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Introduction
In recent years, there has been a growing interest in drawdown-based risk measures 
within both academic circles and the financial sector, as evidenced by numerous stud-
ies (see e.g., D’Amico et al. (2020), D’Amico et al. (2023), Zhang and Hadjiliadis (2012), 
Hongzhong (YYYY ), Li et al. (2022), Jiang (2022), Cantor (2001)). The primary reason 
for this increased attention is that these measures consider the temporal progression 
of financial data. This aspect is overlooked by other inflated risk indicators, such as the 
value-at-risk and the expected shortfall.

Several risk indicators based on drawdown have been proposed in academic literature. 
Notably, the expected conditional drawdown measures and the conditional drawdown 
measures are among the most prevalent (e.g., see Goldberg and Mahmoud (2017) and 
Chekhlov et al. (2005), respectively). This group of financial indicators also includes the 
maximum drawdown and average drawdown, which are both straightforward and user-
friendly (e.g., see Casati and Tabachnik (2013) and Chekhlov et al. (2005), respectively). 
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Recently, new risk measures based on drawdown, which are closely related to market 
crashes, have been proposed. Specifically, the drawdown of a fixed level, the time to 
crash, and the speed of crash were initially introduced in Zhang and Hadjiliadis (2012) 
and subsequently expanded upon in D’Amico et al. (2020, 2023). These measures provide 
investors with crucial information about the risk level prior to a crash event occurring. 
The recovery time and the speed of recovery, which were further developed and exam-
ined in D’Amico et al. (2020), examine the phase that transitions an asset from financial 
collapse to recovery.

To reproduce financial time series, it is necessary to use a stochastic model. There are 
several models suggested in academic literature, with the most prevalent being econo-
metric models (refer to D’Amico et al. (2023)) or diffusive models (refer to Zhang and 
Hadjiliadis (2012)). Recently, effective alternatives based on semi-Markovian models 
have been introduced (refer to D’Amico et al. (2020), Masala and Petroni (2022), Swish-
chuk and Islam (2011), Swishchuk and Vadori (2017), Vassiliou (2014), Vassiliou (2020), 
D’Amico and Petroni (2011), D’Amico and Petroni (2012), Limnios and Oprisan (2001), 
Janssen (2013)).

Semi-Markov processes, which are extensions of Markov processes (refer to Puneet 
and Dharmaraja (2021), Barbu and Limnios (2009)), describe the time intervals between 
transitions using any type of distribution. Specifically, a general semi-Markov model, 
known as the weighted-indexed semi-Markov Chain (WISMC) model, has been used 
extensively by numerous researchers. It is used in many sectors, including finance, in 
both its univariate and multivariate versions (see e.g., D’Amico and Petroni (2012), 
D’Amico and Petroni (2018), De Blasis (2023), Pasricha et  al. (2020), D’Amico et  al. 
(2018), D’Amico et al. (2020), Masala and Petroni (2022), D’Amico and Petroni (2021)). 
The true power of this model, and what distinguishes it from a conventional semi-
Markov model, lies in the incorporation of an index process. This process facilitates the 
aggregation of information derived from the historical trajectory of the financial time 
series.

This study broadens the scope of all risk measures discussed in D’Amico et al. (2020), 
including the drawdown of a fixed level, the time to crash, the speed of crash, the recov-
ery time, and the speed of recovery, by considering time-varying windows. Furthermore, 
it extends their examination to high-frequency financial volumes, given the pivotal 
role that intraday data play in financial markets, as noted in Zhang et al. (2023). Note 
that previous studies have consistently applied drawdown-based risk measures to asset 
returns, not to asset volumes, as seen in D’Amico et  al. (2020), D’Amico et  al. (2023), 
Masala and Petroni (2022). Therefore, we posit that incorporating trading volumes into 
our study represents a novel and original contribution, considering their significant role 
in stock markets as a key financial quantity for assessing an asset’s liquidity risk, as refer-
enced in Queirós (2005), Martınez et al. (2005), Bank et al. (2011). High volumes indicate 
a liquid asset that can be sold quickly and easily, while low volumes suggest an illiquid 
asset that is challenging to trade. This demonstrates that WISMC models are suitable for 
replicating volume data and can thus be effectively employed to study drawdown-based 
liquidity risk measures.

In this study, we employ a WISMC process to model the minute-by-minute volumes of 
Tesla, Netflix, and Apple assets listed on the Nasdaq Stock Exchange. First, we verify the 
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need for a model that considers the correlation between transition times and volumes 
using a χ2 test. The results consistently reject the independence hypothesis. Second, we 
calculate drawdown-based risk indicators on both real and synthetic data, which are 
generated using the WISMC model, in time-varying windows by setting a starting time 
s. We then conduct a goodness-of-fit test (Song 2002) on the real data to confirm that 
the selection of different time-varying windows affects our financial indicators, causing 
them to vary and thus subjecting the investor to fluctuating risk. Third, for both real 
and simulated financial indicators, we determine their optimal parametric distribution 
among the Lognormal, Weibull, Exponential, and Gamma laws using the AIC and BIC 
criteria, as per (D’Amico et al. 2020). This analysis, performed with Type-1 right censor-
ship, is conducted to compare real and simulated risk indicators. Overall, for each asset, 
the simulated financial risk indicators closely resemble the real ones in terms of Kull-
back–Leibler divergence.

The structure of the rest of this paper is as follows. In the section titled “Drawdown-
based Risk Measures,” we offer a detailed explanation of the drawdown-based measures 
we examine. The “Mathematical Model” tion briefly introduces the WISMC model. In 
the “Application Results” section, we present the findings of our analysis. Finally, in the 
“Conclusion” section, we share our final thoughts and objectives for future research.

Drawdown‑based risk measures
Trading volumes denote the aggregate count of security transactions within a given time 
frame, serving as a crucial financial metric that gauges an asset’s liquidity. High volumes 
imply a liquid asset, which can be swiftly sold at the preferred price. Conversely, low 
volumes suggest an illiquid asset, which poses challenges in converting it into cash. In 
general, financial volumes are at their peak during the opening and closing of the daily 
stock market, because traders are required to establish a position. These periods are 
composed of minutes (refer to Graczyk and Duarte Queiros (2016)). Consequently, we 
incorporate a general starting time s, which may not necessarily align with the initial 
minute (i.e., s = 0 ) of the trading day, in the definitions of the risk measures. Therefore, 
time s enables the computation of all the contemplated financial indicators for any sub-
daily interval.

Obviously, if time s equals zero we recover definitions in D’Amico et al. (2020).
To qualify the drawdown of an asset, we introduce the discrete time-varying volume 

process X(t) and its running maximum process Y s(t) , defined as

The introduction of s > 0 mitigates the effect of sudden and high initial volume transac-
tions on our risk measures.

Accordingly, the drawdown process Ds(t) is determined as the difference between the 
running maximum process Y s(t) and the volume process X(t), as follows:

This expresses the correction of the security trading volume with respect to a previous 
relative maximum.

(1)Y s(t) := max
l∈[s,t]

{X(l)}.

(2)Ds(t) := Y s(t)− X(t) with t ≥ s.
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To gain a solid understanding of the aforementioned definitions and the function of time 
s, we provide a visual representation in Fig. 1 for both s = 0 and s = 100 . The red, blue, and 
black lines depict the volume processes, the ongoing maximum processes, and the draw-
down processes, respectively, of the Tesla asset over the course of a trading day. The x-axis 
denotes the minutes, which serve as the standard unit of measurement for the trading 
day. Specifically, the stock market day consists of 391 min when s = 0 , and 291 min when 
s = 100 . It is observable that Tesla’s volume processes exhibit a characteristic U-shape form 
(refer to Queirós (2016)), and for s = 0 , the initial fluctuations are significantly more pro-
nounced than for s = 100 . Note that substantial and abrupt initial volume changes have 
significant effects on the calculation of risk measures based on drawdown. Indeed, the run-
ning maximum process, and consequently the drawdown process, assume extremely high 
values from the first few minutes of the trading day.

To examine the influence of these fluctuations on our risk indicators, we calculate them 
using various starting times s, which represent the point from which the risk measures need 
to be computed. We introduce drawdown-based financial indicators that are closely related 
to market crashes, including the drawdown of a fixed level, the time to crash, the speed 
of crash, the recovery time, and the speed of recovery. These crash-recovery measures are 
typically applied to financial returns (refer to D’Amico et al. (2020), D’Amico et al. (2023) for 
examples). However, applying them to trading volumes alters their financial interpretation. 
Specifically, when volumes are low, these risk measures imply a lack of interest in the asset. 
On the other hand, high volumes suggest that the security is highly attractive.

The drawdown of fixed level is the first time that the drawdown process achieves or over-
comes a certain threshold M.

Rigorously, this is defined as

(3)τ s(M) := min{t ≥ s | Ds(t) ≥ M} with M ≥ 0.

Fig. 1 Volume processes (red lines), running maximum processes (blue lines) and drawdown processes 
(black lines) for Tesla asset, considering two different starting times ( s = 0 and s = 100)
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To identify the time to crash, we need to introduce the last visit time of the maximum 
before the stopping time τ s(M) ; formally, this is defined as

Exploiting the definition of τ s(M) and ρs(M) , we qualify the time to crash as

This is the time necessary to have the first M-variation in the drawdown process.
Consequently, the speed of crash, that is, the velocity at which the first M-change 

occurs, is expressed as

These indicators offer insights into the level of risk prior to a crash event. Equally, exam-
ining the subsequent phase that transitions the financial asset from the crash to recovery 
is intriguing. In order to do this, we define the quantity γ s(M,M′) , as follows:

This describes the first moment in which the drawdown process falls below the thresh-
old M′ , just after having crossed the threshold M for the first time.

Using the definitions of γ s(M,M′) and τ s(M) , the recovery time is determined as

Hence, the speed of recovery, that is, the velocity at which we attain the M′ threshold 
after exceeding the threshold M for the first time, is defined as

Figure 2 illustrates graphically all the financial indicators just described, considering 
Tesla and fixing s = 100.

As indicated by the definitions provided, all risk measures depend on a threshold. The 
risk ’appetite of investors dictates the levels of M and M′ . Investors who are more adven-
turous tend to favor higher thresholds, thereby accepting a higher risk. On the other 
hand, investors who are more risk-averse opt for lower thresholds, which signifies less 
risk. However, the selection of these thresholds must be contextualized within the trend 
of the drawdown process. If the drawdown process exhibits high values and an investor 
chooses a threshold that is too low, it will be surpassed immediately, placing the investor 
in a perceived high-risk area. Conversely, if an investor sets a threshold that is too high, 
there is a possibility that the drawdown will never exceed it, resulting in the stock being 
perceived as less risky than the investor’s maximum ’risk tolerance.

All of these risk indicators provide investors with useful financial tools to evaluate the 
liquidity risk of a particular investment or investment portfolio. Specifically, τ s Provides 
information about the hazard of an asset and depends on the selected M-value. Small M 

(4)ρs(M) := max{t ∈ [s, τ s(M)] | X(t) = Y s(t)}.

(5)Ts
c (M) := τ s(M)− ρs(M).

(6)Ssc(M) := M

Ts
c (M)

.

(7)γ s(M,M′) := min{t > τ s(M) | Ds(t) ≤ M′} with M > M′.

(8)Rs
t(M,M′) := γ s(M,M′)− τ s(M).

(9)Ssr(M,M′) := M −M′

Rs
t(M,M′)

.
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values indicate low-risk events, that is, a typical market condition in which the stock can 
be sold easily (i.e., a liquid asset). Conversely, high M values denote very risky events, 
signifying very uncertain and unstable market conditions for the asset and, thus, a gen-
eral difficulty in trading it (i.e., an illiquid asset).
Ts
c (M) and Ssc(M) quantify how long it takes and how quickly such risky events occur 

and, consequently, the duration and speed, respectively, at which a stock becomes 
illiquid.

Unlike previous metrics, Rs
t(M,M′) and Ssr(M,M′) examine the behavior of a stock 

after reaching a specific M-level in its drawdown, thereby indicating a dependency on 
both the M and M′ thresholds. Specifically, the recovery time and the speed of recovery 
indicate the duration of the drawdown process to reach the M′ threshold after already 
hitting the M threshold, and the rate at which this happens. In simpler terms, these met-
rics measure the number of minutes an asset requires to shift from an illiquid state to a 
more liquid one, and the speed of this transition.

Mathematical model
Semi-Markov chain models extend the capabilities of Markov chain models by allow-
ing the time intervals between transitions to be shaped by any given distribution, as 
opposed to a predetermined one. As such, Markovian processes can be viewed as a spe-
cific instance of semi-Markovian processes. This is evident when the waiting time distri-
butions in the states of the system are memoryless distributions, such as the geometric 
distribution in discrete time or the exponential distribution in continuous time.

Consequently, semi-Markovian models consider the present state of the system and its 
duration in that state, but they disregard the preceding history. This is a significant limi-
tation for these models, especially because past events are important in financial time 
series. A potential solution to this problem is the application of a more comprehensive 
semi-Markov chain model, namely the WISMC model (e.g., D’Amico and Petroni (2012), 
D’Amico and Petroni (2018), D’Amico and Petroni (2021)).

Fig. 2 Drawdown processes of Tesla asset during a trading day, for s = 100 . The orange and blue lines stand 
for the thresholds M and M′



Page 7 of 40D’Amico et al. Financial Innovation           (2024) 10:83  

For this reason, we apply a WISMC process to model the high-frequency financial 
volumes.

Fundamentally, the WISMC model is described by three stochastic processes: 
{Jn}n∈N , {Tn}n∈N , and {U�

n }n∈N , which in our context are the trading volume process, 
the corresponding jump time process, and the index process, respectively.

Assuming that X(t) is the discrete time-varying volume process of an asset, we 
transform it into a series of discrete volumes, denoted by Xd(t) , following the map 
described in D’Amico and Petroni (2012). Then, the sequence of discrete volumes 
{Xd(t)}t∈N is converted into a series of volumes {Jn}n∈N , denoting the value of the 
volumes process at the nth change, and into a series of corresponding jump times 
{Tn}n∈N , signifying the time at which the nth change in the volumes process occurred. 
In order to do this, we set T0 = 0 and J0 = Xd(0) , and for n ≥ 1,

The addition of the stochastic process {U�
n }n∈N , with values in R , is the major extension 

to the traditional semi-Markov model. The random variable U�
n describes the value of 

the index process at the nth transition, that is, it synthesizes the information contained 
in the past trajectory of the volume process up to the nth transition. It is defined as

To better understand equation (12), we include a numerical example considering only 3 
transitions for the volume process (i.e., n = 3 ). In Table 1, we report the volume values 
( {J0, J1, J2, J3} ) and the corresponding jump time values ( {T0,T1,T2,T3} ) required in our 
example.

Note that the volume values in Table 1 are completely unrealistic. We selected them 
to simplify the notation and thus, construct the example in a functional manner.

By fixing n = 3 , equation (12) becomes

Using data in Table 1, we get

(10)Tn = inf{t ∈ N, t > Tn−1 : Xd(t) �= Xd(Tn−1)},

(11)Jn =Xd(Tn).

(12)U�
n =

n−1

k=0

Tn−k−1

a=Tn−1−k

f �(Jn−1−k ,Tn, a)+ f �(Jn,Tn,Tn).

U�
3 =

2
∑

k=0

T3−k−1
∑

a=T2−k

f �(J2−k ,T3, a)+ f �(J3,T3,T3).

Table 1 Volumes values Jn and corresponding jump times values Tn considering n = 3

Jn Tn

J0 = 2 T0 = 0

J1 = 5 T1 = 3

J2 = 3 T2 = 10

J3 = 4 T3 = 50
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Next, we perform the first summation (i.e., the summation with index k), and we obtain

Finally, employing numerical values in Table 1, we get

Based on previous applications to high-frequency financial data (e.g., D’Amico et al. 
(2020), D’Amico and Petroni (2018), D’Amico and Petroni (2021)), we employ an expo-
nentially weighted moving average of the squared J as a function f. Formally, we assume 
the following functional form:

This depends on the past values of volumes Jn−1−k that occurred at time a, the current 
time Tn , and the parameter � , which balances past information.

In the next section, we describe the calibration of the parameter � and determining the 
optimal number of states for the financial volumes, as well as the index process.

To construct the WISMC model, we explicitly define the dependency structure 
between the random variables Jn , Tn , and U�

n . To this end, we adopt the following 
assumption:

where σ(Jh,Th,U
�

h ) is the natural filtration of the three-variate process {Jn,Tn,U
�
n } . Rela-

tion (14) asserts that knowledge of the last volume value ( Jn = i ) and of the value of 
the index process ( U�

n = u ) suffices to give the conditional distribution of the couple 
(Jn+1,Tn+1 − Tn).

In this mathematical model, the matrix of functions Q�(u, t) = (Q�
ij(u, t))i,j∈E , known 

as the weighted-indexed semi-Markov kernel, is a crucial component. If Q�(u, t) is con-
stant in u, then the weighted-indexed semi-Markov kernel degenerates into a regular 
semi-Markov kernel.

We denote by P�(u) = (p�ij(u))i,j∈E the transition probabilities of the embedded 
indexed Markov chain Jn , where

We assume that G�(u, t) = (G�
ij(u, t))ij∈E are the conditional waiting time distribution 

functions, where

U�
3 =

2
∑

k=0

T3−k−1
∑

a=T2−k

f �(J2−k , 50, a)+ f �(4, 50, 50).

U�
3 =

T3−1
∑

a=T2

f �(J2, 50, a)+
T2−1
∑

a=T1

f �(J1, 50, a)+
T1−1
∑

a=T0

f �(J0, 50, a)+ f �(4, 50, 50).

U�
3 =

2
∑

a=0

f �(2, 50, a)+
9

∑

a=3

f �(5, 50, a)+
49
∑

a=10

f �(3, 50, a)+ f �(4, 50, 50).

(13)f �(Jn−1−k ,Tn, a) =
�
Tn−aJ2n−1−k

∑n−1
k=0

∑Tn−k−1

b=Tn−1−k
�Tn−b

=
�
Tn−a J2n−1−k
∑Tn

b=1 �
b

.

(14)
P[Jn+1 = j, Tn+1 − Tn ≤ t | σ(Jh,Th,U

�

h )
n
h=0, Jn = i,U�

n = u]
= P[Jn+1 = j, Tn+1 − Tn ≤ t | Jn = i,U�

n = u] =: Q�
ij(u, t),

p�ij(u) = P[Jn+1 = j | Jn = i,U�
n = u].
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Then, equation (14) is equivalent to

Accordingly, the evolution of the system can be summarized as follows: given a certain 
state i and a value u of the index process, the transition in the state j is determined using 
the probability p�ij(u) , and the permanence of the system in the state i before moving to 
state j is determined by using the waiting time distribution function G�

ij(u, t).
The triple of processes { Jn,Tn,U

�
n } describes the system’s behavior for the transition 

time Tn . To characterize the behavior of our model at any time t, which can be a transi-
tion time or a waiting time, we must specify additional stochastic processes.

Let N (t) = sup{n ∈ N : Tn ≤ t} be the number of transitions up to time t, and let 
Z(t) = JN (t) be the state of the system at time t.

We refer to Z(t) as a weighted indexed semi-Markov process.
For a thorough explanation of the estimation procedures for each quantity included in 

this model, see D’Amico and Petroni (2018).

Application results
The content of this section is divided into two sub-sections. The first sub-section pro-
vides a summary of the key statistical characteristics of the financial data set used in our 
study, followed by details about the application of the WISMC model. The second sub-
section discusses the analysis of risk measures, developed using both actual and simu-
lated data.

Data analysis and preliminary model results

The study was conducted using high-frequency trading volumes of three Nasdaq-listed 
stocks, specifically, Tesla, Netflix, and Apple, which were recorded on a minute-by-
minute basis. These corporations were chosen because they represent different indus-
trial sectors. For instance, Tesla is primarily involved in the Automotive and Renewable 
sector, while Netflix and Apple are part of the Communication Services, Technology & 
Entertainment, and Information Technology sectors, respectively. The data were sourced 
from Thomson Reuters EikonTM (https:// eikon. thoms onreu ters. com/ index. html) and 
covers the period April 2022–September 2022. For each corporation, 49,266  min-by-
minute trading volumes were analyzed, corresponding to 126 trading days, with each 
day comprising 391 min. Table 2 provides the main descriptive statistics of the trading 
volumes for Tesla, Netflix, and Apple. The results in the table show that Netflix stock 
seems to have the smallest mean, median, and standard deviation values, but also the 
largest values of kurtosis and skewness.

In Table 3, using a Jarque–Bera test, we rule out the Gaussian hypothesis for the vol-
umes X(t) at the 1% and 5% significance levels for every asset. The results reject the 
Gaussian hypothesis for all the considered assets.

G�
ij(u, t) = P[Tn+1 − Tn ≤ t | Jn = i, Jn+1 = j,U�

n = u].

Q�
ij(u, t) = P[Jn+1 = j | Jn = i,U�

n = u] · P[Tn+1 − Tn ≤ t | Jn = i, Jn+1 = j,U�
n = u]

= p�ij(u) · G�
ij(u, t).

https://eikon.thomsonreuters.com/index.html
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Table 2 Mean, median, standard deviation, skewness, and kurtosis of Tesla, Netflix, and Apple 
volumes

Stock Mean Median SD Skewness Kurtosis

TESLA 1.6829e+05 1.3640e+05 1.1824e+05 1.2712 4.5623

NETFLIX 2.1366e+04 15135 1.9718e+04 1.9745 7.5502

APPLE 1.6307e+05  1.3871e+05 1.0125e+05 1.1053 4.3211

Table 3 Jarque-Bera test results performed on Tesla, Netflix, and Apple log-volumes considering 
both α = 0.01 and α = 0.05

Stocks α = 0.01 α = 0.05

TESLA Reject H0 Reject H0

NETFLIX Reject H0 Reject H0

APPLE Reject H0 Reject H0

Table 4 Contingency table to test the dependence between X(t) and T for Tesla

The numbers in brackets are the theoretical values obtained under the independence hypotheses

X(t)

(−∞, 8] × 104 (8, 12] × 104 (12, 17)× 104 [17, 26)× 104 [26,+∞)× 104

T (0, 2] 3129(3567.3) 5947(5740.6) 6136(5750.7) 5487(5286.1) 2666(3020.4)

(2, 4] 645(456.2) 702(734.1) 580(735.4) 609(676.0) 452(386.3)

(4,+∞) 433(183.5) 121(295.8) 66(295.8) 138(271.9) 444(155.4)

Table 5 Contingency table to test the dependence between X(t) and T for Netflix

The numbers in brackets are the theoretical values obtained under the independence hypotheses

X(t)

(−∞, 7.7] × 103 (7.7, 12.5] × 103 (12.5, 19.5)× 103 [19.5, 33)× 103 [33,+∞)× 103

T (0, 2] 3204(3538.9) 5649(5385.8) 5899(5566.6) 5056(5027.5) 2344(2633.2)

(2, 4] 580(471.8) 636(718.0) 627(742.1) 729(670.2) 381(351.0)

(4,+∞) 424(197.3) 119(300.3) 93(310.3) 193(280.3) 406(146.8)

Table 6 Contingency table to test the dependence between X(t) and T for Apple

The numbers in brackets are the theoretical values obtained under the independence hypotheses

X(t)
 T (−∞, 9] × 104 (9, 12.5] × 104 (12.5, 17)× 104 [17, 25)× 104 [25,+∞)× 104

(0, 2] 3015(3405.8) 5572(5345.1) 5792(5429.1) 5085(4983.9) 2439(2739.1)

(2, 4] 593(477.4) 717(749.2) 627(761.0) 729(698.6) 404(383.9)

(4,+∞) 484(208.8) 133(327.7) 104(332.7) 174(305.6) 448(168.0)
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Finally, in Tables 4, 5, and 6, we create contingency tables by grouping volumes in five 
intervals, each containing about 20% of observations. Then, we apply the χ2 test to check 
whether the volumes and the waiting times rely on one another. The results show that 
the independence hypothesis is uniformly rejected by all of the stocks. Specifically, the 
statistical test scores for Tesla, Netflix, and Apple are 1.4892e+03, 1.1630e+03, and 
1.3283e+03, respectively, and 20.0902 is the critical value of the χ2 statistics with eight 
degrees of freedom and α = 0.01 . This is reflected in the low p-values (****).

These arguments highlight the necessity for all assets to adopt a model where the 
intervals between transitions and volumes are interdependent, and not based on the 
Gaussian distribution. This necessity prompted us to replicate volumes using a WISMC 
process.

To properly realize the investigation, we judged real data above the 95th percentile to 
be outliers, and replaced them with the semi-sum of the nearest data.

In addition, all our high-frequency volumes display a daily pattern, increasing at the 
opening of the market, decreasing throughout the trading day, and then increasing again 
at market close. By taking the average for each trading day on a minute-by-minute basis, 
we establish the daily trend values. To accurately simulate financial volumes using a 
WISMC model, we removed all trends from the financial time series by modeling these 
trends with a fourth-degree polynomial. Table 7 shows the estimated coefficient values 
of the fourth-degree polynomial, along with their respective 95% confidence intervals, 
for all stocks. The Adjusted-R2 values of the polynomial regressions are 0.9801, 0.9580, 
and 0.9677 for Tesla, Netflix, and Apple, respectively.

The WISMC estimations are conducted following the methodology outlined in D’Amico 
and Petroni (2018). Specifically, to shape volumes using a WISMC process, it is necessary 

Table 7 Estimated coefficient values of the fourth-degree polynomial and relative 95% Confidence 
intervals (95% CI) for Tesla, Netflix, and Apple assets

Estimated values 95% CI

TESLA

p1 0.319× 10
4 (0.187, 0.450)× 10

4

p2 −0.883× 10
4 (−0.998,−0.769)× 10

4

p3 3.906× 10
4 (3.555, 4.258)× 10

4

p4 −2.926× 10
4 (−3.150,−2.701)× 10

4

p5 12.390× 10
4 (12.220, 12.560)× 10

4

NETFLIX

p1 0.147× 10
4 (0.126, 0.168)× 10

4

p2 0.039× 10
4 (0.021, 0.057)× 10

4

p3 0.198× 10
4 (0.142, 0.255)× 10

4

p4 −0.364× 10
4 (−0.401,−0.328)× 10

4

p5 1.669× 10
4 (1.642, 1.696)× 10

4

APPLE

p1 0.900× 10
4 (0.772, 1.029)× 10

4

p2 0.218× 10
4 (0.106, 0.330)× 10

4

p3 2.410× 10
4 (2.066, 2.754)× 10

4

p4 −2.295× 10
4 (−2.514,−2.076)× 10

4

p5 12.220× 10
4 (12.060, 12.380)× 10

4
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to establish the number of states for the volume process and the parameter � for each asset. 
These two quantities are calibrated by minimizing the mean percentage error between 
actual and synthetic autocorrelation functions, in line with the algorithm detailed in 
D’Amico and Petroni (2018). In essence, the algorithm aims to create a trajectory by arbi-
trarily initiating a set of states and a � value, estimate the weighted-indexed semi-Markov 
kernel using the approximate nonparametric maximum likelihood estimator derived in 
D’Amico et al. (2013), and subsequently conduct a Monte Carlo simulation to generate a 
synthetic series. The autocorrelation functions for both actual and simulated data are then 
calculated, and the mean percentage error values are compared. This process is repeated 
with varying state values and � . Ultimately, the number of states and the � value that most 
accurately represent the data are determined by minimizing the mean percentage error.

Using this optimization procedure, we find that for all stocks, the ideal number of states is 
five and the optimal value of � is 0.93. However, note that in previous financial applications, 
based on the financial returns of other assets, even higher � values have been observed (see 
D’Amico and Petroni (2021)).

Specifically, we discretize financial volumes in five states not symmetrical to each other. 
Denoting as L the detrended financial volume series, we discretize them using the following 
grid:

where Mean and Std are the mean and standard deviation values, respectively, of the 
L financial time series. The grid detects the following five intervals: (−∞,Mean− Std] , 
(Mean− Std,Mean− 0.5 · Std] , (Mean− 0.5 · Std,Mean+ 0.5 · Std] , 
(Mean+ 0.5 · Std,Mean+ Std] , and (Mean+ Std,+∞) . The mean and standard devia-
tion values for the detrended volume series for Tesla, Netflix, and Apple are shown in 
Table 8.

We also discretized the index process into five states: low, medium-low, medium, 
medium-high, and high volume levels (Fig. 3).

In Figs. 4, 5, and 6, we show the probability plots for both the detrended volumes states 
and index states for Tesla, Netflix, and Apple, respectively.

Results on drawdown‑based risk measures

First, we compute the drawdown-based risk measures using real data. Following this, we 
examine the hypothesis that different distributions exist as s changes on real risk measures. 
We do this by employing the goodness-of-fit test suggested in Song (2002). This test, which 
is grounded in relative entropy or Kullback–Leibler divergence (see Kullback and Leibler 
(1951)), ascertains whether the distributions of two data sets are statistically identical or 
not. Formally, the test assumes the following form:

Mean+ Std · [−1,−0.5, 0.5, 1],

Table 8 Mean and standard deviation values for the detrended series of Tesla, Netflix, and Apple

Stocks Mean Std

TESLA 2.3772e + 03 7.3791e + 04

NETFLIX 396.5026 1.0585e + 04

APPLE 1.0858e + 03 5.9539e + 04
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Here, P and Q are two probability distributions, and D(P, Q) indicates their Kullback–
Leibler divergence. We define the Kullback–Leibler divergence in its continuous version, 
denoted also by D(P‖Q) , as follows:

where p and q are the probability densities of P and Q. This expresses the measure of the 
information lost when the distribution Q is employed to approximate the distribution P.

Accepting the null hypothesis means stating that we have identical probability dis-
tributions, regardless of the starting time s. Conversely, rejecting the null hypothesis 
implies that we have different probability distributions, both functions of the selected 
time s.

Practically, we reject H0 if Z0 > zα , where Z0 =
√
n · D̂(Q,P)/σ̂ , and zα is the 1− α 

quantile of the standard normal distribution. For a detailed discussion, see Song (2002); 
Koukoumis and Karagrigoriou (2021).

Tables  9, 10, 11, 12, 13, 14, 15, 16, 17 show the test results for the measures τ s , Ts
c , 

and Rs
t , respectively. Based on the results of the statistical tests, the null hypothesis is 

nearly always rejected for all securities and risk measures. The significance of this rejec-
tion intensifies as the selected s value increases. However, the assumption of distribu-
tive equality is occasionally accepted for relatively modest s values, such as s = 3 and 
s = 5 . Consequently, the chosen time s, representing the point at which an investor takes 
action, modifies our financial indicators. This causes them to diverge from one another, 
exposing the investor to varying risks.

Tables 18, 19, 20 show the main descriptive statistics and the number of censored 
units for the risk measure τ s for real data on Tesla, Netflix, and Apple, respectively. 

(15)
{

H0 : D(P,Q) = 0,
H1 : D(P,Q) > 0.

(16)D(P�Q) =
∫ +∞

−∞
p(x)log2

(

p(x)

q(x)

)

dx,

Table 9 Song test results for the risk measure τ s computed on Tesla real data, considering M = 30% , 
M = 40% , M = 80% . Z0 is the statistic test value under the null hypothesis

τ s ‑ TESLA

M = 30% α = 0.10  α = 0.05  α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 2.9737

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 6.3366

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 7.1834

 M = 40% α = 0.10 α = 0.05 α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 2.4755

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 5.5628

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 7.1885

 M = 80% α = 0.10  α = 0.05  α = 0.01  Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 4.8902

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 5.8083

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 6.3683
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The mean and standard deviation estimates are obtained using the Kaplan–Meier 
estimator (Kaplan and Meier 1958) in order to treat the censored units. Recall that the 
risk measures τ s , Ts

c  , and Rs
t are right-censored, owing to the choice of a fixed observa-

tion time, namely, the trading day consisting of 391 min. For an extensive description 
of the Type-1 right censorship issue and the drawdown-based measures used in this 
study, see D’Amico et al. (2020).

In terms of the mean value, for each s, all stocks display a comparable trend, with 
only a few deviations, implying that more severe events occur at a slower pace, and 
hence, it requires more time for an asset to become highly illiquid. For instance, in 
the case of Tesla, when s = 50 , a drawdown variation of 30% is typically reached just 

Table 10 Song test results for the risk measure τ s computed on Netflix real data, considering 
M = 30% , M = 40% , M = 80% . Z0 is the statistic test value under the null hypothesis

τ s ‑ NETFLIX

M = 30% α = 0.10 α = 0.05 α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 2.7477

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 4.2539

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 6.9665

 M = 40% α = 0.10  α = 0.05  α = 0.01  Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 2.4994

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 4.0489

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 4.0882

 M = 80% α = 0.10  α = 0.05 α = 0.01  Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 5.1460

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 5.2002

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 5.1509

Table 11 Song test results for the risk measure τ s computed on Apple real data, considering 
M = 30% , M = 40% , M = 80% . Z0 is the statistic test value under the null hypothesis

τ s ‑ APPLE

M = 30% α = 0.10 α = 0.05 α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 2.8595

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 4.2746

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 4.4523

 M = 40% α = 0.10 α = 0.05 α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Reject H0 Accept H0 2.1057

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 4.1383

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 5.2446

 M = 80% α = 0.10 α = 0.05 α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 5.7759

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 6.3895

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 6.9665
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before the second minute. However, to witness a significant shift, such as 80%, we 
need to wait longer, approximately 14 min, on average.

For all three assets, we simulate daily volumes using the WISMC model, and then 
compute the analyzed risk indicators for these synthetic series.

Given the real and simulated measures, we can estimate their best parametric dis-
tribution among the lognormal, Weibull, exponential, and gamma laws by using the 
AIC and BIC, according to D’Amico et al. (2020). For the measure Ts

c  , we choose the 
model with the smallest AIC and BIC values, fixing s and varying M. We repeat the 
same steps for the measure Rs

t , setting s and M, while varying M′ . All estimation pro-
cedures involving parametric models are performed in Matlab software, considering 
the right censoring issue.

Table 12 Song test results for the risk measure T sc computed on Tesla real data, considering 
M = 30% , M = 40% , M = 80% . Z0 is the statistic test value under the null hypothesis

Ts
c ‑ TESLA

M = 30% α = 0.10 α = 0.05 α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 2.5728

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 4.4457

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 5.1748

 M = 40% α = 0.10  α = 0.05 α = 0.01  Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 4.3123

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 4.4484

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 5.4716

 M = 80% α = 0.10  α = 0.05 α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 3.4264

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 5.5782

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 6.0178

Table 13 Song test results for the risk measure T sc computed on Netflix real data, considering 
M = 30% , M = 40% , M = 80% . Z0 is the statistic test value under the null hypothesis

Ts
c ‑ NETFLIX

M = 30% α = 0.10 α = 0.05 α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Accept H0 Accept H0 1.4045

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 2.3998

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 2.6583

 M = 40% α = 0.10 α = 0.05 α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Accept H0 Accept H0 1.5705

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 2.6412

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 3.1388

 M = 80% α = 0.10  α = 0.05 α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 2.8986

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 4.8826

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 5.0606
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Tables 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 show the parametric model selec-
tions for the measures Ts

c  and Rs
t , respectively. The smallest AIC and BIC values are 

shown in bold. For both real and simulated data, the lognormal law is invariably the 
best statistical parametric model. This result underlines the fact that the WISMC 
model exhibits steady outcomes, consistent with real data, and in line with the find-
ings of D’Amico et al. (2020) in terms of financial returns.

Accordingly, Tables 33, 34, 35, 36, 37, 38 show the parameter point estimates of the 
best-selected models for the time to crash Ts

c  and the recovery time Rs
t , respectively.

We can obtain the best parametric distributions of Ssc and Ssr from the best Ts
c 

and Rs
t parametric distributions, respectively, because Ssc and Ssr are their nonlinear 

Table 14 Song test results for the risk measure T sc computed on Apple real data, considering 
M = 30% , M = 40% , M = 80% . Z0 is the statistic test value under the null hypothesis

Ts
c ‑ APPLE

M = 30% α = 0.10  α = 0.05 α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Reject H0 Accept H0 1.8749

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 3.5555

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 3.0716

 M = 40% α = 0.10  α = 0.05 α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Accept H0 Accept H0 1.3535

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 3.1472

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 3.8527

 M = 80% α = 0.10  α = 0.05  α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 4.4914

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 5.9966

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 6.6413

Table 15 Song test results for the risk measure Rst computed on Tesla real data, fixing M = 80% and 
considering M′ = 30% , M′ = 40% , M′ = 50% . Z0 is the statistic test value under the null hypothesis

Rst ‑ TESLA

M = 80%−M′ = 30% α = 0.10 α = 0.05 α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 3.3237

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 3.5664

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 3.7879

 M = 80%−M′ = 40% α = 0.10 α = 0.05 α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 2.6889

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 3.0386

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 3.1136

 M = 80%−M′ = 50% α = 0.10 α = 0.05  α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 2.7205

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 5.0314

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 4.9808
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transformations. All mathematical steps used to derive the two speeds’ best paramet-
ric distributions from the best Ts

c  and Rs
t are reported in D’Amico et al. (2020).

In Tables 39, 40, 41, we present both the main descriptive statistics and the number of 
censored units for the time to crash Ts

c for Tesla, Netflix, and Apple stocks. The compu-
tation is carried out on real data, using the best statistical parametric model as a func-
tion of the threshold M. For every s, we observe that the average values and the standard 
deviation values increase with M. For Tesla and Apple, there are no censored units, but 
Netflix shows slight censorship for every s. For context, considering Tesla at s = 50 , a 
30% change in its drawdown, occurs in less than two minutes, on average, while an 80% 
variation is reached in about three minutes, on average. In other words, it takes Tesla 

Table 16 Song test results for the risk measure Rst computed on Netflix real data, fixing M = 80% 
and considering M′ = 30% , M′ = 40% , M′ = 50% . Z0 is the statistic test value under the null 
hypothesis

Rst ‑ NETFLIX

M = 80%−M′ = 30% α = 0.10 α = 0.05 α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 4.0946

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 4.1780

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 4.5418

 M = 80%−M′ = 40% α = 0.10 α = 0.05 α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 3.9262

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 2.9611

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 4.2846

 M = 80%−M′ = 50% α = 0.10 α = 0.05 α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 3.1574

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 3.2756

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 3.9193

Table 17 Song test results for the risk measure Rst computed on Apple real data, fixing M = 80% 
and considering M′ = 30% , M′ = 40% , M′ = 50% . Z0 is the statistic test value under the null 
hypothesis

Rst ‑ APPLE

M = 80%−M′ = 30% α = 0.10 α = 0.05  α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 3.5914

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 3.6174

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 3.9189

 M = 80%−M′ = 40% α = 0.10 α = 0.05 α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 3.5217

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 3.6957

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 3.4733

 M = 80%−M′ = 50% α = 0.10 α = 0.05 α = 0.01 Z0

s = 3 vs s = 5 Reject H0 Reject H0 Reject H0 3.2731

s = 3 vs s = 50 Reject H0 Reject H0 Reject H0 3.3765

s = 3 vs s = 100 Reject H0 Reject H0 Reject H0 3.1379
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much longer to achieve a more illiquid position, that is, an 80%-drawdown variation, 
than to achieve a more liquid one, that is, a 30%-drawdown variation.

Given that we know the cumulative distribution function and the probability distribu-
tion function for the time to crash in the most effective statistical parametric models, 
we can convert these results to the speed of crash, which is a nonlinear transformation 
of the original data. The mathematical calculations needed to derive the cumulative dis-
tribution function and probability distribution function for the speed of crash from the 
time to crash data are reported in D’Amico et al. (2020). Tables 42, 43, 44 show the main 
descriptive statistics and the censoring rate for Ssc . Note that when M rises, the average 
speed drops. This means that all stocks approach higher thresholds more slowly than 
they do lower ones, gradually transitioning from a liquid to an illiquid state. Using Tesla 
as an example, when s = 50 , a 30% change in its drawdown is reached with an average 
velocity of 0.1232 min−1 , while a bigger variation, such as 80%, is attained more slowly, 
with an average speed of 0.2883 min−1.

We display the main descriptive statistics and the censoring rate for the measure Rs
t 

in Tables 45, 46, 47. We observe that fixing M′ , for each s, if M increases, then the mean 
value, the standard deviation value, and the censoring rate decrease. In particular, the 
behavior of the average values of Rs

t emphasizes that after experiencing an 80%-liquid-
ity drop (i.e., M = 80% ), all the considered assets need fewer minutes, on average, to 
recover a more liquid position (i.e., high M′ values, and thus small M −M′ ) than they 
for an illiquid position (i.e., small M′ values, and thus high M −M′).

Table 18 Descriptive statistics of τ s (first quartile, second quartile (median), third quartile, mean, 
standard deviation, asymmetry index) and related censored unit as a function of the threshold M 

All results refer to Tesla real data

Descriptive statistics of τ s‑TESLA

s = 0(%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 5 7 11 6.3770 7.7314 -0.2417 0

M = 40 5 7 11 6.4524 7.7553 -0.2118 0

M = 80 5 7 12 5.0397 8.6643 -0.6788 0

 s = 5 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 4 8 12 6.9167 8.4828 -0.3831 0

M = 40 4 10  16 8.8095 11.4713 -0.3113 0

M = 80 18 30 54 34.6032 30.5603 0.4519 0

 s = 50 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 3 4 5 1.8214 3.3564 -1.9472 0

M = 40 3 5 7 2.9385 4.5669 -1.3581 0

M = 80 6 11 23 14.4643 20.6719 0.5028 0

 s = 100 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 3 3.5 5 1.3730 2.7824 -2.2933 0

M = 40 3 4 5 1.8214 3.2823 -1.9912 0

M = 80 5 8.5  17 9.6667 14.4247 0.2426 0
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Once the speed of recovery Ssr is a nonlinear transformation of the recovery time Rs
t , 

we derive its cumulative distribution function and probability distribution function 
from those of Rs

t , following (D’Amico et al. 2020). Tables 48, 49, 50 report the descrip-
tive statistics and the censoring rate for the measure Ssr , which denotes the velocity at 
which a stock goes from an illiquid state to a more liquid state. Note that for Netflix, 
when fixing s and M′ and increasing M, the mean value, the standard deviation, and 
the censorship rate decrease. Apple shows the same behavior, except for its mean val-
ues when s = 5 . Finally, Tesla always follows this pattern for the standard deviation 
values, but not for its average values when s = 5 and s = 50.

To measure the distance between real and simulated measures, we compute the 
Kullback–Leibler divergence (Kullback and Leibler 1951) for Ts

c  and Rs
t.

Table 51 shows the Kullback–Leibler divergences for the time to crash Ts
c  while, in 

Table 52, we present finding values of the recovery time Rs
t . The shortest distances for 

each s are shown in bold.
Because the Kullback–Leibler divergence is invariant with regard to parame-

ter transformations, its computation is not needed for Ssc and Ssr (see D’Amico et al. 
(2020)).

For Ts
c  , note that between the smallest distances highlighted in bold, the greatest 

distance always occurs for s = 0 for each security. Conversely, for Rs
t , the greatest dis-

tance between the smaller ones varies for s = 5 for both Tesla and Apple, but for Net-
flix, this occurs when s = 0.

Table 19 Descriptive statistics of τ s (First Quartile, Second Quartile (Median), Third Quartile, Mean, 
Standard Deviation, Asymmetry Index) and related censored units as a function of the threshold M. 
All results refer to Netflix real data

Descriptive statistics of τ s‑NETFLIX

s = 0 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 4 5 6 4.7302 20.3237 -0.0398 0

M = 40 4 5  6 4.9722 23.4389 -0.0036 0

M = 80 4 5 6 4.2302 13.5855 -0.1700 0.8

 s = 5 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 3 4 6 6.1230 21.4727 0.2966 0

M = 40 4 5 8 7.7857 25.6596 0.3257 0

M = 80 8 13 30 20.3571 31.6203 0.6980 0.8

 s = 50 Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 3 4 5 3.4325 11.4496 -0.1102 0

M = 40 3 4 5 4.7421 20.2230 0.1102 0

M = 80 5 8 15 12.5754 26.0906 0.5261 1.6

 s = 100 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 3 3.5 5 2.6865 11.5271 -0.2117 0

M = 40 3 4 5 3.3571 14.9780 -0.1288 0

M = 80 5 8 14 9.4048 16.9184 0.2491 1.6
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Table 20 Descriptive statistics of τ s (First Quartile, Second Quartile (Median), Third Quartile, Mean, 
Standard Deviation, Asymmetry Index) and related censored units as a function of the threshold M. 
All results refer to Apple real data

Descriptive statistics of τ s‑APPLE

s = 0 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 2 4 5 2.7500 7.0612 -0.5311 0

M = 40 2 4 5 2.8413 7.2456 -0.4798 0

M = 80 2 4 5 3.4444 8.4238 -0.9101 0

 s = 5 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 4 5 8 4.4048 7.4041 -0.2412 0

M = 40 4 7 10 5.8849 8.1405 -0.4109 0

M = 80 14 27.5 56 35.9087 38.4186 0.6566 0

 s = 50 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 3 4 5 1.9966 3.4151 -1.7604 0

M = 40 3 4 6 3.2262 4.8787 -1.0907 0

M = 80 8 14 26 21.4246 32.8473 0.6781 1.6

s = 100 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 3 4 5 1.9286 3.2494 -1.9125 0

M = 40 4 5 6 2.7659 4.0753 -1.6446 0

M = 80 8 12.5 25 15.9048 22.4812 0.4543 0

Table 21 Selection of the best parametric model as a function of s and M for the measure T sc 
computed on Tesla real data

The best parametric model is chosen by means of the AIC and BIC criteria. The smallest AIC and BIC values are in bold

Model selection for Ts
c‑TESLA

Lognormal Exponential Weibull Gamma

M | s = 0 AIC BIC AIC BIC AIC BIC AIC BIC

30% 110.75732  116.4299  299.6115 302.4478  239.4154 245.0880  175.9924  181.6650

40% 140.6871  146.3595  309.4309 312.2672 254.3569  260.0294  200.2211  205.8926

80% 168.6363  174.3090  320.4233  323.2596 274.7377 280.4103  227.1266  232.7991

 M | s = 5 AIC BIC AIC BIC AIC BIC AIC BIC

30% 537.2757  542.9483  571.9717  574.8080 567.9691 573.6417  561.2803  566.9529

40% 667.2019  672.8744  695.6664  698.5027 697.5667 703.2393  697.0157  702.6882

80% 739.0992  744.7717  753.6258  756.4621 755.4354 761.1079  754.4520  760.1245

 M | s = 50 AIC BIC AIC BIC AIC BIC AIC BIC

30% 296.8324  302.5049 395.5940 398.4302  354.4324  360.1050  327.5050  333.1736

40% 398.1545 403.8270  466.6605 469.4967 457.7519  463.4244 439.7508 445.4234

80% 490.9344  496.6069  544.4752 547.3115  544.8708  550.5434  536.4257  542.0982

 M | s = 100 AIC BIC AIC BIC AIC BIC AIC BIC

30% 156.3761  162.0486  321.9552 324.7915  229.0281  234.7007  187.0436 192.7161

40% 246.7348  252.4074  366.6243 369.4606 292.5898  298.2623  267.9816  273.6541

80% 348.9166  354.5892  428.6731 431.5094  397.4486 403.1212 376.5227  382.2003
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Table 22 Selection of the best parametric model as a function of s and M for the measure T sc 
computed on Netflix real data

The best parametric model is chosen by means of the AIC and BIC criteria. The smallest AIC and BIC values are in bold

Model selection for Ts
c‑NETFLIX

Lognormal Exponential Weibull Gamma

M | s = 0 AIC BIC AIC BIC AIC BIC AIC BIC

30% 214.8728 220.5454 397.8642 400.7005 391.7151 397.3876 397.3270 402.9996

40% 239.5499  245.2224 458.7985 461.6347 423.4447 429.1172 458.1477 463.8203

80% 290.7235  296.3961 807.2353 810.0716 499.1320 504.8046 634.9171 640.5896

 M | s = 5 AIC BIC AIC BIC AIC BIC AIC BIC

30% 465.3088  470.9813 560.9757 563.8120 551.4480 557.1206 562.6032 568.2758

40% 516.3383  522.0108 606.3285 609.1647 595.2202 600.9277 607.8449 613.5174

80% 625.0440  630.7166 886.3748 889.2111 723.3731 729.0456 806.3157 811.9883

 M | s = 50 AIC BIC AIC BIC AIC BIC AIC BIC

30% 347.7825  353.4550 482.4938 485.3300 471.1201 476.7927 484.4893 490.1619

40% 411.3672 417.0398 549.4779 552.3142 523.5930 529.2656 548.3202 553.9927

80% 472.9047  478.5772 843.5308 846.3671 612.1396 617.8121 720.6387 726.3113

 M | s = 100 AIC BIC AIC BIC AIC BIC AIC BIC

30% 282.1726  287.8452 424.6410 427.4773 424.5338 430.2064 418.8807 424.5532

40% 347.8117  353.4842 500.4179 503.2541 484.4048 490.0773 502.4159  508.0884

80% 424.3772  430.0498 825.0327 827.8689 585.6312 591.3037 702.1969 707.8695

Table 23 Selection of the best parametric model as a function of s and M for the measure T sc 
computed on Apple real data

 The best parametric model is chosen by means of the AIC and BIC criteria. The smallest AIC and BIC values are in bold

Model selection for Ts
c‑APPLE

Lognormal Exponential Weibull Gamma

M | s = 0 AIC BIC AIC BIC AIC BIC AIC BIC

30% ‑112.2244 ‑106.5518 265.7230 268.5593 17.0933 22.7658 -84.5238 -78.8513

40% 8.0156  13.6881 278.7444 281.5807 190.5006 196.1732 82.5840 88.2566

80% 81.9986  87.6712 294.5545 297.3907 237.1486 242.8212 159.5677 165.2403

 M | s = 5 AIC BIC AIC BIC AIC BIC AIC BIC

30% 406.3261  411.9987 468.3747 471.2110 453.495 459.1683 438.1868 443.8593

40% 504.0726  509.7451 540.7451 543.4933 533.7475 539.4201 526.7935 532.4661

80% 583.2903  588.9629 604.8417 607.6780 602.66411 608.3367 599.3333 605.0058

 M | s = 50 AIC BIC AIC BIC AIC BIC AIC BIC

30% 238.4327  244.1052 362.7572 365.5935 294.2205 299.8931 263.9826 269.6551

40% 374.5056 380.1782 446.9909 449.8272 433.2030 438.8755 414.3182 419.9907

80% 498.2699  503.9424 543.2089 546.0452 539.6829 545.3555 530.8939 536.5664

 M | s = 100 AIC BIC AIC BIC AIC BIC AIC BIC

30% 272.0607  277.7332 377.8818 380.7180 318.0543 323.7269 295.4658 301.1384

40% 353.3743  359.0469 428.6731 431.5094 393.5341 399.2040 376.7863  382.4589

80% 441.8475  447.5200 494.3269 497.1632 483.6473 489.3199 471.9262 477.5988
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Table 24 Selection of the best parametric model as a function of s and M for the measure T sc 
computed on Tesla simulated data

 The best parametric model is chosen by means of the AIC and BIC criteria. The smallest AIC and BIC values are in bold

Model selection for Ts
c‑simulated data for Tesla

Lognormal Exponential Weibull Gamma

M | s = 0 AIC BIC AIC BIC AIC BIC AIC BIC

30% 416.0895 421.7621 474.2846 477.120 465.6829 471.3555 452.4793 458.1518

40% 484.7729  490.4455 534.1618 536.9981 535.0857 540.7582 528.5053 534.1779

80% 582.0063  587.6789 625.3534 628.1926 626.0465 631.7191 627.2512 632.9237

 M | s = 5 AIC BIC AIC BIC AIC BIC AIC BIC

30% 439.012  444.7438 494.3269 497.1632 488.5368 494.1993 476.9298 482.6024

40% 511.9689  517.6415 549.4779 552.3142 548.0072 553.6797 542.2484 547.9209

80% 592.8549  598.5274 627.6369 630.4732 629.6316 635.3041 627.7950 633.4676

 M | s = 50 AIC BIC AIC BIC AIC BIC AIC BIC

30% 378.3470  384.0196 448.8439 451.6801 440.1081 445.7806 422.7788 428.4514

40% 427.1988 432.8713 479.2421 482.0784 467.4146 473.0871 456.4506 462.1232

80%  523.5695 529.2421 566.2442 569.0804 567.8633 573.5359 563.6686 569.3412

 M | s = 100 AIC BIC AIC BIC AIC BIC AIC BIC

30% 295.7859  301.4585 393.3030 396.1393 332.3795 338.0521 314.4786 320.1512

40% 339.8604  345.5330 417.4258 420.2621 385.4940 391.1666 367.3338 373.0064

80% 428.0316  433.7042 482.4938 485.3300 470.4306 476.1032 457.6903 463.3629

Table 25 Selection of the best parametric model as a function of s and M for the measure T sc 
computed on Netflix simulated data

 The best parametric model is chosen by means of the AIC and BIC criteria. The smallest AIC and BIC values are in bold

Model selection for Ts
c‑simulated data for Netflix

Lognormal Exponential Weibull Gamma

M | s = 0 AIC BIC AIC BIC AIC BIC AIC BIC

30% 367.2830 372.9556 441.3489 444.1852 436.8949 442.5675 421.2143 426.8869

40% 401.8642  407.5368 469.2275 472.0638 465.7872 471.4598 452.2342 457.9068

80% 509.6764 515.3490 550.7132 553.5495 550.9566 556.6292 545.5268 551.1994

 M | s = 5 AIC BIC AIC BIC AIC BIC AIC BIC

30% 350.0144  355.6870 429.6711 432.5074 421.6078 427.2804 402.4658 408.1383

40% 395.3602  401.0327 461.4465 464.2828 455.0238 460.6963 440.4615 446.1340

80% 496.7831  502.4557 538.7259 541.5622 538.8420 544.5146 532.8590 538.5315

 M | s = 50 AIC BIC AIC BIC AIC BIC AIC BIC

30% 280.9422  286.6148 381.5252 384.3615 359.7485 365.4211 331.6124 337.2850

40% 314.8692 320.5418 401.2318 404.0681 382.8714 388.5440 360.3018 365.9744

80%  363.5170 369.1895 434.6028 437.4391 426.7378 432.4104 410.6921 416.3647

 M | s = 100 AIC BIC AIC BIC AIC BIC AIC BIC

30% 254.6788  260.3514 367.9003 370.7365 345.4716 351.1441 311.1198 316.7924

40% 301.1360  306.8085 393.3030 396.1393 378.2003 383.8729 353.7495 359.4221

80% 342.3438  348.0164 419.5084 422.3447 404.1885 409.8611 384.4979 390.1704
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Table 26 Selection of the best parametric model as a function of s and M for the measure T sc 
computed on Apple simulated data

The best parametric model is chosen by means of the AIC and BIC criteria. The smallest AIC and BIC values are in bold

Model selection for Ts
c‑simulated data for Apple

Lognormal Exponential Weibull Gamma

M | s = 0 AIC BIC AIC BIC AIC BIC AIC BIC

30% 386.5363 392.2088 450.6833 453.5196 434.6305 440.3031 419.5173 425.1898

40% 415.2923  420.9649 473.4487 476.2850 449.3003 454.9729 436.1147 441.7873

80% 526.7210  532.3935 564.5002 567.3365 562.0952 567.7678 555.0535 560.7261

 M | s = 5 AIC BIC AIC BIC AIC BIC AIC BIC

30% 323.6672  329.3398 411.0725 413.9088 376.8005 382.4781 354.3558 360.0284

40% 498.5114  504.1840 551.9424 554.7787 553.6295 559.3021 547.8367 553.5093

80% 571.3338  577.0064 604.8417 607.6780 603.8852 609.5577 598.2251 603.8976

 M | s = 50 AIC BIC AIC BIC AIC BIC AIC BIC

30% 296.4357  2302.1083 392.2497 394.9860 340.7143 346.3868 320.0435 325.7161

40% 434.3274 440.0000 488.0851 490.9214 482.0709 487.7435 470.4413 476.1139

80%  496.8472 502.5198 543.8429 546.6791 545.2509 550.9234 540.0761 545.7487

 M | s = 100 AIC BIC AIC BIC AIC BIC AIC BIC

30% 321.8317  327.5043 404.5549 407.3912 371.8132 377.4858 352.2819 357.9545

40% 395.5809  401.2534 458.7985 461.6347 445.0042 450.6768 429.8998 435.5724

80% 450.1114  455.7839 501.9179 504.7541 502.3582 508.0308 495.7474 501.4200

Table 27 Selection of the best parametric model as a function of s, M and M′ for the measure Rst 
computed on Tesla real data

The best parametric model is chosen by means of the AIC and BIC criteria. The smallest AIC and BIC values are in bold

Model selection for Rst‑TESLA

M=80% Lognormal Exponential Weibull Gamma

M′ | s = 0AIC BIC AIC BIC AIC BIC AIC BIC

30% 968.4571 974.1297 1.3255e+03 1.3283e+03 1.0257e+03 1.0314e+03 1.2265e+03 1.2321e+03

40% 961.4206  967.0932 1.3066e+03 1.3094e+03 1.0210e+03 1.0266e+03 1.1957e+03 1.2013e+03

50% 953.4446  959.1172 1.2808e+03 1.2837e+03 1.0141e+03 1.0198e+03 1.1629e+03 1.1686e+03

 
M′ | s = 5

AIC BIC AIC BIC AIC BIC AIC BIC

30% 908.0326  913.7051 1.1049e+03 1.1077e+03 966.0127 971.6852 1.0193e+03 1.0250e+03

40% 755.3122  760.9848 914.8652 917.7014 821.3134 826.9860 860.7029 866.3754

50% 556.7761  562.4487 597.7853 600.6216 599.6405 605.3131 595.7123 601.3849

 
M′ | s = 50

AIC BIC AIC BIC AIC BIC AIC BIC

30%1.0151e+03  1.0207e+03 1.1641e+03 1.1670e+03 1.0616e+03 1.0673e+03 1.1029e+03 1.1086e+03

40%853.4507  859.1232 937.7585 940.5948 901.5702 907.2427 922.1287 927.8013

50%755.0705  760.7431 850.5152 853.3514 810.9556 816.6281 834.4726 840.1451

 
M′ | s = 100

AIC BIC AIC BIC AIC BIC AIC BIC

30%1.0123e+03  1.0180e+03 1.1566e+03 1.1595e+03 1.0532e+03 1.0589e+03 1.0922e+03 1.0978e+03

40%884.1675  889.8401 1.0507e+03 1.0536e+03 938.8802 944.5527 988.0512 993.7237

50%829.3097  834.9822 1.0277e+03 1.0265e+03 889.5327 895.2053 945.6704 951.3430
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Table 28 Selection of the best parametric model as a function of s, M and M′ for the measure Rst 
computed on Netflix real data

The best parametric model is chosen by means of the AIC and BIC criteria. The smallest AIC and BIC values are in bold

Model selection for Rst‑NETFLIX

M=80% Lognormal Exponential Weibull Gamma

M′ | s = 0AIC BIC AIC BIC AIC BIC AIC BIC

30% 1.0361e+03 1.0418e+03 1.3764e+03 1.3792e+03 1.0778e+03 1.0834e+03 1.2958e+03 1.3015e+03

40% 1.0380e+03  1.0437e+03 1.3744e+03 1.3772e+03 1.0802e+03 1.0959e+03 1.2843e+03 1.2900e+03

50% 1.0323e+03  1.0380e+03 1.3702e+03 1.3730e+03 1.0753e+03 1.0809e+03 1.2800e+03 1.2856e+03

 
M′ | s = 5

AIC BIC AIC BIC AIC BIC AIC BIC

30%1.0783e+03  1.0839e+03 1.2926e+03 1.2955e+03 1.1236e+03 1.1293e+03 1.1915e+03 1.1972e+03

40%989.0394  994.7120 1.2154e+03 1.2183e+03 1.0407e+03 1.0463e+03 1.1026e+03 1.1083e+03

50%868.0608  873.7333 1.1150e+03 1.1178e+03 933.0974 938.7699 993.1070 998.7796

 
M′ | s = 50

AIC BIC AIC BIC AIC BIC AIC BIC

30%1.0509e+03  1.0566e+03 1.2530e+03 1.2558e+03 1.1014e+03 1.1071e+03 1.0576+03 1.0633e+03

40%967.5316  973.2041 1.2033e+03 1.2061e+03 1.0295e+03 1.0351e+03 1.1093e+03 1.1150e+03

50%905.9353  911.6079 1.1770e+03 1.1799e+03 971.1089 976.7815 1.1713e+03 1.1770e+03

 
M′ | s = 100

AIC BIC AIC BIC AIC BIC AIC BIC

30%960.0611  965.7337 1.2244e+03 1.2272e+03 1.0199e+03 1.0255e+03 1.1135e+03 1.1191e+03

40%921.6886  927.3612 1.1855e+03 1.1883e+03 982.9280 988.6005 1.0662e+03 1.0719e+03

50%849.4650  855.1376 1.1589e+03 1.1618e+03 917.0612 922.7337 1.0087e+03 1.0143e+03

Table 29 Selection of the best parametric model as a function of s, M and M′ for the measure Rst 
computed on Apple real data

The best parametric model is chosen by means of the AIC and BIC criteria. The smallest AIC and BIC values are in bold

Model selection for Rst‑APPLE

M=80% Lognormal Exponential Weibull Gamma

M′ | s = 0AIC BIC AIC BIC AIC BIC AIC BIC

30% 1.0024e+03 1.0081e+03 1.3678e+03 1.3706e+03 1.0518e+03 1.0574e+03 1.2893e+03 1.2949e+03

40% 995.3318  1.0010e+03 1.3678e+03 1.3706e+03 1.0466e+03 1.0523e+03 1.2712e+03 1.2768e+03

50% 977.2639  982.9365 1.3621e+03 1.3649e+03 1.0309e+03 1.0366e+03 1.2577e+03 1.2634e+03

 
M′ | s = 5

AIC BIC AIC BIC AIC BIC AIC BIC

30%1.0632e+03  1.0688e+03 1.2149e+03 1.2177e+03 1.1092e+03 1.1149e+03 1.1487e+03 1.1544e+03

40%907.9526  913.6251 1.0962e+03 1.0991e+03 972.3222 977.9948 1.1255e+03 1.0312e+03

50%736.9171  742.5897 964.0400 966.8763 825.9198 831.5924 896.9408 902.6134

 
M′ | s = 50

AIC BIC AIC BIC AIC BIC AIC BIC

30%966.2662  971.9387 1.0456e+03 1.0485e+03 1.0023e+03 1.0079e+03 1.0194+03 1.0251e+03

40%888.8694  894.5419 974.2439 977.0802 931.9785 937.6511 951.6929 957.3654

50%763.3344  769.0069 818.7865 821.6228 804.0412 809.7137 814.9187 820.5912

 
M′ | s = 100

AIC BIC AIC BIC AIC BIC AIC BIC

30%1.0526e+03  1.0583e+03 1.1999e+03 1.2028e+03 1.0952e+03 1.1008e+03 1.1468e+03 1.1525e+03

40%946.6623  952.3348 1.1337e+03 1.1365e+03 1.0009e+03 1.0066e+03 1.0645e+03 1.0702e+03

50%864.3296  870.0021 1.0934e+03 1.0963e+03 928.3033 933.9758 1.0019e+03 1.0076e+03



Page 25 of 40D’Amico et al. Financial Innovation           (2024) 10:83  

To apply our findings, we conduct a simple practical example, using Tesla stock. First, 
we set s = 5 , followed by s = 50 , and then assess our risk measures using their paramet-
ric distributions. Concerning the time to crash Ts

c , in the first scenario, when s = 5 , there 
is approximately an 81

Now, we extend the example to the recovery time Rs
t and speed of recovery Ssr , always 

using s = 5 and s = 50 , and setting M = 80% and M′ = 30% . For Rs
t , at s = 5 , the prob-

ability of having a drawdown change of M intensity and, immediately after, a new varia-
tion equal to M′ within the first five minutes of the trading day is 43%. Furthermore, the 
probability that these drawdown variations occur with a speed Ssr less than 0.5 min−1 is 
equal to 89.6%. For the second scenario, when s = 50 , the likelihood of first experienc-
ing a M drawdown variation and then a M′ change during the first five minutes is equal 
to 34%. In addition, these changes will happen with a speed less than 0.5 min−1 , with a 
probability equal to 93.4%.

Figure  3 shows the results of the example just stated for s = 5 and s = 50 . The first 
part of the graph shows the cumulative probability distributions for the first 20 min of 
the trading day for the time to crash and the speed of crash, considering the M = 30% 
threshold. Considering this, the cumulative probability distributions of the time to crash 
and the speed of crash provide information on the likelihood of crossing the 30% thresh-
old, and how rapidly this occurs, minute by minute. Specifically, the second portion of 
the graph shows the cumulative probability distributions for both the recovery time and 
the speed of recovery during the initial 20 min of the trading day, with M = 80% and 

Table 30 Selection of the best parametric model as a function of s, M and M′ for the measure Rst 
computed on Tesla simulated data

The best parametric model is chosen by means of the AIC and BIC criteria. The smallest AIC and BIC values are in bold

Model selection for Rst‑simulated data for TESLA

M=80% Lognormal Exponential Weibull Gamma

M′ | s = 0AIC BIC AIC BIC AIC BIC AIC BIC

30% 1.0326e+03 1.0383e+03 1.3185e+03 1.3214e+03 1.0730e+03 1.0787e+03 1.5154e+03 1.5210e+03

40% 1.0634e+03  1.0690e+03 1.3352e+03 1.3380e+03 1.1154e+03 1.1211e+03 1.2925e+03 1.2982e+03

50% 997.1760  1.0028e+03 1.2604e+03 1.2632e+03 1.0555e+03 1.0611e+03 1.1729e+03 1.1786e+03

 
M′ | s = 5

AIC BIC AIC BIC AIC BIC AIC BIC

30%1.0840e+03  1.0897e+03 1.3582e+03 1.3611e+03 1.1325e+03 1.1382e+03 1.3766e+03 1.3823e+03

40%1.0345e+03  1.0402e+03 1.2439e+03 1.2467e+03 1.0905e+03 1.0962e+03 1.0703e+03 1.1766e+03

50%939.9660  945.6386 1.1266e+03 1.1294e+03 999.8915 1.0056e+03 1.0646e+03 1.1823e+03

 
M′ | s = 50

AIC BIC AIC BIC AIC BIC AIC BIC

30%1.0867e+03 1.0924+03 1.2871e+03 1.2899e+03 1.1375e+03 1.1057e+03 1.2239e+03 1.2296e+03

40%1.0041e+03  1.0098e+03 1.1697e+03 1.1725e+03  1.0500e+03 1.0557e+03  1.1065e+03 1.1121e+03

50%868.0009 873.6735 1.0243e+03 1.0271e+03 920.6579 926.3305 976.1139 926.4127

 
M′ | s = 100

AIC BIC AIC BIC AIC BIC AIC BIC

30%1.0137e+03  1.0194e+03 1.0684e+03 1.0713e+03 1.0387e+03 1.0443e+03 1.0493e+03 1.0550e+03

40%940.5239  946.1965 988.8454 991.6817 965.8764 971.5490 976.0319 981.7045

50%864.1064  869.7789 909.7296 912.5659 891.8050 897.4770 901.3648 907.0373
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M′ = 30% . Consequently, these cumulative probability distributions provide insights 
into the likelihood of surpassing the 30% threshold after surpassing the 80% threshold, as 
well as the rate at which this happens per minute.

Conclusion
In this study, we examine various risk indicators related to market crises for high-fre-
quency financial volumes of assets listed on the Nasdaq Stock Exchange, such as Tesla, 
Netflix, and Apple. We introduce a commencement time s to calculate the drawdown-
based risk indicators in daily intervals, thereby preventing our risk indicators from being 
affected by the initial large volume of transactions. We generate artificial time series of 
volumes using the WISMC model, a variant of the conventional semi-Markov chain 
model. Next, we compute all drawdown-based risk measures on both actual and simu-
lated data, and investigate them using parametric models. The estimation procedures for 
these models consider the right censorship. Lastly, we measure the distance between real 
and simulated risk measures using the Kullback–Leibler divergence. Overall, our find-
ings are financially significant, because they offer insight into an asset”s liquidity risk, 
and therefore, can be used for financial investments.

Table 31 Selection of the best parametric model as a function of s, M and M′ for the measure Rst 
computed on Netflix simulated data

The best parametric model is chosen by means of the AIC and BIC criteria. The smallest AIC and BIC values are in bold

Model selection for Rst‑simulated data for NETFLIX

M=80% Lognormal Exponential Weibull Gamma

M′ | s = 0AIC BIC AIC BIC AIC BIC AIC BIC

30% 1.1309e+03 1.1366e+03 1.3318e+03 1.3346e+03 1.1715e+03 1.1772e+03 1.2732e+03 1.2789e+03

40% 1.0610e+03  1.0667e+03 1.2630e+03 1.2959e+03 1.1055e+03 1.1112e+03 1.1870e+03 1.1926e+03

50% 978.2024  983.8749 1.1597e+03 1.1626e+03 1.0236e+03 1.0293e+03 1.0825e+03 1.0882e+03

 
M′ | s = 5

AIC BIC AIC BIC AIC BIC AIC BIC

30%1.0959e+03  1.1016e+03 1.3214e+03 1.3242e+03 1.1465e+03 1.1522e+03 1.2793e+03 1.2850e+03

40%1.0309e+03  1.0366e+03 1.2723e+03 1.2751e+03 1.0858e+03 1.0915e+03 1.1989e+03 1.2046e+03

50%1.0059e+03  1.0115e+03 1.2075e+03 1.2104e+03 1.0550e+03 1.0607e+03 1.1276e+03 1.1332e+03

 
M′ | s = 50

AIC BIC AIC BIC AIC BIC AIC BIC

30%1.0231e+03 1.0287+03 1.1597e+03 1.1625e+03 1.0626e+03 1.0683e+03 1.1151e+03 1.1208e+03

40%982.4874 988.1599 1.1393e+03 1.1421e+03 1.0278e+03 1.0334e+03 1.0854e+03 1.0911e+03

50%943.4720  949.1446 1.0674e+03 1.0703e+03 983.4023 989.0749 1.0241e+03 1.0298e+03

 
M′ | s = 100

AIC BIC AIC BIC AIC BIC AIC BIC

30% 902.1937  907.8862 1.0443e+03 1.0472e+03 948.8200 954.4925 993.3576 999.0302

40% 860.9473 866.6199 1.0128e+03 1.0157e+03 913.0693 918.7419 961.4471 967.1197

50% 817.5565  823.2290 895.3954 898.2317 855.7938 861.4664 873.7375 879.4100
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Table 32 Selection of the best parametric model as a function of s, M and M′ for the measure Rst 
computed on APPLE simulated data

The best parametric model is chosen by means of the AIC and BIC criteria. The smallest AIC and BIC values are in bold

Model selection for Rst‑simulated data for APPLE

M=80% Lognormal Exponential Weibull Gamma

M′ | s = 0AIC BIC AIC BIC AIC BIC AIC BIC

30% 1.1635e+03 1.692e+03 1.3839e+03 1.3868e+03 1.2043e+03 1.2099e+03 1.3705e+03 1.3762e+03

40% 1.0663e+03  1.0719e+03 1.2982e+03 1.3010e+03 1.1181e+03 1.1237e+03 1.2279e+03 1.2336e+03

50% 952.0155  957.6881 1.0814e+03 1.0842e+03 996.7772 1.0024e+03 1.0383e+03 1.0440e+03

 
M′ | s = 5

AIC BIC AIC BIC AIC BIC AIC BIC

30%1.1715e+03  1.0682e+03 1.3693e+03 1.3722e+03 1.2146e+03 1.2203e+03 1.3535e+03 1.3592e+03

40%1.0682e+03  1.0739e+03 1.2301e+03 1.2329e+03 1.1145e+03 1.1201e+03 993.4517 999.1242

50%957.2985  962.9711 1.0039e+03 1.0067e+03 982.4105 988.0830 993.4517 999.1242

 
M′ | s = 50

AIC BIC AIC BIC AIC BIC AIC BIC

30%1.0515e+03  1.0572e+03 1.1927+03 1.1956+03 1.1000+03 1.1057e+03 1.1523e+03 1.1580e+03

40%955.5430  961.2155 1.0827+03 1.0855+03 1.0091+03 1.0147+03 1.0509+03 1.0566+03

50%852.3765  858.0491 933.0831 935.9094 901.2634 906.9360 920.7401 926.4127

 
M′ | s = 100

AIC BIC AIC BIC AIC BIC AIC BIC

30%1.0343e+03  1.0400e+03 1.1503e+03 1.1531e+03 1.0686e+03 1.0743e+03 1.1031e+03 1.1087e+03

40%957.3771  963.0496 1.0217e+03 1.0245e+03 985.0520 990.7245 998.5607 1.0042e+03

50%868.0799  873.7524 933.0373 935.9094 900.6337 906.3062 914.7511 920.4237

Table 33 Parameters of the best parametric models for T sc computed on real and simulated data for 
Tesla

Summary of the best statistical model selection

 for Ts
c‑TESLA

s = 0 M Best model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 0.0877–0.3399 0.5806–0.6975

40% Lognormal 0.1129–0.3733 0.7110–0.8040

80% Lognormal 0.1384–0.4066 0.9193–0.9602

 s = 5 M Best model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 0.9041–0.8164 0.6380–0.7215

40% Lognormal 1.2313–0.9856 0.7868–0.8303

80% Lognormal 1.4796–1.0228 0.9973–0.9272

 s = 50 M Best model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 0.3989–0.5211 0.4982–0.6520

40% Lognormal 0.5723–0.6550 0.6047–0.7115

80% Lognormal 0.7741–0.7735 0.8020–0.8563

 s = 100 M Best model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 0.1857–0.3694 0.4075–0.5145

40% Lognormal 0.3282–0.4584 0.4483–0.5883

80% Lognormal 0.4978–0.5804 0.6265–0.6985
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Table 34 Parameters of the best parametric models for T sc computed on real and simulated data for 
Netflix

Summary of the best statistical model selection

 for Ts
c‑NETFLIX

s = 0 M Best model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 0.1004–0.5073 0.4419–0.6602

40% Lognormal 0.1113–0.5535 0.5362–0.6892

80% Lognormal 0.1222–0.6969 0.7718–0.8352

 s = 5 M Best Model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 0.7698–0.8593 0.4267–0.6259

40% Lognormal 1.2313–0.9856 0.5257–0.6786

80% Lognormal 1.0192–1.0803 0.7312–0.8264

 s = 50 M Best Model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 0.3247–0.6870 0.3054–0.5372

40% Lognormal 0.4590–0.7731 0.3600–0.5819

80% Lognormal 0.5667–0.9256 0.4326–0.6565

 s = 100 M Best Model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 0.2669–0.5030 0.5806–0.6975

40% Lognormal 0.3975–0.6388 0.3246–0.5710

80% Lognormal 0.4937–0.8195 0.4144–0.6146

Table 35 Parameters of the best parametric models for T sc computed on real and simulated data for 
Apple

Summary of the best statistical model selection

 for Ts
c‑APPLE

s = 0 M Best model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 0.0330–0.1482 0.5250–0.6557

40% Lognormal 0.0495–0.2349 0.6359–0.6579

80% Lognormal 0.0770–0.3069 0.8650–0.8141

 s = 5 M Best model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 0.5917–0.6636 0.4381–0.5573

40% Lognormal 0.8012–0.7931 0.7647–0.8047

80% Lognormal 0.9900–0.8993 1.0009–0.8483

 s = 50 M Best model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 0.3130–0.4504 0.3922–0.5238

40% Lognormal 0.5157–0.6311 0.6145–0.7248

80% Lognormal 0.8013–0.7750 0.7285–0.8288

 s = 100 M Best model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 0.3517-0.4951 0.4024-0.5734

40% Lognormal 0.4972–0.5911 0.5489–0.6637

80% Lognormal 0.6628–0.7115 0.5882–0.7923
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Table 36 Parameters of the best models for Rst computed on real and simulated data for Tesla

Summary of the best statistical model selection

 for Rst‑TESLA fixing M = 80%

s = 0 M′ Best model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 2.4518–2.1359 3.8690–2.6808

40% Lognormal 2.3364–2.0065 2.8326–1.9657

50% Lognormal 2.2232–1.8870 2.3551–1.7134

 s = 5 M′ Best model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 1.8449–1.4644 3.1969–2.1557

40% Lognormal 1.3389–1.2555 2.4572–1.5758

50% Lognormal 0.9199–0.8682 2.0759–1.3965

 s = 50 M′ Best model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 2.2509–1.4937 2.6348–1.7452

40% Lognormal 1.7833–1.1883 2.2369–1.5401

50% Lognormal 1.4324–1.1423 1.7545–1.3654

 s = 100 M′ Best model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 2.1978–1.5592 2.2634–1.3890

40% Lognormal 1.7927–1.4021 2.0196–1.3255

50% Lognormal 1.5762–1.3999 1.7640–1.2639

Table 37 Parameters of the best models for Rst computed on real and simulated data for Netflix

Summary of the best statistical model selection

 for Rst‑NETFLIX fixing M = 80%

s = 0 M′ Best model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 2.7483–2.5359 2.8195–1.8600

40% Lognormal 2.6975–2.4817 2.4759–1.7315

50% Lognormal 2.4494–1.7925 2.1006–1.5940

 s = 5 M′ Best model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 2.0871–1.6907 2.8411–1.7920

40% Lognormal 1.3389–1.2555 2.4902–1.7140

50% Lognormal 1.6473–1.5233 2.2511–1.6284

 s = 50 M′ Best model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 2.4181–1.6505 2.3354–1.5037

40% Lognormal 2.1419–1.5548 2.1854–1.4858

50% Lognormal 1.8792–1.5830 2.0071–1.4330

 s = 100 M′ Best model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 2.1027–1.6756 1.8558–1.4143

40% Lognormal 1.9135–1.6314 1.7284–1.3628

50% Lognormal 1.6221–1.6373 1.5494–1.3021
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Table 38 Parameters of the best models for Rst computed on real and simulated data for Apple

Summary of the best statistical model selection

 for Rst‑APPLE fixing M = 80%

s = 0 M′ Best model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 2.7049–2.4575 3.2072–2.0500

40% Lognormal 2.6150–2.4137 2.6112–1.7552

50% Lognormal 2.5477–2.3907 2.0644–1.3993

 s = 5 M′ Best model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 2.4150–1.5356 3.1767–1.8703

40% Lognormal 1.9141–1.3644 2.5502–1.5439

50% Lognormal 1.4178–1.1321 2.1096–1.2948

 s = 50 M′ Best model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 2.0998–1.3549 2.4960–1.4318

40% Lognormal 1.8531–1.2754 2.1636–1.2831

50% Lognormal 1.4735–1.1329 1.8042–1.1588

 s = 100 M′ Best model Real data ( µ , σ) Simulated data ( µ , σ)

30% Lognormal 2.4287–1.5425 2.3031–1.5313

40% Lognormal 2.0531–1.4699 2.0355–1.3949

50% Lognormal 1.7431–1.4430 1.7345–1.3223

Table 39 Descriptive statistics of T sc (first quartile, second quartile (median), third quartile, mean, 
standard deviation, asymmetry index) and related censored units as a function of M and s 

Descriptive statistics of Ts
c‑TESLA

s = 0 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 0.8680 1.0917 1.3729 1.1566 0.4048 0.4812 0

M = 40 0.8703 1.1195 1.4401 1.2003 0.4641 0.5222 0

M = 80 0.8730 1.11484 1.5108 1.2474 0.5289 0.5614 0

 s = 5 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 1.4240 2.4697 4.2834 3.4465 3.3547 0.8735 0

M = 40 1.7621 3.4257 6.6597 5.5678 7.1339 0.9008 0

M = 80 2.2028 4.3912 8.7536 7.4087 10.0677 0.8992 0

 s = 50 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 1.0486 1.4902 2.1178 1.7069 0.9534 0.6819 0

M = 40 1.1394 1.7723 2.7569 2.1964 1.6077 0.7913 0

M = 80 1.2871 2.1686 3.6540 2.9249 2.6470 0.8571 0

 s = 100 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 0.9385 1.2041 1.5447 1.2891 0.4929 0.5175 0

M = 40 1.0192 1.3885 1.8915 1.5423 0.7458 0.6187 0

M = 80 1.1122 1.6451 2.4334 1.9469 1.2322 0.7348 0



Page 31 of 40D’Amico et al. Financial Innovation           (2024) 10:83  

Table 40 Descriptive statistics of T sc (first quartile, second quartile (median), third quartile, mean, 
standard deviation, asymmetry index) and related censored units as a function of M and s 

Descriptive statistics of Ts
c‑NETFLIX

s = 0 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 0.7852 1.1056 1.5567 1.2574 0.6812 0.6686 0

M = 40 0.7695 1.1177 1.6236 1.3028 0.7800 0.7116 0

M = 80 0.7062 1.1300 1.8081 1.4406 1.1391 0.8180 0.8

 s = 5 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 1.0337 1.8152 3.1876 2.5719 2.5815 0.8794 0

M = 40 1.2095 2.1593 3.8551 3.1236 3.2650 0.8860 0

M = 80 1.3372 2.7710 5.7423 4.9665 7.3875 0.8916 0.8

 s = 50 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 0.8705 1.3836 2.1992 1.7519 1.3605 0.8120 0

M = 40 0.9395 1.5825 2.6657 2.1337 1.9296 0.8569 0

M = 80 0.9440 1.7624 3.9204 2.7049 3.1492 0.8978 1.6

 s = 100 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 0.9075 1.3197 1.9190 1.5395 0.9248 0.7131 0

M = 40 0.9672 1.4881 2.2896 1.8249 1.2954 0.7800 0

M = 80 0.9427 1.6384 2.8475 2.2921 2.2427 0.8745 1.6

Table 41 Descriptive statistics of T sc (first quartile, second quartile (median), third quartile, mean, 
standard deviation, asymmetry index) and related censored units as a function of M and s 

Descriptive statistics of Ts
c‑APPLE

s = 0 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 0.9352 1.0336 1.1422 1.0450 0.1557 0.2199 0

M = 40 0.8968 1.0507 1.2311 1.0801 0.2573 0.3428 0

M = 80 0.8783 1.0800 1.3281 1.1320 0.3553 0.4386 0

 s = 5 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 1.1550 1.8071 2.8272 2.2521 1.6752 0.7971 0

M = 40 1.3051 2.2282 3.8043 3.0517 2.8558 0.8942 0

M = 80 1.4673 2.6912 4.9361 4.0324 4.4995 0.8577 0

 s = 50 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 1.0093 1.3675 1.8530 1.5135 0.7178 0.6102 0

M = 40 1.0942 1.6748 2.5635 2.0439 1.4296 0.7744 0

M = 80 1.3212 2.2284 3.7585 3.0090 2.7302 0.8577 0

 s = 100 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 1.0179 1.4215 1.9850 1.6068 0.8469 0.6566 0

M = 40 1.1035 1.6441 2.4495 1.9580 1.2662 0.7436 0

M = 80 1.2007 1.9402 3.1352 2.4991 2.0288 0.8264 0
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Table 42 Descriptive statistics of Ssc (First Quartile, Second Quartile (Median), Third Quartile, Mean, 
Standard Deviation, Asymmetry Index) and related censored units as a function of M and s 

Descriptive statistics of Ssc‑TESLA

s = 0 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 0.1250 0.2250 0.2250 0.1097 0.1027 −3.3693 0

M = 40% 0.1667 0.3000 0.3000 0.1464 0.1305 −3.5311 0

M = 80 0.3333 0.3333 0.6000 0.2949 0.2489 −0.4632 0

 s = 5 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 0.0550 0.0875 0.1250 0.1035 0.0648 0.7412 0

M = 40 0.0536 0.0900 0.1667 0.1157 0.0858 0.8990 0

M = 80 0.0844 0.1467 0.2333 0.2080 0.1649 1.1161 0

s = 50 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 0.0875 0.1250 0.2250 0.1232 0.0707 −0.0752 0

M = 40 0.1167 0.1667 0.1667 0.1563 0.0889 −0.3513 0

M = 80 0.1800 0.2333 0.3333 0.2883 0.1749 0.9421 0

 s = 100 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 0.1250 0.1250 0.2250 0.1155 0.0919 −0.3117 0

M = 40 0.1667 0.1667 0.3000 0.1645 0.1003 −0.0659 0

M = 80 0.2333 0.3333 0.3333 0.3258 0.1789 −0.1259 0

Table 43 Descriptive statistics of Ssc (First Quartile, Second Quartile (Median), Third Quartile, Mean, 
Standard Deviation, Asymmetry Index) and related censored units as a function of M and s 

Descriptive statistics of Ssc‑NETFLIX

s = 0 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 0.1250 0.1250 0.2250 0.1026 0.0901 −0.7453 0

M = 40 0.1667 0.1667 0.3000 0.1351 0.1166 −0.8130 0

M = 80 0.3333 0.3333 0.6000 0.2525 0.2205 −1.0997 0.8

 s = 5 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 0.0675 0.1250 0.1250 0.1028 0.0697 −0.9579 0

M = 40 0.0900 0.1167 0.1667 0.1356 0.0899 0.6331 0

M = 80 0.1238 0.2333 0.3333 0.2300 0.1804 −0.0552 0.8

 s = 50 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 0.0875 0.1250 0.2250 0.1065 0.0754 −0.7351 0

M = 40 0.1167 0.1667 0.3000 0.1398 0.0957 −0.8430 0

M = 80 0.1800 0.3333 0.6000 0.2560 0.1894 −1.2255 1.6

 s = 100 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 0.1250 0.1250 0.2250 0.1136 0.0781 −0.4391 0

M = 40 0.1167 0.1667 0.3000 0.1513 0.0965 −0.4779 0

M = 80 0.2333 0.3333 0.6000 0.2725 0.1905 −0.9584 1.6
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Table 44 Descriptive statistics of Ssc (First Quartile, Second Quartile (Median), Third Quartile, Mean, 
Standard Deviation, Asymmetry Index) and related censored units as a function of M and s 

Descriptive statistics of Ssc‑APPLE

s = 0 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 0.1250 0.1250 0.2250 0.1970 0.0835 2.5859 0

M = 40 0.1667 0.3000 0.3000 0.1714 0.1474 −2.6175 0

M = 80 0.3333 0.6000 0.6000 0.2988 0.2835 −3.1872 0

 s = 5 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 0.0875 0.1250 0.1250 0.1167 0.0664 −0.3738 0

M = 40 0.0900 0.1167 0.1667 0.1419 0.0875 0.8644 0

M = 80 0.1467 0.2333 0.3333 0.2579 0.1747 0.4216 0

 s = 50 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 0.1250 0.1250 0.2250 0.1227 0.0765 −0.0891 0

M = 40 0.1167 0.1667 0.1667 0.1575 0.0904 −0.3043 0

M = 80 0.1800 0.2333 0.3333 0.2875 0.1739 0.9334 0

 s = 100 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M = 30 0.1250 0.1250 0.2250 0.1225 0.0735 −0.1012 0

M = 40 0.1167 0.1667 0.1667 0.1616 0.0899 −0.1691 0

M = 80 0.1800 0.3333 0.3333 0.3019 0.1760 −0.5352 0

Table 45 Descriptive statistics of Rst (First Quartile, Second Quartile (Median), Third Quartile, Mean, 
Standard Deviation, Asymmetry Index) and related censored units as a function of s, M and M′

Descriptive statistics of Rst‑TESLA with M = 80%

s = 0 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 2.7488 11.6092 49.0305 113.6171 1.1061e+03 0.2767 9

M
′ = 40 2.6726 10.3439 40.0354 77.4336 574.4651 0.3504 8

M
′ = 50 2.5868 9.2368 32.9820 54.7942 320.3950 0.4266 6

 s = 5 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 2.3565 6.3275 16.9900 18.4882 50.7585 0.7187 0.8

M
′ = 40 1.6357 3.8148 8.8971 8.3900 16.4344 0.8352 0

M
′ = 50 1.3970 2.5049 4.5064 3.6575 3.8794 0.8881 0

 s = 50 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 3.4674 9.4963 26.0075 28.9761 83.5318 0.6996 0.8

M
′ = 40 2.6693 5.9495 13.2606 12.0532 21.2368 0.8622 0

M
′ = 50 1.9385 4.1887 9.0509 8.0432 13.1848 0.8770 0

 s = 100 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 3.1460 9.0052 25.7765 30.3669 97.7956 0.6553 0.8

M
′ = 40 2.3326 6.0056 15.4623 16.0489 39.7717 0.7556 0.8

M
′ = 50 1.8813 4.8365 12.4338 12.8850 31.8165 0.7589 0.8
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Table 46 Descriptive statistics of Rst (First Quartile, Second Quartile (Median), Third Quartile, Mean, 
Standard Deviation, Asymmetry Index) and related censored units as a function of s, M and M′

Descriptive statistics of Rst‑NETFLIX with M = 80%

s = 0 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 2.8232 15.6116 86.3785 389.0448 9.6845e+03 0.1157 11

M
′ = 40 2.7832 14.8426 79.1529 322.7627 7.0113e+03 0.1318 10

M
′ = 50 2.7576 14.5778 76.7872 302.9809 6.2898e+03 0.1376 10

 s = 5 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 3.4569 11.5814 38.8001 57.7387 282.0047 0.4910 2

M
′ = 40 2.5773 8.0615 25.2155 33.6608 136.4602 0.5628 1.6

M
′ = 50 1.8586 5.1929 14.5087 16.5688 50.2015 0.6798 0.8

 s = 50 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 3.6872 11.2245 34.1699 43.8237 165.3929 0.5913 2

M
′ = 40 2.9838 8.5156 24.3029 28.5199 91.1597 0.6583 2

M
′ = 50 2.2512 6.5483 19.0471 22.9231 76.9016 0.6388 2

 s = 100 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 2.6446 8.1882 25.3524 33.3320 131.5271 0.5735 3

M
′ = 40 2.2550 6.7768 20.3659 25.6420 93.5750 0.6048 2

M
′ = 50 1.6783 5.0637 15.2784 19.3458 71.3335 0.6003 2

Table 47 Descriptive statistics of Rst (First Quartile, Second Quartile (Median), Third Quartile, Mean, 
Standard Deviation, Asymmetry Index) and related censored units as a function of s, M and M′

Descriptive statistics of Rst‑APPLE with M = 80%

s = 0 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 2.8495 14.9498 78.4341 306.2351 6.2655e+03 0.1395 12

M
′ = 40 2.6831 13.6672 69.6175 251.6335 4.6261e+03 0.1543 11

M
′ = 50 2.5477 12.7777 64.0845 222.6104 3.8719e+03 0.1626 11

 s = 5 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 3.9719 11.1898 31.5239 36.3805 112.5476 0.6715 0.8

M
′ = 40 2.7016 6.7808 17.0197 17.1997 40.0940 0.7796 0.8

M
′ = 50 1.9236 4.1280 8.8586 7.8352 12.6401 0.8799 0.8

 s = 50 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 3.2737 8.1645 20.3619 20.4437 46.9310 0.7849 0

M
′ = 40 2.6989 6.3796 15.0796 14.3884 29.0873 0.8260 0

M
′ = 50 2.0327 4.3645 9.3711 8.2915 13.3931 0.8796 0

 s = 100 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 4.0080 11.3441 32.1078 32.2761 116.6773 0.6668 1.6

M
′ = 40 2.8912 7.7920 21.0002 22.9520 63.5914 0.7152 1.6

M
′ = 50 2.1594 5.7150 15.1256 16.1873 42.8962 0.7324 1.6



Page 35 of 40D’Amico et al. Financial Innovation           (2024) 10:83  

Table 48 Descriptive statistics of Ssr (First Quartile, Second Quartile (Median), Third Quartile, Mean, 
Standard Deviation, Asymmetry Index) and related censored units as a function of s, M and M′

Descriptive statistics of Ssr‑TESLA with M = 80%

s = 0 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 0.0101 0.0436 0.2083 0.0687 0.0987 0.7629 9

M
′ = 40 0.0099 0.0382 0.1667 0.0584 0.0800 0.7570 8

M
′ = 50 0.0092 0.0317 0.1250 0.0465 0.0607 0.7336 6

 s = 5 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 0.0303 0.0774 0.2083 0.0979 0.1043 0.5894 0.8

M
′ = 40 0.0472 0.1167 0.3000 0.0986 0.0883 -0.6153 0

M
′ = 50 0.0675 0.1250 0.2250 0.0998 0.0657 -1.1503 0

 s = 50 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 0.0189 0.0528 0.1458 0.0826 0.0963 0.9287 0.8

M
′ = 40 0.0297 0.0733 0.1667 0.0865 0.0805 0.4914 0

M
′ = 50 0.0317 0.0675 0.2250 0.0757 0.0643 0.3843 0

 s = 100 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 0.0196 0.0528 0.1458 0.0837 0.0986 0.9409 0.8

M
′ = 40 0.0258 0.0619 0.1667 0.0812 0.0836 0.6938 0.8

M
′ = 50 0.0240 0.0675 0.2250 0.0653 0.0649 -0.1007 0.8

Table 49 Descriptive statistics of Ssr (First Quartile, Second Quartile (Median), Third Quartile, Mean, 
Standard Deviation, Asymmetry Index) and related censored units as a function of s, M and M′

Descriptive statistics of Ssr‑NETFLIX with M = 80%

s = 0 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 0.0958 0.0323 0.2083 0.0588 0.0954 0.8335 11

M
′ = 40 0.0050 0.0276 0.1667 0.0481 0.0768 0.8005 10

M
′ = 50 0.0039 0.0207 0.1250 0.0364 0.0577 0.8137 10

 s = 5 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 0.0130 0.0436 0.1458 0.0730 0.0966 0.9153 2

M
′ = 40 0.0157 0.0472 0.1667 0.0679 0.0818 0.7576 1.6

M
′ = 50 0.0207 0.0550 0.2250 0.0611 0.0648 0.2843 0.8

 s = 50 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 0.0145 0.0436 0.1458 0.0753 0.0954 0.9989 2

M
′ = 40 0.0163 0.0472 0.1167 0.0686 0.0798 0.8023 2

M
′ = 50 0.0154 0.0464 0.1250 0.0561 0.0629 0.4591 2

 s = 100 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 0.0196 0.0590 0.2083 0.0847 0.1018 0.7565 3

M
′ = 40 0.0195 0.0619 0.1667 0.0729 0.0837 0.3939 2

M
′ = 50 0.0194 0.0550 0.2250 0.0589 0.0652 0.1809 2
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Table 50 Descriptive statistics of Ssr (First Quartile, Second Quartile (Median), Third Quartile, Mean, 
Standard Deviation, Asymmetry Index) and related censored units as a function of s, M and M′

Descriptive statistics of Ssr‑APPLE with M = 80%

s = 0 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 0.0064 0.0345 0.2083 0.0603 0.0959 0.8062 12

M
′ = 40 0.0058 0.0297 0.1667 0.0498 0.0776 0.7768 11

M
′ = 50 0.0047 0.0240 0.1250 0.0381 0.0587 0.7203 11

 s = 5 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 0.0159 0.0436 0.1458 0.0762 0.0933 1.0486 0.8

M
′ = 40 0.0229 0.0619 0.1667 0.0783 0.0812 0.6074 0.8

M
′ = 50 0.0354 0.0675 0.2250 0.0764 0.0643 0.4164 0.8

 s = 50 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 0.0244 0.0590 0.1458 0.0903 0.0970 0.9669 0

M
′ = 40 0.0258 0.0619 0.1667 0.0821 0.0809 0.7501 0

M
′ = 50 0.0317 0.0675 0.1250 0.0750 0.0637 0.3517 0

 s = 100 (%) Q1 Q2 Q3 Mean SD AI Censoring 
rate (%)

M
′ = 30 0.0154 0.0436 0.1125 0.0756 0.0931 1.0335 1.6

M
′ = 40 0.0186 0.0536 0.1667 0.0723 0.0803 0.6994 1.6

M
′ = 50 0.0194 0.0550 0.1250 0.0612 0.0635 0.2911 1.6

Table 51 Kullback–Leibler divergence computed on the risk measure T sc as a function of M and s for 
Tesla, Netflix and Apple

The smallest distances for each s are in bold

Kullback‑Leibler divergence for Ts
c

s = 0 D(P‖Q) D(P‖Q) D(P‖Q)

M = 30% 0.8473 0.2776 1.8671

M = 40% 0.9402 0.3344 1.4934

M = 80% 1.1248 0.4784 1.3141

 s = 5 D(P‖Q) D(P‖Q) D(P‖Q)

M = 30% 0.1221 0.1993 0.1044

M = 40% 0.2544 0.1881 0.0018
M = 80% 0.2100 0.2124 0.0052

 s = 50 D(P‖Q) D(P‖Q) D(P‖Q)

M = 30% 0.0795 0.1045 0.0463

M = 40% 0.0108 0.1629 0.0387

M = 80% 0.0147 0.2471 0.0118

 s = 100 D(P‖Q) D(P‖Q) D(P‖Q)

M = 30% 0.2625 0.0153 0.0339

M = 40% 0.1066 0.0314 0.0223

M = 80% 0.0684 0.1581 0.0220
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Our long-term objective is to jointly examine volumes and returns using the multi-
variate WISMC model described in D’Amico and Petroni (2021). In order to confirm the 
efficacy of our model, we also wish to compare the outcomes of the WISMC model with 
those of inflated econometric models, such as the autoregressive moving average and 
generalized autoregressive conditional heteroskedasticity models.

Table 52 Kullback–Leibler divergence computed on the risk measure Rst as a function of M, M′ and s 
for Tesla, Netflix and Apple

The smallest distances for each s are in bold

Kullback–Leibler divergence for Rst with M = 80%

s = 0 D(P‖Q) D(P‖Q) D(P‖Q)

M
′ = 30% 0.2660 0.1734 0.0971

M
′ = 40% 0.0466 0.2530 0.1832

M
′ = 50% 0.0186 0.4686 0.6976

 s = 5 D(P‖Q) D(P‖Q) D(P‖Q)

M
′ = 30% 0.4531 0.0345 0.1690

M
′ = 40% 0.4227 0.0402 0.1428

M
′ = 50% 0.7375 0.1053 0.2298

 s = 50 D(P‖Q) D(P‖Q) D(P‖Q)

M
′ = 30% 0.0665 0.0155 0.0595

M
′ = 40% 0.1448 0.0037 0.0423

M
′ = 50% 0.0160 0.0210 0.0595

 s = 100 D(P‖Q) D(P‖Q) D(P‖Q)

M
′ = 30% 0.0225 0.0686 0.0049

M
′ = 40% 0.0259 0.0661 0.0042

M
′ = 50% 0.0321 0.0910 0.0117

Fig. 3 Cumulative distribution functions (CDFs) on the first 20 min of the trading day for T sc , S
s
c , R

s
t , and Ssr . All 

the blue lines represent the CDFs for scenario s = 0 while, the red lines are the CDFs for scenario s = 100
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Fig. 4 Probability plots for both the detrended volume states and index states for Tesla asset
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Fig. 5 Probability plots for both the detrended volume states and index states for Netflix asset
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