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Abstract 

The structural modeling of open-high-low-close (OHLC) data contained within the can-
dlestick chart is crucial to financial practice. However, the inherent constraints in OHLC 
data pose immense challenges to its structural modeling. Models that fail to pro-
cess these constraints may yield results deviating from those of the original OHLC 
data structure. To address this issue, a novel unconstrained transformation method, 
along with its explicit inverse transformation, is proposed to properly handle the inher-
ent constraints of OHLC data. A flexible and effective framework for structurally 
modeling OHLC data is designed, and the detailed procedure for modeling OHLC data 
through the vector autoregression and vector error correction model are provided 
as an example of multivariate time-series analysis. Extensive simulations and three 
authentic financial datasets from the Kweichow Moutai, CSI 100 index, and 50 ETF 
of the Chinese stock market demonstrate the effectiveness and stability of the pro-
posed modeling approach. The modeling results of support vector regression provide 
further evidence that the proposed unconstrained transformation not only ensures 
structural forecasting of OHLC data but also is an effective feature-extraction method 
that can effectively improve the forecasting accuracy of machine-learning models 
for close prices.

Keywords: OHLC data, Structural modeling, Unconstrained transformation, 
Candlestick chart, VAR, VECM

Introduction
Technical analysis emerges as a preeminent investment analysis method in financial 
markets with the purpose of detecting price trends at an early stage to seize and profit 
from trading opportunities. The efficient market hypothesis (EMH) argues that finan-
cial prices comprehensively encapsulate all available information, rendering consistent 
market outperformance an implausible endeavor through equity selection and timing 
trades-that is, technical analysis is ineffective (Fama 1970). However, the premises of 
EMH are often disrupted by reality. For instance, the EMH assumes that financial prices 
are random walks, whereas there are often historical repetitions in investor behavior, 
leading to regularity in stock price fluctuations. Typical examples include the weekend 
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(Doyle and Chen 2009), calendar (Ariss et al. 2011), and week-of-the-year effects (Levy 
and Yagil 2012). After decades of development, numerous scholars have confirmed the 
feasibility of technical analysis, and various methodologies have flourished (Hsu and 
Kuan 2005; Smith et al. 2016; Ilham et al. 2022).

Currently, candlestick chart analysis has become the most intuitive and extensively 
employed technical analysis methodology for analyzing the price movements of finan-
cial products (Romeo et al. 2015) owing to its precise definition (Caginalp and Laurent 
1998), efficient representation of market signals, and cogent reflection of investors’ over-
all motivation (Tsai and Quan 2014). The candlestick chart encapsulates the four-dimen-
sional price data of a particular financial product during a given period, including the 
open, high, low, and close prices, collectively termed OHLC data (Huang et al. 2022b). 
The academic community has spared no effort in studying the candlestick charts and 
the OHLC data contained within them, channeling their explorations into two domains: 
graphical analysis and numerical analysis.

Scholars engaged in graphical analysis ardently endeavor to forecast future price 
trends by identifying repetitive patterns in candlestick charts. Notably, Caginalp and 
Laurent (1998) investigated the candlestick charts of the S &P 500 from 1992 to 1996 
and confirmed the significant predictive power of the 8-day reversal pattern using an 
out-of-sample test. The pattern demonstrated an empirical capacity to earn a profit of 
nearly 1% over a 2-day holding period. Goo et al. (2007) compared to the average returns 
across different patterns and holding days based on daily data of 25 blue chip stocks in 
Taiwan from 1997 to 2006. The empirical results show that investors can earn an aver-
age return of 9.99% by holding the Bullish Harami pattern for 10 days. Lan et al. (2011) 
employed fuzzy logic theory to define the sequence of symptoms before the appearance 
of reversal points and identified the reversal patterns of candlestick charts in Chinese 
stock markets. Lu et al. (2012) identified three bullish and three bearish reversal patterns 
based on the Taiwan Top 50 Tracker Fund data in 2002–2008. Cutting-edge research 
on the graphical analysis of candlestick charts based on machine-learning methods and 
artificial neural networks can be found in Ramadhan et al. (2022), Santur (2022), Cagli-
ero et al. (2023), Chen et al. (2023), and Varghese et al. (2023).

However, the predictability and profitability of the patterns derived from the graphical 
analysis tend to lack universality, evincing notable disparities across different markets 
and periods. For instance, Shiu and Lu (2011) validated the excellent predictive power of 
the Bullish Harami pattern by exhaustively analyzing electronic securities data from the 
Taiwan Stock Exchange from 1998 to 2007. In contrast, Marshall et al. (2008) concluded 
that the Bullish Harami pattern exhibited negligible predictive ability across 59 stocks 
within the TOPIX Large 70 Index and 41 stocks within the TOPIX Mid 400 Index dur-
ing the expansive temporal ambit of 1975–2004. Although graphical analysis commands 
widespread prominence, an unequivocal consensus eludes the academic domain regard-
ing the profitability of candlestick-chart patterns (Tharavanij et al. 2017). Furthermore, 
graphical analysis is unable to establish a quantitative relationship between financial 
prices and their explanatory indicators, thereby warranting supplementary augmenta-
tion through a numerical analysis.

Numerical analysis is about buying low and selling high through short-term forecasts 
of financial prices. Although ubiquitous price data in financial markets always possess an 
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OHLC data structure, most literature concerning numerical analysis concentrates solely 
on the close price, using historical time series of close prices to forecast future close 
prices (García-Martos et al. 2013; Sun et al. 2016; García and Jaramillo-Morán 2020; Liu 
and Shen 2020; Xu and Zhang 2023). Some studies consider the optimal portfolio for 
a group of stocks based on close-price returns (Mehrjoo et  al. 2014; Mahmoudi et  al. 
2021). A superior approach to modeling OHLC data is to treat it as interval data con-
sidering the interval consisting of low and high prices (Mager et al. 2009; von Metten-
heim and Breitner 2012). For instance, Arroyo et al. (2011) utilized multilayer perception 
(MLP), K-nearest neighbor (KNN) algorithm, autoregressive integrated moving average 
(ARIMA) model, vector autoregression (VAR), vector error correction model (VECM), 
and exponential smoothing to perform regressions on the interval-based Dow Jones 
Industrial Average index and Euro-dollar exchange rate.They adopted two classical 
modeling methodologies for interval data: (1) the Center and Range method and (2) the 
Min and Max method (Hu and He 2007; Guo et  al. 2012; Hao and Guo 2017). These 
two interval time-series modeling approaches achieved breakthroughs in the structural 
modeling of binary complex data. Although the modeling object has been expanded 
from unary to binary, these two methods can only consider low and high prices within 
the OHLC data.

For OHLC data, in addition to low and high prices, the open and close prices between 
the two boundaries possess strong explanatory power for future price movements and 
warrant careful consideration in forecasting models (Cheung 2007; Liu and Wang 2012; 
Huang et  al. 2022a). Regrettably, open and close prices are beyond the scope of the 
Center and Range and Min and Max methods. As an extension of interval data, a novel 
structural modeling procedure for OHLC data should be investigated. Only a few studies 
have endeavored to utilize OHLC data for modeling. However, these studies only uti-
lize OHLC data as model inputs, and their output objective remains to forecast only the 
close price (Liu and Wang 2012; Luo and Chen 2013; Qiu et al. 2020; Staffini 2022) or 
to forecast trading signals (Chang et al. 2011; Ahmadi et al. 2018; Chen and Hao 2020; 
Mahmoodi et al. 2023a, b). Table 1 summarizes the current state of research on OHLC 
data-forecasting techniques, demonstrating that the existing literature lacks structural 
modeling of OHLC data. This motivated us to propose a unified structural modeling 
framework for OHLC data.

Structural modeling of OHLC data is significant in finance practice, from which we 
may benefit compared to partial information modeling methodologies, especially for 
investors in financial markets. First, forecasting OHLC data can substantially assist 
investors in developing profitable investment plans. Specifically, according to the tra-
ditional forecast of the close price, investors can only try to buy a particular financial 
product at the closing quotation of period t and sell it at the closing quotation of period 
(t + 1) if an upward trend is forecasted (close-to-close strategy) (Dunis et  al. 2011). If 
OHLC data are forecasted, investors can buy financial products at a price near the fore-
casted low price and sell them at a price near the forecasted high price to obtain excess 
profits (low-to-high strategy) (von Mettenheim and Breitner 2012). Furthermore, inves-
tors can sell promptly at the opening quotation to gain stop-loss profits when a bear 
market is forecasted (Huang et  al. 2022a). In summary, trading based on OHLC data 
allows investors to obtain overnight returns (Cooper et al. 2008), reduce fund holding 
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periods (Dunis et al. 2011), lower overnight exposure (Kelly and Clark 2011), and derive 
better profits from high-low price range trades (von Mettenheim and Breitner 2012). 
Second, candlestick charts can be drawn according to the forecasted OHLC data, whose 
patterns can reveal the power of demand and supply in financial markets and reflect 
market conditions and investor sentiment (Nison 2001; Tsai and Quan 2014). A graph-
ical analysis can provide further investment advice based on the patterns of the fore-
casted candlestick chart, such as up and down indications (Marshall et al. 2006, 2008). 
Third, a comprehensive information set of OHLC prices can enhance the reliability and 
explanatory ability of the research (Huang et  al. 2022a). As pointed out in Fiess and 
MacDonald (2002) and Cheung (2007), OHLC prices have proven to possess significant 
power in explaining price fluctuations and future trends. In addition, Rogers and Satchell 
(1991) and Magdon-Ismail and Atiya (2003) noted that a more stable and valid estimate 
of return volatility can be obtained by considering the daily high, low, and open prices in 
addition to the traditionally used close prices. Finally, forecasting OHLC data offers the 
possibility of applying a wide range of multivariate modeling techniques to explore the 
dynamic and structural relationships between the components of multidimensional vec-
torized complex data (Fiess and MacDonald 2002; Huang et al. 2022b).

The challenge of structurally modeling OHLC data lies in the proper handling of 
inherent constraints. The three inherent constraints of OHLC data are as follows: (1) the 
low price should be higher than 0, (2) the high price should be greater than the low price, 
and (3) the open and close prices should be within the interval consisting of low and high 
prices. Some studies on interval data have attempted to ensure that the upper bound-
ary is greater than the lower boundary by adding additional conditions to the models 
(Neto and De Carvalho 2010; González-Rivera and Lin 2013). However, this approach 
increases model complexity and is not suitable for OHLC data with multiple constraints. 
Other studies have attempted to model the four prices of OHLC data separately without 
considering the inherent constraints of OHLC data (Manurung et al. 2018; Kumar and 
Sharma 2019). The disadvantage of this method is that the modeling results are likely to 

Table 1 A summary of literature review

Model input Model output Methodologies and references

Daily close prices Next day’s close price Autoregressive integrated moving average model (García-
Martos et al. 2013); Spiking neural networks (Sun et al. 2016); 
Multilayer perceptron (García and Jaramillo-Morán 2020); 
Gated recurrent unit (Liu and Shen 2020); Feedforward net-
work (Xu and Zhang 2023)

Low and high prices Low and high prices, or 
center and range

MLP, KNN, ARIMA, VAR,VECM, and exponential smoothing 
(Arroyo et al. 2011); Historically consistent neural network 
(von Mettenheim and Breitner 2012); A constrained center 
and range joint model (Hao and Guo 2017)

Daily OHLC data Next day’s close price Legendre neural network (Liu and Wang 2012); Weighted sup-
port vector machine (Luo and Chen 2013); Long-short term 
memory neural network (Qiu et al. 2020); Deep convolutional 
generative adversarial network (Staffini 2022)

Indicators based on 
daily OHLC data

Buy, sell or no-action signal Piecewise linear representations and artificial neural networks 
(Chang et al. 2011); Piecewise linear representation and fea-
ture weighted support vector machine (Chen and Hao 2020); 
Support vector machine and heuristic algorithms (Ahmadi 
et al. 2018; Mahmoodi et al. 2023a, b)
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destroy the OHLC data structure. The three typical modeling failures originating from 
separate forecasts of open, high, low, and close prices are as follows: (1) the forecasted 
low price becomes negative (see Fig. 1a), (2) the forecasted high price is lower than the 
forecasted low price (see Fig. 1b), and (3) the forecasted open price (or forecasted close 
price) breaks through the boundaries consisting of the forecasted low and forecasted 
high prices (see Fig. 1c). These misleading forecasting results disrupt investors’ plans and 
significantly undermine their confidence in their investments (Huang et al. 2022a).

To this end, we propose a novel unconstrained transformation method to trans-
form OHLC data from an original four-dimensional constrained subspace into a four-
dimensional real domain full space. The unconstrained transformation, along with its 
explicit inverse transformation, ensures that the subsequent forecasting models obtain 
meaningful OHLC prices. As an example of combining multivariate time-series analy-
sis, we illustrate the detailed procedure of VAR and VECM modeling for OHLC data 
and support vector regression (SVR) as a special application of machine learning. Ample 
simulation experiments under different forecast periods, time-period basements and 
signal-to-noise ratios were conducted to validate the effectiveness and stability of the 
unconstrained transformation method. Furthermore, three financial datasets from the 
Kweichow Moutai, CSI 100 index, and 50 ETF from their advent in the Chinese stock 
market to June 14, 2019, were employed to demonstrate the empirical utility of the pro-
posed method. The results showed a satisfactory modeling effect.

Compared with the existing literature, this study offers three contributions. First, the 
proposed unconstrained transformation method can properly handle the inherent con-
straints of OHLC data. Simulation experiments and empirical analysis demonstrate that 
the constraints inherent in OHLC data are satisfied throughout the numerical mode-
ling process without increasing the complexity of the model, which enables more inter-
pretable results. Second, this study proposes the first unified forecasting framework for 
OHLC. Within this framework, VAR and VECM modeling of OHLC data was imple-
mented. The modeling procedure can take full advantage of the information contained 
in OHLC data, including open, high, low, and close prices. This enables a more effi-
cient analysis and provides satisfactory predictive accuracy on the three datasets of the 
Kweichow Moutai, CSI 100, and CSI 50 ETF. Third, the method for dealing with uncon-
strained transformed variables can be generalized to all types of statistical models. The 
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Fig. 1 Meaningless modeling results caused by ignoring the inherent constraints in OHLC data (The original 
data contains 200 periods, and 50 periods are forecasted forward by the linear models. The red dotted line 
perpendicular to the vertical axis indicates zero value, and the red dotted line perpendicular to the horizontal 
axis indicates the 200th period, whose right side are forecasted values with a confidence interval of 95% 
confidence level)
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results from the extended SVR provide evidence that the proposed unconstrained trans-
formation is an effective pre-processing technique for machine learning models and can 
significantly improve the forecasting accuracy of close prices compared with the direct 
use of raw OHLC data. From this perspective, this study provides a novel, effective, 
and scalable alternative to OHLC data analysis, thereby enriching existing literature on 
structural modeling for complex data.

The remainder of this study is organized as follows. In “Preliminaries” section, we 
introduce the mathematical definition of OHLC data and its inherent constraints. In 
“Methodology” section, we propose transformation and inverse transformation formu-
las to handle the inherent constraints of OHLC data and illustrate the VAR and VECM 
modeling processes for OHLC data. In  “Simulations” section presents the simulation 
experiments, and “Empirical analysis” section  demonstrates the empirical application of 
the proposed method in the real financial market. Finally, we conclude the study with a 
brief discussion in “Conclusions” section.

Preliminaries
To obtain an intuitive depiction of the candlestick chart, we use the daily candlestick 
chart in the U.S. stock market as an example (all candlestick charts refer to daily candle-
stick chart in this study), as shown in Fig. 2. Obviously, a daily candlestick chart can not 
only record the open, high, low, and close prices of a particular stock on that day but also 
visually reflect the difference between any two prices.

Generally, a candlestick chart is divided into two categories, as shown in Fig. 2. Spe-
cifically, Fig. 2a indicates that the close price is greater than the open price, which corre-
sponds to a bull market, while Fig. 2b corresponds to a bear market with the close price 
being lower than the open price. In the U.S. stock market, green and red are habitually 
used to mark the real body of the candlestick chart of bull and bear markets, respec-
tively. If daily candlestick charts are arranged in chronological order, a sequence reflect-
ing the historical price changes of a particular financial product is formed, called the 
candlestick chart series, and the corresponding data are termed OHLC series.

The essence of OHLC series is a four-dimensional time series of stock prices 
with three inherent constraints. First, all four prices in OHLC data should be posi-
tive, because the values of the OHLC data in the financial market cannot be less 
than zero. Second, the high price must be higher than the low price on the same 
day. Third, open and close prices should fall within the boundaries of low and high 
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Fig. 2 An example of daily candlestick chart
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prices. To represent the constraints mathematically for any time period t, we provide 
the following definition of OHLC data:

Definition 1 A four-dimensional vector X t = (x
(o)
t , x

(h)
t , x

(l)
t , x

(c)
t )T is typical OHLC 

data if it satisfies 

1. x(l)t > 0;

2. x(l)t < x
(h)
t ;

3. x(o)t , x
(c)
t ∈ x

(l)
t , x

(h)
t .

Here, x(o)t  is the t-period daily open price, x(h)t  is the t-period daily high price, x(l)t  is 
the t-period daily low price, and x(c)t  is the t-period daily close price.

For the T = [1,T ] period, the collection of X t for any t ∈ T  forms the OHLC 
series, denoted by

Compared with the ordinary real domain vector, the biggest difference between the vec-
tors in S is that there are intrinsic constraint formulas between its four components, 
which poses a significant challenge to classical statistical analysis. To establish a time-
series model of OHLC series, the most difficult problem is ensuring that the calculation 
process and forecasting results are also subject to these constraint formulas. Otherwise, 
the modeling results may be meaningless. That is, after obtaining the forecasting results 
in the forecasting period (T +m) (m ∈ R

+) using time-series modeling, it must be 
ensured that

These constraints are not guaranteed to be valid if we directly apply the time-series 
forecasting methods to the original four time series of OHLC data. To address this 
problem, a common practice is to remove these inherent constraints via proper data 
transformation. Then, we can freely forecast the transformed time-series data. Finally, 
we can obtain the forecaster for the original OHLC data using the corresponding inverse 
transformation.

Methodology
In “Data-transformation method” section, we first propose a flexible transforma-
tion method along with its inverse transformation method for OHLC data as well 
as a model-independent framework for modeling OHLC data. Then, we use VAR 
and VECM as implementations of the framework and present the corresponding 
forecasting procedure in “The VAR and VECM modeling process for OHLC data” 
section.

S = {X t}
T
t=1.

x̂
(l)
T+m

> 0,

x̂
(l)
T+m

< x̂
(h)
T+m

,

x̂
(o)
T+m

, x̂
(c)
T+m

∈
[
x̂
(l)
T+m

, x̂
(h)
T+m

]
.
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Data‑transformation method

From Definition 1, the first constraint is x(l)t > 0 , which can be relaxed via a commonly 
used logarithmic transformation. That is,

It is quite clear that the transformed data y(1)t  in Eq. (1) satisfies −∞ < y
(1)
t < +∞ with 

no positive constraints. Moreover, it preserves a positive relative relationship between 
the original data, as the logarithm transformation is a monotonically increasing func-
tion, but also compresses the scale of the data, which reduces the absolute values of the 
original data and makes them somewhat more stable.

Second, to guarantee the second constraint x(l)t < x
(h)
t  , that is, x(h)t − x

(l)
t > 0 , the same 

practice as that in Eq. (1) yields

where y(2)t  is also free of any constraints, which can be modelled easily.
Finally, the last constraint is x(o)t , x

(c)
t ∈ [x

(l)
t , x

(h)
t ] , implying that both the open and 

close prices must be higher than the low price and lower than the high price. Without 
properly processing the raw data, it is highly likely that the forecasted open or close prices 
are beyond the boundaries. To remedy this situation, based on the concept of a convex 
combination, we introduce two proxy datasets, �(o)t  and �(c)t  , which are formulated as

There is 0 � �
(o)
t , �

(c)
t � 1 and the original data x(o)t  and x(c)t  can be obtained as follows:

Thus, the original constraint x(o)t , x
(c)
t ∈ [x

(l)
t , x

(h)
t ] reduces to 0 � �

(o)
t , �

(c)
t � 1 if we deal 

with the proxy data �(o)t  and �(c)t  instead of x(o)t  and x(c)t  . Moreover, �(o)t  and �(c)t  are reason-
able. Specifically, a larger �(o)t  indicates that the open price x(o)t  is closer to the high price 
x
(h)
t  , whereas a smaller �(o)t  indicates that the open price x(o)t  is closer to the low price x(l)t  . 

Similarly, an explanation for �(c)t  can be obtained.
To further remove the constraint 0 � �

(o)
t , �

(c)
t � 1 on �(o)t  and �(c)t  , following the idea of 

logistic regression, we propose the logit transformation to obtain the unconstrained data 
y
(3)
t  and y(4)t  as follows:

(1)y
(1)
t = ln x

(l)
t .

(2)y
(2)
t = ln

(
x
(h)
t − x

(l)
t

)
,

(3)�
(o)
t =

x
(o)
t − x

(l)
t

x
(h)
t − x

(l)
t

and �
(c)
t =

x
(c)
t − x

(l)
t

x
(h)
t − x

(l)
t

.

(4)x
(o)
t =�

(o)
t x

(h)
t +

(
1− �

(o)
t

)
x
(l)
t ,

(5)x
(c)
t =�

(c)
t x

(h)
t +

(
1− �

(c)
t

)
x
(l)
t .

(6)y
(3)
t = ln

�
(o)
t

1− �
(o)
t

,
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Until now, via the transformation process, the raw OHLC data X t = (x
(o)
t , x

(h)
t , x

(l)
t , x

(c)
t )T 

are transformed to the unconstrained four-dimensional data Y t = (y
(1)
t , y

(2)
t , y

(3)
t , y

(4)
t )T . 

In summary, the proposed transformation method can be described as follows:

where �(o)t  and �(c)t  are defined by Eq. (3). The transformation of Eq. (8) not only ranges 
from −∞ to +∞ and is an explicit inverse for the values in its range but also shares the 
flexibility of the well-known log and logit transformation. Furthermore, the components 
in Y t have fruitful economic relevance. Specifically, y(1)t  measures the basic price level of 
a specific financial product, y(2)t  denotes the trading price range and measures intraday 
volatility, and y(3)t  and y(4)t  can be used to reflect the long- and short-game dynamics in 
the financial market, as they describe the relative positions of the open and close prices 
among the boundaries consisting of low and high prices, respectively. The larger the y(3)t  
or y(4)t  is, the closer the open or close price is to the high price, respectively. Smaller y(3)t  
or y(4)t  suggests that the open or close price is closer to the low price, respectively. The 
relative sizes of y(3)t  and y(4)t  can also reflect the bullish and bearish attributes of the mar-

ket with y(3)t > y
(4)
t  implying a bearish market and y(3)t < y

(4)
t  pointing toward a bullish 

market. In summary, the unconstrained transformation process can effectively extract 
feature information from the original OHLC data, including the strength of intraday 
trends and price volatility. As indicated by Fiess and MacDonald (2002), the relationship 
between trends and volatility provides the underlying information about future price 
developments.

Therefore, the forecasting model of the OHLC series {X t}
T
t=1 can be transformed 

into forecasts for the unconstrained series {Y t}
T
t=1 with the entire real number 

domain and variance stability, which provides significant convenience for subsequent 
statistical modeling. That is, we can apply classical forecasting models (ARIMA, 
VAR, VECM, etc.) or machine-learning models (KNN, MLP, SVR, etc.) to {Y t}

T
t=1 . 

After obtaining the forecaster of Y t ( ̂Y t = (ŷ
(1)
t , ŷ

(2)
t , ŷ

(3)
t , ŷ

(4)
t )T  , which may contain the 

results of m-step forecasts, m ∈ R
+ ), we can obtain the corresponding forecaster of 

X t ( X̂ t = (x̂
(o)
t , x̂

(h)
t , x̂

(l)
t , x̂

(c)
t )T  ) via the inverse transformation as follows:

where

(7)y
(4)
t = ln

�
(c)
t

1− �
(c)
t

.

(8)Y t =




y
(1)
t

y
(2)
t

y
(3)
t

y
(4)
t


 =




ln x
(l)
t

ln

�
x
(h)
t − x

(l)
t

�

ln

�
�
(o)
t

1−�
(o)
t

�

ln

�
�
(c)
t

1−�
(c)
t

�




,

(9)�X t =




x̂
(o)
t

x̂
(h)
t

x̂
(l)
t

x̂
(c)
t


 =




�̂
(o)
t

�
exp

�
ŷ
(1)
t

�
+ exp

�
ŷ
(2)
t

��
+

�
1− �̂

(o)
t

�
exp

�
ŷ
(1)
t

�

exp
�
ŷ
(1)
t

�
+ exp

�
ŷ
(2)
t

�

exp
�
ŷ
(1)
t

�

�̂
(c)
t

�
exp

�
ŷ
(1)
t

�
+ exp

�
ŷ
(2)
t

��
+

�
1− �̂

(c)
t

�
exp

�
ŷ
(1)
t

�


,
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The unconstrained transformation expressed in Eq. (8) and the inverse transformation in 
Eq. (9) provide a new perspective for forecasting OHLC data, which makes the forecast-
ing results obey the three inherent constraints listed in Definition 1 and thus realizes the 
structural modeling of OHLC data. Basically, the unified structural forecasting process 
for OHLC data can be summarized as a trilogy: (1) transform {X t}

T
t=1 into {Y t}

T
t=1 using 

the unconstrained transformation, (2) model {Y t}
T
t=1 using various time-series models to 

obtain Ŷ
(m)

t  ; and (3) conduct inverse transformation on Ŷ
(m)

t  to derive X̂
(m)

t  . A detailed 
unified modeling framework for OHLC data is introduced in Algorithm 1. Furthermore, 
the proposed method is highly feasible and can be easily generalized to any type of posi-
tive interval data with minimum and maximum boundaries greater than zero and multi-
valued sequences between the two boundaries. For example, the salaries of groups of 
people or rainfall in different districts.

Algorithm 1 Unified forecasting framework for OHLC data

It should be noticed that, in the unconstrained transformation process, we assume 
that x(o)t , x

(h)
t , x

(l)
t  , and x(c)t  are not equal (except for x(o)t = x

(c)
t ) . In other words, 

x
(h)
t  = x

(l)
t  = 0 and �(o)t , �

(c)
t /∈ {0, 1} . However, such assumptions are inevitably spoiled 

in real financial markets. Here, we list the circumstances that render these assumptions 
invalid and provide a measure to deal with them accordingly. (1) When the subject is in 
trade suspension and all prices are equal to 0, namely, x(o)t = x

(h)
t = x

(l)
t = x

(c)
t = 0 , we 

exclude these extreme cases from the raw data. (2) When �(o)t  or �(c)t  is equal to 0, it cor-
responds to x(o)t = x

(l)
t  or x(c)t = x

(l)
t  , respectively. We add a random term to x(o)t  or x(c)t  

and make �(o)t  or �(c)t  slightly greater than zero. In practice, determining the magnitude 
of this random term is difficult. In this study, it was set to one percent of the magnitude 
of the original data. In the future, the size of this random term can be treated as a model 
parameter for optimization. (3) When �(o)t  or �(c)t  is equal to 1, it indicates that x(o)t = x

(h)
t  

or x(c)t = x
(h)
t  , respectively. We subtract a random term from x(o)t  or x(c)t  to make �(o)t  or 

�
(c)
t  slightly smaller than 1. (4) When a particular financial product reaches a limit-up or 

limit-down as soon as the opening quotation, there is x(o)t = x
(h)
t = x

(l)
t = x

(c)
t �= 0 . If a 

limit-up occurs, we first multiply x(c)t  and x(h)t  by 1.1 to make a relatively large interval. If 
a limit-down occurs, we first multiply x(o)t  and x(h)t  by 1.1. We then conduct the measure-
ments given in circumstances (2) and (3). This model is designed to comply with the 10% 
limit of the Chinese stock market. At the same time, a 10% daily fluctuation is sufficient 

(10)�̂
(o)
t =

exp
{
ŷ
(3)
t

}

1+ exp
{
ŷ
(3)
t

} and �̂
(c)
t =

exp
{
ŷ
(4)
t

}

1+ exp
{
ŷ
(4)
t

} .
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to reflect strong changes in financial markets. For financial markets without stop limits, 
the interval magnification can be appropriately increased. (5) In extreme cases, financial 
markets can produce negative low prices, that is, x(l)t < 0 . For instance, the downturn in 
the crude oil market due to the COVID-19 pandemic caused May U.S. WTI crude oil 
futures to plummet, eventually closing at −  37.63 dollars per barrel on April 20, 2020 
(the last trading day before the delivery date). When modeling a time series that includes 
such extremes, the removal of these data should be considered. This is because such 
extreme prices are subject to rapid adjustments, and severely distorted extremes lose 
their ability to forecast future price movements. For instance, the price of WTI crude 
oil futures on April 21, 2020, switched to futures with a delivery date of June 21, 2020, 
which quickly returned to positive values and closed at 10.01 dollars per barrel. Investi-
gating alternatives to such extreme OHLC data will be a future research direction.

The VAR and VECM modeling process for OHLC data

Here, we employ the VAR and VECM as examples of the framework proposed in 
Algorithm 1 and present the corresponding procedure for forecasting OHLC data.

VAR for OHLC data

As one of the most widely used multiple time-series analysis methods, VAR, pro-
posed by Sims (1980), has become an important research tool in economic studies 
with the advantage of capturing the linear interdependencies among multiple time 
series (Pesaran and Shin 1998). According to Algorithm  1, we embed the VAR into 
the modeling process of unconstrained four-dimensional time-series data {Y t}

T
t=1 . 

Without loss of generality, we first assume that all time series in Y t are stationary. 
Then, a p-order ( p ∈ R

+ ) VAR, denoted by VAR(p), can be formulated as

where Y t−j is the j-th lag of Y t ; α = (α1,α2,α3,α4)
T is a four-dementional vec-

tor of intercepts; Aj stands for the time-invariant 4 × 4 coefficient matrix; and 
wt = (w

(1)
t ,w

(2)
t ,w

(3)
t ,w

(4)
t )T is a four-dimensional error term vector satisfying: 

(1) Mean zero: E(wt) = 0;
(2) No correlation across time: E(wT

t−kwt) = 0 , for any non-zero k.

Writing Eq. (11) in the concise matrix form yields

where Y = [Y p+1,Y p+2, · · · ,Y T ] is a 4 × (T − p) matrix; B = [α,A1, · · · ,Ap] is a 
4 × (4p+ 1) coefficient matrix; U = [wp+1,wp+2, · · · ,wT ] is a 4 × (T − p) error term 
matrix; and

(11)

Y t = α + A1Y t−1 + · · · + ApY t−p + wt = α +

p∑

j=1

AjY t−j + wt , t = (p+ 1), . . . ,T

(12)Y = BZ +U ,
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is a (4p+ 1)× (T − p) matrix. Then, we can solve for the coefficient matrix B using a 
least-squares estimation (Lütkepohl 2005):

VECM for OHLC data

The reliability of the VAR estimation is closely related to the stationarity of the variable 
sequences. If this assumption does not hold, we may use a restricted VAR, that is, the 
VECM, in the presence of the cointegration among variables. Otherwise, the variables 
must first be differenced by d times until they can be modelled by VAR or VECM. As 
evidenced in Cheung (2007), in U.S. stock markets, stock prices are typically character-
ized by I(1) processes, and the daily highs and lows follow a cointegration relationship. 
This implies that the VECM may be a more practically relevant model than the VAR in 
the context of forecasting the OHLC series. Here, we use the augmented Dickey–Fuller 
(ADF) unit root test to examine the stationarity of each variable and the Johansen test 
(Johansen 1988) to determine the presence or absence of the cointegration relationship.

Assuming that Y t is integrated to order one, the corresponding VECM takes the fol-
lowing form:

where � denotes the first difference, and 
∑p−1

j=1 Ŵj�Y t−j and γβTY t−1 are the VEC com-
ponents of the first difference and the error correction term, respectively. Here, Ŵj is a 
4 × 4 matrix representing the short-term adjustments among the variables across the 
four equations at the j-th lag. Two matrices, γ and β , are of dimension 4 × r , where r is 
the order of cointegration, γ denotes the speed of adjustment, and β represents the coin-
tegrating vector, which can be obtained using the Johansen test (Johansen 1988; Cuth-
bertson et al. 1992). α is a 4 × 1-constant vector representing a linear trend, p is the lag 
structure, and wt is a 4 × 1-vector of the white noise error term.

For the VECM in Eq. (14), Johansen (1991) employed the full-information maxi-
mum likelihood method to implement the estimation. Specifically, the main pro-
cedure consists of (1) testing whether all variables are integrated of order one by 
applying a unit-root test (Lai and Lai 1991), (2) determining the lag order p such that 
the residuals from each equation of the VECM are uncorrelated, (3) regressing �Y t 
against the lagged differences of �Y t and estimating the cointegrating vectors from 
the canonical correlations of the set of residuals from these regression equations, and 
(4) determining the order of cointegration r.

Z =




1 1 · · · 1
Y p Y p+1 · · · Y T−1

...
...

. . .
...

Y 1 Y 2 · · · Y T−p




(13)B̂ =
(
ZTZ

)−1
ZTY .

(14)�Y t =

p−1∑

j=1

Ŵj�Y t−j + γβTY t−1 + α + wt ,
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Discussion of parameter selection in VAR and VECM

Finally, we discuss the determination of the lag order p in the VAR model and the order 
of cointegration r in the VECM to model the OHLC data. First, for p, on one hand, it 
should be sufficiently large to fully reflect the dynamic characteristics of the constructed 
model; on the other hand, an increase in p will cause an increase in the parameters to 
be estimated; thus, the degree of freedom of the model decreases. A trade-off must be 
evaluated to choose p, and the commonly used criteria in practice are AIC, BIC, and 
Hannan–Quinn. We prefer AIC because of its conciseness, which is formulated as

where T denotes the total period number of OHLC series, p is the VAR lag order, K 
is the VAR dimension, and ûij = Ŷ

(i)
j − Y

(i)
j (1 ≤ i ≤ 4, 1 ≤ j ≤ T ) represents the VAR 

residuals. The optimal p is obtained by minimizing AIC (p).
Second, in the order of cointegration, r indicates the dimension of the cointegrating 

space, and (1) if the rank of γβT  is 4, that is, r = 4 and Y t are already stationary, the 
proper specification of Eq. (14) is without the error-correction term and degenerates 
into a VAR; (2) if γβT  is a null matrix, that is, r = 0 , then there is no cointegration 
relation; and (3) if the rank of γβT  is between 0 and 4, that is, 0 < r < 4 , there exist 
r linearly independent columns in the matrix and r cointegration relations in the sys-
tem of equations. Along the line of Johansen (1991), r is determined by constructing 
the “Trace” or “Eigen” test statistics, which are two widely used methods in Johansen 
test. For further details, please refer to Johansen (1995) and Lütkepohl (2005).

Unified modeling framework for OHLC data

In summary, as one of the popular econometric forecasting models in Step 4 of Algo-
rithm 1, the main implementations of VAR and VECM can be summarized as Algorithm 2.

Algorithm 2 VAR and VECM framework

(15)AIC (p) = ln

∑4
i=1

∑T
j=1 û

2
ij

T
+

2pK 2

T
,
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By incorporating Algorithm 2 into Algorithm 1, we can obtain a unified framework for 
the statistical modeling of the OHLC series, as shown in Fig. 3.

Simulations
We assessed the performance of the proposed method using finite-sample simulations. 
We first describe the data construction in “Data construction” section, then provide five 
indicators to evaluate forecasting accuracy in “Measurements” section and finally report 
the simulation results in “Results of simulations” section.

Data construction

We generate the simulation data under the VAR structure in Eq. (11) as follows: (1) 
Assign the lag period p and the coefficient matrices A1,A2, · · · ,Ap ; (2) Generate an 

original four-dimensional vector Y 1 = [y
(1)
1 , y

(2)
1 , y

(3)
1 , y

(4)
1 ]T ; (3) Generate {Y t}

T
t=2 in a 

sequence via the VAR(p) model

where wt follows the multivariate normal distribution with zero mean and covariance 
matrix �w . Finally, the simulated OHLC data {X t}

T
t=1 are generated by applying the 

inverse transformation formula in Eq. (9).
To evaluate the robustness of the proposed method, we considered the following sce-

narios with different variance component levels:

Scenario 1: p = 1,T = 220,Y 1 = [4, 0.7, −0.85, 0]T and 

 and �w is a 4 × 4 diagonal matrix with diagonal element being 0.052 , i.e., 

Scenario 2: p,T ,Y 1 and A1 follows Scenario 1 except that 

Y t = A1Y t−1 + · · · + ApY t−p + wt ,

A1 =




0.55 0.12 0.12 0.12
0.12 0.55 0.12 0.12
0.12 0.12 0.55 0.12
0.12 0.12 0.12 0.55


 ,

�w = diag {0.052, 0.052, 0.052, 0.052}.

Fig. 3 An unified framework for modeling OHLC data based on VAR and VECM
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Scenario 3: p,T ,Y 1 and A1 follows Scenario 1 except that 

All these scenarios present the transformed unconstrained time-series data {Y t}
T
t=1 that 

follow VAR(1), with different variance component levels according to the median (sce-
nario 1), low (scenario 2), and strong (scenario 3) signal-to-noise ratios, respectively. 
A higher signal-to-noise ratio means that the information contained in the data comes 
more from the signal than from the noise, indicating a better quality of data. In contrast, 
a lower signal-to-noise ratio means that the noise carries more interference, indicating 
worse data quality.

Note that the raw simulation data have 220 periods; we only take 21–220 periods as 
the final simulated dataset, as the data generated initially may be highly volatile. Consid-
ering Scenario 2 as an illustration, Fig. 4 shows the simulated OHLC series {X t}

T
t=1.

Measurements

Based on the process illustrated in Fig. 3, the VAR and VECM are used to measure the 
statistical relationships between variables contained in Y t . As Corrado and Lee (1992) 
and Marshall et  al. (2008) point out, short-term technical analyses can be more help-
ful for investors than long-term technical analyses. Therefore, we focused on a relatively 
short-term analysis. Specifically, q periods of the simulated data, namely the time period 
basement, were used to train the model and make out-of-sample forecasts ahead of m 
periods. We set q ranges from 30 to 70, and m = 1, 2, 3 . For each setting (q, m), Y (q)

i  
scrolls forward by one period and forecasts (T − q −m+ 1) times in total, as indicated 
in Fig. 5.

�w = diag {0.072, 0.072, 0.072, 0.072}.

�w = diag {0.032, 0.032, 0.032, 0.032}.

Fig. 4 Simulation OHLC data under Scenario 2
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The forecasted Ŷ i
(q,m)

 is first derived, and then the forecasted X̂ i
(q,m)

 is obtained 
based on the inverse transformation formulas Eq. (9). We evaluated the effectiveness 
of forecasting in terms of five measurements, which are defined as follows:

• The mean absolute percentage error (MAPE) 

 where x(∗)i  and x̂(∗)i  are the actual and forecasted values with x(∗)i  indicating x(o)i  , x(h)i  , 
x
(l)
i  , or x(c)i  , respectively; k is the number of forecasted points.

• The standard deviation (SD) is defined as the empirical standard derivation of the 
forecasted values {x̂(∗)i }ki=1 , i.e., 

 where ¯̂x
(∗)

=
∑k

i=1 x̂
(∗)
i /k.

• The root mean squared error (RMSE) as defined in Neto and de Carvalho (2008) 

• The RMSE based on the Hausdorff distance (RMSEH) is defined in De  Carvalho 
et al. (2006) 

• The accuracy ratio (AR) is adopted in Hu and He (2007) 

 where w(SPi ∩ ŜPi) and w(SPi ∪ ŜPi) represent the length of the intersection and 
union between the observation interval [x(l)i , x

(h)
i ] and the forecasting interval 

[x̂
(l)
i , x̂

(h)
i ] , respectively.

MAPE =
100%

k

k∑

i=1

∣∣∣∣∣
x
(∗)
i − x̂

(∗)
i

x
(∗)
i

∣∣∣∣∣,

SD =

√√√√ 1

k − 1

k∑

i=1

(
x̂
(∗)
i − ¯̂x

(∗)
)2

,

RMSE =

√√√√1

k

k∑

i=1

(
x
(∗)
i − x̂

(∗)
i

)2

RMSEH =

√√√√1

k

k∑

i=1

(∣∣∣∣∣
x
(h)
i + x

(l)
i

2
−

x̂
(h)
i + x̂

(l)
i

2

∣∣∣∣∣+
∣∣∣∣∣
x
(h)
i − x

(l)
i

2
−

x̂
(h)
i − x̂

(l)
i

2

∣∣∣∣∣

)2

AR =





1
k

k�
i=1

w(SPi∩�SPi)
w(SPi∪�SPi)

, if (w(SPi ∩ �SPi) �= 0)

0, if (w(SPi ∩ �SPi) = 0)

,

Fig. 5 Specific segment method
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Smaller values of MAPE, RMSE, and RMSEH and a larger AR indicate a more accurate 
forecasting result, whereas a smaller SD indicates a more stable result.

Results of simulations

For Scenario 1, we summarize the results with q = 40, 50, 70 and m = 1, 2, 3 in Table 2. 
From this, we can observe that (1) the overall performance of the proposed method 
in terms of these five measurements is satisfactory and stable, and (2) for a fixed q, a 
smaller forecast period m makes the forecasted results more accurate with smaller val-
ues of MAPE, RMSE, and RMSEH and larger AR. There is no obvious pattern in terms 
of SD.

Moreover, we present additional results with q ranging from 30 to 70 and m = 1, 2, 3 to 
further demonstrate the performance of the proposed method. Specifically, Fig. 6 sum-
marizes the results in terms of MAPE (the left panel), SD (the middle panel), and RMSE 
(the right panel), while Fig. 7 shows the RMSEH and AR of the forecasted results.

Basically from Fig. 6, under different q and m, the MAPE is between 3.08% and 7.13% , 
the SD is between 0.048 and 0.158, and the RMSE is between 0.051 and 0.148, indicat-
ing good forecasting accuracy and stability. As the forecast period m increases, these 
three indicators increase synchronously, decreasing forecasting accuracy. However, the 
forecasting performance shows a trend of getting better first and then getting worse as 
q increases. From Fig. 7, the RMSEH maintains a small value between 0.083 and 0.152. 
Meanwhile, AR is relatively high, varying from 0.842 to 0.903, which illustrates that the 

Table 2 Simulation results for Scenario 1 whenq = 40, 50, 70andm = 1, 2, 3

Criterion q = 40 q = 50 q = 70

m = 1 m = 2 m = 3 m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

MAPE

 x(o)t
3.73% 4.95% 5.41% 4.19% 4.82% 5.91% 3.58% 4.67% 5.80%

 x(h)t
3.75% 4.71% 4.92% 3.93% 4.65% 5.59% 3.43% 4.37% 5.23%

 x(l)t 4.30% 5.28% 6.28% 4.80% 5.17% 6.21% 4.60% 5.64% 6.81%

 x(c)t
3.69% 4.94% 5.53% 4.31% 4.87% 5.96% 3.58% 4.67% 5.70%

SD

 x(o)t
0.115 0.122 0.115 0.127 0.127 0.122 0.104 0.105 0.104

 x(h)t
0.126 0.138 0.130 0.150 0.147 0.143 0.123 0.123 0.122

 x(l)t 0.073 0.079 0.076 0.072 0.074 0.072 0.070 0.072 0.072

 x(c)t
0.112 0.123 0.116 0.131 0.129 0.126 0.103 0.104 0.104

RMSE

 x(o)t
0.073 0.096 0.108 0.081 0.093 0.110 0.067 0.088 0.106

 x(h)t
0.094 0.123 0.134 0.101 0.118 0.139 0.084 0.110 0.131

 x(l)t 0.052 0.067 0.075 0.059 0.065 0.076 0.055 0.068 0.081

 x(c)t
0.071 0.099 0.109 0.083 0.096 0.114 0.066 0.088 0.106

RMSEH 0.098 0.127 0.137 0.099 0.122 0.142 0.088 0.114 0.135

AR 0.891 0.868 0.858 0.886 0.872 0.849 0.895 0.871 0.848
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Fig. 6 MAPE (Left panel), SD (Middle panel) and RMSE (Right panel) of forecasted values for x(o)t  (The first 
row), x(h)t  (The second row), x(l)t  (The third row) and x(c)t  (The fourth row) with different q and m for Scenario 1 
respectively
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forecasting interval closely coincides with the observation interval, indicating a satisfac-
tory forecasting effect.

For Scenarios 2 and 3, we conducted simulations in line with Scenario 1, and the 
results exhibited the same trend. Owing to space constraints, we only show the fore-
casted results in terms of MAPE in Fig. 8 for Scenario 2 with low signal-to-noise ratio 
(the first row) and Scenario 3 with high signal-to-noise ratio (the second row). The 
MAPE values in the first row of Fig. 8 is between 4.29 and 9.93%, while the correspond-
ing MAPE in the second row of Fig. 8 is between 1.89 and 4.33%. The left panel of Fig. 6 
corresponds to the MAPE with medium signal-to-noise ratio, whose MAPE (ranges 
from 3.08 to 7.13%) is between those in the second and the first row of Fig. 8, which indi-
cates that the accuracy of the forecasted results decreases with the signal-to-noise ratio.

Empirical analysis
We illustrate the practical utility of the proposed method using three different types of 
real datasets: the OHLC series of Kweichow Moutai, CSI 100 index, and 50 ETF in the 
Chinese financial market. For each case, we first briefly describe the dataset in “Raw 
OHLC dataset description” section, then apply the proposed method with different 
forecasting basement period q and forecasting period m and report the performance in 
terms of MAPE, RMSE, RMSEH, and AR in in “Results of empirical analysis” section.

Raw OHLC dataset description

• OHLC series of the Kweichow Moutai The Kweichow Moutai is a well-known com-
pany in Chinese liquor industry, which has a long history, and its stamp (SH: 600519) 
is an important part of the China Securities Index (CSI 100). Here, we study its 
OHLC series with the time ranging from 27/8/2001 to 14/6/2019, yielding 4243 data 
in total.
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row), respectively
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• OHLC series of the CSI 100 index The CSI 100 index is one of the most important 
stock price indexes in China, reflecting the overall situation of the companies with 
the most market influence power in the Shanghai and Shenzhen stock markets. 
China Securities Index Co., Ltd. officially issued the CSI 100 index on 30/12/2005, 
and 1000 is its base data and base point. We collected the OHLC series of the CSI 
100 index from 30/12/2005 to 14/6/2019 with a total of 3269 periods.

• OHLC series of the 50 ETF The 50 ETF (code: 510050) is China’s first transactional 
exchange traded fund, compiled by the Shanghai Stock Exchange, whose base date 
and base point are 31/12/2003 and 1000, respectively. The investment objective of 
the 50 ETF is to closely track the Shanghai Stock Exchange 50 (SSE 50) index, mini-
mizing tracking deviation and tracking error. This study collected 3481 OHLC data 
samples of the 50 ETF from 23/2/2005 to 14/6/2019.

Results of empirical analysis

Based on the results of the simulation experiments, we used the proposed method, as 
shown in Fig. 3 with q varying from 30 to 70 and m = 1 , to realize the forecast of OHLC 
series of the Kweichow Moutai, CSI 100, and 50 ETF.

Specifically, we consider the first vector time series of {Y t}
90
t=1 (i.e., Y (90)

1  in Algo-
rithm 2) of the 50 ETF as an example to illustrate our modeling process. At the signif-
icance level of α = 0.05 , the four time series are stationary except for {y(1)t }90t=1 with the 
p-value of ADF test being 0.628, indicating that {Y t}

90
t=1 cannot be modelled by VAR. 

The ACF plots in Fig.  9 further demonstrate the distinct auto-correlation and non-
stationary of {y(1)t }90t=1 . Then, the Johansen test is applied to examine the cointegration 
relationship between the four variables in {Y t}

90
t=1 , and the essence of Johansen test 

Fig. 9 ACF plots of the four time-series variables in Y (90)
1  of the 50 ETF
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based on “Trace” investigates the number of cointegration vectors, which is recorded 
as r. The results show that the possibility of r ≤ 2 is less than 1% and the possibility 
of r ≤ 3 is greater than 10% ; thus, r in VECM is determined to be 3. Finally, a VECM 
with order of cointegration r = 3 is established, and the one-step forecasting value 
Ŷ 1

(90,1)
 is obtained using the regression function. Using the inverse transformation 

method, we obtain forecasted X̂1
(90,1)

 . Iterating through each vector time series 
{Y t+l}

90
t=1 (l = 0, 1, . . . ,T − 91) , the forecasting accuracy of the entire data samples 

can be evaluated.
The forecasting accuracy of the VAR and VECM models with unconstrained trans-

formations proposed in this study is satisfactory with q varying from 30 to 70. (1) 
The average MAPE of Kweichow Moutai was between 1.247% and 1.369%, RMSE was 
between 32.759 and 38.046, RMSEH was between 39.842 and 45.818, and the AR was 
between 0.418 and 0.454. (2) The average MAPE of the 100 index was between 1.000% 
and 1.070%, RMSE was between 47.387 and 51.594, RMSEH was between 55.389 and 
60.486, and the AR was between 0.395 and 0.429. (3) The average MAPE of the 50 
ETF was between 0.981 and 1.114%, RMSE was between 0.039 and 0.045, RMSEH 
was between 0.046 and 0.055, and AR was between 0.403 and 0.442.

Furthermore, we take q = 30 , q = 50 , and q = 70 as three milestones and summa-
rize the forecasting results in terms of MAPE, RMSE, RMSEH, AR, the ratios of VAR 
and VECM, and the numbers of the three types of forecasting failures. The forecasting 
results for the Kweichow Moutai, CSI 100, and CSI 50 ETF are presented in Tables 3, 

Table 3 Results of the VAR and VECM for OHLC data of Kweichow Moutai

Criterion q = 30 q = 50 q = 70

Naive Yes No Naive Yes No Naive Yes No

MAPE

 x(o)t
1.602% 1.002% 0.759% 1.602% 0.940% 0.677% 1.600% 0.831% 0.617%

 x(h)t
1.378% 1.418% 1.348% 1.376% 1.353% 1.300% 1.377% 1.297% 1.267%

 x(l)t 1.378% 1.269% 1.315% 1.377% 1.240% 1.207% 1.381% 1.191% 1.147%

 x(c)t
1.486% 1.765% 1.773% 1.485% 1.709% 1.689% 1.488% 1.667% 1.626%

 x̄t 1.461% 1.363% 1.299% 1.460% 1.310% 1.218% 1.461% 1.247% 1.164%

RMSE

 x(o)t
42.207 29.651 26.959 42.307 24.220 22.981 42.408 22.328 21.309

 x(h)t
36.205 37.646 40.406 36.291 35.714 36.262 36.378 33.639 34.585

 x(l)t 36.049 34.708 37.354 36.135 31.826 33.037 36.221 31.121 30.930

 x(c)t
40.772 47.770 50.991 40.869 45.643 46.073 40.967 44.628 44.452

 x̄t 38.808 37.443 38.928 38.900 34.351 34.588 38.994 32.929 32.819

RMSEH 44.329 44.639 47.777 44.435 42.153 42.657 44.541 39.988 40.560

AR 0.411 0.419 0.412 0.411 0.442 0.441 0.411 0.454 0.459

VAR Ratio - 8.40% 5.53% - 12.96% 5.98% - 1.37% 2.35%

VECM Ratio - 91.60% 94.47% - 87.04% 94.02% - 98.63% 97.65%

Failure 1 0 0 0 0 0 0 0 0 0

Failure 2 0 0 9 0 0 9 0 0 7

Failure 3 0 0 434 0 0 452 0 0 144
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Table 4 Results of the VAR and VECM for OHLC data of CSI 100

Criterion q = 30 q = 50 q = 70

Naive Yes No Naive Yes No Naive Yes No

MAPE

 x(o)t
1.310% 0.796% 0.641% 1.314% 0.728% 0.562% 1.317% 0.693% 0.512%

 x(h)t
1.054% 0.996% 0.973% 1.057% 0.961% 0.919% 1.060% 0.937% 0.887%

 x(l)t 1.177% 1.054% 1.061% 1.179% 1.003% 0.975% 1.182% 1.001% 0.935%

 x(c)t
1.223% 1.436% 1.452% 1.227% 1.395% 1.357% 1.229% 1.378% 1.322%

 x̄t 1.191% 1.070% 1.032% 1.194% 1.022% 0.953% 1.197% 1.002% 0.914%

RMSE

 x(o)t
61.400 40.557 35.927 61.586 36.477 31.117 61.770 34.748 28.773

 x(h)t
48.781 46.347 45.321 48.928 43.774 42.415 49.076 43.027 40.248

 x(l)t 55.653 51.616 51.660 55.820 47.804 47.266 55.988 47.685 45.184

 x(c)t
57.773 67.857 68.388 57.947 64.767 64.498 58.122 64.260 62.213

 x̄t 55.902 51.594 50.324 56.070 48.198 46.324 56.239 47.430 44.104

RMSEH 64.021 60.486 60.158 64.212 55.994 55.272 64.406 55.719 52.732

AR 0.370 0.395 0.403 0.370 0.417 0.431 0.371 0.428 0.448

VAR Ratio - 6.80% 5.94% - 10.90% 3.61% - 0.88% 2.63%

VECM Ratio - 93.20% 94.06% - 89.10% 96.39% - 99.12% 97.37%

Failure 1 0 0 0 0 0 0 0 0 0

Failure 2 0 0 7 0 0 3 0 0 1

Failure 3 0 0 379 0 0 285 0 0 106

Table 5 Results of the VAR and VECM for OHLC data of 50 ETF

Criterion q = 30 q = 50 q = 70

Naive Yes No Naive Yes No Naive Yes No

MAPE

 x(o)t
1.259% 0.773% 0.647% 1.261% 0.670% 0.539% 1.263% 0.645% 0.496%

 x(h)t
1.051% 1.072% 1.066% 1.053% 1.004% 0.984% 1.054% 0.975% 0.943%

 x(l)t 1.117% 1.090% 1.054% 1.120% 0.980% 0.952% 1.120% 0.952% 0.911%

 x(c)t
1.208% 1.482% 1.496% 1.210% 1.376% 1.349% 1.211% 1.357% 1.306%

 x̄t 1.159% 1.104% 1.066% 1.161% 1.015% 0.956% 1.162% 0.982% 0.914%

RMSE

 x(o)t
0.048 0.035 0.031 0.048 0.031 0.025 0.048 0.028 0.024

 x(h)t
0.040 0.044 0.041 0.040 0.039 0.037 0.040 0.037 0.035

 x(l)t 0.044 0.045 0.044 0.044 0.039 0.038 0.044 0.038 0.037

 x(c)t
0.047 0.058 0.058 0.047 0.053 0.052 0.047 0.052 0.051

 x̄t 0.045 0.045 0.043 0.045 0.040 0.038 0.045 0.039 0.037

RMSEH 0.052 0.055 0.053 0.052 0.049 0.047 0.053 0.047 0.045

AR 0.387 0.403 0.399 0.387 0.427 0.429 0.387 0.440 0.449

VAR Ratio - 6.56% 6.51% - 6.31% 3.59% - 1.56% 2.62%

VECM Ratio - 93.44% 93.49% - 93.69% 96.41% - 98.44% 97.38%

Failure 1 0 0 0 0 0 0 0 0 0

Failure 2 0 0 9 0 0 2 0 0 0

Failure 3 0 0 380 0 0 271 0 0 123
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4, and 5, respectively. Failure 1 refers to the forecasted low price becoming negative; 
that is, x̂(l)t < 0 . Failure 2 indicates that the forecasted high price is lower than the 
forecasted low price, that is, x̂(h)t < x̂

(l)
t  . Failure 3 is for the forecasted open price (or 

forecasted close price) to break through the forecasted high-price and forecasted low-
price boundaries, that is, x̂(o)t , x̂

(c)
t /∈ [x̂

(l)
t , x̂

(h)
t ].

Meanwhile, we compare the VAR and VECM with an unconstrained method 
(marked as “Yes” in Tables 3–5) with two other methods: (1) The Naive method pro-
posed by Arroyo et al. (2011), which takes the price of the previous day as the price 
of the day. (2) The VAR and VECM under non-unconstrained method, which employ 
the raw OHLC data as input (marked as “No” in Tables 3–5). The results demonstrate 
the following patterns: 

(1) With the increase of q, the forecasting results of the VAR and VECM under uncon-
strained and non-unconstrained methods become more accurate; MAPE, RMSE, 
and RMSEH decrease, and AR increases.

(2) Regarding MAPE and RMSE, the VAR and VECM under unconstrained and non-
unconstrained methods possess better forecasting accuracy for x(o)t  , x(h)t  , and x(l)t  
than the Naive method while the Naive method has better forecasting accuracy for 
x
(c)
t  than the VAR and VECM. As for RMSEH and AR, the VAR and VECM under 

unconstrained and non-unconstrained methods are superior to the Naive method.
(3) The proportion of utilizing the VECM model is significantly greater than that of the 

VAR model, which indicates that the Chinese stock market has the same character-
istics as the U.S. stock market. That is, stock prices are usually non-stationary, and 
a cointegration relationship exists between the quaternary OHLC prices or uncon-
strained variables (Cheung 2007).

(4) The modeling of the VAR and VECM under the non-unconstrained method 
results in a large number of forecasting failures, while the VAR and VECM under 
the unconstrained method can always guarantee a meaningful forecast of OHLC 
data. The forecasting failures of the non-unconstrained method are mostly 
x̂
(o)
t , x̂

(c)
t /∈ [x̂

(l)
t , x̂

(h)
t ] . This is because it is unlikely that x̂(l)t < 0 or x̂(l)t > x̂

(h)
t  will 

occur under accurate forecasting conditions.
(5) For Kweichow Moutai, the average MAPE, RMSE, RMSEH, and AR of the VAR 

and VECM under unconstrained method are 10.543% , 10.23% , 4.89% , and 0.71% 
better than the Naive method, respectively. For CSI 100, the average MAPE, RMSE, 
RMSEH, and AR of the VAR and VECM under the unconstrained method are 
improved by 13.62% , 12.48% , 10.61% , and 1.02% compared to the Naive method, 
respectively. For 50 ETF, the average MAPE, RMSE, RMSEH, and AR of the VAR 
and VECM under the unconstrained method are 10.94% , 8.15% , 3.82% , and 1.16% 
more optimized than in the Naive method, respectively.

(6) The overall forecasting performance of the VAR and VECM under the non-uncon-
strained method is better than the VAR and VECM under the unconstrained 
method. However, the forecasting failures of the VAR and VECM under the non-
unconstrained method can cause confusion for investors and significantly under-
mine their investment confidence (Huang et al. 2022a). The results are consistent 
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with our original intention to ensure the integrity of the forecasted OHLC data 
structure under the possibility of losing a certain forecast accuracy.

To obtain a clear depiction of the forecasted performance, we also compare the actual 
and forecasted stock values of the Kweichow Moutai from November 5, 2003, to June 22, 
2004 (left panel); the CSI 100 index from May 11, 2011, to December 16, 2011 (middle 
panel); and the 50 ETF from August 9, 2007, to March 24, 2008 (right panel) in Fig. 10. 
The data forecasted by the VAR and VECM combined with the unconstrained transfor-
mation are in line with reality. Specifically, for the Kweichow Moutai, the continuous rise 
that exists before April 9, 2004, and the subsequent fall are perfectly forecasted; for the 
CSI 100 index, the overall downward trend and two rebounds around July 4, 2011, and 
November 9, 2011, are also fully reflected; and, for the 50 ETF, two spikes around Octo-
ber 16, 2007, and January 15, 2008, coincide precisely.

This study was complemented by a machine-learning approach for modeling OHLC 
data using SVR. The selected SVR employs a linear kernel function with a constant of 
the regularization term in the Lagrange formulation set to 1 and epsilon in the insensi-
tive-loss function set to 0.1. SVR performs out-of-sample forecasting using the first 80% 
of the data as the training set and the last 20% as the testing set. Table 6 demonstrates 
the forecasting accuracy of SVR. Several patterns can be found. (1) The overall forecast-
ing accuracy of SVR is significantly improved compared with that of VAR and VECM 
modeling. Under the unconstrained transformation method, the MAPEs obtained by 
SVR on the Kweichou Moutai, CSI 100, and CSI 50 ETF datasets are 26.30%, 33.83%, and 
15.48% lower compared to those obtained by VAR and VECM modeling, respectively. 
In particular, the accuracy of SVR in forecasting close prices improved significantly 
with the close price MAPEs for the three datasets decreasing by 74.33%, 71.84%, and 
64.11%, respectively, compared to those obtained from VAR and VECM modeling. At 
the same time, the high- and low-price MAPEs obtained by SVR are, on average, 32.36% 
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and 14.36% lower than those obtained by VAR and VECM modeling, respectively. The 
forecasting accuracy of the open price by VAR and VECM is better than that of SVR 
modeling with an average decrease of 37.39% in the three datasets. (2) The overall fore-
casting accuracy of the Kweichou Moutai under the unconstrained transformation 
method is higher than that of the non-unconstrained method, while it performs slightly 
worse on CSI 100 and 50 ETF. Interestingly, the SVR under the unconstrained method 
has significantly better forecasting accuracy for the close price than the SVR under the 
non-unconstrained method for all three datasets of the Kweichou Moutai, CSI 100, and 
CSI 50 ETF with MAPE reduced by 70.070%, 53.25%, and 40.10% and RMSE reduced 
by 69.20%, 58.41%, and 48.72%, respectively. The unconstrained transformation not only 
ensures the structural forecasting of OHLC data but also is a manual feature-extraction 
method that can effectively enhance the forecasting accuracy of machine-learning mod-
els for close prices. Given the importance of the close price in various trading strate-
gies, this study demonstrates the significance of the proposed unconstrained method. (3) 
With high forecasting accuracy, the three types of forecasting failures rarely occur. The 
SVR under the non-unconstrained method produced a forecasting failure in the CSI 100 
dataset.

Conclusions
To solve the structural modeling issues of the OHLC data contained in the candlestick 
chart, we proposed a novel unconstrained transformation method to relax the inherent 
constraints of OHLC data along with its explicit inverse transformation. The proposed 
methodology facilitates the subsequent establishment of various forecasting models and 

Table 6 Results of the SVR for OHLC data of Kweichou Moutai, CSI 100, and 50 ETF

Criterion Kweichou Moutai CSI 100 50 ETF

Yes No Yes No Yes No

MAPE

 x(o)t
1.465% 0.482% 0.976% 0.342% 1.073% 0.278%

 x(h)t
0.833% 1.040% 0.575% 0.629% 0.754% 0.625%

 x(l)t 0.948% 0.937% 0.715% 0.600% 1.008% 0.571%

 x(c)t
0.428% 1.430% 0.388% 0.830% 0.487% 0.813%

 x̄t 0.919% 0.972% 0.663% 0.600% 0.830% 0.572%

RMSE

 x(o)t
77.143 39.891 46.055 21.048 0.043 0.016

 x(h)t
77.143 39.891 46.055 21.048 0.043 0.016

 x(l)t 50.224 59.633 33.466 32.082 0.039 0.028

 x(c)t
26.451 85.870 18.087 43.486 0.020 0.039

 x̄t 53.374 65.544 32.904 33.188 0.034 0.029

RMSEH 56.652 80.311 35.904 38.711 0.043 0.035

AR 0.503 0.461 0.421 0.461 0.361 0.471

Failure 1 0 0 0 0 0 0

Failure 2 0 0 0 0 0 0

Failure 3 0 0 0 1 0 0
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guarantees meaningful, structurally forecasted OHLC prices. The unconstrained transfor-
mation method not only extends the range of modeling variables to (−∞,+∞) but also 
shares the flexibility of the well-known log and logit transformations. Based on this uncon-
strained transformation, we established a flexible and efficient framework for modeling 
OHLC data with full utilization of the information. As an application of the multivariate 
time series, we demonstrated a detailed modeling procedure using VAR and VECM.

The proposed unconstrained transformation has high practical utility owing to its 
flexibility, simple implementation, and straightforward interpretation. For instance, it 
is applicable to various positive interval data with internal variables, and the selected 
model can be generalized to other econometric or machine-learning models. From this 
perspective, the proposed method provides a novel and useful alternative for OHLC 
data analysis, thereby enriching existing literature on the structural modeling of complex 
data.

We documented the finite performance of the OHLC data modeling process via exten-
sive simulation studies on various measurements. The simulation experiments demon-
strated that the VAR and VECM under unconstrained transformation obtained stable 
and satisfactory results with different forecast periods, time period basements, and sig-
nal-to-noise ratios, verifying the effectiveness and robustness of the proposed modeling 
approach. The analysis of OHLC data for three different types of financial products in 
the Chinese financial market-the Kweichow Moutai, CSI 100 index, and 50 ETF-also 
illustrated the utility of the unconstrained method. Using raw OHLC data directly as 
input to the VAR and VECM resulted in a large number of forecasting failures. In con-
trast, unconstrained and inverse transformations guaranteed structural modeling of 
OHLC data at the cost of a small loss in forecasting accuracy.

As a complement to machine learning, this study further employed SVR for mode-
ling OHLC data in the empirical analysis section. SVR modeling demonstrated superior 
performance in forecasting OHLC data. Under unconstrained transformation, SVR can 
achieve higher forecast accuracy than VAR and VECM while ensuring OHLC data struc-
ture. In addition, the SVR under the unconstrained method had significantly better fore-
casting accuracy for the close price than the SVR under the non-unconstrained method 
in all three datasets of the Kweichou Moutai, CSI 100, and CSI 50 ETF. The proposed 
unconstrained method proved to be an effective pre-processing technique for machine 
learning models. These results provide new evidence for the practical utility and extensi-
bility of the unconstrained method.

Future research can embed various time-series forecasting models into the proposed 
unified forecasting modeling framework for OHLC time-series data based on uncon-
strained transformation and its inverse transformation to achieve the structural forecast-
ing of OHLC data for various financial products. In particular, artificial neural networks 
can be employed to accurately forecast OHLC data. This can help investors manage 
and hedge their portfolios to earn profits and reduce risks (Huang et al. 2022a). Specifi-
cally, based on OHLC data forecasting results, investors can achieve overnight returns 
(Cooper et al. 2008), reduce fund-holding periods (Dunis et al. 2011), lower overnight 
exposure (Kelly and Clark 2011), and derive better profits from high-low price range 
trades (von Mettenheim and Breitner 2012).
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