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Abstract 

We derive methods for risk-neutral pricing of multi-asset options, when log-returns 
jointly follow a multivariate tempered stable distribution. These lead to processes 
that are more realistic than the better known Brownian motion and stable processes. 
Further, we introduce the diagonal tempered stable model, which is parsimonious 
but allows for rich dependence between assets. Here, the number of parameters 
only grows linearly as the dimension increases, which makes it tractable in higher 
dimensions and avoids the so-called “curse of dimensionality.” As an illustration, we 
apply the model to price multi-asset options in two, three, and four dimensions. 
Detailed goodness-of-fit methods show that our model fits the data very well.

Keywords: Multi-asset option pricing, Tempered stable distributions, Diagonal model, 
Lévy processes

Introduction
Multi-asset option pricing is an important topic, which has been gaining in prominence 
as the availability of such options has increased. Pricing these options presents additional 
challenges as it requires one to jointly model an entire basket of financial assets. Realistic 
models for multivariate financial returns tend to be quite complicated and depend on 
many parameters, which can be difficult to fit. Even worse, the number of parameters 
typically grows very quickly as the dimension increases, a phenomenon known as the 
“curse of dimensionality.” In this paper, we introduce a realistic model for multivariate 
financial returns, which fits the data well and where the number of parameters grows 
only linearly as the dimension increases. We give an approach for finding risk-neutral 
measures and for using Monte-Carlo methods to price multi-asset options. As an illus-
tration, we apply the model to price multi-asset options in two, three, and four dimen-
sions. Detailed goodness-of-fit methods show that this model fits the data very well.

Our model is based on the class of multivariate tempered stable (TS) distributions, 
which are obtained by modifying the tails of infinite variance stable distributions to make 
them lighter. This leads to tails that are more realistic than the extremely light tails of 
Brownian motion or the extremely heavy tails of stable distributions. Further, they allow 
for skewness and excess kurtosis. As such, they satisfy a number of well-known stylized 
facts about financial returns (Cont and Tankov 2004). Theoretical explanations for how 
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these distributions arise in financial applications can be found in Grabchak and Samorod-
nitsky (2010) or Grabchak and Molchanov (2015). In the univariate case, empirical studies 
showing that they do a good job fitting financial returns can be found in, e.g., Carr et al. 
(2002), Fallahgoul and Loeper (2021), and the references therein. Similar results in the 
bivariate case can be found in Xia and Grabchak (2022). However, that methodology suf-
fers from the curse of dimensionality and appears to be intractable in higher dimensions. 
This is a common issue in modeling with multivariate TS distributions and, hence, there 
has been little empirical work beyond the bivariate case. We remedy this by introducing a 
new model, which works well in higher dimensions. We call it the diagonal TS model. It is 
an extension of the diagonal model, which was originally introduced by Sharpe (1963) in 
the context of the normal distribution. We consider it in the context of TS distributions.

The rest of this paper is organized as follows. A brief review of the literature is given in 
" Literature review" Section. In "Multivariate tempered stable distributions" Section we 
recall the definition of the class of multivariate TS distributions and give some proper-
ties. In "Risk-neutral measures and general methodology" Section we discuss the prob-
lem of finding equivalent risk-neutral measures and give approaches for Monte-Carlo 
pricing of multi-asset options. In " The diagonal model " Section we formally intro-
duce the diagonal TS model and discuss our methodology for data analysis, simula-
tion, and parameter estimation under both the physical and the risk-neutral measures. 
In "Data analysis " Section we apply our methodology to fit the diagonal TS model to 
financial datasets in two, three and four dimensions. Some conclusions and directions 
for future work are given in " Conclusion" Section.

Before proceeding, we introduce some notation. We write Rd to denote the space of 
d-dimensional column vectors and, for x ∈ Rd , we write x⊤ to denote the transpose of x. 
We equip Rd with usual inner product �·, ·� and the usual norm | · | . Thus, for x, y ∈ Rd , 
we have �x, y� = x⊤y and |x| =

√
�x, x� . We write Sd−1 = s ∈ Rd : |s| = 1  to denote the 

unit sphere in Rd . We write B(Rd) and B(Sd−1) to denote the Borel sets on Rd and Sd−1 , 
respectively. If µ is a probability distribution on Rd , we write X ∼ µ to denote that X 

is a d-dimensional random vector with distribution µ and we write X1,X2, . . . ,Xn
iid∼µ 

to denote that X1,X2, . . . ,Xn are independent and identically distributed (iid) d-dimen-
sional random vectors with common distribution µ . We write C to denote the set of 
complex numbers. For z ∈ C we write ℜz to denote the real part and ℑz to denote the 
imaginary part. We write i =

√
−1 to denote the imaginary unit. For a ∈ Rd , we write 

(a)+ to denote max{a, 0}.

Literature review
TS distributions are a class of models that are obtained by modifying the tails of sta-
ble distributions to make them lighter, which makes them more realistic for many appli-
cations. Perhaps the earliest models of this type are Tweedie distributions, which were 
introduced in Tweedie (1984) and then rediscovered in Koponen (1995). A general class 
of TS distributions was introduced in Rosiński (2007). That paper was also the first to 
introduce multivariate TS distributions. See the monograph Grabchak (2016) and the 
references therein for additional generalizations and many theoretical results in both the 
univariate and the multivariate settings.
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The modeling of univariate financial returns with TS distributions goes back, at least, to 
Boyarchenko and Levendorskiĭ (2000) and Carr et al. (2002). Since then, a vast literature 
has developed. Empirical evidence shows that TS distributions do a good job fitting uni-
variate returns, see, e.g., Carr et al. (2002), Fallahgoul and Loeper (2021), and the references 
therein. Theoretical explanations for how these distributions arise in financial applications 
can be found in Grabchak and Samorodnitsky (2010) and Grabchak and Molchanov (2015). 
There are many papers dealing with pricing single-asset options using TS distributions, 
see, e.g. Poirot and Tankov (2006), Černỳ and Kyriakou (2011), Rachev et al. (2011), Li et al. 
(2012), Küchle and Tappe (2014), or Section 7.1 in Grabchak (2016).

Much less work has been done in the multivariate setting. The difficulty stems from the 
fact that multivariate TS distributions depend on the spectral measure, which is an infinite 
dimensional parameter. As far as we know, the only paper to fit multivariate TS distribu-
tions to financial returns and check the goodness-of-fit is Xia and Grabchak (2022), which 
focused on the bivariate case. However, that approach suffers from the curse of dimension-
ality and appears to be intractable in higher dimensions. Multi-asset option pricing with TS 
and related distributions was considered in Linders and Stassen (2016), Guo et al. (2018), 
Fallahgoul et al. (2019), Kim et al. (2023), and Wu et al. (2023). These papers do not perform 
goodness-of-fit testing and, with one exception, the empirical work is limited to the bivari-
ate case. The exception is Linders and Stassen (2016), where higher dimensional situations 
are considered. However, there dependence is modeled using a single correlation term, 
which is assumed to be constant over all pairs of assets. While this may be reasonable in 
some situations, it is not very realistic.

Perhaps the most famous method for pricing multi-asset options is multivariate Black–
Scholes, see, e.g., Carmona and Durrleman (2005) or Björk (2009) for details. Here, pricing 
is easily implemented for any number of assets using Monte-Carlo methods. However, the 
approach depends on the assumption that returns jointly follow a multivariate normal dis-
tribution, which rarely holds in practice, see Cont and Tankov (2004). There are many other 
methods in the literature, see, e.g., Alexander and Venkatramanan (2012), Ruijter and Oost-
erlee (2012), Meng and Ding (2013), Chen and Wang (2020), and the references therein. We 
note that most of these focus on the bivariate case.

The model presented in this paper fills an important gap. First, it is realistic and we pro-
vide detailed goodness-of-fit results to show that it fits the data well. Second, the number 
of parameters grows only linearly, which makes it tractable in more than two-dimensions.

Multivariate tempered stable distributions
The characteristic function of a multivariate TS distribution µ is given in Xia and Grabchak 
(2022). It can be written, for any z ∈ Rd , in the form

where α ∈ (0, 1) , γ ∈ Rd , b : Sd−1 �→ (0,∞) is a Borel function, and σ is a finite Borel 
measure on Sd−1 . We denote this distribution by µ = TSα(σ , b, γ ) . Here α is the index 

(1)
µ̂(z) = exp

[

i�γ , z� +
∫

Sd−1

∫ ∞

0
(ei�s,z�x − 1)

e−b(s)x

x1+α
dxσ(ds)

]

= exp

[

i�γ , z� + Ŵ(−α)

∫

Sd−1

(

(b(s)− i�s, z�)α − bα(s)
)

σ(ds)

]

,
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of stability, γ is the drift, b is the tempering exponent, and σ is the spectral measure. The 
function q(x, s) = e−b(s)x , x > 0 , s ∈ Sd−1 is sometimes called the tempering function. 
So long as the support of the spectral measure σ contains at least d linearly independent 
vectors, the distribution µ is absolutely continuous. However, with few exceptions, there 
is no closed form for its joint probability density function (pdf) or its joint cumulative 
distribution function (cdf ). For this reason, when working with TS distributions, we pre-
fer methods based on characteristic functions or on simulation.

Every TS distribution µ = TSα(σ , b, γ ) is infinitely divisible with Lévy measure

In the limiting case, where b(s) = 0 for each s ∈ Sd−1 , L reduces to the Lévy measure of 
an infinite variance stable distribution with index of stability α and spectral measure σ , 
see Samorodnitsky and Taqqu (1994). In this sense, the tempering function q tempers 
(i.e., modifies) the tails of the Lévy measure to make them lighter. This leads to a similar 
tempering of the tails of the corresponding distribution µ and justifies calling b the tem-
pering exponent and q the tempering function.

We note that one can consider TS distribution with any α ∈ (−∞, 2] , see Cont and 
Tankov (2004) or Grabchak (2016). We focus on the case α ∈ (0, 1) for two reasons. First, 
when α ≤ 0 , TS distributions can no longer be interpreted as modifications of stable dis-
tributions to make their tails lighter, which is a primary motivation for their use in finance, 
see Grabchak and Samorodnitsky (2010) or Grabchak and Molchanov (2015). Second, we 
exclude the case where α ∈ [1, 2) as there are no known exact simulation methods in this 
case, even in the univariate case. For a discussion of approximate simulation methods, see 
Kawai and Masuda (2011). The focus on α ∈ (0, 1) is common for financial applications 
even in the univariate case, see, e.g., Küchle and Tappe (2014).

Associated with distribution µ = TSα(σ , b, γ ) is a TS Lévy process {Xt : t ≥ 0} , where 
X1 ∼ µ . In this case, µ uniquely determines the distribution of the entire process. In fact, 
Theorem 7.10 in Sato (1999) tells us that, if µ̂ is the characteristic function of X1 , then for 
any t ≥ 0 , the characteristic function of Xt is 

(

µ̂(z)
)t , z ∈ Rd . Combining this with (1) 

shows that Xt ∼ TSα(tσ , b, tγ ) . See Sato (1999) or Cont and Tankov (2004) for more on 
infinitely divisible distributions and Lévy processes. From (1), we see that TS distributions 
do not have a diffusion component, which means that the corresponding Lévy processes 
are pure jump process. See Cont and Tankov (2004) for a discussion on why jump processes 
tend to provide good models for financial returns.

By differentiating the characteristic function, it is readily checked that for 
X ∼ TSα(σ , b, γ ) the mean vector is

and the covariance matrix is

L(B) =
∫

Sd−1

∫ ∞

0
1B(xs))

e−b(s)x

x1+α
dxσ(ds), B ∈ B(Rd).

(2)E[X] =γ + Ŵ(1− α)

∫

Sd−1
(b(s))α−1sσ(ds)

(3)Cov(X) =Ŵ(2− α)

∫

Sd−1
(b(s))α−2ss⊤σ(ds).
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While there is no simple definition for multivariate skewness and kurtosis (Jammalama-
daka et al. 2021), the skewness of the ith component of X is given by

and the excess kurtosis of the ith component is given by

where si is the ith component of vector s. We now give a result about linear transforma-
tions of TS distributions, which we will use when standardizing data.

Theorem 1 Let A be a positive definite d × d-dimensional matrix, fix c ∈ Rd , and let 
X ∼ TSα(σ , b, γ ) . If Y = AX + c , then Y ∼ TSα(σ

′, b′, γ ′) , where γ ′ = Aγ + c,

and

Proof The characteristic function of Y is given, for z ∈ Rd , by

where we use the change of variables u = x|As| and the facts that positive definite matri-
ces are symmetric, invertible, and satisfy 

〈

y,Az
〉

=
〈

Ay, z
〉

 for any y, z ∈ Rd .  �

Simple tempered stable (STS) distributions are an important class of one-
dimensional TS distributions that serve as the building blocks from which many 
other classes of TS distributions are built. A TS distribution µ = TSα(σ , b, γ ) is an 
STS distribution when d = 1 , σ({−1}) = 0 , and γ = 0 . Taking a = σ({1}) ≥ 0 and 
b = b(1) > 0 , the characteristic function in (1) reduces to

Ŵ(3− α)
∫

Sd−1(b(s))
α−3s3i σ(ds)

(

Ŵ(2− α)
∫

Sd−1(b(s))α−2s2i σ(ds)
)3/2

Ŵ(4 − α)
∫

Sd−1(b(s))
α−4s4i σ(ds)

(

Ŵ(2− α)
∫

Sd−1(b(s))α−2s2i σ(ds)
)2

,

σ ′(B) =
∫

Sd−1
1B

(

As

|As|

)

|As|ασ (ds), B ∈ B(Sd−1),

b′(s) = |A−1s|b
(

A−1s/|A−1s|
)

, s ∈ Sd−1.

E[ei�z,Y �] = exp [i�c, z� + i�γ ,Az�

+
∫

Sd−1

∫ ∞

0

(

e
ix�Az,s� − 1

)

x
−1−α

e
−xb(s)dxσ(ds)

]

= exp [i�Aγ + c, z�

+
∫

Sd−1

∫ ∞

0

(

e
iu

〈

z, As|As|

〉

− 1

)

u
−1−α

e
−ub(s)/|As|du |As|ασ (ds)

]

= exp

[∫

Sd−1

∫ ∞

0

(

e
iu�z,s� − 1

)

u
−1−α

e
−ub′(s)duσ ′(ds)

+i�Aγ + c, z�],
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for z ∈ R . We write µ = STSα(a, b) in this case.
The problem of simulation from STS distributions is well-studied. A simple rejection 

sampling algorithm is given, e.g., as Algorithm 0 in Kawai and Masuda (2011). A more 
efficient double rejection sampling algorithm is given in Devroye (2009). This was fur-
ther optimized in Hofert (2011). This optimized version is implemented in the retstable 
function of the “copula” package for the statistical software R. This is the function that 
we use for all of the simulations in this paper.

The importance of STS distributions is motivated by the following result from Xia and 
Grabchak (2022), which says that, in any dimension d, every TS distribution whose spec-
tral measure has a finite support is the linear combination of STS distributions.

Theorem  2 Let µ = TSα(σ , b, γ ) such that there exist a1, a2, . . . , ak > 0 and 
s1, s2, . . . , sk ∈ Sd−1 with

If X1,X2, . . . ,Xk are independent random variables with Xj ∼ STSα(aj, bj) , where 
bj = b(sj) , X = (X1,X2, . . . ,Xk) , S = (s1s2 · · · sk) , and

then Y ∼ µ.

This theorem fully characterizes all TS distributions, where σ has finite support. In 
particular, it implies that every one-dimensional TS random variable X ∼ TSα(σ , b, γ ) 
can be written in the form

where X1 ∼ STSα(σ ({1}), b(1)) and X2 ∼ STSα(σ ({−1}), b(−1)) are independent.
Theorem 2 gives a simple method for simulating TS random variables with spectral 

measures that have finite support. In light of (6), we just need to simulate the appropri-
ate STS random variables, which can be done as discussed just below (4). We note that 
even if σ has infinite support, this method can be used for simulation, although, in this 
case, it is only approximate. This is justified by the fact that every TS distribution can be 
approximated arbitrarily well by one where σ has finite support, see Xia and Grabchak 
(2022) for details.

Risk‑neutral measures and general methodology
Assume that the returns from a basket of assets jointly follow a multivariate TS dis-
tribution and that their evolution in time follows a TS Lévy process. Let r > 0 be the 
risk-free interest rate and, for i = 1, 2, . . . , d , let qi ∈ [0, r) be the dividend rate for the 

(4)µ̂(z) = exp

[

∫ ∞

0
(eizx − 1)

ae−bx

x1+α
dx

]

= exp
[

aŴ(−α)
(

(b− iz)α − bα
)]

,

(5)σ =
k

∑

j=1

ajδsj .

(6)Y = γ + X1s1 + X2s2 + ...+ Xksk = γ + SX ,

(7)X
d=γ + X1 − X2,
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ith asset. In order to price options on this basket, we must find an equivalent risk-
neutral measure. We begin by carefully defining the underlying probability space.

Let Ω = D([0,∞),Rd) be the space of càdlàg functions from [0,∞) into Rd . For 
every ω ∈ Ω and t ∈ [0,∞) , let Rt : Ω �→ Rd by Rt(ω) = ω(t) . We call R = {Rt : t ≥ 0} 
the canonical process. For t ≥ 0 , we often write Rt = (R1,t ,R2,t , . . . ,Rd,t) . Let 
F = σ(Rt : t ≥ 0) , let Ft =

⋂

s>t σ(Ru : u ∈ [0, s]) be the right-continuous natural 
filtration, and consider the space (Ω ,F ) . For every TS distribution µ on Rd , there 
exists a probability measure Pµ on (Ω ,F ) such that, under Pµ , R is a Lévy process 
with R1 ∼ µ . For details see Section 33 in Sato (1999), Chapter 9 in Cont and Tankov 
(2004), or Section 4 in Rosiński (2007).

Let S0 = (S1,0, S2,0, . . . , Sd,0) ∈ Rd be a (deterministic) vector of positive numbers 
and for t ≥ 0 set

Here S0 represents the (known) vector of prices at time 0 and, for t > 0 , St and Rt repre-
sent, respectively, the (random) vectors of prices and (log) returns at time t.

Let P be a probability measure on (Ω ,F ) that governs the dynamics of the prices 
in the real-world. This is the physical or market measure. We assume that, under P , 
the process R is a TS Lévy process with R1 ∼ TSα(σ , b, γ ) . We can perform arbitrage-
free option pricing so long as there exists a probability measure Q on (Ω ,F ) that is 
equivalent to P and satisfies

where EQ is the expectation under Q . In this case we call Q the equivalent risk-neutral or 
martingale measure.

In general there may be many risk-neutral measures that are equivalent to P . We 
look for those arising from multivariate Esscher transforms as these preserve the TS 
structure of the underlying process, i.e., the Esscher transform of a TS Lévy process 
is still a TS Lévy process, but with a different tempering exponent. Specifically, we 
consider the class of equivalent measures Qη , for η ∈ Rd , were the Radon-Nikodym 
derivative process is of the form

For more on finding risk-neutral measures using multivariate Esscher transforms, see 
(Gerber and Shiu 1994) or (Tankov 2010). We now characterize when Qη is risk-neutral. 
Recall that r > 0 is the risk-free interest rate and that, for i = 1, 2, . . . , d , qi ∈ [0, r) is the 
dividend rate for the ith asset.

Theorem  3 Assume that, under P , {Rt : t ≥ 0} is a TS Lévy process with 
R1 ∼ TSα(σ , b, γ ) and let bη(s) = b(s)− �s, η� . If inf s∈Sd−1 bη(s) ≥ 0 , then under Qη , 
{Rt : t ≥ 0} is a TS Lévy process with R1 ∼ TSα(σ , bη, γ ) . If inf s∈Sd−1 bη(s) ≥ 1 , then Qη is 
risk-neutral if and only if

(8)St = (S1,t , S2,t , . . . , Sd,t) = (S1,0e
R1,t , S2,0e

R2,t , . . . , Sd,0e
Rd,t ).

(9)e−(r−qi)tSi,t = EQ[e−(r−qi)uSi,u|Ft ], 0 ≤ t ≤ u, i = 1, 2, . . . , d,

(10)
dQη

dP

∣

∣

∣

∣

Ft

= e�η,Rt �

EP[e�η,Rt �]
, t ≥ 0.
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where sj and γj are the jth components of s and γ , respectively.

Proof The fact that under Qη we still have a Lévy process follows from Theorem 33.2 
in Sato (1999). We now show that R1 ∼ TSα(σ , bη(s), γ ) under Qη . Theorem  25.17 
in Sato (1999) implies that the expectation in the denominator of (10) is finite when 
inf s∈Sd−1 bη(s) ≥ 0 and that this expectation can be evaluated by formal substitution of 
z = −iη in (1). Similarly, for z ∈ Rd , formal substitution of z − iη in (1) gives

Next, note that when inf s∈Sd−1 bη(s) ≥ 1 and 0 ≤ t < u we have

where the last line follows by the fact that Lévy processes have independent and station-
ary increments. For Qη to be risk-neutral, we need (9) to hold, which is equivalent to 
E(eRj,u−t ) = e(r−qj)(u−t) . Since

we have E(eRj,u−t ) = e(r−qj)(u−t) if and only if

as required.  �

In practice, one must calibrate the parameters of the distribution µ = TSα(σ , b, γ ) . 
Since, under the physical measure P , R is a Lévy process with R1 ∼ µ and 
Lévy processes have independent and stationary increments, it follows that 
Rt − Rt−1,Rt−1 − Rt−2, . . . ,R1

iid∼µ whenever t is a positive integer. Thus, the sequence 

(11)r − qj = γj +
∫

Sd−1
Ŵ(−α)[(bη(s)− sj)

α − bη(s)
α]σ(ds), j = 1, 2, · · · , d,

EQη (ei�z,Rt �) = EP

(

e
i�z,Rt � e

�η,Rt �

EP(e�η,Rt �)

)

= exp

{

t

[

�γ , iz + η� +
∫

Sd−1

∫ ∞

0
(e�s,iz+η�x − 1)

e−b(s)x

x1+α
dxσ(ds)

−�γ , η� −
∫

Sd−1

∫ ∞

0
(e�s,η�x − 1)

e−b(s)x

x1+α
dxσ(ds)

]

}

= exp

{

t

[

i�γ , z� +
∫

Sd−1

∫ ∞

0
(ei�s,z�x − 1)

e−(b(s)−�s,η�)x

x1+α
dxσ(ds)

]

}

.

EQη (e−(r−qj)uSj,u|Ft) = e−(r−qj)uSj,0EQη (eRj,u |Ft)

= e−(r−qj)uSj,0EQη (eRj,u−Rj,t+Rj,t |Ft)

= e−(r−qj)uSj,0e
Rj,tEQη (eRj,u−Rj,t |Ft)

= e−(r−qj)uSj,tEQη (eRj,u−Rj,t ) = e−(r−qj)uSj,tEQη (eRj,u−t ),

E(eRj,u−t ) = exp

[

(u− t)
(

γj +
∫

Sd−1

Ŵ(−α)((b(s)− �s, η�)− sj)
α

−(b(s)− �s, η�)α
)

σ(ds)
]

,

r − qj = γj +
∫

Sd−1
Ŵ(−α)[((b(s)− �s, η�)− sj)

α − (b(s)− �s, η�)α]σ(ds),
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of log-returns over one time period forms a random sample from µ , which can then 
be used to estimate the parameters using, e.g. the method of maximum likelihood or 
the method of moments. Since there is no closed form for the joint pdf of a multivari-
ate TS distribution, we instead use the method of characteristic functions discussed 
in Xia and Grabchak (2022). The details, in the context of the diagonal TS model, are 
discussed in Sect. 5 below.

Once we have estimates α̂ , γ̂ , b̂ , and σ̂ of the parameters under the physical measure 
P , our next step is to find the distribution under a risk-neutral measure Q . Toward 
this end, we must find a vector η ∈ Rd such that (11) holds. Numerically, we accom-
plish this by finding η̂ that satisfies

where b̂η(s) = b̂(s)− �s, η� and sj and γj are the jth coordinates of s and γ , respectively. 

So long as the value of the objective function at η̂ is close to 0 and b̂η̂(s) ≥ 1 , we have an 
equivalent risk-neutral measure Q = Qη̂ under which {Rt : t ≥ 0} is a Lévy process with 
R1 ∼ TSOα(Oσ ,ObOη,Oγ ) . This can then be used to price options.

For simplicity, we focus on European style options. Consider a European option, 
whose payoff at time T is H(ST ) , where ST  is given in terms of RT  by (8). In this case, 
at time 0, an arbitrage-free price of the option is given by

Some important payoff functions are:

All three are call options with maturity T and strike price K. The first is on the ith asset, 
the second is on the cheapest asset, and the third is on the most expensive asset. While 
the first can be evaluated using only univariate modeling, the rest require working with 
the joint distribution of returns on all assets. We call options with payoff function (15) 
a call on min and those with the payoff function (16) a call on max. To evaluate (13), we 
can use Monte-Carlo methods. The algorithm to do this is as follows.
Algorithm  1. Given: N is a large integer denoting the number of replications, 

TSα̂(σ̂ , b̂η̂, γ̂ ) is the calibrated distribution over one time period under the risk-neu-
tral measure, S0 = (S1,0, S2,0, . . . , Sd,0) is the vector of spot prices, T is the time to expi-
ration, and H is the payoff function. 

(12)η̂ = argmin
η∈Rd

d
∑

j=1

∣

∣

∣

∣

r − qj −
(

γ̂j + Ŵ(−α̂)

∫

Sd−1
[(b̂η(s)− sj)

α̂ − b̂η(s)
α̂]σ̂ (ds)

)∣

∣

∣

∣

,

(13)π = e−rTEQ[H(ST )].

(14)H(ST ) =
(

Si,T − K
)+

(15)H(ST ) =
(

min
i

Si,T − K

)+

(16)H(ST ) =
(

max
i

Si,T − K

)+
.
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1. Set π = 0.
2. Repeat N times: 

a. Simulate RT = (R1,T ,R2,T , . . . ,Rd,T ) from TSα̂(T σ̂ , b̂η̂, T γ̂ )

b. For j = 1, 2, . . . , d , set Sj,T = Sj,0e
Rj,T

c. Set ST = (S1,T , S2,T , . . . , Sd,T )

d. Set π = π +H(ST )

3. Return e−rT π/N .

The larger the value of N, the better this algorithm works. Note that we do not need 
to simulate a path of the process. We just need to simulate from the process at time 
T. Thus, to implement the algorithm we just need a way to simulate from the distribu-
tion TSα̂(T σ̂ , b̂η̂,T γ̂ ) . If σ̂ has a finite support, simulation can be done using Theorem 2 
and the discussion just below it. If the support of σ̂ is infinite, there are a number of 
approaches to simulation. For instance we can approximate the distribution by the case 
where the support is finite, see Xia and Grabchak (2022). Other approaches can be found 
in Rosiński (2007), Grabchak (2019), and the references therein.

The diagonal model
In the previous section, we introduced a general approach for pricing multi-asset 
options using TS Lévy processes. However, it is difficult to calibrate the general model 
as it depends on two infinite dimensional parameters: the function b and the measure 
σ . For the model to be tractable, we must make these finite dimensional. In Xia and 
Grabchak (2022) this is accomplished by approximating σ with a spectral measure that 
has finite support. However, that approach requires very many masses, which leads to a 
huge number of parameters and essentially fails for more that two dimensions. In this 
section we introduce a parsimonious TS model that works well even in higher dimen-
sions. We call it the diagonal TS model. For simplicity, we discuss everything in the con-
text of returns over one time period and we denote the return over this time period by 
R = (R1,R2 . . . ,Rd) instead of the more cumbersome R1 = (R1,1,R2,1 . . . ,Rd,1).

The diagonal model was first proposed, in the context of the normal distribution, by 
Sharpe (1963), see also Jorion (2007) for a discussion. The main idea is to assume that 
the common movements of all assets are due to a common factor represented by the 
market. Formally, we assume that there are d assets and that the return on the ith asset 
is given by

where γi,βi ∈ R for each i = 1, 2, . . . , d . Here Rm is the return on the market, βi is the 
responsiveness to the market return, γi is an overall shift, and εi is the residual return. 
It is typically assumed that Rm, ε1, ε2, . . . , εd are independent random variables. In the 
classical setting these are further assumed to have normal distributions. To allow for 
skewness and to ensure more realistic tails, we, instead, assume that they have one-
dimensional TS distributions. In light of (7), this means that each of them can be written 
as the difference of two independent STS random variables, which leads to the following 
model.

(17)Ri = γi + βiRm + εi, i = 1, 2, . . . , d,
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Let X1,X2, . . . ,X2d+2 be independent STS random variables such that Xi ∼ STSα(ai, bi) 
for i = 1, 2, . . . , 2d + 2 . Note that the parameter α is the same for all i. The model in (17) 
is then given by

In matrix notation, if R = (R1,R2, . . . ,Rd) , X = (X1,X2, . . . ,X2d+2) , γ = (γ1, γ2, . . . , γd) , 
and β = (β1, . . . ,βd) then

where

Without loss of generality and to ensure identifiability, we assume that β ∈ Sd−1 , i.e., 
that |β| = 1 , since, otherwise, we can incorporate |β| into the distributions of X2d+1 and 
X2d+2 . It follows that R ∼ TSα(σ , b, γ ) , where σ is given by (5) and b : Sd−1 �→ (0,∞) 
with b(si) = bi for i = 1, 2, . . . , d and b(s) = 1 for any s that is not a column of matrix S.

We denote the diagonal TS model by DiTSα(a, b,β , γ ) , where a = (a1, a2, . . . , a2d+2) , 
b = (b1, b2, . . . , b2d+2) , β = (β1,β2, . . . ,βd) , and γ = (γ1, γ2, . . . , γd) . Since |β| = 1 , we 
only need to estimate d − 1 parameters to estimate β , and, of course, we need one param-
eter to estimate α . Thus, in total, we must estimate 6d + 4 parameters. In comparison, 
the approach used in Xia and Grabchak (2022) is only feasible in d = 2 dimensions and 
assumes that the spectral measure has masses in k equally spaced directions, where k is 
a tuning parameter. The number of parameters needed in that model is 2k + d + 1 . In 
practice, when modeling returns, it seems that k needs to be large and Xia and Grabchak 
(2022) took k = 70 , which led to 143 parameters. In comparison, in the diagonal model, 
we only need 16 parameters in the two-dimensional case. Thus, the diagonal model is 
much more parsimonious. However, it requires us to estimate a direction vector β , 
whereas in the method of Xia and Grabchak (2022) all directions are prespecified.

To work with β we need a parametrization of the vectors in Sd−1 . Every vec-
tor s ∈ Sd−1 can be written in spherical coordinates, where it is uniquely deter-
mined by d − 1 angles, see e.g. Blumenson (1960) for details. We prefer to use 
the parametrization given in Tashiro (1977), which aims to have the parameters 
more uniformly traverse the sphere and was used there for the purpose of simu-
lation from a uniform distribution on Sd−1 . For ease of reference, we now give 
their representation of β for dimensions 2, 3, and 4. In the two-dimensional 
case, we write β = (β1,β2) in terms of one parameter θ ∈ [0, 1) as β1 = cos(2πθ) 
and β2 = sin(2πθ) . In the three-dimensional case, we write β = (β1,β2,β3) in 
terms of two parameters w ∈ [0, 1] , θ ∈ [0, 1) as β1 = w, β2 =

√
1− w2 cos(2πθ) , 

R1 =γ1 + (X1 − X2)+ β1(X2d+1 − X2d+2)

R2 =γ2 + (X3 − X4)+ β2(X2d+1 − X2d+2)

: : : : : : : :
Rd =γd + (X2d−1 − X2d)+ βd(X2d+1 − X2d+2).

(18)R = γ + SX ,

(19)S = (s1 s2 . . . s2d+2) =









1 − 1 . . . 0 0 β1 − β1
0 0 . . . 0 0 β2 − β2

: : . . . : : : :
0 0 · · · 1 − 1 βd − βd









.
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β3 =
√
1− w2 sin(2πθ) . Finally, in the four-dimensional case, we write 

β = (β1,β2,β3,β4) in terms of three parameters w ∈ [0, 1], θ1, θ2 ∈ [0, 1) as 
β1 =

√
w cos(2πθ1), β2 =

√
w sin(2πθ1), β3 =

√
1− w cos(2πθ2), β4 =

√
1− w sin(2πθ2).

We now turn to the problem of parameter estimation. Let � denote the parameter 
space of the diagonal TS model. Our estimation method is based on finding the TS 
distribution that minimizes the distance between its characteristic function and the 
empirical characteristic function. Let x1, x2, . . . , xn be a random sample from the diag-
onal TS model with d assets. Each xj = (x1,j , x2,j , . . . , xd,j) ∈ Rd represents a vector of 
log-returns over one time period. The empirical characteristic function is given by

Next we choose z1, z2, . . . , zm ∈ Rd for some tuning parameter m and estimate the vec-
tor of parameters θ by

where µ̂θ is the characteristic function of a TS distribution with parameter vector θ . In 
Xia and Grabchak (2022) it is shown that for any z ∈ Rd

where

and s2d+1 = −s2d+2 = β.
In practice, we found that the optimization in (20) works better if the data has first 

been standardized by scaling and centering. This also reduces the number of param-
eters over which we need to optimize. The idea is to let x̄k and ν̂k be the sample mean 
and sample standard deviation, respectively, of the kth component of the data, for 
k = 1, 2, . . . , d . Next, for j = 1, 2, . . . , n , we let yj = (y1,j , y2,j , . . . , yd,j) , where

are the standardized observations. Equivalently,

µ̂E(z) =
1

n

n
∑

j=1

ei�z,xj� = 1

n

n
∑

j=1

cos(�z, xj�)+
i

n

n
∑

j=1

sin(�z, xj�), z ∈ Rd .

(20)

θ̂ = argmin
θ∈�

m
∑

ℓ=1

|µ̂E(zℓ)− µ̂θ (zℓ)|2

= argmin
θ∈�

m
∑

ℓ=1

(

|ℜµ̂E(zℓ)−ℜµ̂θ (zℓ)|2 + |ℑµ̂E(zℓ)− ℑµ̂θ (zℓ)|2
)

,

µ̂θ (z) = exp
{

A(z)
}

(

cos
(

B(z)
)

+ i sin
(

B(z)
)

)

,

A(z) =Ŵ(−α)

2d+2
∑

j=1

aj

(

(b2j + �sj , z�2)α/2 cos
(

α arctan

( �sj , z�
bj

))

− bαj

)

,

B(z) =�γ , z� − Ŵ(−α)

2d+2
∑

j=1

aj(b
2
j + �sj , z�2)α/2 sin

(

α arctan

( �sj , z�
bj

))

,

yk ,j =
xk ,j − x̄k

ν̂k
, k = 1, 2, . . . , d

(21)yj = A−1
(

xj − x̄
)

, j = 1, 2, . . . , n,
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where A = diag(ν̂1, ν̂2, . . . , ν̂d) and x̄ = (x̄1, x̄2, . . . , x̄d) . While the observations 
y1, y2, . . . , yn are no longer independent, so long as the sample size n is large, the esti-
mates of the means and standard deviations will have very small variances and thus the 
deviation from independence will be negligible. We will treat y1, y2, . . . , yn as a random 
sample from the diagonal TS model and use this sample to estimate the parameters. 
After centering, we can estimate the mean of the standardized observations to be zero. 
In light of (2), this means that

Thus, we do not need to estimate γ in this case. Instead, we just use (22) in place of γ in 
the formula for B(z). Now we only need to estimate 5d + 4 parameters. Once we have 
estimated the parameters for the standardized dataset, we transform them to estimated 
parameters of the original dataset x1, x2, . . . , xn using Theorem 1.

Specifically, assume that the estimated model for the standardized data is 
DiTSα̂′(â

′, b̂′, β̂ ′, γ̂ ′) , where we find γ̂ ′ by plugging estimated values of the other parameters 
into (22). Theorem 1 implies that the estimated model for the original unstandardized data 
is DiTSα̂(â, b̂, β̂ , γ̂ ) , where α̂ = α̂′ , β̂ = Aβ̂ ′

|Aβ̂ ′| , γ̂ = Aγ̂ ′ + x̄ , and the components of the vec-

tors â and b̂ are as follows. For i = 1, 2, . . . , 2d we have âi = â′iν̂
α̂
i/2 and b̂i = b̂′i/ν̂i/2 if i is 

even and âi = â′iν̂
α̂
(i+1)/2 and b̂i = b̂′i/ν̂(i+1)/2 if i is odd. For i = 2d + 1, 2d + 2 we have 

âi = â′i|Aβ̂ ′|α̂ and b̂i = b̂′i|A−1β̂| = b̂′i/|Aβ̂ ′|.
We now turn to the problem of estimating the parameters under the risk-neutral meas-

ure. Toward this end, let

let ŝi be the ith column of Ŝ , and note that the estimated spectral measure is 
σ̂ =

∑2d+2
i=1 âiδŝi . We can find an equivalent risk-neutral measure by estimat-

ing η̂ using (12). Next, for i = 1, 2, . . . , 2d + 2 , set b̂i,η̂ = b̂i − �ŝi, η̂� and let 
b̂η̂ = (b̂1,η̂, b̂2,η̂, . . . , b̂2d+2,η̂) . With this notation, DiTSα̂(â, b̂η̂, β̂ , γ̂ ) is the estimated 
model under the risk-neutral measure.

We can now price options using Algorithm  1. We just need a method for simulation 
in Step 2a. Specifically, we need to simulate a vector RT from what is there denoted by 
TSα̂ (T σ̂ , b̂η̂, T γ̂ ) and is now, in our current notation, denoted DiTSα̂ (Tâ, b̂η̂, β̂ , T γ̂ ) . 
From (18) it follows that this simulation can be done by first simulating independent ran-
dom variables X1,X2, . . . ,X2d+2 , where Xi ∼ STSα(Tâi, b̂i,η̂) for i = 1, 2, . . . , 2d + 2 and 
then taking

where X = (X1,X2, . . . ,X2d+2).

(22)γ = −Ŵ(1− α)

∫

Sd−1
(b(s))α−1sσ(ds) = −Ŵ(1− α)

2d+2
∑

j=1

aj(b(sj))
α−1sj .

Ŝ =











1 − 1 . . . 0 0 β̂ ′
1 − β̂ ′

1

0 0 . . . 0 0 β̂ ′
2 − β̂ ′

2

: : . . . : : : :
0 0 · · · 1 − 1 β̂ ′

d − β̂ ′
d











,

RT = T γ̂ + ŜX ,
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Data analysis
In this section we apply our methodology to the modeling of several real-world finan-
cial datasets. For each example, we select a basket of stocks from the same sector. All 
of the data was downloaded from Yahoo! Finance. The simulations were performed on 
a MacBook Pro M1 Pro with 10-core CPU and 16-core GPU. On this computer, the 
two-dimensional example took 3.32 minutes, the three-dimensional example took 11.62 
minutes, and the four-dimensional example took 33.13 minutes. These times include 
preprocessing, fitting the data, finding the risk neutral parameters, and performing 
Monte-Carlo option pricing.

Two‑dimensional example

In this example we consider a basket of two stocks: Meta Platforms, Inc. (META) and 
Alphabet, Inc. (GOOGL). The dataset consists of vectors of log-returns on the closing 
prices for the period from May 31, 2012 to March 25, 2021. We note that the data for 
GOOGL has not been adjusted to reflect the 2022 stock split. The first component in the 
vector corresponds to META and the second to GOOGL for the same day. In total, the 
data consists of 2218 ordered pairs. We randomly split the data into two halves: training 
data and testing data, each consisting of 1109 pairs. Next, we check for normality. Fig-
ure 1 gives normal qq-plots for each component of the testing data. We also performed 
an adjusted Jarque-Bera test for normality on each component separately. In both cases, 
the p-value was less than 10−16 . Clearly, the normal distribution is not reasonable for 
either component. Instead, we follow our methodology and fit a bivariate diagonal TS 
model.

To fit the model, we begin by estimating the means and standard devia-
tions of each component separately. We then standardize the training data as in 
(21). After standardizing the data, we do not need to fit the drift γ , thus there are 
14 parameters remaining to be fit. For this reason we take m = 14 to be the num-
ber of zℓ ’s in (20). We chose these to be evenly spaced on S1 . Specifically, we take 
zℓ = (cos θℓ, sin θℓ) with θℓ = 2π(ℓ− 1)/m , for ℓ = 1, 2, . . . ,m . Next, we fit the 
parameters using the standardized training data by minimizing the objective func-
tion in (20). To perform the optimization we first used Particle Swarm Optimiza-
tion (Kennedy and Eberhart 1995) as implemented in the hydroPSO function of the 

Fig. 1 Example d = 2 . Normal qq-plots for the testing data
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“hydroPSO” R package, to get initial values. These were then plugged into the optim 
function in R with the L-BFGS-B option. After optimization, the value of the objec-
tive function was 9.330× 10−5 . Next we applied Theorem  1 to get parameter esti-
mates for the original unstandardized data. We found the estimated distribution to 
be DiTSα̂ (â, b̂, β̂ , γ̂ ) with α̂ = 0.014 , â = (1.560, 1.250, 0.434, 0.000, 0.461, 0.713) , 
b̂ = (105.465, 118.740, 102.327, 109.843, 43.709, 40.720) , β̂ = (0.485, 0.515) , and 
γ̂ = (−9.470× 10−5, 3.816 ∗ 10−5).

Next, we check the goodness-of-fit. Since it is computationally intractable to 
evaluate the cdfs and pdfs of bivariate TS distributions, we use simulation-based 
approaches. Toward this end, we began by simulating 1109 observations from the fit-
ted (i.e., estimated) model. We refer to this as the fitted data. It has the same number 
of observations as the testing data. In Fig. 2 we give qq-plots comparing the quantiles 
of the testing and fitted data. These suggest that the diagonal TS model provides a 
much better fit than the normal distribution. We also performed formal goodness-
of-fit testing. First, we performed Kolmogorov–Smirnov (KS) tests comparing each 
component of the testing and fitted data, separately. The p-values for the first and sec-
ond components are 0.499 and 0.210, respectively. Next, we tested both components 
together, using the kernel consistent density equality test, which was introduced in 
Li et al. (2009) and is implemented in the npdeneqtest function of the R package ‘np’. 
Here, the p-value is 0.788. These results suggest that the estimated diagonal TS model 
is reasonable for this data.

We now turn to the problem of finding a risk-neutral measure and pricing options. 
We measure time in trading days and, for concreteness, we assume that time t = 0 
corresponds to when the market closed on Oct 22, 2021. Since META and GOOGL 
are both non-dividend paying stocks, we take the dividend rate to be 0 in both cases. 
For the interest rate, we use the yield on the 13-week treasury bill to be the annualized 
interest rate. On Oct 22, 2021 the yield was $0.05 . Transforming it to a daily interest 
rate gives r = 0.05/252 = 1.984 × 10−4 . Next, we use (12) to calibrate parameter η . 
The optimization is performed using hydroPSO and we find η̂ = (−2.546,−2.488) . At 
this value the objective function is 2.229 ∗ 10−15 , which is very close to 0. It follows 
that, under the risk-neutral measure, the distribution of the log-return over one day 

Fig. 2 Example d = 2 . We give qq-plots comparing the testing and the fitted data. The x-axis is quantiles of 
test data and y-axis is quantiles of fitted data. The solid line is y = x
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is DiTSα̂ (â, b̂η̂, β̂ , γ̂ ) with b̂η̂ = (108.012, 116.194, 104.814, 107.355, 46.225, 38.204) . 
Since we are assuming that the dynamics of the log-return follow a Lévy process, the 
log-return over a period of T days has distribution DiTSα̂(Tâ, b̂η̂, β̂ , T γ̂ ) under the 
risk-neutral measure.

We can now use Monte-Carlo methods to price options. For simplicity, we focus on 
European-style options. In this case, we just need to evaluate (13) with the appropri-
ate pay-off function. We do this using Algorithm 1 with N = 5000 replications. For all 
options considered in this section, we take the time to expiration to be T = 5 trading 
days, which (ignoring weekends) corresponds to expiration on Oct 29, 2021.

To get a baseline for the performance of our method, we begin by considering options 
based on just one asset. Such options are traded on standard exchanges and price data is 
readily available. In Table 1, we price four European call options, two for each company, 
and compare with the market prices. In the column labeled ‘ DiTS ’ we give the estimated 
price under our model and, for a comparison, in the column labeled ‘BS’ we give the 
estimated price under the classical Black–Scholes model. In both cases, we compare the 
estimated price with the market price using the relative error, which is given by

We can see that the relative error is always smaller for our model than for Black–Scholes. 
This is not surprising, as the Black–Scholes model assumes that returns follow a normal 
distribution, which is an assumption that we already rejected.

We note that, when comparing estimated prices to market prices, one needs to be 
careful in how S0 is selected. Even if the market price is the closing price for the option 
on a given day, one should not, in general, select S0 to be the closing price for the stock. 
This is because stocks tend to be more liquid than options. Thus, while the last trade of 
the day on a stock is likely to be from very close to when the market closed, the last trade 
for the option is likely to be from much earlier. As such, to make things comparable, 
we select S0 to be the price of the stock at the time when the last trade on the option 
occurred.

Next, we turn to the pricing of multi-asset options. Specifically, European call on min 
and call on max options. These are not traded on standard exchanges and price data is 
limited. For this reason, we do not make a comparison with market prices and we take 
S0 to be the closing prices of the two stocks. The results for 21 different strike prices are 
given in Tables 2 and 3.

Rel Error = Estimated Price−Market Price

Market Price
× 100%.

Table 1 Example d = 2 . Comparison of option price from DiTS and BS models with market prices. 
Here, ‘Rel Error’ refers to relative error. It is positive when we overestimate and negative when we 
underestimate

Stock S0 DiTS DiTS Rel 
error (%)

BS BS Rel error (%) Market price

META (K = 210) $326.35 $115.90 1.4 $116.56 2.0 $114.30

META (K = 250) $324.14 $73.74 2.2 $74.39 3.1 $72.17

GOOGL (K = 2250) $2758.07 $507.63 −0.0 $510.31 0.5 $508.00

GOOGL (K = 2500) $2774.03 $277.00 −0.7 $276.51 −0.9 $279.00
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Throughout this paper, we use N = 5000 replications for Monte-Carlo option pricing. 
We now show that this is large enough to get convergence. In Fig. 3 we plot the prices of 
call options on META and GOOGL using n Monte-Carlo replications as n ranges from 
1 to 5000. We can see that, in both cases, the option price seems to converge by the time 
we get to n = 1500 and are quite stable by n = 5000 . We performed similar experiments 
with the assets used in the three and four dimensional cases and obtained similar results.

Three‑dimensional example

We now consider a basket of three stocks: Netflix, Inc. (NFLX), DISH Network Corpo-
ration (DISH), and Charter Communications, Inc. (CHTR). All three are non-dividend 
paying stocks. The data consists of vectors of log-returns of closing prices from June 30, 
2011 to June 30, 2021 and contains 2516 ordered triplets. We randomly split the data 
into training and testing datasets, each consisting of 1258 data points. Figure 4 gives nor-
mal qq-plots for each component of the testing data. Further, an adjusted Jarque-Bera 
test was performed on each component of the testing data. In all cases the p-value was 

Table 2 Example d = 2 . Multi-asset call on min option prices for several values of the strike price K 

K $269.16 $275.16 $281.16 $287.16 $293.16 $299.16 $305.16

Price $54.62 $48.63 $42.64 $36.66 $30.73 $24.91 $19.31

K $311.16 $317.16 $323.16 $329.16 $335.16 $341.16 $347.16

Price $14.14 $9.65 $6.07 $3.55 $1.94 $0.99 $0.47

K $353.16 $359.16 $365.16 $371.16 $377.16 $383.16 $389.16

Price $0.21 $0.08 $0.04 $0.02 $ 0.01 $0.003 $0.00

Table 3 Example d = 2 . Multi-asset call on max option prices for several values of the strike price K 

K $2405.84 $2445.84 $2485.84 $2525.84 $2565.84 $2605.84 $ 82645.84

Price $366.35 $326.42 $286.57 $246.88 $207.42 $168.48 $130.92

K $2685.84 $2725.84 $2765.84 $2805.84 $2845.84 $2885.84 $2925.84

Price $95.91 $65.17 $40.28 $22.42 $11.37 $5.35 $2.40

K $2965.84 $3005.84 $3045.84 $3085.84 $3125.84 $3165.84 $3205.84

Price $1.04 $0.47 $0.22 $0.10 $0.06 $0.03 $0.02

Fig. 3 Convergence in the Monte-Carlo pricing. The x-axis is the number of replications and y-axis is the 
resulting option price
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less than 10−16 . Clearly, the normal distribution is not reasonable for any component. 
Instead, we follow our methodology and fit a three-dimensional diagonal TS model.

The approach is similar to what we did in the two-dimensional case. This time, after 
standardizing the data, we must fit 19 parameters and we take m = 19 to be the num-

ber of zℓ ’s in (20). Specifically, we take zℓ = (wℓ,
√

1− w2
ℓ cos θℓ,

√

1− w2
ℓ sin θℓ) , 

where θℓ = 2π(ℓ− 1)/m and wℓ = ℓ/m for ℓ = 1, 2, . . . ,m . After optimization, the 
value of the objective function was 2.521× 10−4 . We again apply Theorem 1 to get the 
parameter values of the original, untransformed data. We found the estimated distri-
bution to be DiTSα̂(â, b̂, β̂ , γ̂ ) with α̂ = 0.032 , â = (1.916, 0.584, 0.396, 0.078, 0.690, 
1.656, 2.691, 2.567) , b̂ = (122.884, 67.043, 66.179, 36.556, 46.974, 76.662, 91.611, 78.544) , 
γ̂ = (−0.007, −0.002, 0.010) , and β̂ = (0.372, 0.382, 0.246).

To check the goodness-of-fit, we simulated 1258 observations from the fitted model. 
We refer to this as the fitted data. In Fig. 5 we give qq-plots comparing the quantiles 
of the testing and the fitted data. While not perfect, there is a clear improvement over 
the normal model. Next, we perform KS tests for each component separately. The 
p-values range from 0.138 to 0.715. Finally, we test all of the components together 
using the kernel consistent density equality test and obtain a p-value of 0.667. The 
results suggest that the estimated diagonal TS model is reasonable for this data.

Next, we turn to option pricing. We take Nov 18, 2021 (at closing) to Nov 26, 2021 to 
be the period of the option. Thus, the time to maturity is T = 6 . We again use the yield 
on the 13-week treasury bill as the annualized interest rate. Its closing price on Nov 18, 
2021 was $0.045 , which leads to a daily interest rate of r = 0.045/252 = 1.786× 10−4 . 
Using (12), we calibrate parameter η and get η̂ = (−30.434, −13.327, 23.153) . The 
value of the objective function is 6.396 ∗ 10−16 , which is very close to 0. It follows 

Fig. 4 Example d = 3 . Normal qq-plots for the testing data

Fig. 5 Example d = 3 . We give qq-plots comparing the testing and the fitted data. The x-axis is quantiles of 
test data and y-axis is quantiles of fitted data. The solid line is y = x
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that, under the risk-neutral measure, the distribution of the log-return over one day 
is DiTSα̂(â, b̂η̂, β̂ , γ̂ ) with b̂η̂ = (153.318, 36.608, 79.506, 23.230, 23.821, 99.815,   
102.335, 67.820).

For Monte-Carlo option pricing we again use Algorithm  1 with N = 5000 replica-
tions and for a baseline, we again begin with options on a single asset. Table 4 compares 
our prices with the market price and with the price from the Black–Scholes model. Our 
model again outperforms Black–Scholes. Turning to multi-asset options, Tables 5 and 6 
give prices for European call on min and call on max options for several choices of the 
strike prices.

Four‑dimensional example

In this example we consider a basket of four stocks: Advanced Micro Devices, Inc. 
(AMD), Fiserv, Inc. (FISV), Micron Technology, Inc. (MU), and Autodesk, Inc. (ADSK). 
The data consists of vectors of log-returns from June 30, 2011 to June 30, 2021 and 

Table 4 Example d = 3 . Comparison of option price from DiTS and BS models with market prices. 
Here, ‘Rel Error’ refers to relative error. It is positive when we overestimate and negative when we 
underestimate

Stock S0 DiTS DiTS Rel 
error (%)

BS BS rel error (%) Market price

DISH (K = 30) $34.58 $4.70 −1.1 $4.61 −2.9 $4.75

DISH (K = 37) $34.54 $0.14 7.7 $0.00 −100.0 $0.13

CHTR (K = 670) $683.23 $16.91 −0.2 $13.95 −17.7 $16.95

CHTR (K = 710) $684.03 $1.51 6.3 $0.00 −100 $1.42

NFLX (K = 510) $686.91 $176.82 0.5 $177.46 0.9 $175.89

NFLX (K = 550) $686.64 $137.72 −0.5 $137.13 −0.9 $138.35

Table 5 Example d = 3 . Multi-asset call on min option prices for several values of the strike price K 

K $25.37 $26.07 $26.77 $27.47 $28.17 $28.87 $ 29.57 $30.27

Price $9.02 $8.32 $7.63 $6.93 $6.23 $5.54 $4.86 $4.18

K $30.97 $31.67 $32.37 $33.07 $33.77 $34.47 $35.17 $35.87

Price $3.51 $2.87 $2.27 $1.72 $1.24 $0.84 $0.53 $0.30

K $36.57 $37.27 $37.97 $38.67 $39.37 $40.07 $40.77 $41.47

Price $0.16 $0.08 $0.03 $0.01 $0.005 $0.002 $0.001 $0.00

Table 6 Example d = 3 . Multi-asset call on max option prices for several values of the strike price K 

K $574.80 $597.30 $619.80 $642.30 $664.80 $687.30 $709.80 $732.80

Price $136.85 $114.39 $91.98 $69.90 $49.10 $31.58 $19.29 $12.06

K $754.80 $777.30 $799.80 $822.30 $844.80 $867.30 $889.80 $912.30

Price $7.81 $5.16 $3.47 $2.32 $1.53 $1.04 $0.70 $0.46

K $934.80 $957.30 $979.80 $1002.30 $1024.80 $1047.30 $1069.80 $092.30

Price $0.30 $0.18 $0.11 $0.06 $0.04 $0.02 $0.01 $0.001
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contains 2516 ordered quadruples. We randomly split the data into training and test-
ing datasets, each consisting of 1258 data points. To check normality, qq-plots for each 
component of the testing data are given in Fig. 6. Further, an adjusted Jarque-Bera test 
was performed on each component of the testing data separately, with each resulting in 
a p-value less than 10−16 . Clearly, the normal distribution is not reasonable for either 
component. Instead, we follow our methodology and fit a four-dimensional diagonal TS 
model.

After standardizing the data, we must fit 24 parameters. Thus, we took m = 24 to be 
the number of zℓ ’s in (20). We take zℓ = (

√
wℓ cos θℓ,

√
wℓ sin θℓ , 

√
1− wℓ cos θ

′
ℓ , 

√
1− wℓ sin θ

′
ℓ) , where θℓ =

2π(ℓ− 1)

m
 , θ ′ℓ =

π(2ℓ− 1)

m
 , and wℓ = ℓ/m for 

ℓ = 1, 2, . . . ,m . After optimization, the value of the objective function was 2.717× 10−3 . 
Applying Theorem 1, we get parameter estimates for the original, untransformed data. 
We found the estimated distribution to be DiTSα̂(â, b̂, β̂ , γ̂ ) with α̂ = 0.0103 , 
â = (0.962, 1.095, 0.794, 1.001, 1.853, 1.618,   0.815, 0.314, 1.854, 0.937) ; b̂ = (46.993,

66.275, 122.963, 122.520, 73.792, 93.638, 72.149, 54.961, 29.384, 30.528) , β̂ = (−0.322, 
−0.134, −0.324, −0.219) , and γ̂ = (0.008, 0.007, 0.004, 0.003).

Next, we turn to goodness-of-fit testing. We begin by simulating 1258 observations 
from the fitted model, which we again refer to as the fitted data. In Fig. 7, we give qq-
plots comparing the quantiles of the testing and the fitted data. We can see an improve-
ment over the normal model. Next, we performed KS tests for each component and 
found that the p-values ranged from 0.165 to 0.840. We also performed a kernel consist-
ent density equality test, which gave a p-value of 0.667. The results suggest that the esti-
mated diagonal TS model is reasonable for this data.

For our options, we consider the period from May 3, 2022 to May 13, 2022. Thus, 
(ignoring weekends) the time to maturity is T = 8 . We again use the yield on the 13-week 
treasury bill as the annualized interest rate. Its closing price on May 3, 2022 was $0.898 , 
which leads to a daily interest rate of r = 0.898/252 = 3.563× 10−4 . The only dividend 

Fig. 6 Example d = 4 . Normal qq-plots for the testing data

Fig. 7 Example d = 4 . We give qq-plots comparing the testing and the fitted data. The x-axis is quantiles of 
test data and y-axis is quantiles of fitted data. The solid line is y = x
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paying stock is MU, which had a dividend rate of 1.671× 10−5 . Using (12) we calibrate 
parameter the η and get η̂ = (7.152, 53.246,−5.530,−11.476) . The value of the objective 
function is 4.268× 10−15 , which is again very close to 0. It follows that, under the risk-
neutral measure, the distribution of the log-return over one day is DiTSα̂(â, b̂η̂, β̂ , γ̂ ) 
with b̂η̂ = (39.841, 73.426, 69.717, 175.767, 79.322, 88.108,   83.626,   43.485,   34.540,   
25.372).

For Monte-Carlo option pricing, we again use Algorithm 1 with N = 5000 replications 
and, for a baseline, we begin with options on a single asset. Table 7 compares our prices 
with the market price and with the price from the Black–Scholes model. Our model 
again outperforms Black–Scholes. Turning to multi-asset options, Tables  8 and 9 give 
prices for European call on min and call on max options for several choices of the strike 
price.

Table 7 Example d = 4 . Comparison of option price from DiTS and BS models with market prices. 
Here, ‘Rel Error’ refers to relative error. It is positive when we overestimate and negative when we 
underestimate

Stock S0 DiTS DiTS Rel error 
(%)

BS BS rel error (%) Market Price

AMD (K=66) $90.50 $24.98 2.6 $26.35 8.2 $24.35

AMD (K=60) $89.91 $30.04 0.5 $31.60 5.9 $29.90

FISV (K=99) $99.68 $2.89 1.4 $3.46 21.4 $2.85

FISV (K=103) $99.65 $1.03 2.0 $0.00 − 100.0 $1.01

MU (K=61) $71.30 $10.65 0.0 $12.01 12.8 $10.65

MU (K=69) $71.11 $4.12 0.5 $4.05 − 1.2 $4.10

ADSK(K=195) $193.07 $5.66 − 2.4 $3.55 − 38.8 $5.80

ADSK(K=205) $191.73 $2.00 4.2 $0.00 − 100.0 $1.92

Table 8 Example d = 4 . Multi-asset call on min option prices for several values of the strike price K 

K $49.27 $51.27 $53.27 $55.27 $57.27 $59.27 $61.27 $63.27 $65.27

Price $21.95 $20.01 $18.07 $16.13 $14.18 $12.25 $10.35 $8.49 $6.74

K $67.27 $69.27 $71.27 $73.27 $75.27 $77.27 $79.27 $81.27 $83.27

Price $5.13 $3.73 $2.58 $1.70 $1.07 $0.65 $0.37 $0.20 $0.11

K $85.27 $87.27 $89.27 $91.27 $93.27 $95.27 $97.27 $99.27 $101.27

Price $0.05 $0.028 $0.015 $0.008 $0.005 $0.003 $0.002 $0.001 $0.00

Table 9 Example d = 4 . Multi-asset call on max option prices for several values of the strike price K 

K $153.31 $156.81 $160.31 $163.81 $167.31 $170.81 $174.31 $177.81 $181.31

Price $42.96 $39.56 $36.16 $32.76 $29.37 $26.00 $22.66 $19.36 $16.16

K $184.81 $188.31 $191.81 $195.31 $198.81 $202.31 $205.81 $209.31 $ 212.81

Price $13.10 $10.25 $7.73 $5.57 $3.83 $2.52 $1.57 $0.95 $0.55

K $216.31 $219.81 $223.31 $226.81 $230.31 $233.81 $237.31 $240.81 $244.31

Price $0.31 $0.16 $0.08 $0.04 $0.02 $0.01 $0.003 $0.001 $0.00
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Conclusion
In this paper we considered multi-asset option pricing using multivariate TS Lévy pro-
cesses. These models satisfy many stylized facts about financial returns and are known to 
be realistic and to provide a good fit to real-world data. There had previously been only 
limited work in this area, most of which focused on the bivariate case.

We accomplished four main tasks. First, we stated and proved Theorem 3, which gives 
an approach for finding a risk-neutral measure for essentially any TS Lévy process. Sec-
ond, we developed the TS diagonal model, where the number of parameters grows only 
linearly in the dimension. Third, we fit this model to real-world datasets in three, four, 
and five dimensions. Detailed goodness-of-fit methods where used to show that the 
model fits well, whereas the more standard normal distributions (i.e. geometric Brown-
ian motion) does not provide a good fit. Fourth, we used our model for option pricing, 
and we found that it gives prices that are closer to market prices than those provided by 
the classical Black–Scholes model.

There are several directions for future work. First, it is important to apply the model 
to more datasets and to verify how well it works. Second, while the current model satis-
fies many stylized facts about financial returns, it does not model volatility clustering. 
In future work, we will add this component to the model. This can be done using, e.g, 
a multivariate GARCH model (Rombouts and Stentoft 2011) or a multivariate stochas-
tic volatility model (Muhle-Karbe et  al. 2012). Third, in Theorem 3, in order to find a 
risk-neutral measure, we need to satisfy the assumption inf s∈Sd−1 bη(s) ≥ 1 . While, in 
practice, this was satisfied for all of the data that we analyzed and does not seem to be 
an issue, there may be situations where it is not satisfied. One can remove this assump-
tion by considering tempering functions of the form qp(x, s) = e−b(s)xp for some p > 1 . 
See Grabchak (2021) and the references therein for a discussion of TS distributions with 
such tempering functions. We note that this model presents additional challenges as 
there is no closed form for its characteristic function, which would need to be evaluated 
numerically.
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