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Abstract 

The paper analyzes the cryptocurrency ecosystem at both the aggregate and individ-
ual levels to understand the factors that impact future volatility. The study uses high-
frequency panel data from 2020 to 2022 to examine the relationship between several 
market volatility drivers, such as daily leverage, signed volatility and jumps. Several 
known autoregressive model specifications are estimated over different market 
regimes, and results are compared to equity data as a reference benchmark of a more 
mature asset class. The panel estimations show that the positive market returns 
at the high-frequency level increase price volatility, contrary to what is expected 
from the classical financial literature. We attributed this effect to the price dynamics 
over the last year of the dataset (2022) by repeating the estimation on different time 
spans. Moreover, the positive signed volatility and negative daily leverage positively 
impact the cryptocurrencies’ future volatility, unlike what emerges from the same 
study on a cross-section of stocks. This result signals a structural difference in a nascent 
cryptocurrency market that has to mature yet. Further individual-level analysis confirms 
the findings of the panel analysis and highlights that these effects are statistically sig-
nificant and commonly shared among many components in the selected universe.
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Introduction
Cryptocurrencies have continuously gained popularity since Bitcoin (BTC), the first and 
most well-known cryptocurrency, was created in 2009, right after the 2008 financial cri-
sis, as a response to traditional financial institutions’ perceived lack of trust. Since its 
advent, many other cryptocurrencies have emerged, with around a 400% growth in the 
number of traded coins and tokens on multiple exchanges since the beginning of 2020.1 
The rise of digital currencies can be attributed to several factors due to the heterogene-
ous nature and use cases each has. One reason behind this sharp increase in interest is 
their potential for enhancing financial freedom and removing intermediaries from finan-
cial transactions. Individuals can make peer-to-peer transactions with cryptocurrencies 

*Correspondence:   
alessio.brini@duke.edu

1  Pratt School of Engineering, 
Duke University, Durham, USA

1 https:// www. stati sta. com/ stati stics/ 863917/ number- crypto- coins- tokens/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40854-024-00646-y&domain=pdf
http://orcid.org/0000-0003-1121-818X
https://www.statista.com/statistics/863917/number-crypto-coins-tokens/


Page 2 of 38Brini and Lenz  Financial Innovation          (2024) 10:122 

without a central authority or intermediaries. This characteristic has made them par-
ticularly appealing to those concerned about government control and censorship in 
traditional financial systems. Another relevant factor contributing to the popularity of 
cryptocurrencies is their growing acceptance and use as a form of payment by mer-
chants and businesses in less-developed countries where only some have access to a tra-
ditional bank account. Furthermore, the development of decentralized finance (DeFi) 
platforms, such as decentralized exchanges or lending protocols, has provided additional 
motivation to enter the cryptocurrency ecosystem for those who may have previously 
been excluded from traditional financial systems. However, beyond those premises, the 
cryptocurrency market is still relatively immature and subjected to substantial uncer-
tainty and sudden failures. In that regard, the cryptocurrency market historically showed 
high volatility traits (Bouri et  al. 2019, 2020a, b) and potential for significant returns, 
resulting in being attractive for retail investors. Therefore, despite its growing popularity, 
the cryptocurrency market, if viewed in the context of price versus more mature asset 
classes, is notoriously unstable, with frequent and substantial fluctuations in value.

A known stylized fact of traditional financial market is the asymmetric impact of 
financial returns on the future volatility of the assets, referred to as the leverage effect 
(Black 1976), in which negative returns increase the asset’s volatility more than positive 
returns (Bollerslev et al. 2006; Bollerslev and Zhou 2006; Carr and Wu 2017). The pres-
ence of the leverage effect in a financial return series is often motivated by the market 
participants’ response to adverse shocks. The increased volatility due to negative returns 
can start a self-reinforcing mechanism that leads to sudden asset “firesales”, exacerbating 
the uncertainty even further. Given the novelty of cryptocurrencies as an asset class, it 
is essential to determine if the asymmetric effect of volatility, commonly seen in mature 
markets, is also present here. The unclear classification of cryptocurrencies on whether 
they align with established asset classes or stand apart Baur et al. (2018); Corbet et al. 
(2018), compounded by the evolving regulatory landscape Shanaev et al. (2020), makes 
this investigation particularly crucial to provide a starting point for a sound and data-
driven comparison that can reflect how the market perceives cryptocurrencies. Some 
previous work tested the asymmetric effect of cryptocurrency returns at daily frequency 
(Phillip et al. 2018; Baur and Dimpfl 2018; Brini and Lenz 2022) on a more or less com-
prehensive cross-section of cryptocurrencies. The results at the daily level detect the 
absence of a statistically significant leverage effect in such a market, showing an inver-
sion of the asymmetric effect of returns. In this case, investors exploit market crashes as 
a buying opportunity to enter at a perceived discount. This absence of panicking behav-
iors among market participants indifferent to the sign of the returns in terms of reac-
tion size let them enter the market without understanding the asset class, for the most 
part, investing money because this is considered a new investment with many potential 
opportunities.

This paper extends the analysis of the price volatility inherent in the cryptocurrency 
market at a higher frequency level, exploring its dynamics and explaining its main driv-
ers. The developing interest in cryptocurrencies from regulatory bodies partially stems 
from the lack of clarity regarding their classification as an asset class (Corbet et  al. 
2019). A detailed study of market behaviors, such as the asymmetric effects on vola-
tility, can contribute to a deeper understanding of the fundamental characteristics of 
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cryptocurrencies. By comparing these behaviors with those observed in established 
asset classes, we can provide insights that may assist in developing appropriate regu-
latory measures other than better-informed investment choices. Such insights are par-
ticularly valuable given the cryptocurrency markets’ rapid growth and the increasing 
number of market participants. Therefore, the outcomes of such analysis can inform 
the direction of regulatory policies, ensuring they are based on empirical evidence of 
the asset class’s inherent nature. Our analysis aims to understand the cryptocurrency’s 
volatility dynamics that emerge from high-frequency data due to different market par-
ticipants since retail investors usually operate on daily if not lower frequencies (Auer 
et al. 2022). Previous works (Jha and Baur 2020; Ftiti et al. 2021) have already studied the 
volatility dynamics of cryptocurrency at a frequency higher than daily. However, these 
analyses are restricted to a single or few cryptocurrencies, and the insights are detected 
and described only within the realm of the crypto ecosystem. We extend the analysis 
in three directions to further elaborate on these aspects. First, we consider historical 
high-frequency cryptocurrency data represented by a large cross-section of coins and 
tokens to understand the volatility dynamics of the global cryptocurrency market. We 
significantly extend the analysis of cryptocurrency volatility by enlarging the analyzed 
universe, which includes 87 cryptocurrencies. Secondly, we provide a basis for compari-
son by performing the same volatility analysis on a cross-section of stocks, representing 
a proxy of a more established and mature asset class. The selected stocks come from the 
NASDAQ technology index (NDXT), whose returns are positively correlated with the 
return of cryptocurrencies in the past years (Goodell and Goutte 2021). By focusing the 
volatility analysis on multiple and larger cross-sections, we can fulfill a gap of interpret-
ability available in the literature that often overlooks a thoughtful comparison with tradi-
tional financial markets, even knowing that cryptocurrencies often exhibit a certain level 
of correlation with them. Lastly, the period covered by our dataset, from 2020 to 2022, 
allows us to appreciate the significance of our selected volatility drives under the latest 
bullish and bearish market regimes that characterize the cryptocurrency market. Such 
a period has been crucial for developing the cryptocurrency industry, which welcomed 
more institutional investors among the active participants and experienced astounding 
growth followed by sudden drawdowns. Previous works focus on the analysis of periods 
pre-2020 when the market dynamics and cryptocurrency adoption were less developed 
than in the subsequent years. We consider combining these three elements essential to 
disentangle the peculiar and common traits of cryptocurrencies as a whole with respect 
to more traditional assets.

To this end, we adopt the framework of (Patton and Sheppard 2015) by obtaining vola-
tility estimators from minute-level price data and fitting a set of renowned interpretable 
econometric models to describe the volatility patterns over time. Estimating volatility 
from historical data is crucial in financial econometrics, as it helps assess risk and make 
informed investment decisions. Various methods have been developed to estimate vol-
atility, including historical, implied, and realized volatility. Historical volatility is often 
indicated as a measure of the standard deviation of an asset’s returns over a specified 
period, usually calculated daily, while implied volatility is derived from the prices of 
options on the underlying asset. The latter is a forward-looking measure incorporat-
ing market expectations about future volatility by assuming market efficiency and exact 



Page 4 of 38Brini and Lenz  Financial Innovation          (2024) 10:122 

price discovery for the options. In our work, we adopt the realized volatility as an estima-
tor for historical volatility, which employs intraday data. Unlike the volatility calculated 
daily, realized volatility allows us to capture the past volatility dynamics more accurately 
and can account for sudden changes in market conditions. Being calculated on a larger 
amount of data points, it is also less sensitive to outliers and price gaps, and it is also not 
affected by assumptions on the market as the implied volatility. The choice is further 
motivated by the possibility of accounting for the effects of market microstructure noise, 
which can distort the volatility estimation. This is particularly important in highly vola-
tile markets such as cryptocurrency, where small deviations from the true volatility can 
significantly affect investment decisions.

Studying the volatility dynamics of the cryptocurrency market is important for sev-
eral scopes, among which managing risk effectively and hedging losses (Almeida and 
Gonçalves 2022), enhancing market efficiency through trading (Fang et  al. 2022) and 
designing derivatives (Söylemez 2019; Akyildirim et al. 2020; Soska et al. 2021). In par-
ticular, the presence of derivatives in the market modulates the volatility transmissions 
among centralized cryptocurrency exchanges (Alexander et al. 2022; Badenhorst et al. 
2018; Beneki et al. 2019). The cryptocurrency market is relatively new and unregulated, 
meaning price discovery can be highly volatile and erratic. Under this view, it is a known 
fact that the cryptocurrency market still contains a lot of inefficiencies compared to 
more established financial markets (see  Al-Yahyaee et al. (2020) for an analysis of how 
a high volatility period harms the market efficiency for cryptocurrencies). Studying the 
volatility dynamics of cryptocurrencies can help traders identify such inefficiencies and 
improve the amount of information reflected by the prices when they take advantage of 
them. Hence, it makes the study of volatility patterns crucial for market stability. Moreo-
ver, the cryptocurrency market’s relatively young age, the lack of regulation, and the high 
level of speculation make a proper understanding of the volatility dynamics a pressing 
problem for the industry aiming to gain market stability.

The rest of the paper is organized so that illustrates the related literature and intro-
duces the methodologies to estimate the volatility, provides details regarding the struc-
ture of the analyzed data, and explains the employed autoregressive models in detail. 
includes the results of the empirical analysis, from the model estimation using panel data 
to the robustness check by repeatedly fitting the same model specification over a differ-
ent time window. In addition, we carry out the individual estimation of the same model 
for every entity in the cryptocurrency cross-section to disentangle the aggregate results 
and validate them. Then discusses the key findings and the implications of our results for 
the cryptocurrency ecosystem and provides the takeaways from the volatility analysis.

Related literature
The literature relevant to this study bifurcates into two distinct yet interconnected 
domains. The first is the foundational body of work on volatility modeling in finance, 
which has been a key topic in financial econometrics. This part of the literature par-
ticularly explores modeling the volatility of equity returns through variants of the 
autoregressive conditional heteroskedasticity (ARCH) model (Engle et  al. 1987) and 
its generalized (GARCH) version (Bollerslev 1987) (see also Bollerslev et  al. (1994); 
Andersen et al. (2006) for a comprehensive overview). The use of high-frequency data 
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substantiates the discoveries regarding volatility modeling, among which the impact of 
signed returns on future volatility, referred to as the leverage effect, represents a well-
established empirical regularity in financial market data. Bollerslev et al. (2006); Barn-
dorff-Nielsen et  al. (2008); Chen and Ghysels (2011) highlights the effect of negative 
equity returns on increasing future volatility.

The second strand of literature explores how these studies analyze equity volatility 
patterns by computing high-frequency volatility estimators such as the realized vari-
ance (Andersen et al. 2001) and the bipower variation Barndorff-Nielsen and Shephard 
(2006). Alternative volatility estimators like realized semivariance (Barndorff-Nielsen 
et  al. 2008) dissect the realized variance measure, isolating the elements attributable 
solely to positive and negative high-frequency returns. The significance of these estima-
tors lies in their ability to retain the critical information encoded in the sign of returns, 
which is otherwise lost when volatility is measured through the sum of squared or abso-
lute value returns.

The econometrics literature has shown how high-frequency price data can improve 
the estimation and predictability of the volatility for a cross-section of equities (Patton 
and Sheppard 2015; Bollerslev et  al. 2020). These studies leverage the heterogeneous 
autoregressive (HAR) model proposed by Corsi (2009) and elaborate on its variants to 
account for the direction of the volatility movements. All the models use realized vari-
ance estimators and their variants obtained from high-frequency data.

The choice of the realized variance as an estimator is motivated by efficiency, being an 
estimator with low variance among all the unbiased ones, and by consistency, approach-
ing the true value of the integrated variance process when the number of observations 
increases. In addition, it is easy to compute, as it just requires price data sampled at 
an intraday frequency. It is also flexible because it can be generalized to other volatil-
ity measures that reflect specific aspects of the volatility process, such as the realized 
semivariance to assess the downside risk of an asset (see Aït-Sahalia and Jacod (2014) 
for more details). Other volatility estimators do not consider the market microstructure 
dynamics (daily historical variance) or are too complex and not easily adaptable to high-
frequency data (GARCH-like models). Those choices, such as the Parkinson estimator 
(Parkinson 1980) and its extension Garman and Klass (1980), systematically underesti-
mate the magnitude of the volatility, calculating it on daily data and assuming the price 
process as a continuous process without jump components.

The analysis of volatility in the cryptocurrency market has attracted significant 
attention from researchers and practitioners due to the highly volatile nature of this 
market. The use of those volatility estimators is relatively new to the field of cryptocur-
rencies, where the realized variance estimator is calculated and modeled on just BTC 
(Hu et al. 2019; Yu 2019; Shen et al. 2020). Common findings are the presence of an 
inverse leverage effect that impacts the estimation of future volatility and the role of 
jumps in shaping the Bitcoin volatility dynamics (Chaim and Laurini 2018; Charles and 
Darné 2019). Previous studies have explored various aspects of cryptocurrency market 
volatility daily, including its determinants, spillover effects, and forecasting accuracy. 
For instance, Baur and Dimpfl (2018) examined the volatility of several cryptocurren-
cies and found that different factors, such as market capitalization and trading vol-
ume, drive their volatility. Zhang et al. (2018) explores the stylized facts of the daily 
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returns of eight cryptocurrencies, finding heavy-tailed distributions. In contrast, Phil-
lip et al. (2018) study the stylized facts of a larger cross-section of cryptocurrency daily 
returns. In particular, the literature analyzed the time-varying relationship between 
financial returns and their volatility at the daily level is usually investigated through 
a GARCH framework. Many works (Liu and Serletis 2019; Fakhfekh and Jeribi 2020; 
Wajdi et  al. 2020) retrieve an inverted leverage effect in the cryptocurrency market 
using several variants of the original GARCH model on daily data. Chu et al. (2017) 
apply GARCH-like models to fit the best volatility model for prediction, while Mostafa 
et al. (2021) use asymmetric GARCH models for risk management assessment. Alqar-
alleh et  al. (2020) compares the predictive power of nonlinear GARCH-type models 
for a small subset of cryptocurrency assets similar to López-Martín et al. (2022), which 
retrieves an inverse leverage effect by examining the return distribution. Chaim and 
Laurini (2019) employ a multivariate stochastic volatility model with discontinuous 
jumps to mean returns and volatility and signals larger transitory mean jumps starting 
from 2017 as an effect of shifts in cryptocurrencies return dynamics. Dyhrberg (2016) 
identifies Bitcoin as useful in risk management and ideal for risk-averse investors in 
anticipation of negative shocks to the market through an asymmetric GARCH model. 
Gradojevic and Tsiakas (2021) analyze the volatility cascades for some highly capital-
ized cryptocurrencies. Ji et al. (2019) explores the volatility connectedness, retrieving 
an asymmetric effect depending on the direction of the returns.

Specifically, Jha and Baur (2020); Ftiti et  al. (2021) explores the analysis of cryp-
tocurrency volatility by using intraday data of a small number of coins and tokens. 
They discovered the inverse leverage effect at high frequency based on data before 
2020. Similarly, Naeem et al. (2022); Yousaf and Ali (2020) study spillover effect on 
the volatility using generalized vector autoregressive model versions. Mensi et  al. 
(2021) focuses on the portfolio management implication of high-frequency volatil-
ity patterns. Katsiampa et al. (2019a) explores the volatility co-movements of eight 
cryptocurrencies on hourly data, while Sensoy et  al. (2021); Ampountolas (2022) 
explore the spillover effects on the volatility of high-frequency cryptocurrency 
returns. Ji et al. (2021); Zhang et al. (2019) investigate the stylized fact of high-fre-
quency return in terms of the Hurst Exponent. Katsiampa (2019) find asymmetric 
effects between good and bad news among cryptocurrencies.

Baur and Dimpfl (2018); Brini and Lenz (2022) analyze the inversion of lever-
age effect for the cryptocurrency market at the daily level by linking the increased 
excitement and speculative behavior when the market is rising with behavioral 
traits of the average uninformed investors, such as the fear of missing out (FoMO) 
(McGinnis 2004). Wang et al. (2023) explore the FoMo idea specifically on BTC find-
ing positive asymmetric volatility behavior in the Bitcoin market. Huang et al. (2022) 
detail the contribution of jumps in cryptocurrency price series to the inverse lever-
age effect. Panagiotidis et al. (2022) retrieves the inversion of the leverage effect for a 
wide cross-section of cryptocurrencies using a GARCH-like framework. Ardia et al. 
(2019) find evidence of regime changes in the GARCH volatility process for BTC, 
highlighting the temporary and transient nature of such volatility dynamics. Katsi-
ampa et  al. (2019b) retrieve volatility spillover effect for various cryptocurrencies 
using a BEKK-MGARCH model.
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Methodology and data
This Section outlines the steps needed to perform the empirical analysis in the following 
Section. We first describe the methodology for obtaining the daily volatility estimators 
from high-frequency data. Then, we present the collected data outlining descriptive sta-
tistics of the universe of the two asset classes, cryptocurrency, and equity. The final part 
of the Section describes the model specifications employed and the estimation tech-
niques to gain insights into the drivers of future volatility.

Volatility estimator

All the estimated econometric models in our empirical analysis are based on high-fre-
quency volatility estimators, making it essential to start by describing the underlying 
assumptions and the choices to compute such estimators. As outlined in , volatility esti-
mators based on high-frequency data are more expressive of the true variation of the 
cryptocurrency returns and are less sensitive to the presence of outliers, making it a suit-
able choice to study a market subjected to sudden and irrational movements. Hence, we 
approach modeling the future volatility by first describing the employed volatility esti-
mators. Let pt a continuous-time stochastic process of log prices

including two continuous components and a jump component. We call µ a locally 
bounded drift process, σ a strictly positive cadlag process, and J a jump process. The 
quadratic variation of the process in Eq. 1 is given by

where �ps = ps − ps− captures the jump component.
The realized variance (RV) is an estimator of Eq. 2 such that

where rt,i = pt − pt−1 is the return calculated as the log price difference. The estimator 
has been shown to converge in probability to the quadratic variation as the time interval 
between each equally spaced observation becomes small (Andersen et al. 2003). The RV 
represents the quadratic variation of a process as the sum of squared returns sampled at 
a high frequency. For instance, the n-sample RV measure is obtained from n+ 1 equally 
spaced sample of the price process. In general, using higher frequency data to calculate 
realized variance can result in more accurate estimates of volatility, as it captures more 
of the price fluctuations that occur within the time period being analyzed. However, 
there are trade-offs to consider when using higher-frequency data since a large number 
of data points can lead to more noise in the data and make it more difficult to identify 
the true volatility of the asset. Hence, the optimal sampling frequency to compute real-
ized variance is a trade-off between bias and efficiency (McAleer and Medeiros 2008). 
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That optimal has been identified as the 5-minute frequency to provide accuracy in esti-
mation and avoid microstructure noises such as bid-ask bounce and price discreteness 
(Andersen and Bollerslev 1998).

Another powerful estimator of the variance process is the bipower variation (BV), 
which, unlike the RV, converges in the limit to just the continuous component of the 
quadratic variation, called integrated variance (IV)

Due to the nature of these two estimators, their difference allows capturing the jump 
component of the quadratic variation RV − BV

p
−→

∑

0≤s≤t �p2s
The RV estimator can be split into two signed realized semivariances, RV = RV+ + RV− , 

that respectively capture variation due to positive and negative returns

These measures have been shown to include variations of both the continuous and the 
jump part of Eq. 2. The first term is equal for both semivariances and not decomposable 
into a signed measure. It follows then that jump variation is defined as

The difference eliminates the common integrated variance term and is positive when 
positive shocks are prevalent in a day and negative if adverse shocks dominate a day. 
Using the signed jumps component instead of the whole jump component, RV - BV, 
gives the advantage of separately studying the impact of significant positive and negative 
price movements on future volatility. Merton (1976) first introduce the idea of a jump 
component as a jump-diffusion process where large variations of prices occur at a dis-
crete time together with small continuous movements.

Each of these variance estimators is obtained from a series of equally-spaced observed 
prices p0, p1, . . . , pN that span through the time horizon of the analysis. Setting N as the 
number of intraday observations available daily, the RV estimator is the sum of intraday 
squared returns following Eq. 3, as well as realized semivariances, RV+and RV− , follows 
Eq. 5.
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where the usual BV estimator is obtained when q = 0 . We obtain the BV estimator by 
averaging skip-0 through skip-4 of the same estimator as an important correction for the 
bipower variation estimator.

The purpose of computing the estimators described in this Section is to obtain a daily 
proxy for the quadratic variation of the log-return prices process from high-frequency 
data. By disentangling the different components of the quadratic variation into their rel-
ative estimators, we can empirically analyze the effect of different volatility drivers in the 
cryptocurrency market, such as the signed part of the realized variance and the jump 
components.

Data collection

We obtained the 5-minute level prices of the 100 most capitalized cryptocurrencies2 
from the Binance API (Application Programming Interface)3 at the time of writing, such 
that our sample covers more than 95% of the cryptocurrency market capitalization. 
From the 100 cryptocurrencies, we exclude stablecoins4 from our analysis since we are 
interested in volatility fluctuations that are not expected within that category of digital 
assets, remaining with 87 entities. Then, we queried from Polygon5 the stock prices of 
the 42 companies included in the Nasdaq technology index with the same granularity. 
To compare the two asset classes, we consider the historical period between the year 
2020 and year 2022 (up to October). Many of the most highly capitalized cryptocurren-
cies at the time of this analysis began trading after 2020, making the sample representa-
tive of the current state of the market.

The amount of 5-minute level observation daily varies among cryptocurrencies, con-
tinuously traded throughout the day, and stock, which follows the market hours. This 
results in a different amount of high-frequency observation each day in our dataset, 
87 for cryptocurrencies and 79 for stocks. We compute the estimators using a differ-
ent number of observations to properly reflect the realized variance within a given day 
for both asset classes. The entities in the cryptocurrency cross-section have around four 
times the available observation compared to equities. They are, therefore, subject to be 
more volatile by construction since each entity has more recorded fluctuations. How-
ever, this difference does not impact how we construct n-days volatility estimators that 
follow the same process for both asset classes.

Table 1 contains the average values, the standard deviations, and some quantiles of the 
distribution of the computed estimators. The table is divided to provide the same infor-
mation for the cross-sections of entities included in our analysis. The included estima-
tors, realized variance (RV ), bipower variation (BV ), positive and negative semivariance 
(RV- and RV+), jump variation (SJV), and signed jump variation (SJV- and SJV+), are 
those involved in the autoregressive models outlined in the next Section. The descriptive 
statistics show a higher order of magnitude for the cryptocurrency estimators than those 

2 The list is available here.
3 https:// www. binan ce. com/ en/ binan ce- api.
4 Stablecoins are cryptocurrencies designed to maintain a stable value relative to a specific asset, such as the US dollar 
or a basket of assets. The value of stablecoins is backed by these assets, which are held in reserve, and they aim to mini-
mize price volatility compared to other cryptocurrencies like Bitcoin and Ethereum (Fiedler and Ante 2023).
5 https:// polyg on. io/.

https://coinmarketcap.com/historical/20221013/
https://www.binance.com/en/binance-api
https://polygon.io/
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related to equities. This effect indeed points to the continuous trading under which 
cryptocurrencies are subjected due to how the estimator is constructed. However, the 
difference in scale is also due to the more significant volatility shocks that are known to 
affect such a market.

Table 2 contains the two correlation matrices for the computed estimators. For both 
the cross-sections, the RV estimator is highly correlated to its signed components and 
the continuous volatility estimator BV, as expected by construction. On the contrary, the 
SJV estimators and their signed components are not strongly correlated with the other 
estimators for the equity cross-section. At the same time, such a correlation tends to be 
higher in the case of cryptocurrencies. Such results potentially signal a stronger influ-
ence of the jump part to explain future cryptocurrency volatility.

Table 1 Descriptive statistics expressed in percentage of the constructed variance estimators for 
cryptocurrencies and equities

Mean Std 5% 25% 50% 75% 95%

Crypto RV 0.459 2.881 0.036 0.112 0.222 0.448 1.397

BV 0.404 2.510 0.030 0.095 0.191 0.391 1.244

RV- 0.228 1.806 0.017 0.055 0.110 0.222 0.679

RV+ 0.230 1.124 0.017 0.053 0.106 0.223 0.731

SJV 0.002 0.869 − 0.124 − 0.024 − 0.001 0.023 0.164

SJV- − 0.037 0.824 − 0.124 − 0.024 − 0.001 0.0002 0.0005

SJV+ 0.039 0.270 − 0.012 0.001 0.003 0.023 0.164

Equity RV 0.069 0.284 0.002 0.008 0.010 0.053 0.284

BV 0.025 0.070 0.022 0.061 0.001 0.025 0.110

RV- 0.035 0.157 0.016 0.023 0.003 0.024 0.141

RV+ 0.035 0.153 0.012 0.026 0.003 0.024 0.147

SJV 0.001 0.123 − 0.046 − 0.001 0.0005 0.001 0.053

SJV- − 0.012 0.090 − 0.046 − 0.001 0.0004 0.001 0.003

SJV+ 0.012 0.083 0.031 0.001 0.0002 0.004 0.053

Table 2 Linear correlation matrices of the constructed variance estimators for cryptocurrencies and 
equities

RV BV RV- RV+ SJV SJV- SJV+

Crypto RV – 0.995 0.989 0.972 − 0.798 − 0.901 0.179

BV 0.995 – 0.984 0.968 − 0.793 − 0.878 0.128

RV- 0.989 0.984 – 0.928 − 0.877 − 0.947 0.067

RV+ 0.972 0.968 0.928 – − 0.637 − 0.787 0.352

SJV − 0.798 − 0.793 − 0.877 − 0.637 – 0.950 0.317

SJV- − 0.901 − 0.878 − 0.947 − 0.787 0.950 – 0.006

SJV+ 0.179 0.128 0.067 0.352 0.317 0.006 –

Equity RV – 0.819 0.919 0.914 − 0.036 − 0.539 0.527

BV 0.819 – 0.784 0.719 − 0.106 − 0.424 0.298

RV- 0.919 0.784 – 0.684 − 0.426 − 0.778 0.206

RV+ 0.914 0.719 0.682 – 0.370 − 0.203 0.767

SJV − 0.036 − 0.106 − 0.426 0.370 – 0.738 0.688

SJV- − 0.539 − 0.424 − 0.778 − 0.203 0.738 – 0.019

SJV+ 0.527 0.298 0.206 0.767 0.688 0.01930 –
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Models

To study the driving factor of the volatility within the two asset classes, we consider 
a set of different model specifications that estimate future volatility using the infor-
mation the computed volatility estimators provided. All the model specifications are 
estimated in-sample since our scope is to obtain insights regarding the driving factor 
of the volatility process. The forecasting problem is not treated in this study, although 
the results can be beneficial to improve modeling for that purpose.

The reference model specification is the heterogeneous autoregression (HAR) spec-
ification (Corsi 2009), which is a high-order autoregressive model specified as

The model regresses the future realized variance estimator t + h on three past terms of 
the same estimator: the first lag, the average between the second and the fifth lag, and 
the average between the sixth and the twenty-second lag. These three regressors intui-
tively correspond to an estimation of the volatility on the previous day and the average 
volatility over the past trading week and trading month. The model is said to be rotated 
since each regressor has no overlapped observation, i.e., the average of the past trad-
ing week does not include the observation of the previous day since another regressor 
already represents it. We estimate the reference specification and each of its modifica-
tions at four different horizons, corresponding to one day, a trading week (5 days ahead), 
a trading month (22 days ahead), and three trading months (66 days ahead) in the future. 
This model specification looks for the effects of three representative market agents oper-
ating at those three different frequencies.

We compute the realized variance estimator described in using the 5-minute level 
data in for each of the cryptocurrencies. Once we estimate these volatility proxies, it 
is straightforward to derive the regressor of the reference model in Eq. 8 by lagging 
or averaging over the information according to the specification. The HAR model’s 
main benefit is that it allows for incorporating multiple time scales, which is particu-
larly important because volatility exhibits specific patterns at different frequencies. 
The HAR model is an extension of the Autoregressive Conditional Heteroskedastic-
ity (ARCH) model, which assumes that the variance of a time series is a function of 
its past squared residuals and can capture the long-memory properties of financial 
volatility. Lastly, it is a relatively easy-to-interpret model, which makes it suitable for 
descriptive analyses of linear volatility patterns. However, the reduced complexity can 
cause some information regarding nonlinear volatility behaviors to be missing.

Starting from the reference model and following the framework of Patton and Shep-
pard (2015), we estimate various HAR specifications, each accounting for specific 
traits and stylized facts of the volatility dynamics. Each model specification analyzes 
the effect of signed information, such as the positive and negative part of the realized 
variance and the jump components of the price process, in improving modeling and 
explainability of the global cryptocurrency market volatility. All the model specifica-
tions tested are derived from the reference model HAR-RV, which we rewrite from 8 
in a compact form as

(8)RVh,t+h = µ+ φdRVt + φw

(

1

4

4
∑

i=1

RVt−i

)

+ φm

(

1

17

21
∑

i=5

RVt−i

)

+ ǫt+h.
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Recalling the definition of RV as the sum of squared returns, one test for the effect of 
signed returns through the realized semivariances in 10. The HAR-semiRV specification 
corresponds to

when the most recent information is decomposed into the signed realized semivari-
ances. The 6 in the appendix also estimates a similar model specification when the 
three regressors are all decomposed into the signed components. Such an autoregres-
sive model detects the effect of the market’s direction on future volatility, describing the 
entity of the leverage effect at the intraday level. As previously discussed, the granularity 
of the data collected to obtain the volatility estimators defines the amount of informa-
tion contained in the regressor for the model specification. Therefore, the leverage effect 
detected daily could differ from that detected on a more fine-grained scale.

To also account for a daily leverage effect, in addition to the intraday leverage effect 
captured by the semivariances, we also estimate the model specification in Eq. 9 and 
10 by including a supplementary interaction term RVtIrt<0:

which is nonzero only when the daily return of the asset under study is negative. This 
term reflects the definition of the leverage effect from the traditional financial literature, 
where a negative price variation increases the volatility more than a positive one. Since 
the interaction term is based on daily information, while realized variance and semi-
variances are based on 5-minute level prices, we expect to find a different effect in the 
results.

An additional couple of tested model specifications disentangle the most recent infor-
mation into the continuous and the jump part of the volatility. We obtain two variants, 
where the second one also decomposes the jump part to account for its signed effect.

It is possible to calculate the jump parts of the volatility estimators from Eq.  3 and 4 
because the BV estimators converge in the limit to the continuous component of the 
quadratic variation of the price process. Including the jump component into a model 
specification is extremely important in markets characterized by a lack of regulation and 
liquidity, as is the case for cryptocurrencies. 1 highlights the different scale of magnitude 
of the estimated realized variance for the cryptocurrency cross-section compared to the 
equity one as a signal of more frequent large shifts in the price variation.

(9)RVh,t+h = µ+ φdRVt + φwRVw,t + φmRVm,t + ǫt+h

(10)RVh,t+h = µ+ φ+
d RV

+
t + φ−

d RV
−
t + φwRVw,t + φmRVm,t + ǫt+h

(11)RVh,t+h = µ+ φdRVt + γRVtIrt<0 + φwRVw,t + φmRVm,t + ǫt+h

(12)
RVh,t+h = µ+ φ+

d RV
+
t + φ−

d RV
−
t + γRVtIrt<0 + φwRVw,t + φmRVm,t + ǫt+h.

(13)RVh,t+h = µ+ φj�J2t + φcBVt + φwRVw,t + φmRVm,t + ǫt+h

(14)
RVh,t+h = µ+ φj +�J2+t + φj −�J2−t + φcBVt + φwRVw,t + φmRVm,t + ǫt+h.
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For each model specification described in this section, we estimate a panel regression 
to capture the average contribution of each entity in a specific asset class and explain the 
volatility dynamics for the considered group. Therefore, the panel regression is carried 
out separately for cryptocurrencies and equities for a thoughtful comparison. Each panel 
HAR is estimated through a weighted least squares (WLS) method to account for fre-
quent regime shifting retrieved in the dynamics of our time series. The WLS estimation 
is based on a preliminary Ordinary Least Squares (OLS) estimation, which is necessary 
to construct weights as the inverse of the fitted residual from such an OLS model. As a 
further analysis, the same estimation sequence is repeated on different time windows 
to capture the effect of different market regimes and separately on each component of 
the cross-sections to disentangle the aggregated effect at the entity level and validate the 
findings. When estimating the panel regressions, we adopt the Newey-West Heteroske-
dasticity and Autocorrelation Consistent (HAC) estimators. This approach is particu-
larly useful for addressing the potential issues of autocorrelation and heteroskedasticity 
in panel data, which are common in financial time series data. The Newey-West HAC 
estimators allow us to produce standard errors that are robust to these issues, thereby 
ensuring that our inference is more reliable.

Empirical results
This Section provides the different results of our empirical analysis where we comment 
on the estimation results of various model specifications described in . The estimation 
procedure remains the same as described, even when we restrict the time window of 
observation used for the estimation and when we estimate the model specifications indi-
vidually over each entity of a specific cross-section instead of as a panel.

Impact of Signed Returns

As a first step in the empirical analysis of cryptocurrency volatility, we estimate the 
reference specification that accounts for three different lags of the estimated volatility 
observed in the past. The results on the reference model described in Eq. 9 are instru-
mental in describing past signed returns’ impact on future volatility.

Table 3 presents the results for the reference specification of the panel HAR and its 
variant where the first lag of the volatility is decomposed into its signed components. 
Both model specifications are separately estimated for the cryptocurrency and the equity 
entities, as shown in the table.

The first result to highlight is the relative amount of volatility persistence, defined as 
φd + φw + φm = 1 in case of highest persistence, for the first lag of the reference spec-
ification of cryptocurrency cross-section at the horizon t + 1 and t + 5 . This effect is 
remarkably missing in crypto, where the relative contribution to the volatility persis-
tence is low for all the estimation horizons. This result aligns with previous findings 
on cryptocurrency volatility persistence until 2018 (Katsiampa et al. 2019a; Charfed-
dine and Maouchi 2019; Abakah et  al. 2020; Caporale et  al. 2018). Higher volatility 
persistence suggests that the market’s reaction to new information entering the finan-
cial system is not instantaneous but occurs progressively over time. Consequently, 
historical price fluctuations can serve as indicators for forecasting future price 
movements, offering a counterpoint against the Efficient Market Hypothesis (EMH), 
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indicating that the cryptocurrency markets may not always reflect all available infor-
mation immediately and efficiently (Cross et al. 2021). This preliminary observation 
serves as a starting point for a more comprehensive discussion on the Adaptive Mar-
ket Hypothesis (AMH) (Lo 2004), which we explore in detail in . The AMH provides 
a framework for understanding the evolving efficiency of the cryptocurrency market, 
highlighting how its unique ecosystem characteristics and the interplay of various 
market participants contribute to its dynamic volatility patterns.

Table 3 Estimation results for HAR-RV and HAR-semiRV model specifications

Results are displayed for the cryptocurrency and the equity panel over the four different horizons. T-stats are in parentheses. 
The model equation on top of the table reflects all the parameters common to the specification reported in this table. The 
total number of observations available considering all the entities used for the panel estimate is 47787 for crypto and 17111 
for equity
*** p < 0.01, **p < 0.05, *p < 0.1

RVh,t+h = µ+ φdRVt + φ−

d
RV

−

t
+ φ+

d
RV

+

t
+ φwRVw,t + φmRVm,t + ǫt+h

φd φ−

d φ+

d
φw φm

Crypto t+1 0.554 ∗∗∗ – – 0.006 0.056 ∗∗∗

(6.726) – – (1.573) (4.025)

– − 0.142 ∗ 1.262 ∗∗∗ 0.007 ∗ 0.036 ∗∗∗

– (− 1.694) (10.183) (1.774) (4.764)

t+5 0.271 ∗∗∗ – – 0.063 ∗∗∗ 0.051 ∗∗∗

(4.834) – – (2.773) (3.585)

– 0.078 0.543 ∗∗∗ 0.054 ∗∗∗ 0.032 ∗∗∗

– (0.258) (2.313) (2.4) (1.536)

t+22 0.076 ∗∗∗ – – 0.031 ∗∗∗ 0.049 ∗∗∗

(3.551) – – (2.681) (4.089)

– − 0.065 0.24 ∗∗∗ 0.028 ∗∗∗ 0.043 ∗∗∗

– (− 0.946) (4.33) (2.592) (3.764)

t+66 0.025 ∗∗ – – 0.006 − 0.012 ∗∗∗

(2.335) – – (1.293) (− 2.676)

– − 0.069 ∗∗∗ 0.145 ∗∗∗ 0.006 ∗ − 0.016 ∗∗∗

– (− 4.7734) (8.392) (1.174) (− 3.814)

Equity t+1 0.187 ∗∗∗ – – 0.182 ∗∗∗ 0.165 ∗∗∗

(7.553) – – (7.419) (3.081)

– 0.075 ∗∗ 0.305 ∗∗∗ 0.182 ∗∗∗ 0.163 ∗∗∗

– (2.276) (5.339) (7.527) (3.051)

t+5 0.089 ∗∗∗ – – 0.183 ∗∗∗ 0.162 ∗∗∗

(7.95) – – (12.1) (6.211)

– 0.055 ∗∗ 0.125 ∗∗∗ 0.184 ∗∗∗ 0.162 ∗∗∗

– (2.45) (5.011) (12.086) (6.197)

t+22 0.048 ∗∗∗ – – 0.108 ∗∗∗ 0.169 ∗∗∗

(6.42) – – (10.359) (12.428)

– 0.01 ∗∗∗ 0.088 ∗∗∗ 0.108 ∗∗∗ 0.169 ∗∗∗

– (2.811) (5.513) (10.393) (12.428)

t+66 0.028 ∗∗∗ – – 0.08 ∗∗∗ 0.217 ∗∗∗

(5.967) – – (11.21) (23.229)

– 0.01 ∗∗ 0.047 ∗∗∗ 0.08 ∗∗∗ 0.216 ∗∗∗

– (2.036) (4.819) (11.233) (23.254)
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The role of recent information, as measured by φd , is prevalent in the crypto cross-sec-
tion, while it tends to be more spread across different lags for equity. This result signals 
the temporary nature of the volatility in the cryptocurrency market, whose future values 
are not largely correlated with distant observations in the past. A similar effect regarding 
the importance of recent information to estimate volatility is captured by looking at the 
diminishing role of φd as the horizon increases. Although more pronounced for cryp-
tocurrencies, such an effect is shared among the two asset classes for the time period 
considered.

We observe that the decomposition of the most recent information on volatility into 
its signed counterparts adds information to the analysis since φ+

d �= φ−
d �= φd for both 

asset classes. The effect of the positive returns is always significant and dominates the 
impact of the negative returns. It is important to notice that, when statistically signifi-
cant, the negative part of the volatility has the opposite effect on cryptocurrencies com-
pared to what is observed for equities. In general, we observe that the role of the negative 
volatility is negligible for cryptocurrencies as a signal of the missing impact of negative 
shocks of the market on future volatility, contrary to what is usual for other asset classes. 
Such a result implies the absence of the leverage effect for cryptocurrencies when using 
high-frequency data. The decreasing impact of recent information is also present when 
using the signed past returns for the most recent lag. Those effects are present when the 
RV estimator is decomposed into the signed components at various lags. The 6 in the 
appendix provides the estimated coefficients for such model specifications.

The results obtained at a high-frequency level for the cryptocurrency cross-section 
highlight an absence of the leverage effect in the traditional sense, where a negative 
return impacts future volatility more than a positive one. Such behavior challenges the 
notion of market efficiency and the traded price as an aggregator of all the available 
information. The hypothesis of rational expectation in front of a negative return falls in 
the case of cryptocurrency since it is a positive movement of the market that increases 
the volatility. The market participants are not necessarily rational in the cryptocurrency 
market, as the massive presence of retail investors exacerbates idiosyncratic volatility 
in unstable market conditions (Low and Marsh 2019; Ozdamar et al. 2022; Wen et al. 
2019). The next subsection elaborates more on the leverage effect aspect by comparing 
the high-frequency effect with the daily one.

Another motivation for retrieving unexpected volatility patterns in the cryptocurrency 
market compared to the equity one is the different mechanisms and set of technologies 
the ecosystem builds upon (see  Xu et al. (2019) for a review of the Blockchain technol-
ogy). Even though the level of on-chain activity6 is still a fraction of the volume of off-
chain trades that happens on centralized exchanges, it is in the process of growing and 
represents an element of novelty compared to traditional finance. Our analysis focuses 
on off-chain data for comparison with the equity market, but substantial activity on a 
decentralized platform makes the market less reactive and fractionated (Aspris et  al. 
2021). Indeed, traders can often find arbitrages between centralized and decentralized 

6 On-chain market activity refers to transactions recorded on the blockchain, while off-chain market activity refers 
to transactions that occur outside of the blockchain, typically facilitated by third-party services such as centralized 
exchanges or wallets.
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exchanges. Hence, the cryptocurrency market is slower than the equity one at transfer-
ring information into the quoted prices due to these two concurrent layers of activity.

Daily leverage effect

In this section, we introduce a daily leverage effect into the reference specification esti-
mated in the previous section. The leverage effect is a known stylized fact of financial 
returns that exhibits an asymmetric impact of financial returns on the future volatility of 
the assets. The financial econometrics literature has extensively investigated such rela-
tionships at a daily frequency, usually through Generalized AutoRegressive Conditional 
Heteroskedasticity, GARCH-like, (Bollerslev 1987) models.

We add a daily leverage effect component, γRVtIrt<0 , according to Eq. 11. This model 
specification allows us to evaluate the contribution of the decomposition of the realized 
variance at a high-frequency level, adding value beyond the usual daily effect. Note that 
the daily leverage effect is modeled using a lagged squared return interacted with an 
indicator for negative returns, similar to an asymmetric GARCH-like model as the GJR-
GARCH (Glosten et al. 1993). Table 4 shows the estimation results with the same struc-
ture proposed in the previous section. If the addition of volatility estimator obtained 
from high-frequency data did not add additional information, we would expect the esti-
mation results to show φ+

d = φ−
d = φd and the daily leverage parameter γ as statistically 

significant. The results show that the positive part of the most recent realized variance 
lag is always statistically significant at any time horizon for both asset classes. In con-
trast, the negative part does not have enough statistical evidence. The sign of the daily 
leverage effect interaction is opposite for the cryptocurrency panel compared to the 
equity panel, being negative for the former and positive for the latter. The inversion of 
the sign also holds when the daily leverage component is included in the reference speci-
fication. These results are consistent with the leverage effect inversion in crypto due to 
the diminishing effect of a negative shock on the realized variance.

This lack of statistical significance serves as an indicator of an inversion in the leverage 
effect within the cryptocurrency market. The analysis demonstrates that the expected 
negative influence typically associated with downturns fails to materialize. Instead, 
this anomaly underscores the unique dynamics, suggesting that the traditional lever-
age effect, as observed in other financial markets, does not apply in the same manner to 
cryptocurrencies. While the results of show statistically insignificant measures for the 
negative part of the realized variance only for some horizons, the results hold even more 
when the daily leverage component is included. This inversion is a critical insight, high-
lighting the distinct market responses to positive versus negative shocks in the realm of 
cryptocurrencies. The daily leverage aggregation provided by the γRVtIrt<0 factor can-
cels out the effects captured by the high-frequency semivariance estimator, especially if 
the leverage effect operates differently within shorter time frames and is more prevalent 
at the daily level as already explored by Baur and Dimpfl (2018); Brini and Lenz (2022).

The reversed asymmetric effect of high-frequency cryptocurrency returns indicates 
that investors exploit market crashes as a buying opportunity to enter at a discount. 
Such behavior connects to FoMo as a motivator for investment behavior in the cryp-
tocurrency market. Gerrans et al. (2023) retrieves a larger association between FoMO 
and crypto ownership than equity ownership for young age groups more likely to trade 
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crypto assets. The concept of FoMo among retail investors has been explored by Argan 
et al. (2023) to observe the relationship with investment engagement and by Park et al. 
(2023) to analyze the relationship with market stability. Kaur et al. (2023) observes the 
FoMo effect in crypto investment decisions as a driving factor for the herding effect in 
investment decisions, while Delfabbro et  al. (2021) delve into the psychological traits 
of cryptocurrency trading, among which FoMo represents one of the factors. King and 
Koutmos (2021) elaborates on the effect of herding behavior on the trading activity for 

Table 4 Estimation results for HAR-RV and HAR-semiRV model specifications with daily leverage 
effect component

 Results are displayed for the cryptocurrency and the equity panel over the four different horizons. T-stats are in 
parentheses. The model equation on top of the table reflects all the parameters common to the specification reported in 
this table. The total number of observations available considering all the entities used for the panel estimate is 47787 for 
crypto and 17111 for equity
*** p < 0.01, **p < 0.05, *p < 0.1

RVh,t+h = µ+ φdRVt + φ−

d
RV

−

t
+ φ+

d
RV

+

t
+ γRVt Irt<0 + φwRVw,t + φmRVm,t + ǫt+h

φd φ−

d φ+

d
γ φw φm

Crypto t+1 0.632 ∗∗∗ – – − 0.126 0.006 0.054 ∗∗∗

(16.698) – – (− 1.444) (1.455) (4.163)

– 0.298 0.661 ∗∗∗ − 0.261 ∗∗∗ 0.026 0.127 ∗∗∗

– (1.436) (3.355) (− 2.755) (1.551) (4.627)

t+5 0.32 ∗∗∗ – – − 0.053 0.056 ∗∗∗ 0.047 ∗∗∗

(12.709) – – (− 0.929) (2.645) (3.445)

– 0.314 0.151 0.026 0.084 ∗∗∗ 0.036 ∗∗∗

– (0.712) (0.0363) (0.247) (3.072) (1.485)

t+22 0.145 ∗∗∗ – – − 0.083 ∗∗∗ 0.026 ∗∗ 0.043 ∗∗∗

(13.745) – – (− 4.183) (2.534) (3.777)

– 0.07 0.196 ∗∗∗ − 0.076 ∗∗∗ 0.029 ∗∗∗ 0.043 ∗∗∗

– (0.822) (3.254) (− 3.852) (2.618) (3.815)

t+66 0.084 ∗∗∗ – – − 0.068 ∗∗∗ 0.004 − 0.016 ∗∗∗

(13.376) – – (− 7.32) (0.917) (− 4.033)

– 0.298 0.661 ∗∗∗ − 0.261 ∗∗∗ 0.026 0.127 ∗∗∗

– (1.436) (3.355) (− 2.755) (1.551) (4.627)

Equity t+1 0.138 ∗∗∗ – – 0.09 ∗∗ 0.183 ∗∗∗ 0.166 ∗∗∗

(4.403) – – (1.988) (7.471) (3.137)

– − 0.012 0.266 ∗∗∗ 0.115 ∗∗∗ 0.184 ∗∗∗ 0.165 ∗∗∗

– (− 0.319) (4.578) (2.721) (7.635) (3.13)

t+5 0.064 ∗∗∗ – – 0.047 ∗∗ 0.183 ∗∗∗ 0.161 ∗∗∗

(5.443) – – (2.417) (12.113) (6.197)

– 0.012 0.107 ∗∗∗ 0.055 ∗∗ 0.184 ∗∗∗ 0.161 ∗∗∗

– (0.526) (4.139) (2.193) (12.105) (6.183)

t+22 0.036 ∗∗∗ – – 0.021 ∗ 0.108 ∗∗∗ 0.169 ∗∗∗

(4.674) – – (1.668) (10.367) (12.425)

– − 0.011 0.079 ∗∗∗ 0.027 ∗∗ 0.108 ∗∗∗ 0.169 ∗∗∗

– (− 0.632) (4.988) (2.044) (10.415) (12.434)

t+66 0.027 ∗∗∗ – – 0.002 0.08 ∗∗∗ 0.217 ∗∗∗

(5.335) – – (0.259) (11.214) (23.221)

– 0.005 0.045 ∗∗∗ 0.006 0.087 ∗∗∗ 0.216 ∗∗∗

– (0.475) (4.581) (0.703) (11.242) (23.242)
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cryptocurrencies. We argue that the fear of missing out on potential profits when oth-
ers are succeeding is a potential cause for the leverage effect inversion retrieved by the 
econometric analysis. Specifically, the market is relatively more active, hence more vola-
tile, when returns are positive and spark excitement in the crowd that wants to enter this 
new investment opportunity, rather than when returns are negative and sell-offs hap-
pen. Psychology-driven behaviors can cause retail investors to enter the market without 
clearly understanding the asset class, viewing it as a new opportunity with high potential 
(Pursiainen and Toczynski 2022). Indeed, it is known that the retail investors’ presence 
is larger in crypto than equity due to the nascent nature of the former and other pecu-
liar characteristics such as the relatively low entry barrier, the potential to disrupt the 
conventional financial system and the underlying Blockchain technology that powers the 
ecosystem.

The role of jumps

The model specifications estimated in the previous subsections indicate that a positive 
realized variance has a greater impact on estimating future volatility than a negative 
realized variance. According to Barndorff-Nielsen et al. (2008), this is due to differences 
in jump variation in a given time series. To account for this effect, we insert the signed 
jump variation measure, �J2t = RV+ − RV− , to identify information from signed jumps. 
Such difference eliminates the integrated variance term and is positive when a day has a 
prevalence of upward jumps or negative when downward jumps are prevalent. Table 5 
shows the estimation of the related model specification, including the jump variation 
term. The coefficient is always positive and statistically significant, except for the hori-
zon h = 5 , for both asset classes. The sign of φj means that days dominated by negative 
jumps lead to lower future volatility, while days with positive jumps lead to higher future 
volatility. The jump variation estimated coefficients for the cryptocurrency cross-section 
are also larger than the equity cross-section, remarking on the more frequent presence 
of extreme market movements in the notoriously unstable and immature cryptocur-
rency market.

Table  5 also shows the results of the signed jump specification, which replaces the 
jump variation component with two signed components regarding the dominance of a 
positive or a negative jump, respectively. The coefficients for the positive jump variations 
are significant, except at h = 5 , and negative in sign, differently from the case of equity 
cross-section. Hence, this result says that a day dominated by a positive jump decreases 
future volatility, while a day dominated by a negative jump does the opposite. We con-
clude that the two signed jump components do not have the same effect. When isolated 
in two different factors, they provide additional information to interpret the effect of 
a jump. In this case, a negative jump is associated with an increase in future volatility, 
while a positive jump is with a decrease, only in the cryptocurrency case. Although this 
result seems to conflict with the inversion of the leverage effect in the cryptocurrency 
cross-section, the jump variation gives a perspective on the volatility movement at the 
intraday level. In contrast, the inverted leverage effect retrieved in the literature and the 
previous model specification accounts for a daily effect. These results highlight how the 
discrete component, i.e., the jump one, of the quadratic variation exhibits the asymmet-
ric effect of return on future volatility, while, under the light of the previous section’s 
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results, the continuous component signals an inversion of such effect. The Table 7 in the 
appendix provides the estimated coefficients for model specifications that include only 
the continuous part of the volatility for the most recent lags, without any jumps.

The presence of a leverage effect guaranteed by the discrete part of the quadratic varia-
tion points to different categories of operators in the cryptocurrency market. As outlined 
in the previous section, the inverse leverage effect is caused by uninformed investors 
that permeate the cryptocurrency market. Indeed, this is a market that, unlike more 
traditional markets, has seen a huge exposure to retail investors, while the institutional 

Table 5 Estimation results for HAR-JV and HAR-SJV model specifications

 Results are displayed for the cryptocurrency and the equity panel over the four different horizons. T-stats are in 
parentheses. The model equation on top of the table reflects all the parameters common to the specification reported in 
this table. The total number of observations available considering all the entities used for the panel estimate is 47787 for 
crypto and 17111 for equity
*** p < 0.01, **p < 0.05, *p < 0.1

RVh,t+h = µ+ φj�J2t + φj −�J2−t + φj +�J2+t + φcBVt + φwRVw,t + φmRVm,t + ǫt+h

φj φ−

j φ+

j
φc φw φm

Crypto t+1 0.554 ∗∗∗ – – 0.668 ∗∗∗ 0.008 ∗ 0.045 ∗∗∗

(6.867) – – (12.469) (1.783) (5.798)

– 0.643 ∗∗∗ − 0.13 ∗∗ 0.341 ∗∗∗ 0.011 ∗∗∗ 0.039 ∗∗∗

– (4.565) (− 2.298) (3.593) (3.061) (4.149)

t+5 − 0.039 – – 0.359 ∗∗∗ 0.042 ∗ 0.025

(− 0.085) – – (3.809) (1.982) (0.964)

– − 0.022 − 0.083 0.186 0.051 ∗∗ 0.024

– (− 0.037) (− 0.93) (1.187) (2.304) (0.843)

t+22 0.144 ∗∗ – – 0.099 ∗∗∗ 0.026 ∗∗ 0.042 ∗∗∗

(2.294) – – (6.684) (2.495) (3.697)

– 0.243 ∗∗ − 0.044 ∗ 0.112 ∗∗∗ 0.025 ∗∗ 0.039 ∗∗∗

– (2.533) (− 1.828) (4.408) (2.41) (3.461)

t+66 0.107 ∗∗∗ – – 0.044 ∗∗∗ 0.005 − 0.016 ∗∗∗

(7.78) – – (10.685) (1.072) (− 3.994)

– 0.19 ∗∗∗ − 0.029 ∗∗ 0.07 ∗∗∗ 0.004 − 0.017 ∗∗∗

– (9.454) (− 2.53) (9.073) (0.939) (− 4.407)

Equity t+1 0.061 ∗∗ – – 1.076 ∗∗∗ 0.129 ∗∗∗ 0.129 ∗∗∗

(2.384) – – (9.221) (5.398) (2.602)

– 0.003 0.154 ∗∗ 1.002 ∗∗∗ 0.132 ∗∗∗ 0.131 ∗∗∗

– (0.099) (2.197) (8.061) (5.472) (2.661)

t+5 0.017 – – 0.575 ∗∗∗ 0.148 ∗∗∗ 0.142 ∗∗∗

(0.937) – – (11.106) (10.182) (5.53)

– 0.055 0.07 ∗∗ 0.552 ∗∗∗ 0.148 ∗∗∗ 0.14 ∗∗∗

– (0.24) (2.212) (10.33) (10.174) (5.476)

t+22 0.035 ∗∗∗ – – 0.335 ∗∗∗ 0.088 ∗∗∗ 0.154 ∗∗∗

(8.769) – – (9.745) (8.664) (11.539)

– 0.021 ∗∗∗ 0.067 ∗∗∗ 0.307 ∗∗∗ 0.088 ∗∗∗ 0.154 ∗∗∗

– (2.279) (2.791) (8.634) (8.722) (11.553)

t+66 0.021 ∗∗∗ – – 0.21 ∗∗∗ 0.067 ∗∗∗ 0.205 ∗∗∗

(3.627) – – (9.01) (9.55) (22.214)

– 0.018 ∗∗∗ 0.028 ∗∗ 0.205 ∗∗∗ 0.067 ∗∗∗ 0.205 ∗∗∗

– (2.744) (2.093) (8.528) (9.563) (22.213)
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and professional operators came after. Hence, we explain the different behaviors of the 
volatility drivers by associating them with a specific category of market operators. The 
activity of high-frequency professional traders regulates the volatility dynamics accord-
ing to the renowned leverage effect because the price variation associated with jumps is 
transient, so only they can exploit such information to make an arbitrage. On the other 
hand, some less-informed retail investors operate under the FoMO guide and inverse the 
leverage direction.

Behavior under different market trends

The cryptocurrency market underwent several changes in the regime due to the develop-
ing nature of this ecosystem and the underlying global economic condition. This aspect 
is especially true when considering the market run from 2020 to mid-year 2021 when 
many new protocols had been released, and terms like DeFi protocol or Non-fungible 
Token (NFT) have been popularized among a larger audience. Using BTC, the largest 
capitalized cryptocurrency, as a proxy for the whole market dynamics, one can observe 
from Fig. 1 different market trends: a sharp increase in 2020, two major drawdowns in 
2021, and a steep decrease in 2022. We aim to estimate the same volatility model speci-
fications of the previous sections under those different market regimes to validate the 
robustness of the previous sections’ findings. Hence, in this Section, we provide the esti-
mates considering just the windows 2020–2021 and 2021–2022 and the whole period 
covered by the data, 2020–2022, which is available in the previous Sections. The results 
of the estimated coefficients provided in this Section are available in the table format in 
the appendix, where statistical significance can be assessed by looking at the resulting 
t-statistics. Considering all the entities used for the panel estimate, the total number of 
observations available is 29005 for crypto and 11472 for equity in the window 2020–
2021 and 45191 for crypto and 15968 for equity in the window 2021–2022. The number 
of observations for the whole dataset (2020–2022) is the same as provided in the previ-
ous subsection.

The Figures of this Section comprise four subplots, one for each horizon. The one-
day ahead (first plot) and the five-day ahead (second plot) horizons are in the first row, 
while the one-month ahead (first plot) and the three-month ahead (second plot) are in 
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Fig. 1 BTC price dynamics over the historical period under analyses. The shades of blue separate the time 
series year by year, highlighting the different market regimes in the cryptocurrency market
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the second row. Figure 2 shows the estimation for the panel HAR model when the first 
regressor is decomposed into its signed components. The first remarkable effect relies 
on the volatility’s more considerable persistence in the cryptocurrency market for the 
two years 2020-2021, where the weekly component of the model plays a role in the vol-
atility estimation at any of the time horizons tested. The monthly components in that 
period are less significant in magnitude. Still, it is significant and more prominent than 
the other estimation windows, where the estimated coefficient φm is more marginal. In 
addition, by looking at the parameter φ+

d  , we observe that the impact of the previous-day 
positive volatility is less pronounced with respect to the whole estimation period or the 
subsequent window that spans 2021–2022. The reason for this effect can be retrieved 
in the extremely bullish market regime (see Fig. 1) when no sudden market drawdown 
occurred. That two-year period experienced a majority of positive returns, making it 
more difficult to visualize the effect compared to the adjacent period we have considered 
in the analyses. Given the similarity of the estimation results for those two estimation 
windows, when compared to the 2020–2021 window, we conclude that a large amount 
of the effect of the positive part of the recent volatility is due to the most recent period in 
2022. This result indicates that the bear market regime in 2022 signaled market activity 
in response to upward movements at the intraday level. Recalling the results from the 
previous subsection, this effect is similar to the equity cross-section but larger in mag-
nitude. Such results are opposite to what was retrieved from results in previous works 
that employed the realized semivariances as volatility proxies (Fang et al. 2017; Boller-
slev et  al. 2020), where the negative part of the intraday volatility provides a relevant 
contribution to future volatility. Under this view, cryptocurrencies show different traits 
in the volatility pattern compared to other, more established asset classes due to a clear 
separation of behaviors among informed traders and uninformed retail investors that 
participate in the market.

Fig. 2 Barplots of estimated coefficient for the panel HAR-semiRV model specification over three different 
time windows. The number in the legend reflects the year of analysis and is inclusive. Each subplot differs for 
the future horizon of the model specifications: 1 day (top left), 5 days (top right), 22 days (bottom left), and 66 
(bottom right)
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Moving from the intraday effect to the daily leverage effect, Fig. 3 shows the decom-
posed first lag specification estimation results when the latter effect is added. The γ 
parameter is consistently significant and with the same magnitude for all the estimation 
windows tested, except for the horizon equal to five days ahead. The coefficient is always 
negative, reflecting the inversion of the leverage effect retrieved daily. As previously 
studied in Baur and Dimpfl (2018); Brini and Lenz (2022), negative returns’ impact tends 
to lower the cryptocurrency volatility instead of increasing it, as is commonly expected 
from the empirical literature. The effect is robust, even though more pronounced during 
the overall bull market of the 2020–2021 period. Also, in this model specification, the 
volatility appears more persistent in the two years, 2020–2021, than in the other estima-
tion period.

Figure 4 provided the result of the role of the most recent signed jump components 
over the different estimation windows. As for the whole signed volatility components, 
the jump one presents a less influential impact of the φ−

j  when estimated over 2020–
2021, except for the horizon equal to five. Negative jumps happen to be more influential 
due to the bear market of 2022, while they are more negligible during the upward trend 
of 2020. Also, the signed jump specification shows a different level of volatility persis-
tence among the selected estimation windows. In the appendix, Figs.  11 and 12 show 
the estimated coefficients for a fully decomposed HAR-RV model into its signed compo-
nents and a HAR-SJV that includes only the continuous part of the volatility for the most 
recent lags, respectively.

The results of this section show the cryptocurrency ecosystem’s evolution from a 
quantitative perspective. The structural change in the cryptocurrency ecosystem from 
the beginning of 2020 is one reason for the decrease in volatility persistence. The pro-
liferation of new coins and tokens, the emergence of different blockchains to challenge 
the most established Ethereum blockchain, in terms of fees and validation speed, and 

Fig. 3 Barplots of estimated coefficients for the panel HAR-semiRV model specification with daily leverage 
effect over three different time windows. The number in the legend reflects the year of analysis and is 
inclusive. Each subplot differs for the future horizon of the model specifications: 1 day (top left), 5 days (top 
right), 22 days (bottom left), and 66 (bottom right)
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the entrance of institutional investors in the market contributed significantly to the 
observed ecosystem growth (Białkowski 2020). Such an effect is particularly evident in 
the traded volume and the number of active participants in the space (Bouri et al. 2019; 
Bains et al. 2022).

Disentangling the effects at the individual level

After analyzing the cryptocurrency ecosystem at the macro level, we analyze the data 
in our universe at the micro level by individually estimating each model’s specifications 
for each entity. Since the panel estimation provides an average effect of the whole eco-
system, we are also interested in evaluating the tested effects at the individual level to 
understand which results in the previous Sections are commonly shared among many 
universe components. Similar to the previous section, each figure presents a group of 
subplots, each referring to a different estimation horizon and following the same order. 
We present the signed volatility component results, the daily leverage effect, and the 
signed jump components. For each bar plot, the cryptocurrencies are ranked by the 
magnitude of the respective coefficient, and the bars are either blue if the estimation is 
statistically significant at least at 5%, or red if they are not. For some cryptocurrencies, 
the individual estimation of the HAR-like model does not converge; hence, these crypto-
currencies are excluded from the graphic representation.

We acknowledge the challenges and limitations of applying OLS estimation to indi-
vidual time series within the panel. In our methodological approach, we recognize 
that the properties of the error term can differ between panel and time series data. 
In panel data, the error term may have a complex structure, including both individ-
ual-specific and time-specific effects. This complexity can sometimes be averaged 
out in panel estimations but might cause problems in individual time series estima-
tions. Moreover, when dealing with individual time series, especially with short-time 

Fig. 4 Barplots of estimated coefficient for the panel HAR-JV and panel HAR-SJV model specification over 
three different time windows. The number in the legend reflects the year of analysis and is inclusive. Each 
subplot differs for the future horizon of the model specifications: 1 day (top left), 5 days (top right), 22 days 
(bottom left), and 66 (bottom right)
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dimensions, OLS can be biased due to the presence of lagged dependent variables as 
regressors, of which the HAR-like specifications are an example. This bias might not 
be as pronounced when considering a panel estimation, and it is one of the reasons 
for not having all the individual estimations converge. As a third motivation for the 
OLS convergence problem of certain individual model specifications, we note that in 
a panel dataset, the OLS method benefits from the larger sample size, as it combines 
cross-sectional and time series data. This increased sample size can lead to more sta-
ble and reliable estimates. In contrast, individual time series may have fewer observa-
tions, leading to less stable estimates and potential convergence issues. Under this 
view, panel data often captures heterogeneous units (different cryptocurrencies in our 
case) over time. When you estimate the model for the entire panel, the OLS method 
captures the average effect across all units. However, when you analyze individual 
time series, the specific characteristics of each unit come into play. If a particular time 
series has unique features that are not well-captured by the OLS assumptions (like 
non-linearity, or structural breaks), the estimation might fail to converge. Moreover, 
it allows us to identify any outliers or influential observations that can drive the panel 
regression results and contribute to a more granular understanding of the volatility 
pattern for each cryptocurrency considered rather than treating them as a homogene-
ous group.

Despite this, the individual estimation procedure can provide additional insights into 
the heterogeneity of the entities and the robustness of the panel regression results. The 
cryptocurrency market is distinguished by its pronounced volatility but also by the het-
erogeneity of its constituents. Some of them are established cryptocurrencies such as 
BTC and ETH, and others have only relatively recent history as they did their Initial 
Coin Offering (ICO) (Ante et al. 2018; Ashta and Biot-Paquerot 2018) or started being 
traded on Binance (the data source) shortly before or after 2020. The idea of heterogene-
ity is often overlooked when one thinks about the high level of correlation among cryp-
tocurrencies since the most capitalized one usually drags the market dynamics, resulting 
in a correlation heatmap for the daily returns over the period analyzed as in Fig. 5.

However, each cryptocurrency is usually backed by a different project idea or use case, 
which makes it interesting to disentangle the aggregated effect provided by the pooled 
panel analysis. Our decision to undertake individual estimations for each cryptocurrency 
is driven by the intention to investigate the distinct nature, if any, of the cryptocurrency 
market, characterized by its diversity and the unique backing of each currency by different 
project ideas or use cases. Although we recognize the limitations inherent in using price 
data alone, where the assumption that prices immediately reflect underlying economic, 
technological, and regulatory developments may not hold due to the known latency in 
market reactions, our decision to perform individual estimations for each cryptocur-
rency is primarily driven by the objective to investigate the distinct price patterns. This 
methodological choice allows us to explore the nuances of price movements and volatility 
patterns across different cryptocurrencies, acknowledging that these price dynamics may 
serve as proxies for underlying determinants in the absence of more detailed data.7

7 There is no established consensus for one or the other approach, and they can be used concurrently depending on the 
use case (Bou and Satorra 2018). This comparison has been further analyzed within the literature at the intersection of 
statistics and social sciences (Allison and Bollen 1997; Teachman et al. 2001; Ejrnæs and Holm 2006; Allison 2009).
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Figures 6 and 7 show the individual estimates for the realized semivariances param-
eters, respectively, the positive and negative part at any of the previously mentioned 
future horizons. The significant estimated parameters φ+

d  have the same sign for most 
of the sample under study, with few exceptions at any horizon with negative signs. On 
the contrary, the significant estimated parameters φ−

d  are less in number, and the indi-
vidual results are contrasting, with some of the cryptocurrencies in the universe having a 
positive impact for the negative realized semivariance and some others having a negative 
one. Those results validate the estimation of the panel models in where the effect of φ+

d  
impacts more than φ−

d  on future volatilities.
Differently from φ+

d  and φ−
d  , where the percentage of significant estimates in the 

selected cryptocurrency universe does not change with the model horizons, the daily 
leverage effect parameter γ tends to be significant for the majority of the entities when 
the time horizon is larger, one-month or three-month ahead. Figure 8 showcases these 
results, highlighting that the significant parameters γ are always negative with few 
exceptions.

Figures 9 and 10 present the individual estimates for the positive and the negative 
jump components, whose results are coherent with the panel estimation of the same 
model specification. Negative jumps exhibit a strong positive effect on future volatil-
ity. In contrast, positive jumps are associated with significant estimates mixed among 
effects of opposite signs in the universe of cryptocurrency analyzed.
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Fig. 5 Cryptocurrency daily return correlation over the 2020–2022 period
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Connection to economic theories
The empirical analysis presented in our study reveals significant insights into the dynam-
ics of cryptocurrency volatility, challenging traditional financial theories with empiri-
cal evidence from high-frequency data. Particularly, our findings on the inversion of 
the traditional leverage effect, where positive returns correspond to increased volatility, 

Fig. 6 Barplots of φ+
d  coefficients for the individual HAR-semiRV model specification over three different time 

windows. Each subplot differs for the future horizon of the model specifications: 1 day (top left), 5 days (top 
right), 22 days (bottom left), and 66 (bottom right). Blue bars identify statistically significant parameters at 5% 
confidence level, while red bars are for statistically insignificant ones

Fig. 7 Barplots of φ−
d  coefficients for the individual HAR-semiRV model specification over three different time 

windows. Each subplot differs for the future horizon of the model specifications: 1 day (top left), 5 days (top 
right), 22 days (bottom left), and 66 (bottom right). Blue bars identify statistically significant parameters at 5% 
confidence level, while red bars are for statistically insignificant ones
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suggest a deviation from classical financial theory. This anomaly can be connected to the 
presence of momentum effects in cryptocurrencies, as reported in Yang (2019). Estab-
lished behavioral finance theories, such as those addressing investor overconfidence, 
herd behavior, and the disposition effect (De Long et al. 1990; Barberis et al. 1998; Hong 
and Stein 1999; Daniel et al. 1998), can explain these unique volatility patterns. Crypto-
currencies exhibit a distinct sensitivity to positive returns, possibly driven by the fear of 

Fig. 8 Barplots of γ coefficients for the individual HAR-semiRV model specification with daily leverage effect 
over three different time windows. Each subplot differs for the future horizon of the model specifications: 1 
day (top left), 5 days (top right), 22 days (bottom left), and 66 (bottom right). Blue bars identify statistically 
significant parameters at 5% confidence level, while red bars are for statistically insignificant ones

Fig. 9 Barplots of φ+
j  coefficients for the individual HAR-SJV model specification over three different time 

windows. Each subplot differs for the future horizon of the model specifications: 1 day (top left), 5 days (top 
right), 22 days (bottom left), and 66 (bottom right). Blue bars identify statistically significant parameters at 5% 
confidence level, while red bars are for statistically insignificant ones
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missing out (FOMO), as described in and speculative trading, which are characteristic 
of overconfident and herd-like investor behavior, following the notion of noise traders in 
the Glosten-Milgrom model (Glosten and Milgrom 1985). This divergence underscores 
the importance of considering psychological and behavioral factors in further analysis 
of cryptocurrency asset volatility, offering a new perspective on investor behavior in 
these markets, as done with regards to herding behavior in da Gama Silva et al. (2019); 
Gurdgiev and O’Loughlin (2020); Vidal-Tomás et al. (2019); Stavroyiannis and Babalos 
(2019).

The findings from our study on cryptocurrency volatility dynamics align with the prin-
ciples of market microstructure theory, particularly when viewed through the lens of 
the AMH theory (Lo 2004) as explored byKhuntia and Pattanayak (2018). The crypto-
currency market’s continuous trading cycle over the whole day (Demiralay and Golitsis 
2021) and the prevalence of speculators and uninformed traders (Grobys and Junttila 
2021) contribute to its dynamic nature, contrasting with more traditional asset classes. 
In this context, the AMH’s emphasis on market adaptation with temporary inefficiency 
and unusual patterns in price volatility is particularly relevant, as the pace of technologi-
cal innovation and regulatory developments continually shape cryptocurrency market 
dynamics. Specifically, the reliance on blockchain technology as the underlying frame-
work for this new asset class introduces new microstructure variables to consider, such 
as the number of network addresses related to a particular token and the processing 
power needed to maintain the corresponding blockchain network in place (see Koutmos 
(2018) for such an analysis on BTC and Fanning and Centers (2016) for an evaluation 
of the technology impact on the financial services industry). The cryptocurrency mar-
kets show notable distinctions from traditional markets that can motivate the observed 
volatility patterns in this work. Silantyev (2019) observe those as coming primarily from 
shallower average depths of the order book, leading to various disparities in how order 

Fig. 10 Barplots of φ−
j  coefficients for the individual HAR-SJV model specification over three different time 

windows. Each subplot differs for the future horizon of the model specifications: 1 day (top left), 5 days (top 
right), 22 days (bottom left), and 66 (bottom right). Blue bars identify statistically significant parameters at 5% 
confidence level, while red bars are for statistically insignificant ones
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books handle order flow. Trade flow imbalances appear effective in explaining price 
changes in cryptocurrencies.

Discussion
This section evaluates the implications of our findings on the cryptocurrency market’s 
unique volatility landscape, drawing on high-frequency volatility estimators. The econo-
metrics analysis aims to offer valuable insights for market participants and regulators, 
enriching the understanding of this emerging asset class’s volatility patterns and stake-
holder roles.

Key findings

Our empirical results reveal the cryptocurrency market’s volatility dynamics as distinctly 
marked by speculative behaviors and psychological influences. A primary observation is 
the inversion of the traditional leverage effect, where positive returns are correlated with 
future volatility, suggesting a market propelled by speculative enthusiasm and the psy-
chological phenomenon of Fear of Missing Out (FoMo). This inversion signifies a height-
ened market activity in response to positive gains, attracting investors who anticipate 
joining a new investment opportunity.

FoMo, particularly pronounced among retail investors, emerges as a crucial determi-
nant of investment behavior, encouraging entry into the market on market downturns as 
opportunities for purchasing at perceived discounts. This behavior underscores a herd-
ing effect in investment decisions, influenced by a collective eagerness to participate 
in perceived lucrative opportunities without fully grasping the market’s complexities. 
When separately estimating the selected model specification over the three years that 
compose our dataset, we find that the bearish period in 2022 is the one that is actually 
driving the inversion of the leverage effect more than the two previous years.

The distinction between investor types, retail versus institutional, further elucidates 
market dynamics. Retail investors, driven by FoMo and speculative motives, often 
diverge from traditional market analysis, leading to an inversion in leverage effect 
dynamics. Conversely, institutional investors adhere to a more conventional under-
standing of market movements, leveraging price variations for arbitrage and strate-
gic advantage, highlighting their role in sustaining market stability through informed 
decision-making. In this regard, we document the asymmetric effect of returns when 
accounting for the intraday jump dynamics. This distinction between investor behaviors 
underpins the varied volatility drivers in the market. On one side, there are retail inves-
tors driven by Fear of Missing Out (FoMO), causing an inversion of the leverage effect 
at the daily level, and on the other, informed traders exploiting price jumps for arbitrage 
purposes, causing the usual asymmetric leverage effect at the intraday level.

Moreover, we observe less persistence and volatility memory in cryptocurrency than 
in traditional equity markets. This finding motivates a deeper investigation into the 
underlying factors that contribute to these distinctive volatility patterns. The crypto-
currency market, characterized by its innovative technologies and trading mechanisms, 
diverges significantly from equity markets. The increase in on-chain activity, though still 
less predominant than off-chain trades, introduces novel financial dynamics not pre-
sent in traditional finance. Additionally, the cryptocurrency market’s structure, which 
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includes both centralized and decentralized platforms, creates unique arbitrage oppor-
tunities. These factors lead to a slower assimilation of information into cryptocurrency 
prices as the market navigates through these dual layers of activity. This complex and 
evolving landscape underlines the importance of understanding the unique aspects of 
the cryptocurrency market, particularly its reduced volatility persistence, and memory, 
shedding light on its distinct behavior and challenges.

Implications and further advancements

The inversion of the traditional leverage effect and the significant influence of FoMo 
necessitate reconsidering the investment approach to this asset class. This market’s dis-
tinct behavior, marked by inefficiencies in information transmission and fragmentation 
across various trading platforms, suggests that the Adaptive Market Hypothesis (AMH) 
may offer a more accurate framework than the Efficient Market Hypothesis (EMH) for 
understanding cryptocurrency dynamics. This insight prompts a more cautious and 
informed approach, acknowledging the psychological underpinnings and the potential 
for sudden market shifts due to the emergent and still unstable nature of the ecosystem.

The insights derived from our analysis of cryptocurrency market volatility underscore 
the potential benefits of developing more sophisticated pricing models for cryptocur-
rency derivatives. While our study does not delve into the exploration of cryptocurrency 
derivatives directly, we suggest that an in-depth understanding of the unique volatil-
ity patterns observed in the cryptocurrency market is crucial for devising accurate risk 
management strategies. This recognition highlights the importance of derivatives in pro-
viding hedging capabilities, necessitating pricing models that effectively account for the 
cryptocurrency market’s distinct volatility characteristics. Consequently, this research 
points towards the need for innovative derivative pricing mechanisms that can adapt to 
the peculiar aspects of volatility inherent in cryptocurrencies, thereby aiding in mitigat-
ing unexpected volatility patterns. Some preliminary results on cryptocurrency deriva-
tives come from Alexander and Imeraj (2023), which analyze the dynamic delta hedging 
of Bitcoin options, revealing that Bitcoin’s implied volatility curves behave very differ-
ently from those of equity index options, similarly to the comparison we provide in this 
article from the historical volatility perspective.

Regulatory efforts should enhance transparency through mandatory disclosure of 
trading data by exchanges and wallet providers, strengthening financial literacy with 
targeted educational initiatives on cryptocurrency risks and management. These meas-
ures aim to stabilize the market and protect investors against the volatility and specula-
tive risks inherent in cryptocurrency trading. The challenge relies on tailoring oversight 
mechanisms that recognize and effectively manage the inherent volatility and the com-
plex behaviors of cryptocurrency market participants without harming the increased 
liquidity and market participation in the cryptocurrency ecosystem. For instance, 
Chokor and Alfieri (2021) has analyzed the effect of regulation on trader activity, finding 
that investors reacted less negatively for most illiquid cryptocurrencies and those with 
higher information asymmetry. However,Feinstein and Werbach (2021) notes that such 
an effect is unclear.
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As a recommendation for further advancements in the cryptocurrency ecosystem, 
we acknowledge that volatility is a crucial component of any derivative pricing model 
and can benefit the activities of both retail investors and traders. Also, cryptocurrency 
markets are relatively new and less efficient than traditional financial markets. Accu-
rate volatility estimation can help improve market efficiency by providing more reliable 
information about cryptocurrencies’ risk and return characteristics and allowing portfo-
lio managers to use these assets as an alternative asset class. Furthermore, prompt analy-
sis of the volatility dynamics and a solid comparison with traditional asset classes can 
guide the regulators in shaping policies for this nascent asset class, which has been the 
object of an ongoing debate, especially in the last two years. The increasing attention 
investment in financial technology (Kou et al. 2021) further augments the importance of 
having a framework of rules in place.

Conclusions
Contribution

We provide an in-depth analysis of price volatility in the cryptocurrency ecosystem at 
both the aggregate and the individual levels. At the aggregate level, we analyzed the 
effects of signed volatility, daily leverage effect, and signed jumps on the ecosystem as 
a whole. In addition, we compared the results obtained on the cryptocurrencies cross-
section to a cross-section of stocks, a more mature asset class. The results showed that 
positive signed volatility, negative daily leverage, and negative signed jumps positively 
impact the ecosystem’s future volatility. The first two results contrast with common styl-
ized facts of financial volatility in more traditional asset classes, signaling a structural 
difference in the relatively immature cryptocurrency ecosystem. Then, at the individual 
level, we analyzed the abovementioned effects for each cryptocurrency in the selected 
sample, retrieving that most of the cryptocurrencies positively impacted the future vola-
tility for positive signed volatility, with a few exceptions. The results also showed that 
the daily leverage effect tends to be negative for most cryptocurrencies and statistically 
significant for most cross-section components when the time horizon is larger. We also 
found that the dataset’s most recent year (2022) contributes to highlighting the effect of 
positively realized semivariances on future volatility. Such an effect contrasts the notion 
of the asymmetric impact of returns on the realized variance and points to an inverted 
asymmetry inherent in the cryptocurrency data.

Overall, the analysis of cryptocurrency volatility by using high-frequency data sheds 
light on specific traits that this nascent market has had since 2020, going from astound-
ing growth to significant drawdowns and disbelief. Identifying the volatility dynamics 
and comparing it to a more renowned asset class is a crucial aspect to consider for the 
cryptocurrency ecosystem as a whole. A better assessment of the cryptocurrency mar-
ket’s volatility could stabilize the market by producing a more liquid and reliable deriv-
ative market, which nowadays accounts for a few large centralized exchanges such as 
Binance and various residual exchanges.
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Further research endeavors

An interesting improvement of the volatility analysis could be generated using sophis-
ticated on-chain data, accounting for the blockchain user activity and network size 
measure where agents are operating. Indeed, the cryptocurrency ecosystem lives 
on blockchains that produce a lot of data and do not follow the same logic as the 
traditional financial market. Therefore, it could be that the information is not fully 
reflected by the price of coins and tokens on centralized exchanges, as there are two 
alternative and interoperable layers of activities. Moreover, the autoregressive mod-
els we employed in our empirical study are all linear in the parameters, neglecting 
any possible nonlinear relationship in the volatility pattern. This aspect can be fur-
ther analyzed by extending the model specifications to regime-switching models or 
employing machine learning techniques that account for nonlinearities as discussed 
in Sebastião and Godinho (2021). We reserve these points as a study for further anal-
ysis since we believe it is possible to deepen the understanding of the cryptocurrency 
volatility following those lines.

A. Additional estimation results
See Tables 6 and 7. See Figs. 11 and 12.

Table 6 Estimation results for the full HAR-semiRV model specifications

Results are displayed for the cryptocurrency and the equity panel over the four different horizons. T-stats are in parentheses. 
The model equation on top of the table reflects all the parameters common to the specification reported in this table. The 
total number of observations available considering all the entities used for the panel estimate is 47787 for crypto and 17111 
for equity
*** p < 0.01, **p < 0.05, *p < 0.1
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Fig. 11 Barplots of estimated coefficient for the full panel HAR-semiRV model specification over three 
different time windows. Each subplot differs for the future horizon of the model specifications: 1 day (top 
left), 5 days (top right), 22 days (bottom left), and 66 (bottom right)

Table 7 Estimation results for HAR-SJV model specifications with no jump components at the first 
lag

Results are displayed for the cryptocurrency and the equity panel over the four different horizons. T-stats are in parentheses. 
The model equation on top of the table reflects all the parameters common to the specification reported in this table. The 
total number of observations available considering all the entities used for the panel estimate is 47787 for crypto and 17111 
for equity
*** p < 0.01, **p < 0.05, *p < 0.1

RVh,t+h = µ+ φcBVt + φwRVw,t + φmRVm,t + ǫt+h

φc φw φm

Crypto t+1 0.634 ∗∗∗ 0.005 0.053 ∗∗∗

(7.65) (1.35) (4.26)

t+5 0.318 ∗∗∗ 0.051 ∗∗ 0.05 ∗∗∗

(5.445) (2.525) (3.661)

t+22 0.09 ∗∗∗ 0.028 ∗∗∗ 0.048 ∗∗∗

(4.021) (2.58) (4.084)

t+66 0.03 ∗∗∗ 0.006 ∗ -0.012 ∗∗∗

(2.651) (1.188) (− 2.721)

Equity t+1 1.088 ∗∗∗ 0.126 ∗∗∗ 0.129 ∗∗∗

(9.098) (5.202) (2.588)

t+5 0.582 ∗∗∗ 0.148 ∗∗∗ 0.14 ∗∗∗

t+22 (11.173) (10.17) (5.491)

0.335 ∗∗∗ 0.087 ∗∗∗ 0.154 ∗∗∗

(9.397) (8.592) (11.512)

t+66 0.209 ∗∗∗ 0.067 ∗∗∗ 0.205 ∗∗∗

(8.755) (9.528) (22.162)
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BTC  Bitcoin
DeFi  Decentralized Finance
NDTX  NASDAQ Technology Index
RV  Realized Variance
BV  Bipower Variation
IV  Integrated Variance
RV

+  Positive Realized Semivariance
RV

−  Negative Realized Semivariance
API  Application Programming Interface
SJV  Jump Variation
SJV

+  Positive Signed Jump Variation
SJV

−  Negative Signed Jump Variation
OLS  Ordinary Least Squares
HAR  Heterogeneuous Autoregression
WLS  Weighted Least Squares
GARCH  Generalized AutoRegressive Conditional Heteroskedasticity
GJR-GARCH  Glosten-Jagannathan-Runkle GARCH
NFT  Non-Fungible Token
FoMO  Fear-of-missing-out
ICO  Initial Coin offering
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