 proposed a credit scoring

system based on k-nearest-neighbor methods for individual credit risk and

compared the method with other discrimination techniques. The results

supported the effectiveness of the novel model. Baesens et al. 2003b employed

k-nearest-neighbor method as benchmark for individual credit evaluation, and

performed well.
Mathematical programming methods

Mangasarian 1965 first employed linear programming in classification prediction.

For credit scoring, Vladimir et al. 2002 constructed a quadratic programming model

for individual credit that included expert judgments. The numerical experiments

showed that the evaluation model incorporating expert judgments can improve

model performance. Kou et al. 2005 proposed a classification model using multi-

criteria linear programming to discover behavior patterns of credit card applicants.
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Artificial intelligence methods

Recently, various AI methods based on powerful computing learning abilities have

become predominant techniques for credit scoring and classification. The most

popular models for credit risk are artificial neural networks (ANN) and support vec-

tor machines (SVM). Table 2 shows some significant works.

(1).Artificial neural networks
Tabl

Agen

Coun

Corpo

Indivi
Various ANNs have been used extensively in bankruptcy prediction since the 1990s

(Odom and Sharda 1990; Tam and Kiang 1992) such as multi-layer perceptron

(MLP), back-propagation (BP) algorithms (Tseng and Hu 2010; Wilson and Sharda

1994; Cooper 1999), fuzzy ANN (Basak et al. 1998), and radial basis function networks

(RBFN) (Tseng and Hu 2010; Jang et al. 1997; Ranganath and Arun 1997). Additionally,

existing studies fully proved that ANNs perform better than statistical models for credit

risk prediction (Yim and Mitchell 2005; Wilson and Sharda 1994; Back et al. 1996).

For corporate credit, the first attempt using ANN to predict bankruptcy was performed

by Odom and Sharda 1990, who compared three-layer feed-forward networks with

multi-variate discriminant analysis. ANNs have been extensively used in bankruptcy or

business failure prediction. For example, Tam and Kiang 1992 introduced ANNs in

bankruptcy predictions. When compared with other methods (such as linear

discriminant analysis, logistic regression, k-nearest neighbor, and the decision
e 2 Typical works on credit scoring using AI techniques

t Reference Technique

try Cooper (1999) Neural networks

Fioramanti (2006)

Alp et al. (2011)

ration Odom and Sharda (1990) Neural networks

Tam and Kiang’s (1992)

Wilson and Sharda (1994)

Goonatilake and Treleaven (1995)

Tseng and Hu (2010)

Blanco et al. (2013)

Huang et al. (2004) SVM

Van Gestel et al. (2006)

dual Desai et al. (1996) Neural networks

Also, Davis et al. (1992)

Piramuthu (1999)

West (2000)

Desai et al. (1996) SVM

Also, Davis et al. (1992)

Piramuthu (1999)

West (2000)

Desai et al. (1997) GA or GP-based AI model

Yobas et al. (2000)

Ong et al. (2005)

Huang et al. (2006)
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tree model), ANNs are more robust and accurate in bank status evaluation. For

example, Wilson and Sharda 1994 found that neural networks were superior to

DA and other statistical econometric methods. Gonatilake and Treleavan 1995

applied an MLP-based ANN as a credit scoring method, and the results indicated that

the novel system can improve predictive accuracy. Tseng and Hu 2010 compared four

different techniques which were the logit model, the quadratic interval logit model, the

MLP, and the RBFN to forecast bankrupt firms in the UK and found that RBFN

outperformed other models. Blanco et al. 2013 introduced ANNs as credit scoring

models for 5,500 borrowers of a Peruvian microfinance institution, and the results

revealed that neural network models outperform other classification techniques.

For country risk, Cooper 1999 used the ANN model with a BP algorithm to

investigate the rescheduling of international debt-service obligations. Fioramanti

2006 built an early warning system to predict a sovereign debt crisis based on

ANNs, and the results indicated that ANNs were superior to some typical traditional

methods. Alp et al. 2011 developed a continuous optimization model with the help of

ANN techniques to predict country default risk, and the results showed that continuous

optimization techniques can generate satisfactory results.

For individual credit, Desai et al. 1996 used a multi-layer perceptron neural network

(i.e., a mixture of expert neural networks) for individual credit and found that neural

network models outperform linear discriminant analysis and logistic regression models.

Davis et al. 1992 studied the decision accuracy of decision trees and a multi-layer

perceptron neural network for individual credit. The authors concluded that a

comparable level of decision accuracy was obtained with the decision trees and

the multi-layer perceptron neural network methods. Piramuthu 1999 employed a

multi-layer perceptron neural network and a neural-fuzzy model to predict credit

scoring for individual credit and indicated that neural networks obtain superior

results. West 2000 used five neural network models: multi-layer perceptron,

mixture-of-experts, radial basis function, learning vector quantization, and fuzzy

adaptive resonance for individual credit. The author demonstrated that both the

mixture-of–experts and radial basis function neural network models were superior

to other models, and logistic regression was the most accurate of the traditional

methods. Baesens et al. 2003a clarified the neural network decisions by explanatory rules

that capture the learned knowledge embedded in the networks for individual credit, and

concluded that neural network rule extraction and decision tables were powerful

management tools to build advanced and userfriendly decision-support systems

for credit-risk evaluation. Lee et al. 2006 argued that the classification and regression

tree (CART) and multi-variate adaptive regression splines (MARS) for individual credit

outperformed ANNs.

(2). Support vector machine

Support vector machines (SVM), another effective AI technique developed by

Vapnik 2000 based on structural risk minimization, were recently introduced for

credit scoring and have become a potentially effective tool. Some significant works

include the following.

For individual credit, Schebesch and Stecking 2005 predicted applicants’ credit scoring

using an SVM database and concluded that SVMs performed slightly better than

logistic regression. Li et al. 2006 evaluated consumer loan risk with SVMs on a small
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sample size and found that SVMs outperform multi-layer perceptron for individual

credit. Huang et al. 2007 constructed hybrid SVM-based credit scoring model

for individual credit and showed that the proposed hybrid GA-SVM strategy,

combining genetic algorithms with SVM classifier, can simultaneously perform

feature selection tasks and model parameter optimization. Bellotti and Crook

2009 compared SVM with traditional methods on a large credit card database

for individual credit and found that SVM can be used as the basis of a feature

selection method to discover the features most significant in determining default

risk. Based on an intelligent integration framework including SVM, least squares

SVM, and neural networks, Yu and Yao 2013; Yu et al. 2009a; Yu et al. 2009b;

Yu et al. 2008; Yu et al. 2011; Yu et al. 2010 evaluated applicants’ credit scores

on different credit datasets and found improved classification accuracy. Li et al.

2012b studied an evolution strategy-based adaptive Lq SVM model with Gauss

kernel for individual credit risk analysis and demonstrated that the proposed approach

performed better than other benchmark methods. Because SVMs suffers from the curse

of dimension, Han et al. 2013 introduced an orthogonal SVM for individual credit

scoring to address this problem and found that the proposed model reduced complexity,

accelerated convergence, and achieved superior performance.

For corporate credit, Huang et al. 2004 applied SVM to predict corporate credit ratings

and implied that SVM methods only slightly outperformed the back-propagation neural

network (BNN). Van Gestel et al. 2006 used least squares SVM with a Bayesian kernel

to derive classifiers for corporate bankruptcy and found that there was no significant

difference between SVM, DA, and logistic regression in terms of the proportion

of accurate test cases.

(3). Evolutionary techniques

With respect to credit scoring, the main goal of various models is to minimize

evaluation errors; therefore, various evolutionary optimization techniques can be

introduced into AI forecasting models to enhance evaluation accuracy. For

example, Desai et al. 1997 utilized genetic algorithms (GA) in an ANN forecasting

model for individual credit, and the results showed that the GA-based techniques

performed somewhat better than the other methods. In addition to GA, genetic

programming (GP) has also been applied. For example, Ong et al. 2005 used genetic

programming (GP) for individual credit and concluded that GP is superior to

benchmarks such as neural networks, decision trees, rough sets, and logistic regression.

Huang et al. 2006 proposed two-stage genetic programming (2SGP) to manage

individual credit scoring problems by incorporating the advantages of if-then

rules and the discriminant function. The author found that 2SGP provides superior

accuracy compared to other models.
Hybrid systems

Individual models have different limitations. Hybrid models that combine several in-

dividual model types can effectively exploit the merits of each model and address the

drawbacks of others. Therefore, various hybrid models have been developed and in-

troduced to obtain greater prediction accuracy in credit evaluation. Table 3 lists some

significant works.



Table 3 Typical works on credit scoring using hybrid models

Agent Reference Technique

Country Yim and Mitchell (2005) Model based on statistical model and ANN

Corporation Markham and Ragsdale (1995) Model based on DA and ANN

Jo and Han (1996) Model based on ANN, statistical model and discriminant analysis

Chuang and Lin (2009) Model based on ANN and CBR-based technique

Individual Lee et al. (2002) Model based on ANN and DA

Lee and Chen (2005) Model based on ANN and MARS

Hsieh (2005) Model based on clustering analysis and ANNs

Chen and Huang (2003) Model based on ANN and GA

Chen et al. (2009) Model based on SVM and three strategies
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For country credit, Yim and Mitchell 2005 proposed a hybrid neural network com-

bining statistical models with a neural network to predict country credit ratings and in-

dicated that hybrid models outperformed all other models such as logit, probit, DA,

and cluster techniques.

For corporate credit, Markham and Ragsdale 1995 combined output estimated by

DA with an artificial network for corporate credit and stated that the hybrid model

outperformed the statistical approaches in terms of classification. Jo and Han 1996

integrated the statistical model, discriminant analysis and two artificial intelligence

models including neural network and case-based forecasting to evaluate corporate

credit risk. The conclusion suggested that the integration approach produced higher

prediction accuracy than individual models. Lee et al. 1996 developed hybrid neural

network models that combined statistical techniques (i.e., multi-variate discriminant

analysis (MDA) and the ID3 method with neural networks, or combined two differ-

ent neural networks to predict corporate bankruptcy, and suggested that hybrid

neural network models were potentially effective models for bankruptcy prediction.

For individual credit, Lee et al. 2002 proposed a credit scoring model integrating a

BNN with a traditional DA approach for individual credit and implied that the pro-

posed hybrid approach converged much faster than the conventional neural networks

model and outperformed traditional DA and logistic regression methods. Lee and

Chen 2005 proposed a two-stage hybrid credit scoring model employing ANN and

multi-variate adaptive regression splines (MARS) for individual credit. The authors

revealed that the hybrid credit scoring model outperformed DA, logistic regression,

single ANNs and single MARS. Hsieh 2005 presented a hybrid approach combining

clustering analysis with neural networks for individual credit and demonstrated that

the hybrid approach was a potential tool for the evaluation of applicants’ credit

scores.

Recently, several studies have focused on decreasing type I and II errors in credit

classification problems; that is, reassigning the rejected good credit applicants to the

conditionally accepted class. For example, Chen and Huang 2003 proposed a hybrid

methodology applying neural networks and genetic algorithms for individual credit

and stated that the proposed hybrid model was a potentially effective tool for the pre-

diction of credit scores and reassigning rejected instances. Chuang and Lin 2009 pre-

sented a reassigning credit scoring model (RCSM) integrating ANN and case-based
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reasoning (CBR)-based classification technique for individual credit and implied that

the proposed hybrid model was more accurate than other commonly used credit scor-

ing methods and also contributed to a reduction in type I errors in the scoring sys-

tem. Chen et al. 2009 proposed a hybrid SVM technique based on three strategies: (1)

using CART to select input features, (2) using MARS to select input features, and (3)

using grid search to optimize model parameters for individual credit. The authors

demonstrated that the hybrid SVM technique had the best classification rate and the

lowest rate of type II errors compared with CART, MARS, and SVM.

Future research directions

Existing studies note other interesting points concerning improvements in credit scor-

ing methods. First, the data preparation process, such as data collection, variable selec-

tion, and data cleaning for credit scoring prediction can help reduce noise levels and

further enhance the evaluation accuracy of credit risk. However, most studies neglected

to address this important process. Second, because hybrid systems have recently been

introduced to social credit scoring and have demonstrated their superiority, even more

powerful hybrid models can be formulated by combining various formidable AI tools.

Third, existing credit scoring studies mainly focused on country, corporate, and indi-

vidual credit while neglecting network credit. Therefore, evaluating variations of coun-

try, corporate, and individual credit in the network context should be considered as

important future research directions.
Indicator systems

An indicator system (covering a set of evaluation indexes) is another significant compo-

nent of the credit scoring model that directly determines evaluation results. Therefore,

indicator systems should be designed to capture target agent features.

For country credit, the existing indicator system mainly encompasses a country’s eco-

nomic, financial, social, cultural, geographic, and political fields including its relation-

ship with other countries (Li et al. 2012a; Balkan 1992; Block and Vaaler 2004; Beirne

and Fratzscher 2013). For example, Balkan Balkan 1992 proposed a model with two

political risk variables (level of democracy and political instability) and some economic

variables and showed that the novel model including the political variables generated

superior results than the model limited to economic variables. Block and Vaaler 2004

argued that government stability is a significant index with a positive effect on govern-

ment credit ratings. Yim and Mitchell 2005 classified the evaluation indexes for country

risk into five categories: economics, balance of payments, external debt, government,

and political risk. Beirne and Fratzscher 2013 found that government credit was sensi-

tive to social stability and changes in financial markets.

For corporate credit, both macro-economic variables and micro-points representing a

firm’s state should be considered. Duffee and Zhou 2001 compared the effects of firm attri-

butes and external factors on credit rating predictions. Min and Lee 2008 studied business

bankruptcy models based on six variables: financial expenses to sales (FE), the current liabil-

ities ratio (CL), total borrowings and bonds payable to total assets (TB), the capital adequacy

ratio (CA), the current ratio (CR), and the interest coverage ratio (IC).

For individual credit, Lee et al. 2002 introduced nine predictor variables: gender, age,

marriage status, education, occupation, career level, annual income, residential status,
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and credit limit. Avery et al. 2004 found that the local economic situation and specific

emergence had substantial influence on prediction accuracy for individual credit. Bellotti

and Crook 2009 evaluated individual credit risk for credit card applicants based on 11

features: home ownership, time with bank, required insurance, the number of settled

non-mail order credit account information sharing (CAIS) accounts, total outstanding

balance excluding mortgages on all active CAIS accounts, total number of credit searches

in the last six months, worst account status, age, product (type of credit card), time since

the most delinquent account, and the UK Mosaic code. Chuang and Lin 2009 introduced

20 independent variables such as the credit card applicant’s age, credit amount, credit

history, employment, and housing.

With respect to future research, existing studies on indicator systems design mostly

focused on countries (or government), corporations, and individuals as economic

agents while neglecting online market credit. Therefore, selecting appropriate indica-

tors for network credit evaluation is imperative for future research.
Regulatory mechanisms
Regulatory mechanisms supervise the credit risk of various agents to avoid further credit

fraud. According to existing literature, establishing and sharing credit databases is one of

the most pressing tasks currently under discussion (Zhang and Smyth 2009). For example,

Miller 2000 investigated public and private worldwide credit data and concluded that public

credit registries were not a substitute for private sector registries but a complement. Hunt

2005 reviewed the history of the individual credit reporting industry evolution and particu-

larly emphasized the need for credit information sharing in the credit report industry by es-

tablishing credit standard systems and relevant rules. Smith et al. 2013 investigated credit

reports from the three major US credit bureaus and suggested that credit bureau data were

accurate, but individual consumers should ensure that potential errors do not occur in their

records. Moreover, Zhang and Smyth 2009 analyzed the emerging credit reporting system

in China and argued that substantial progress should be made through public and private

credit-reporting services cooperation.

With respect to future research, progress can be achieved in the regulatory mechanisms

for the social credit field. First, important credit data and reports from different agents in-

cluding governments, corporations, and individuals should be used in the construction of

credit databases. Second, existing studies on regulatory mechanisms have mostly used quali-

tative analysis; therefore, some quantitative experimental models, such as multi-agent-based

systems and system dynamics, should be employed to explore the optimal regulatory mech-

anisms for social credit rules or designs. Third, the associated regulations concerning data

protection and access to personal information deserve further investigations. Fourth, regu-

lating network credit system has become an imperative task since the rapid development of

online markets to guarantee a legitimate network environment and prevent network credit

default.
Summary and conclusions
This paper provides a comprehensive review of the social credit literature from the

perspectives of theoretical foundation, scoring methods, and regulatory mechanisms.

The various economic agents’ country (or government) credit, corporate credit,



Yu et al. Financial Innovation  (2015) 1:6 Page 15 of 18
individual credit, and their variations in online markets (i.e., network credit) are con-

sidered. For each aspect, the study presents a historical review of the theoretical

(or model) development for all economic agents together with important works and

future research directions.

(1).Credit theory
Social theory investigates economic explanation, creation mechanisms, and

evolution mechanisms for social credit encompassing country, corporate, and

individual credit for different target agents.

Social theories on social credit can be classified into the traditional and emerging

theories that use different research techniques. Traditional theory incorporates

various traditional economic theories into the social credit framework to explore

the economic explanation (or function), creation, and evolution of credit. Emerging

credit theory performs analyses based on information economics and focuses on the

information mechanisms in social credit systems.

(2).Credit scoring

Credit scoring might be the most important component of the social credit

research field, and the most related studies attempt to enhance the evaluation

accuracy of the credit risk of different agents. Regression techniques and evaluation

indexes of scoring methods are critical factors.

With respect to regression, various prediction techniques have been introduced into

social credit risk evaluation and can be categorized as expert systems, econometric

models, mathematical programming, AI tools, and their hybrid forms. The results

suggest that various hybrid approaches have been developed and have become an

increasingly potential tool in evaluating credit scores.

Indicator systems (covering a set of evaluation indexes) are another important

component of the credit scoring model that directly determines evaluation results.

Therefore, indicator systems should be carefully designed to capture the features of

target agents.

(3). Regulatory mechanisms

Regulatory mechanisms supervise the credit risk of various agents to avoid further

credit fraud. Establishing and sharing a general credit database might be one of the

most pressing tasks for which consistent data standards are currently being

discussed.

(4). Future research directions

The existing studies on social credit can be improved. For social theory, the studies

based on experimental simulation technologies are insufficient compared to the

studies based on traditional credit theory. Additionally, a comprehensive

exploration of the various economic agents and their interactions is another

interesting research direction. With respect to credit scoring, additional powerful

hybrid models should be formulated by combining various AI tools. For regulatory

mechanisms, quantitative experimental models should be applied to explore the

optimal regulatory mechanism rules or designs. The regulations concerning data

protection and access to personal information deserve deep investigations.

Regulating network credit systems has become an imperative task necessary to

guarantee a legitimate network environment without credit fraud.
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