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Introduction
Following the onset of the COVID-19 pandemic, numerous countries enacted strin-
gent policies that substantially reduced economic activity. The pandemic induced global 
economic turmoil, triggering a pronounced contagion effect on various financial sec-
tors, such as banking, insurance, and equity markets (Goodell 2020). This phenom-
enon has captured the attention of scholars seeking to investigate the repercussions of 
the COVID-19 outbreak on financial markets (Akhtaruzzaman et al. 2021; Youssef et al. 
2021; Zhang et al. 2020). The prevailing COVID-19 outbreak has influenced many assets, 
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We used daily return series for three pairs of datasets from the crude oil markets 
(WTI and Brent), stock indices (the Dow Jones Industrial Average and S&P 500), 
and benchmark cryptocurrencies (Bitcoin and Ethereum) to examine the connections 
between various data during the COVID-19 pandemic. We consider two character-
istics: time and frequency. Based on Diebold and Yilmaz’s (Int J Forecast 28:57–66, 
2012) technique, our findings indicate that comparable data have a substantially 
stronger correlation (regarding return) than volatility. Per Baruník and Křehlík’ (J Financ 
Econ 16:271–296, 2018) approach, interconnectedness among returns (volatilities) 
reduces (increases) as one moves from the short to the long term. A moving window 
analysis reveals a sudden increase in correlation, both in volatility and return, dur-
ing the COVID-19 pandemic. In the context of wavelet coherence analysis, we observe 
a strong interconnection between data corresponding to the COVID-19 outbreak. 
The only exceptions are the behavior of Bitcoin and Ethereum. Specifically, Bitcoin 
combinations with other data exhibit a distinct behavior. The period precisely coin-
cides with the COVID-19 pandemic. Evidently, volatility spillover has a long-lasting 
impact; policymakers should thus employ the appropriate tools to mitigate the severity 
of the relevant shocks (e.g., the COVID-19 pandemic) and simultaneously reduce its 
side effects.
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thereby shaping the dynamics of international financial markets (Özdemir 2022; Salisu 
and Obiora 2021; Shahzad et al. 2021).

In contrast, the transformation of the commodities market, exemplified by the finan-
cialization of commodities, has attracted the scrutiny of stock traders, hedgers, and 
researchers. Among strategic commodities crucial to the economic advancement of 
sophisticated industrial societies, crude oil is particularly significant. The COVID-
19 outbreak has heightened uncertainty, and the resultant financial market shock has 
been unparalleled. In May 2020, for example, concomitant with the global proliferation 
of the COVID-19 pandemic, there was an anomalous decline in global crude oil prices, 
and West Texas Intermediate (WTI) futures prices plunged to their lowest level in four 
years. A large corpus of literature (e.g., Elsayed et al. 2020; Jiang et al. 2020; Malik and 
Umar 2019; Mestre 2021; Shahzad et al. 2017; Rehman et al. 2022; Ha 2023; Kumar et al. 
2023) illustrates the interconnectedness of crude oil and other financial market assets. 
The dynamic relationship between crude oil and financial markets, particularly during 
economic fragility and distress, has also been meticulously documented (e.g., Batten 
et al. 2019; Ha 2023; Kumar et al. 2023; Rao et al. 2022).

The interconnections among financial markets, especially globally, constitute essential 
elements. These connections are commonly influenced by the spillover effects of vola-
tility and returns, and carry substantial implications for investors. It is critical to thor-
oughly examine spillovers, both in terms of returns and volatility, between commodity 
markets, but with a specific focus on crude oil and equity markets. This topic is par-
ticularly relevant for portfolio managers actively pursuing diversification strategies and 
maintaining a watchful stance in anticipation of energy and financial crises.

Cryptocurrencies have garnered significant attention from academics, practitioners, 
and investors across multiple asset classes (Hasan et al. 2022; Rehman 2020; Mensi et al. 
2020). Cryptocurrency markets have grown significantly over the past few years. As of 
August 2022, over 20,000 cryptocurrencies were traded compared with just over 600 in 
January 2016; the total market capitalization has crossed US$ 1 trillion. Investors prefer 
to use cryptocurrencies as a hedge against risks caused by other financial markets (e.g., 
equity markets), and they attempt to diversify their holdings to mitigate these financial 
risks (Jiang et al. 2021; Ji et al. 2019; Conlon et al. 2020; Kumah et al. 2021). However, 
the relationship between cryptocurrencies and equity markets remains a subject of con-
tention (e.g., Gambarelli et al. 2023; Ha 2023; Kumar et al. 2023; Rao et al. 2022), and 
integrating markets that trade traditional financial assets (e.g., stocks, bonds) and cryp-
tocurrencies will depend on resolving this issue.1 There are studies focusing on the rela-
tionships between cryptocurrencies and commodity markets.2

Clearly, a comprehensive analysis of the behavior of a variety of assets (both traditional 
and digital) and their relationship in terms of the intensity of the spillover effect is essen-
tial (especially in the event of significant shocks, such as COVID-19). Several methods 
have been proposed to analyze spillover effects. Let us consider Diebold and Yilmaz 

1 See, for example, Aharon et al. (2021), Baur and Lucey (2010), Köchling et al. (2019), Kumah and Odei-Mensah (2021), 
Bouri et al. (2018), Caferra (2022); Kumah et al. (2022).
2 See, for example, Ji et al. (2019), Panagiotidis et al. (2019), Kumah and Mensah (2022), Rehman and Apergis (2019), 
Bouri et al. (2018), White et al. (2020), Mensi et al. (2019), Foroutan and Lahmiri (2022), Kang et al. (2019), Kumah and 
Odei-Mensah (2022).



Page 3 of 28Ghazani et al. Financial Innovation          (2024) 10:119  

(2012), who implement concepts such as variance decomposition (VD) and vector auto 
regression (VAR). However, this method neither accounts for the frequency compo-
nent nor examines the interconnections in different periods (from short to long term). 
More recent studies have investigated the time–frequency components simultaneously; 
Baruník and Křehlík (2018), for example, attempt to overcome the aforementioned limi-
tation this way. In their approach, the Fourier transform was used to convert Diebold 
and Yilmaz’s (2012) model results into a frequency–dynamics framework. We similarly 
point to studies by Arif et al. (2021), Iqbal et al. (2022), Liu et al. (2022), Dai et al. (2022), 
Mensi et al. (2022), and Umar et al. (2022), who utilized the aforementioned approaches 
to investigate the spillover.

These studies nevertheless neglect scenarios in which the data have a non-stationary 
characteristic (e.g., financial data)—a problem that becomes challenging when we want 
excessive manipulation to provide stationary data. Additionally, the existence of time-
varying fluctuation over time justifies a need for implementing methods that account for 
a lead-lag structure among the variables, which most studies have overlooked. Signifi-
cant structural breakdowns in the data are another issue observed in financial data, and 
using traditional methods in this context does not lead to a favorable result (Ghazani 
et al. 2022).

Studies have also failed to sufficiently analyze dynamic and evolving behaviors with 
respect to the intensity of connectedness between the data in the area of spillover and 
interconnection among markets. We solve these limitations in the literature through our 
investigation.

Our main contributions are summarized as follows. First, we utilized the implications 
of a phase difference method (wavelet coherence) and spillover to analyze approaches 
in the time–frequency domain (Baruník and Křehlík 2018; Diebold and Yilmaz 2012). 
We consider this to be an exhaustive analysis. Second, we considered the time-varying 
interdependence between various assets by employing a rolling window approach with 
varying periods in order to investigate the dynamic behavior of mutual interconnection 
in the lead-lag structure across various assets (particularly in the COVID-19 period).

The remaining paper is organized as follows. Section “Literature review” details the lit-
erature review, section “Data and methodology” presents the data and the methodology, 
section  “Empirical findings” describes empirical results, and section  “Conclusions and 
policy implications” concludes.

Literature review
We review studies that investigate the behavior of financial markets in troubled condi-
tions and assess their relationships in these circumstances. Some studies specifically 
focus on analyzing the relationship between assets (primarily stocks) in various financial 
markets (e.g., Hong et al. 2021; Iqbal et al. 2022; Liu et al. 2022; Loughran and McDon-
ald 2023; Tiwari et  al. 2018; Arif et  al. 2021). We also look at studies that analyze the 
interdependence of commodities and other assets across markets (e.g., Dai et al. 2022; 
Mensi et  al. 2022, 2021; Umar et  al. 2022; Wei et  al. 2022; Ali et  al. 2022; Zhang and 
Hamori 2021; Ferrer et  al. 2021), as well as studies investigating the interdependence 
between cryptocurrencies and other financial assets (e.g., Kumar et al. 2022; Agyei et al. 
2022; Qureshi et al. 2020; Balcilar et al. 2022; Arouxet et al. 2022; Bhuiyan et al. 2021). 
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Through this review, we offer an in-depth evaluation of the concepts presented in the 
literature.

Interconnections among securities

Hong et al. (2021) investigated the relationship between COVID-19 and the instability of 
stock price volatility and return predictability in the United States from January 1, 2019, 
to June 30, 2020, using the methodologies of Bai and Perron (1998), Elliot and Mül-
ler (2003), and Xu (2013). The results confirm a single break in the price volatility and 
return predictability of the S&P 500 and Dow Jones Industrial Average. The breakpoint 
coincides with the COVID-19 pandemic, and return predictability and price volatility 
show significant amplification following the break.

Iqbal et  al. (2022) investigated the asymmetric spillovers (returns and volatility) 
between global sustainable investments for fourteen country-level Dow Jones Sustain-
ability Indices between 2005 and 2021. They utilized the Diebold and Yilmaz (2012), 
Diebold and Yılmaz (2014), Baruník and Křehlík (2018), and Diebold and Yilmaz (2018) 
methods to analyze time–frequency connectivity. Their findings reveal substantial time–
frequency asymmetries in return spillovers across several short- and long-run areas, 
especially during the COVID-19 outbreak.

Liu et al. (2022) investigated the volatility spillover among global equity markets dur-
ing the COVID-19 outbreak using the connectedness methods of Diebold and Yilmaz 
(2012) and Baruník and Křehlík (2018), as well as volatility data from sixteen different 
equity markets. Evidently, COVID-19 pandemic significantly exacerbated the effects of 
risk contagion on global financial markets. Loughran and McDonald (2023) analyzed 
all 2018 10-K filings and found that less than one-fourth of the documents mentioned 
COVID-19-related terms. They also discovered a correlation between the incorpora-
tion of COVID-19-related terms in financial statements and realized returns during the 
COVID-19 period.

Arif et al. (2021) analyzed the time–frequency interdependence between clean energy 
and conventional investments in equity and energy markets during the COVID-19 pan-
demic by applying the Diebold and Yilmaz (2012) and Baruník and Křehlík (2018) meth-
ods to a sample from January 2008 to July 2020. Their findings demonstrated a superior 
connection between selected data during the COVID-19 outbreak.

Interdependence of commodities and other assets

Ha (2023) scrutinized the interconnections among different types of financial assets 
and commodities, including equities, gold, crude oil, and cryptocurrency, by applying 
several Bayesian VAR models. Ha decomposed the models into various time horizons 
(short, medium, and long run) to analyze the dynamic interlinkages between these mar-
kets before and during the COVID-19 pandemic periods. Both short- and medium-term 
trends revealed that equity, crude oil, and gold markets all receive shocks transmitted to 
these markets by the selected cryptocurrencies. In the long-term horizon, the crypto-
currency and gold markets were identified as shock transmitters.

Dai et  al. (2022) analyzed the volatility spillover effects and evolving relationships 
between gold, WTI crude oil, and the Chinese equity markets by employing the Die-
bold and Yilmaz (2012) and Diebold and Yılmaz (2014) techniques established on the 
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time-varying parameter VAR model. The results reveal an extraordinary degree of inter-
dependence between data, and the general volatility spillover experiences a sudden 
increase during severe crises. They further determined that gold and WTI are the net 
recipients of the shocks, while all Chinese equity markets are net transmitters; the oil 
industry had the lowest returns and one of the lowest word counts related to the pan-
demic; and the oil industry firms barely mentioned pandemic risk in their shareholder 
disclosure statements (despite being severely affected by the pandemic). Clearly, man-
agers failed to emphasize their exposure to COVID-19 risks. Dai et al. thus concluded 
that oil executives should have warned their shareholders about the industry’s enormous 
downside risk during the catastrophic pandemic.

Utilizing the Baruník and Křehlík (2018) and wavelet coherency methods, Mensi et al. 
(2022) assessed the time-varying and frequency spillovers between WTI crude oil, global 
Green Bonds (GBs), and G7 equity markets. The spillovers proved to be time-varying 
and shock-sensitive. During the onset of the COVID-19 pandemic, a significant increase 
in spillover was also observed. The wavelet analysis revealed substantial correlations 
between GBs and both G7 equity markets and oil. In the medium and long terms, as well 
as during the COVID-19 outbreak, GBs and oil triggered equity market fluctuations.

Umar et al. (2022) analyzed the correlation between the volatility of certain stocks and 
fossil fuels during the COVID-19 outbreak. They matched the impact of financial catas-
trophes (e.g., the 2008 Global Financial Crisis and COVID-19 pandemic) in inciting the 
volatility interdependence of energy markets. They utilized Diebold and Yilmaz’s (2012) 
and Baruník and Křehlík’s (2018) techniques. Their findings indicate a tenuous correla-
tion between the volatility of clean energy stocks and fossil fuels. Before and during the 
COVID-19 outbreak, Ali et al. (2022) applied the wavelet technique to reveal a robust 
correlation between specific equity and oil futures markets. They discovered low-fre-
quency positive co-movements during the COVID-19 period.

Connectedness between cryptocurrencies and other assets

Gambarelli et al. (2023) used daily data from 2018 to 2022 in the European equity mar-
kets to examine the interconnection between cryptocurrencies and gold in different 
conditions on the market and the hedging efficacy of cryptocurrencies in managing the 
risk of portfolios. They implemented linear and nonlinear autoregressive distributed lag 
approaches to evaluate the intensity of connection in different short and long periods.

Kumar et al. (2023) examined the interconnection among cryptocurrencies, commod-
ities, and select equity markets with respect to risk and returns under the COVID-19 
pandemic and the Russian–Ukraine war. They implemented the time-varying param-
eter VAR method by changing the structure of Diebold and Yilmaz’s (2012) technique, 
revealing a high level of connectedness during COVID-19, which was persistent for an 
extended period.

Agyei et  al. (2022) proposed a time–frequency framework based on wavelet tech-
niques for analyzing the degree of connectivity and the lead-lag relationship between 
six cryptocurrencies and the cryptocurrency-implied volatility index (VCRIX). The 
relationship between cryptocurrencies and VCRIX was substantial and predominantly 
positive across various investment time horizons. Rao et al. (2022) examined the nexus 
and the connectedness between different indices of equities, bonds, commodities, and 
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Bitcoin from August 2011 to July 2021 (covering the pre- and post-COVID-19). They 
employed the time-varying parameter VAR and quantile regression approaches to rec-
ognize the effect of events on different assets and analyzed the nexus between assets 
under uncertain conditions. The selected markets proved to be intensely connected, 
with the expectation that they will only expand in the post-pandemic future. Before the 
pandemic, emerging markets and the MSCI World indices contributed to most shocks 
to other variables.

Zhang and Hamori (2021) used the Diebold and Yilmaz’s (2012) and Baruník and 
Křehlík’s (2018) methods to examine the volatility and return spillovers between the 
COVID-19 outbreak, stock, and crude oil markets. They demonstrated that the return 
spillover is predominantly short term, whereas the volatility spillover is primarily long 
term. Mensi et al. (2021) investigated the return spillovers between crude oil, gold, and 
ten Chinese sector equity markets using Diebold and Yilmaz’s (2012) and Diebold and 
Yilmaz’s (2014) techniques. They concluded that the industrial and consumer discretion-
ary sectors are the most critical spillover transmitters and receivers. In addition, their 
findings indicate that the crash in oil prices, 2008 Global Financial Crisis, and outbreak 
of COVID-19 affected asymmetric spillovers.

From 2016 to 2018, Qureshi et al. (2020) investigated the dynamics of multiscale inter-
dependencies among the top five cryptocurrencies using wavelet-based analyses. The 
results confirmed the short- and long-term market integration of several cryptocurrency 
pairs. Balcilar et al. (2022) used time–frequency integration methods based on network 
analysis to investigate the volatility interdependence between 27 emerging stock mar-
kets and seven cryptocurrencies for the pre- and post-COVID-19 pandemic. After the 
outbreak of COVID-19, they found an increasing risk spillover among emerging mar-
ket stocks and cryptocurrencies. Calculations of time-varying connectedness validated 
the significant impact of the COVID-19 pandemic. Arouxet et al. (2022) examined long-
term memory in return and volatility by employing a high-frequency time series of seven 
of the most prominent cryptocurrencies for the pre- and post-COVID-19 outbreak. 
Using the wavelet transform method, they discovered that the long memory of returns 
was only marginally affected during the peak of the COVID-19 pandemic.

The literature review clearly reveals gaps in research. The research on the time–fre-
quency domain and volatility transmission network between new asset classes (crypto-
currencies) and traditional asset classes (commodities and stocks) is limited and scarce. 
We thus highlight a novel perspective by focusing on the substantial time-varying varia-
tion in the lead-lag structure during the COVID-19 period. It should also be noted that 
dynamic behavior analysis and the time-varying interdependence among different assets 
have received less attention in the literature. We address these issues by employing the 
rolling window methodology with varying time intervals.

Data and methodology
We examine the descriptive analysis of data in this section. The data consist 
of daily spot return series [calculated as a logarithmic difference in prices, i.e., 
rt = (lnpt − lnpt−1) ] for selected benchmark stock indices (Dow Jones Industrial 
Average and S&P 500), cryptocurrencies [Bitcoin (BTC from here on) and Ethereum 
(ETH from here)], and crude oils (WTI and Brent). We can observe the evolution 
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of the return series in the Fig. 1. The information for cryptocurrencies was obtained 
from investing.com; stock indices and crude oil data were obtained from Yahoo 
Finance. The data span from 14 December 2015 to 13 December 2021.

We selected both Brent and WTI crude oil prices because, first, they are interna-
tional energy sector benchmarks and considered reference prices in many commodity 
markets. Second, each of the crude oils represents a specific market (e.g., Brent crude 
is the benchmark used for the broader light oil market, i.e., Europe, Africa, and the 
Middle East, while WTI is the benchmark for the U.S. light oil market) and in total 
cover more than 90% of the market. Other countries also regularly apply Brent and 
WTI benchmarks to value their crude oil.

Table 1 shows the descriptive analysis of the return series. All of the series present 
negative skewness (except for Ethereum). Brent prices have the most notable degree 
of skewness. The intensity of kurtosis is incredible for all the data, but for WTI, con-
firming its excess kurtosis. In general, and based on the mentioned statistical findings, 
all information presents features of a non-normal distribution, and the significant 
results of the Jarque–Bera test statistics validate it.

Figure  2 illustrates the volatility behavior for each data. We employ the autore-
gressive moving average-generalized autoregressive conditional heteroscedasticity 
(ARMA-GARCH) model to compute the volatilities of data. We consider the residual 
series resulting from ARMA-GARCH models for six return series. The fluctuations 
of the Ethereum return series are higher than that of other assets from the beginning. 
Looking at the results, in early 2020, when the COVID-19 pandemic began, the return 
fluctuations peaked and increased substantially.

Fig. 1 Behavior of the return series
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Table 1 Descriptive statistics of return series

BTC WTI ETH Dow Jones S&P500 Brent

Mean 0.3655 0.0528 0.6472 0.0564 0.0658 0.0556

Median 0.2517 0.1435 0.1637 0.0966 0.0965 0.1746

Max 25.3490 42.5832 58.6810 10.7643 8.7956 41.2023

Min − 46.4730 − 79.9517 − 55.3296 − 10.5232 − 10.4236 − 71.7519

Std. Dev 5.1337 4.3076 7.7879 1.2172 1.1182 3.8966

Skewness − 0.3690 − 4.0701 0.2926 − 0.7475 − 0.6779 − 4.1412

Kurtosis 11.7846 113.1058 13.1259 19.0201 18.7574 109.7688

Jarque–Bera 4125.3 647,062.5 5461 13,742.2 13,277.8 608,769.3

Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Fig. 2 Dynamics of return volatility

Table 2 Estimation result for ARMA-GARCH specification

 ** and * represent statistical significance at the 1% and 5% levels, respectively. Q (20) and Q2 (20) are the Ljung–Box 
statistics with 20th lags for the standard residuals and standard residuals squared, respectively

BTC WTI ETH Dow Jones S&P 500 Brent

γ 0.4791* 0.1777** 0.3578* 0.0945* 0.1108** 0.1749**

AR(1) 0.9782** − 0.9356** 0.8705** − 0.9739** − 0.7342** − 0.8406**

AR(2) – − 0.7126** – – 0.4631* − 0.6621**

MA(1) − 0.9687** 0.9133** − 0.8380** 0.9638** 0.6786** 0.7892**

MA(2) – 0.4986** – – 0.8981* 0.6064*

MA(3) – − 0.0082* – – − 0.6941** –

µ 1.5493* 0.3395** 4.1785* 0.0551** 0.0540** 0.3165*

ϕ1 0.1185** 0.1739** 0.1226** 0.2452** 0.2932** 0.1746**

θ1 0.8353** 0.7980** 0.8255** 0.7217** 0.6912** 0.7997**

Q(20) 28 19 22 24 31 36

Probability 0.2152 0.3561 0.4123 0.7165 0.6881 0.1418

Q2(20) 21 16 13 20 24 19

Probability 0.5617 0.4228 0.3987 0.4418 0.1171 0.2511
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Based on the Akaike information criterion (AIC), Table  2 presents the fittest model 
for selected data in ARMA-GARCH specification and the optimum lag structure for 
each data and related empirical results. We show the best-fitting model in the ARMA-
GARCH approach for each of the six return series based on the lowest number of AIC 
criteria. As evident from Table  2, the selected data have the following specifications: 
Bitcoin, Ethereum, and Dow Jones industrial index have ARMA-GARCH (1, 1), WTI 
and S&P500 index have ARMA-GARCH (2, 3), and Brent has ARMA-GARCH (2, 2) 
structures.

Rolling window method

The number of observations available to estimate the parameters in the modeling pro-
cess might sometimes be too insufficient for a statistically robust estimation. An inno-
vative approach called rolling analysis can be employed to address this challenge. This 
approach also offers a dynamic data view and helps detect fluctuations of patterns over 
time. It can also assist in finding seasonal patterns, trends, and other vital characteristics 
of the time series.

We construct a time series utilizing samples of sequential observations. For example, 
let us consider a series of returns {r(t)}Tt=1 from which the target is to estimate an accu-
mulated return over a period �s . In the context of a rolling analysis, where rather than 
dividing the sample into T/�s equally sized non-overlapping sub-samples, the aggre-
gated returns are analyzed by moving the window forward one observation at a time. 
The number of aggregated �s returns for this approach then becomes T −�s + 1 , which 
is considerably larger than T/�s , for �s < T  . Assume that {r(t)} is a stationary time 
series. Then, the rolling returns, represented by {r(t)} , is described as

Analyzing methods

We suggest two approaches—frequency domain spillover methods and wavelet coher-
ence—to examine the connection among data. The features and advantages of these 
approaches are debated in detail as follows.

Diebold and Yilmaz (2012)

To calculate spillovers, Diebold and Yilmaz (2012) integrate the generalized forecast 
error variance decomposition (GFEVD) and the extended VAR models, which creates a 
connectivity idea. The k-variable VAR ( q ) model can be thought of as Eq. (1):

where ϕ represents the k × k coefficient matrices and xt represents the k × 1 vector of 
the utilized variables at time t . The vector moving average (MA(∞)) can also be used to 
alter the VAR process in our investigation. Assume that the roots of |ϕ(z)| are outside a 
unit’s circle in Eq. (2):

r̃(�s)(z) :=
z+�s−1∑

t=z

r(t).

(1)xt =
q∑

i=1

ϕixt−i + et ,
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where B(l) is a k × k matrix of infinite lag polynomials formed by substituting 
ϕ(l) = [B(l)]−1. Because the order of variables in the VAR model can alter the variance 
decomposition or impulse response results, Diebold and Yilmaz (2012) used the gen-
eralized VAR structure proposed by Koop et al. (1996) and Pesaran and Shin (1998) to 
ensure variance decomposition independence from ordering. The U-step-ahead GFEVD 
can be described in the following way using the framework in Eq. (3):

where σkk = (E)kk · (θU )jk describes the share of the model’s k th variable to the variance 
of forecast error of the component j at horizon u and Bu is a k × k coefficient matrix of 
the polynomial at lag u . Each entry is normalized by the sum of the rows in the form of 
Eq. (4):

The pairwise spillover from k to j at horizon U  is indicated by θ̃jk(U) , which is uti-
lized to evaluate the spillover impact from market k to j.

The total spillover index, which calculates the contribution of shock spillovers 
across variables to the total forecast error variance, is calculated as follows:

All other variables j have a directional spillover effect on variable i , which is 
assessed as

Similar to the directional spillover from the market i to all other markets j , the 
directional spillover from the market i to all other markets j is calculated as:

Net spillovers from market i to all markets j can be estimated as the difference 
among gross shocks sent to and received from all other markets, given these direc-
tional spillovers:

(2)xt = B(l)et ,

(3)(θU ) =
σ−1
kk

∑U
u=0

(
(BuE)jk

)2
∑U

u=0

(
BuEB′

u

)
jj

.

(4)θ̃jk(U) =
θjk(U)

∑M
k=1 θjk(U)

.

(5)
SP(U) =

∑M

i, j = 1

i �= j

θ̃ij(U)

∑M
i,j=1 θ̃ij(U)

× 100.

(6)
SPi.(U) =

∑M

j = 1

i �= j

θ̃ij(U)

∑M
j=1 θ̃ij(U)

× 100.

(7)
SP .i(U) =

∑M

j = 1

i �= j

θ̃ji(U)

∑M
j=1 θ̃ji(U)

× 100.
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Baruník and Křehlík (2018)

In the Diebold and Yilmaz (2012) method, we examine correlation for the total period. In 
comparison, the Baruník and Křehlík (2018) method enables us to check the correlation 
among the variables in different time frames (including the short, medium, and long terms) 
by determining various frequencies. They applied the Fourier transform to convert the Die-
bold and Yilmaz (2012) model results into a frequency dynamics technique. The frequency 
response function is derived by performing a Fourier transformation on the coefficients 
Bu : B

(
e−iw

)
=

∑
u e

−iwuBu , where i =
√
−1 . The generalized causation spectrum across 

the frequency range w ∈ (−π ,π) is written as Eq. (9):

where B
(
e−iw

)
=

∑
u e

−iwuBu is the Fourier transform of the impulse response Bu . The 
element of the j th variable’s spectrum at the w frequency due to shocks in the k th varia-
ble is 

(
g(w)

)
jk

 , which should be stressed. Within the causality of frequency, we might 

clarify the shape of Eq. (9) for the variety since the divisor holds the spectrum of the j th 
variable at a particular frequency w . To reap the generalized decomposition of variance 
decomposition in the frequency dynamics, we can weight 

(
g(w)

)
jk

 by the frequency con-

tribution of the j th variable variance. This weighting function is written in Eq. (10):

It shows the j th variable’s power at a specific frequency, that is, a constant value of 2π at all 
frequencies. Formally, the frequency band b = (a, c) : a, c ∈ (−π ,π), a < c is constructed.

Under the frequency band b , the GFEVD is:

However, Eq.  (11) must still be adjusted. On the frequency range 
b = (a, c) : a, c ∈ (−π ,π), a < c , the scaled GFEVD can be thought as Eq. (12):

where θ̃jk(b) is the pairwise spillover at frequency band b . Additionally, on the frequency 
band b , the total overflow (frequency interdependence) can be defined as Eq. (13):

(8)SPi(U) = SP.i(U)− SPi.(U).

(9)(
g(w)

)
jk
=

σ−1
kk

∣∣∣
(
B
(
e−iw

)
E
)
jk

∣∣∣
2

(
B
(
e−iω

)
EB′(eiw

))
jj

,

(10)ξj(w) =

(
B
(
e−iw

)
EB′(eiw

))
jj

1
2π

∫ π

−π

(
B
(
e−iw

)
EB′(eiw

))
jj
dτ

.

(11)θjk(b) =
1

2π

∫ c

a
ξ(w)

(
g(w)

)
jk
dw.

(12)θ̃jk(b) =
θjk(b)∑
k θjk(∞)

,

(13)SP(b) =



� �θ(b)− T

�
�θ(b)

�

� �θ(∞)


× 100.
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T {.} denotes the trace operator and ∑ θ̃ (b) is the sum of all influences in the θ̃ (b) 
matrix. The total spillover frequency splits the total spillover into various frequency por-
tions and can be used for the total spillover ( SP ) calculated using the Diebold and Yilmaz 
(2012) model. Similarly, the two-directional spillovers in frequency dynamics can be 
defined as follows:

Directional Spillovers with Frequency (From): SPk .(b) =
∑M

j = 1

j �= i

θ̃kj(b)/M × 100 . 

The market’s spillover from all other markets at frequency band b is measured by fre-
quency directional spillovers (from) and SP .k(b) =

∑M

j = 1

j �= i

θ̃jk(b)/M × 100 for fre-

quency directional spillovers (To). The market’s spillover to all other markets at 
frequency band b is measured by frequency directional spillovers (to).

Wavelet analysis

A close examination of the literature shows that time–frequency domain techniques 
have been used to estimate the correlation between variables. However, these traditional 
approaches cannot be robust if the data are non-stationary. Indeed, significant structural 
breakdown(s) in datasets has (have) harmed the outcomes of standard time-domain 
analysis (Ghazani et al. 2022). Meanwhile, wavelet techniques, which permit one-dimen-
sional time data to be split into the two-dimensional time–frequency domain, have been 
suggested as a critical innovation to overcome these constraints (Kirikkaleli and Gok-
menoglu 2020). A multiscale mindset suggests using a common framework to indicate 
frequency-dependent behavior while evaluating any data linkage, as in our case.

We may find specific places in the time–frequency domain where sudden variations in 
the co-movement of the investigated series occur and are identical to standard correla-
tion using this approach. The wavelet (ϕ ) has its origins in the Morlet wavelet family. The 
Morlet wavelet, invented by Goupillaud et al. (1984), is the type of wavelet used in this 
investigation. The wavelet model (ϕ) is a modification of the Morlet wavelet (Eq. 14).

A wavelet’s scale ( s ) and location ( l ) are two different characteristics. The l param-
eter helps obtain the precise position by moving the wavelet throughout time, but the 
s parameter tries the stretched wavelet to limit distinct frequencies. The ϕl,s is obtained 
from the ϕ in the following.

As a function of l and s , ϕ can generate a continuous wavelet. Also, in Eq. 16, Rel(t) 
presents appropriate series, where

(14)ϕ(t) = π−0.25e−iωt−0.5t2 t = 1, 2, 3, . . . .,T .

(15)ϕl,s(t) =
1√
s
ϕ

(
t − l

s

)
, l, s ∈ R, s �= 0.

(16)Qw(l, s) =
� ∞

−∞
Rel(t)

1√
s
ϕ




−
t − l

s


dt.
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The ϕ coefficient has been added to the modified version of the times series Rel(t):

The wavelet power spectrum (WPS) concept was applied in this work to obtain extra 
information (e.g., the scale of the time series) concerning the variables:

In light of the concerns addressed in this area, we used the wavelet coherence method 
because, unlike other methods. it lets us describe any association between the two 
series α(t) and β(t) in time–frequency linkages. In this case, the cross wavelet transform 
(CWT) of the selected series can be defined as follows:

where CWTα(l, s) and CWTβ(l, s) denote the CWT of two different series α(t) and β(t) , 
respectively. According to Orhan et al. (2019), the equation for squared wavelet coher-
ence is as follows:

With 0 ≤ WC2(l, c) ≤ 1 , Sm depicts the smoothing method over time. When 
WC2(l, c) approaches 1, the variables correlate with a specific scale, highlighted in red 
and enclosed by a black line in the figures. If WC2(l, c) is 0, no connection (shown in 
blue color) between the series is indicated (Kirikkaleli and Ozun 2019).However, when 
WC2(l, c) is measured, it is impossible to distinguish between positive and negative cor-
relation numbers. To solve this problem, Torrence and Compo (1998) created a tech-
nique to assess wavelet coherence using several indicators to examine the oscillatory 
nature of two time series. The wavelet coherence difference phase’s relevant equation is 
written as follows:

Figure  3 shows that the black arrows explain wavelet coherence (phase difference) 
results. As rightward arrows indicate, the wavelet coherence phase difference moves 
towards 0 when two time series illustrate a positive correlation. However, the arrows 
point to the left when the two series correlate negatively. A downward arrow denotes 
that the primary variable is ahead of the secondary by π , and vice versa.

Empirical findings
We now check and analyze the behavior of selected data in the current study through 
the suggested methods to answer our research questions, that is, what is the intensity 
of the connection among the selected data in different markets during shocks (e.g., the 

(17)Rel(t) =
1

Sϕ

∫ ∞

0

[∫ ∞

−∞

∣∣Qw

(
i, j
)∣∣2di

]
dj

j2
.

(18)WPSw(l, s) =
∣∣Qw(l, s)

∣∣2.

(19)CWTαβ(l, s) = CWTα(l, s)CWTβ(l, s),

(20)WC2(l, s) =
∣∣Sm(s−1Qαβ(l, s)

∣∣2

Sm
(
s−1

∣∣Qα(l, s)
∣∣2
)
Sm

(
s−1

∣∣CWTβ(l, s)
∣∣2
) .

(21)θαβ(l, s) = tan−1

(
IMAG

{
Sm

(
z−1CWTαβ(l, s)

)}

REA
{
Sm

(
z−1CWTαβ(l, s)

)}
)
.
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COVID-19 pandemic)? Further, is there a difference between the results obtained when 
analyzing the return and volatility of variables?

Dynamic analysis of total connectedness

The degree of total connectedness in returns and volatilities has been presented through 
rolling windows with two different sizes (200 and 300, following Ferrer et al. 2021; Arif 
et al. 2021; Tiwari et al. 2018) to confirm the robustness of our results.

Figure 4 shows the behavior of returns over time (window size 200). Moving from the 
short to the long term reveals a noticeable decrease in the total connectedness in the 
returns. The diagram that displays the long-term interconnection (in gold line) has been 
placed at the lowest level compared with other series (short and medium terms). On 
March 12, 2020, as the COVID-19 pandemic commenced, we observe a peak in con-
nectedness that coincides with the significant decline in stock markets.

Fig. 3 Schematic phase difference structure

Fig. 4 Dynamic total return connectivity developments with a window length of 200 based on the 
frameworks proposed by Baruník and Křehlík (2018) and Diebold and Yilmaz (2012)
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Figure  5 shows the total connectedness in terms of volatility among data by imple-
menting a rolling window approach with a size of 200. Moving from the short to the long 
term increases the total connectedness because the diagram that presents the short-term 
interconnection has been placed at the lowest level compared with other series (medium 
and long terms). We observe two notable movements in the time series in Fig. 5. The 
first movement was recognized on February 5, 2018, due to the comments of the head of 
the Bank for International Settlements (BIS) about the threat of Bitcoin, which triggered 
a drop of almost 25% in the price of Bitcoin and caused observing a peak in volatility 
connectedness on February 6, 2018. Another significant fluctuation is detected in March 
2020, when the COVID-19 pandemic began. We also realize a climax in volatility con-
nectedness, which coincides with the historic collapse of the stock markets.

By moving toward a longer time window (300), we observe the replication of certain 
trends in the previous specific periods (February 2018 and March 2020) (see Figs. 6 and 
7). The only difference in this relationship, compared with the previous one, is a slight 
and non-noticeable decrease in the intensity of the relationship at all time points, indi-
cating that the choice of a different rolling window length does not disturb the robust-
ness of connectedness results.

Spillover analysis

We now discuss the analysis of the returns and volatility spillover among data. Each vari-
able’s mutual effect on other study variables is investigated in this framework. Accord-
ing to Table  3, based on the Diebold and Yilmaz (2012) method, similar (in the same 
category) data have a higher correlation (in terms of return) with each other; according 
to Table 4, this is not the case in volatility. There exist several studies that mention this 
phenomenon (e.g., Zhang and Hamori 2021; Naeem et al. 2022; Toyoshima and Hamori 
2018). Bitcoin, for example, is most impacted by the S&P 500 (22.43%), while Ethereum 
is most impacted by Bitcoin. However, stock indices and crude oils, like returns, have the 
most significant impact on their peers in volatility.

Tables 3 and 4 show that Bitcoin and Ethereum returns have the same effect on each 
other (23.71% vs 23.48%). In comparison, Bitcoin has a more significant impact on 

Fig. 5 Dynamic total volatility connectivity developments with a window length of 200 based on the 
frameworks proposed by Baruník and Křehlík (2018) and Diebold and Yilmaz (2012)
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Fig. 6 Dynamic total return connectivity developments with a window length of 300 based on the proposed 
frameworks by Baruník and Křehlík (2018) and Diebold and Yilmaz (2012)

Fig. 7 Dynamic total volatility connectivity developments with a window length of 300 based on the 
proposed frameworks by Baruník and Křehlík (2018) and Diebold and Yilmaz (2012)

Table 3 Diebold and Yilmaz Return Spillover

The bold numbers show the aggregate impacts

The sum of the numbers in each row and each column, except the “From” column and the “To” row, is 100. The numbers in 
each row indicate how others influence the return data of that row. The numbers in each column indicate how the return of 
that column affects other data. The numbers in the “From” column equal the average effect a specific row’s return data takes 
from the rest. The numbers in the "To" row are equal to the average impact of a particular column’s return data on the rest

Bitcoin Ethereum S&P 500 Dow Jones Brent WTI FROM

Bitcoin 73.64 23.48 1.13 0.96 0.4 0.4 4.39

Ethereum 23.71 74.18 0.83 0.97 0.18 0.12 4.3

S&P 500 0.84 0.71 74.23 18.88 3.41 1.93 4.3

Dow Jones 1.04 0.91 26.04 60.16 6.63 5.23 6.64

Brent 0.64 0.25 2.44 5.34 55.35 35.98 7.44

WTI 0.53 0.17 0.94 3.61 37.24 57.51 7.08

TO 4.46 4.25 5.23 4.96 7.98 7.28 34.16
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Ethereum in terms of volatility (12.83% vs 9.45%). Following the stock indices returns, 
the effect of the S&P 500 on the Dow Jones is more significant (26.04% vs 18.88%), while 
volatility is quite the opposite (29.97% vs 43.63%). For the crude oil returns, Brent is 
slightly superior in impact (37.24% vs 35.98%) but almost equal in volatility (43.70% vs 
43.93%). Total connectedness is generally higher in the volatility section than in return 
(43.61% vs 34.16%).

The results in Table 3 reflect those in Fig. 8. The thickness of the arrows indicates the 
intensity of the effect of a specific variable on the other one. The direction of the arrows 
also specifies the course of the relationship between the two variables. The highest rela-
tionship is visible between the two benchmark crude oils. Then, the Dow Jones Indus-
trial Average and S&P 500 stock indices are placed in the following positions of spillover 
intensity, and finally, the two selected cryptocurrencies of the study.

Concerning the volatility results and based on Fig. 9, we observe the highest spillover 
between the two crude oils, but we find a significant change in the spillover intensity 
between the two stock indices. Its amount from the Dow Jones index to the S&P 500 
reaches 43.63%. Also, the volatility spillover from stock indices to cryptocurrencies sig-
nificantly increases, reflecting the impact of the changes and fluctuations of the stock 
markets on these two cryptocurrencies.

According to Tables 5 and 6, based on the Baruník and Křehlík (2018) method, total 
connectedness in the returns decreases from the short to long term (25.84% vs 2.20%). 
In comparison, volatility is the opposite (3.48% vs 28.61%). This finding specifies that 
volatility spillover has an enduring impact. Interestingly, in terms of the return data in 
Table 5, for cryptocurrencies and in the short term, the effect of Bitcoin on Ethereum 
is slightly more significant (19.18% vs 18.43%); in the medium and long terms, it is the 
opposite (3.35% vs 3.72% and 1.19% vs 1.32%). In the case of indices returns, the effect 
of the S&P 500 is stronger. In the long term, we observe a stronger impact of the S&P 
500 versus the Dow Jones. Finally, for crude oil return and in the short term, Brent sig-
nificantly affects WTI (32.91% vs 28.39%); the opposite is true for the medium and long 
terms (3.27% vs 5.67% and 1.06% vs 1.92%, respectively).

Interestingly, regarding the volatility in Table  6, the indices in the short term reveal 
that the effect of the S&P 500 on Dow Jones is slightly higher (1.29% vs 1.19%), but the 

Table 4 Diebold–Yilmaz volatility spillover

The bold numbers show the aggregate impacts

The sum of the numbers in each row and each column of the table, except the “From” column and the “To” row, is 100. The 
numbers in each row indicate how the volatility of that row is affected by other data. The numbers in each column indicate 
how the volatility of that column affects other data. The numbers in the “From” column are equal to the average effect of 
that row’s volatility taken from the rest of the data. The numbers in the “To” row are equal to the average impact of that 
column’s volatility on the rest of the data

Bitcoin Ethereum S&P 500 Dow Jones Brent WTI FROM

Bitcoin 53.93 9.45 22.43 13.88 0.12 0.18 7.68

Ethereum 12.83 75.21 7.77 4.11 0.03 0.05 4.13

S&P 500 1.85 0.58 53.61 43.63 0.14 0.2 7.73

Dow Jones 2.73 0.84 29.97 65.97 0.22 0.26 5.67

Brent 0.04 0.03 2.68 7.18 46.14 43.93 8.98

WTI 0.07 0.05 3.54 9.15 43.7 43.48 9.42

TO 2.92 1.83 11.07 12.99 7.37 7.44 43.61
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Fig. 8 Directional return spillovers in networks using the Diebold and Yilmaz (2012) method

Fig. 9 Directional volatility spillovers in networks using the Diebold and Yilmaz (2012) method
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opposite is true for the medium and long term (5.63% vs 7.11% and 23.04% vs 35.33%). 
In the case of the volatility of cryptocurrencies, Bitcoin has a more significant impact on 
Ethereum. In the case of crude oils, the effect of WTI on Brent is more significant in the 
short term (5.50% vs 4.86%). In the medium term, they have an almost equal effect on 
each other (15.86% vs 15.63%). However, in the long term, the impact of Brent on WTI is 
substantial (23.21% vs 22.58%).

Figure 10 shows the behavior of relationships between the study data in the Baruník 
and Křehlík (2018) approach. Subfigures [a–c] show the results of return spillovers in 
three periods (long, medium, and short terms, respectively). Here, and similar to the 
return spillover, we observe that by moving toward the long term, the degree of influence 
of the benchmark crude oil prices from themselves and the intensity of their mutual rela-
tionship decreases. Regarding other data, the intensity of mutual spillovers decreases as 
time increases. The subfigures [d–f] show the results of the volatility spillover analysis.

As stated before, we observe the contrasting behavior with respect to the intensity 
and the extent of volatility spillover. Moving toward the long term (22 days and above) 
increases the volatility of spillovers among the data. That is, the shocks are mainly effec-
tive in the long term, and their impact increases (contrary to the result obtained in the 

Table 5 Barunik–Krehlik return spillover

The bold numbers show the aggregate impacts

This table was obtained from the results in Table 3. The numbers in each cell of Table 3 are divided into three parts, placed in 
three sub‑tables of Table 5. These numbers show the return spillover in three terms (short, mid, and long term). For example, 
the numbers in row 1 and column 2 in the three sub‑tables of Table 5 are equal to 18.43, 3.72, and 1.32, respectively. Their 
total number is 23.48, which is equal to row 1 and column 2 in Table 3

Bitcoin Ethereum S&P 500 Dow Jones Brent WTI FROM

Short-term frequency: 1 to 5 days

 Bitcoin 58.84 18.43 0.75 0.71 0.3 0.34 3.42

 Ethereum 19.18 58.55 0.51 0.74 0.14 0.11 3.45

 S&P 500 0.37 0.4 60.57 14.18 1.81 0.92 2.95

 Dow Jones 0.51 0.51 15.42 48.48 4.18 4.07 4.12

 Brent 0.3 0.15 1.51 4.27 45.59 28.39 5.77

 WTI 0.33 0.13 0.52 2.95 32.91 50.04 6.14

 TO 3.45 3.27 3.12 3.81 6.56 5.64 25.84
Medium-term frequency: 6 to 21 days

 Bitcoin 11.01 3.72 0.28 0.18 0.08 0.04 0.72

 Ethereum 3.35 11.58 0.23 0.16 0.03 0.01 0.63

 S&P 500 0.34 0.22 10.05 3.46 1.17 0.73 0.99

 Dow Jones 0.37 0.27 7.78 8.57 1.76 0.82 1.83

 Brent 0.25 0.07 0.67 0.78 7.32 5.67 1.24

 WTI 0.14 0.03 0.3 0.48 3.27 5.64 0.7

 TO 0.74 0.72 1.54 0.85 1.05 1.21 6.11
Long-term frequency: more than 22 days

 Bitcoin 3.79 1.32 0.1 0.06 0.03 0.02 0.25

 Ethereum 1.19 4.05 0.08 0.06 0.01 0 0.22

 S&P 500 0.13 0.09 3.6 1.25 0.43 0.28 0.36

 Dow Jones 0.16 0.12 2.84 3.11 0.69 0.34 0.69

 Brent 0.1 0.03 0.25 0.29 2.44 1.92 0.43

 WTI 0.05 0.01 0.12 0.18 1.06 1.83 0.24

 TO 0.27 0.26 0.56 0.31 0.37 0.43 2.2
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case of return analysis). We interpret this phenomenon following Baruník and Křehlík 
(2018), who clarify that periods of high-frequency connectivity exist when markets 
appear to process information swiftly and steadily. In this case, a shock to one asset in 
the system would have a short-term effect. That is, the shockwaves persist for extended 
periods when the relation is generated at lower frequencies. Barunik and Krehlik con-
tend that, since volatility is generated after a return, volatility requires more time to 
transmit from one market to another, which justifies the behavior among data during the 
time.

Wavelet power spectrum

We now present the results of the wavelet analysis. The frequency range is from 2 to 
444 days, and the results are comprehensive and provide good coverage in terms of his-
torical viewpoints. Figure  11 illustrates the WPS of each series, where the black con-
tour defines the 5% significance level. The WPS is an indicator that represents particular 
periods, with each time series showing more volatility than the other times. The colors 
in the power spectrum fluctuate from blue to red, indicating the lowest to the highest 
power spectrum (Kirikkaleli 2021). The Brent data indicate that the turbulence intensity 

Table 6 Baruník– Křehlík volatility spillover

The bold numbers show the aggregate impacts

This table was obtained from the results in Table 4. The numbers in each cell of Table 4 are separated into three parts, placed 
in three sub‑tables of Table 6. These numbers show volatility spillover in three terms (short, medium, and long term). For 
example, the numbers in row 1 and column 2 in the three sub‑tables of Table 6 are equal to 1.15, 3.03, and 5.28, respectively. 
Also, their total number is 9.45, which is equal to row 1 and column 2 in Table 4

Bitcoin Ethereum S&P 500 Dow Jones Brent WTI FROM

Short-term frequency—1 to 5 days

 Bitcoin 6.6 1.15 2.24 0.48 0.01 0.02 0.65

 Ethereum 1.7 10.21 0.98 0.19 0 0 0.48

 S&P 500 0.53 0.13 9.06 1.19 0.04 0.06 0.32

 Dow Jones 0.28 0.07 1.29 3.54 0.01 0.01 0.28

 Brent 0 0 0 0.06 5.83 5.5 0.93

 WTI 0 0 0.02 0.07 4.86 5.04 0.83

 TO 0.42 0.22 0.76 0.33 0.82 0.93 3.48
Medium-term frequency—6 to 21 days

 Bitcoin 16.62 3.03 7.22 2.93 0.03 0.07 2.21

 Ethereum 4.04 23.89 2.88 1.1 0.01 0.02 1.34

 S&P 500 0.92 0.22 17.38 7.11 0.03 0.03 1.38

 Dow Jones 0.59 0.13 5.63 9.92 0.09 0.09 1.09

 Brent 0.01 0 0.12 0.48 16.87 15.86 2.74

 WTI 0 0 0.27 0.58 15.63 15.36 2.75

 TO 0.93 0.56 2.69 2.03 2.63 2.68 11.52
Long-term frequency—more than 22 days

 Bitcoin 30.71 5.28 12.97 10.48 0.08 0.09 4.82

 Ethereum 7.09 41.11 3.91 2.81 0.01 0.02 2.31

 S&P 500 0.4 0.23 27.17 35.33 0.07 0.11 6.02

 Dow Jones 1.86 0.64 23.04 52.51 0.12 0.17 4.31

 Brent 0.04 0.03 2.55 6.65 23.44 22.58 5.31

 WTI 0.07 0.05 3.25 8.5 23.21 23.07 5.85

 TO 1.57 1.04 7.62 10.63 3.91 3.83 28.61
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is more pronounced at shorter frequencies up to 32. Suddenly, in the period 700 to 1050, 
we see a sharp increase in turbulence, visible from frequency 0 to 128. This period coin-
cides with the COVID-19 pandemic. Observing the behavior of WTI reveals a signifi-
cant similarity between the behavior of this data and that of Brent. Thus, we observe 
severe turbulence during the COVID-19 outbreak. This is also evident in the enclosed 
parts of Fig. 11a.

Fig. 10 Directional connectedness based on the Baruník and Křehlík (2018) method; a–c for return and d–f 
for volatility spillovers

Fig. 11 WPS for daily return series for all of the data
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Analysis of WPS behavior in the case of BTC shows that, with increasing frequency, 
we observe a decrease in turbulence. At different times, the turbulence intensifies in 
enclosed areas that have taken the shape of an island. However, contrary to the observed 
behavior of the two benchmark crude oils, there are no significant fluctuations or 
changes in the data during the COVID-19 pandemic. We also observe data changes at 
some frequencies (more than 256) that are visible in the points enclosed in Fig.  11b. 
Examining ETH, we observe similarities in this behavior compared with BTC. In par-
ticular, the downward trend of the turbulence decreases with increasing frequency. 
However, a significant difference between Ethereum and Bitcoin is the high turbulence 
intensity from the initial to the medium-time range of observations. For the S&P 500, as 
in the previous data, the turbulence intensity decreases with increasing frequency level, 
such that the frequency of more than 32 turbulence events is significantly reduced.

The only exception to this discussion is the observations from 620 to 1000. There-
fore, we observe extreme turbulence in the S&P 500 index. This coincides with the time 
of occurrence and prevalence of COVID-19. This result is illustrated in Fig. 11c as an 
enclosed area. Crucially, let us look at the Dow Jones results; we find strong similarity 
in the S&P 500 behavior. That is, it is a mirror image of the S&P 500. We also observe 
a decrease in the turbulence intensity as the frequency increases. Turbulence increased 
significantly in the Dow Jones and S&P 500 indices, indicating the impact of this crisis 
on the market during the COVID-19 pandemic. The direction of the arrows is similar to 
their behavior with respect to the S&P 500 index.

Wavelet coherency analysis

Examining the results from the WTC (Fig. 12) shows that, in all pair combinations of 
data, there is a strong relationship between 650 and 1100, which coincides with the 
outbreak of COVID-19 worldwide. This phenomenon is shown in the enclosed areas 
of the figures. The only exception to this conclusion is the behavior of BTC–ETH. The 

Fig. 12 The wavelet coherency between each pair of data
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BTC–ETH relationship is strong but scattered at different frequencies and periods. In 
addition, the intensity of the relationship, marked in red, is visible in the figure. A broad 
enclosed region is observed at a frequency close to 512, which includes the most relevant 
observations. The direction of most of the arrows is to the right. This finding indicates 
a positive relationship between these two variables. Regarding the causal relationship 
between these two variables, based on the direction of the arrows, we see the alternat-
ing direction of the arrow angles, which indicates the lead and lag of each variable at 
different time points. Nevertheless, the critical point here is the absence of a strong rela-
tionship in the period coinciding with the COVID-19 outbreak, which is contrary to the 
results of other studies.

Another point inferred from the results is that the extent of coherence and connection 
decreases with an increase in frequency. This can be seen from the change in color in the 
figures from red to blue. This indicates a decrease in the level of connection between the 
data.

A new issue that emerges from examining these figures is the specific behavior of Bit-
coin for each combination of study data. This is illustrated in Figs. (b), (c), and (e). In 
the aforementioned figures, there are three enclosed and separate areas (in the form of 
islands), indicating a strong connection between the data. These areas can be identified 
through observations between 600 and 1100, which includes the period of the COVID-
19 pandemic.

Another point is the direction of causality between variables. Sometimes, the direction 
of the arrow is in the form of ց , which indicates that x is the lead of y. In periods, it has 
been in the form of → , which indicates their synchronized movement. In some cases, 
the direction is shown as ր , which indicates that y is the lead of x.

Moreover, by examining the direction of the arrows, one can observe a variety of 
behaviors. The figures show that the specific behavior of the paired combinations of data 
in the frequency range of 128. Accordingly, the direction of the arrows fluctuates in this 
range, and the direction of the arrows changes from   ց    to ր    or vice versa. At fre-
quencies close to 128 Hz, the direction of the arrows becomes   →  , indicating that the 
two variables are in phase and have a positive relationship.

Discussion
We find interesting similarities when comparing the results obtained from the meth-
ods proposed in the current study. For example, the results of the wavelet and spillover 
methods show a stronger connection between the selected data during the COVID-19 
pandemic, which the Figs. 4 and 5 of the Baruník and Křehlík (2018) approach and the 
enclosed parts in Figs. 11 and 12 of the wavelet analysis verify. The connection between 
the S&P 500 and Bitcoin, and at the next level with Ethereum, is noticeable in terms of 
volatility spillovers.

We can refer to this phenomenon as the growing acceptance of crypto-related plat-
forms and instruments in stock markets or, more generally, increasing cryptocurrency 
(mainly Bitcoin) adoption by institutional and retail investors, many of whom have posi-
tions in both crypto and equity markets. Indeed, these activities support co-movements, 
especially in terms of volatility in recent years and during volatile market conditions, 
such as the COVID-19 pandemic.
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Another point that can be outlined is that in the context of wavelet analysis, in most 
cases, the highest level of coherence was detected between variables in the frequency 
range of 50–70. Based on the investigation carried out in this research, it was found that 
by applying two different time windows (200 and 300), the extent of spillover between 
variables did not change significantly (in the time window 200, we observe an insignifi-
cant upper level of spillover in comparison to 300, which is not noticeable), confirming 
the robustness of the selected approaches in the current study. Another point inferred 
from the results is the unusual behavior of cryptocurrencies, particularly around Feb-
ruary 2018. At this point, we can see an increase in the intensity of volatility in both 
Bitcoin and Ethereum, which the results of wavelet (in the enclosed area in the interval 
of observation 500) and spillover analysis at this specific time confirm. One of the most 
critical events in this timeframe was the shock instigated by comments from the head 
of the BIS regarding the threats posed by Bitcoin. In the next steps, it is suggested to 
investigate market efficiency in each of the selected datasets and analyze the effect of the 
mutual relationship between them on the extent of efficiency.

Conclusions and policy implications
The outbreak of COVID-19 caused tremendous changes in the economies of coun-
tries and international markets. This shock seems to have affected the interconnections 
between markets and the intensity of this connectedness. Investors’ interest in accepting 
cryptocurrencies has forced them to scrutinize their relationships with other markets. 
This study contributes to the literature on interconnections across diverse markets by 
investigating the return and volatility spillovers among selected and benchmark crude 
oils, stock indices, and cryptocurrencies. In the last decade, cryptocurrencies have grad-
ually become important financial assets that are considered a significant part of diversi-
fied investment portfolios today. Therefore, their correlation analysis compared to other 
common financial assets worldwide under different conditions is necessary to choose a 
suitable portfolio of assets to cover risk. For this purpose, we employed the time-domain 
(Diebold and Yilmaz 2012), frequency dynamics (Baruník and Křehlík 2018), and wavelet 
coherence approach to check the relationship between the return and volatility of the 
mentioned assets.

Our main findings show that, based on the Diebold and Yilmaz (2012) method, similar 
data have a much higher correlation (in terms of returns), which is not the case when 
dealing with volatility. Generally, the total connectedness is higher in the volatility sec-
tion than in the returns section (43.61% vs 34.16%). Based on the Baruník and Křehlík 
(2018) method, pertaining to returns, data of the same type are most dependent on each 
other, and as we go from short to long term, the correlation and relationship between 
asset returns decrease. However, this was not the case for volatility. In particular, Bitcoin 
follows the S&P 500 index more than Ethereum in terms of volatility; however, in stock 
indices and crude oils, the data of the same type still follow each other the most. In addi-
tion, unlike returns, when analyzing volatility, the degree of correlation and connection 
increases from the short term to the long term. In addition, through moving window 
analysis, we can easily see a sudden increase in the correlation between the mentioned 
assets, both in return and volatility, during the COVID-19 outbreak.
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By utilizing the wavelet power spectrum, we infer that, in line with the findings 
from the spillover analysis, the decrease in volatility intensity coincides with the 
increasing frequency level. A notable phenomenon is the sudden surge in volatility 
across all datasets (except for Ethereum and Bitcoin) from 700 to 1050. This specific 
range matches that of the outbreak of the COVID-19 pandemic. We discovered a dif-
ferent method for Ethereum and Bitcoin. Contrary to the behavior of the other data, 
there was no significant fluctuation in the two selected cryptocurrencies during the 
COVID-19 pandemic and we did not observe a substantial change.

In the context of the wavelet coherence analysis and all combinations of data, we 
observed a strong interconnection that coincided with the COVID-19 outbreak. The 
only exception was the behavior of BTC-ETH. In examining the relationship between 
BTC-ETH, we observe strong but scattered relationships at different frequencies and 
periods. In addition, most of the arrows are directed to the right. This finding indi-
cated a positive relationship between these two variables.

Nevertheless, the significant point here is the absence of a strong relationship in the 
period coinciding with the COVID-19 outbreak, contrary to results obtained from 
other research data. Moreover, the results show a specific behavior of Bitcoin with each 
combination of data, particularly during the period matching the COVID-19 pandemic.

These results have several practical implications for portfolio managers, policymak-
ers, investors and researchers. First, because returns and risk are the two main compo-
nents in investors’ decisions to create an asset portfolio, a better understanding of these 
two variables over time is essential. The findings show that the return and risk spillo-
vers among the variables are different and in opposite forms. In addition, investors have 
better modified their strategies, which is consistent with diverse market circumstances 
because of the dynamic features of portfolio weights and optimal hedge ratios. Portfolio 
managers and investors should consider this when designing optimal asset portfolios. 
Second, based on the results of the wavelet analysis, cryptocurrencies can be considered 
to play a unique role in portfolio diversity.

Since cryptocurrencies are characterized by significant spillovers and represent an 
outstanding level of return and volatility, they can be considered a source of uncertainty 
compared with commodities such as crude oil, which are regularly considered hedg-
ing or safe-haven assets. Therefore, including cryptocurrencies into portfolios regularly 
collected from traditional financial assets (particularly stocks and fixed income) offers 
significant diversification benefits. Third, our findings show that return spillovers occur 
frequently in the short term, while volatility spillovers occur regularly in the long term. 
This finding indicates that volatility spillovers have long-lasting impacts. Therefore, poli-
cymakers and regulators should use appropriate tools that, while alleviating the severity 
of relevant shocks (such as the COVID-19 pandemic), can dampen their effects.
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