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Introduction
Systemic financial risk is always of great concern to regulators, policymakers, academ-
ics, market participants, and general consumers due to its significant role in maintaining 
financial stability and spurring socio-economic development. In the past few decades, 
financial crises, geopolitical tensions, United States (US)–China decoupling, and the 
COVID-19 pandemic have frequently exposed the international financial system to 
extreme risk and prompted the Chinese authorities to prioritize financial stability. In this 
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context, reviewing reports on the work of the Chinese government in the last ten years 
indicates that the term systemic financial risk frequently appears, reflecting the Chinese 
authorities’ growing emphasis on financial stability. The Chinese authorities significantly 
improved their financial supervision system in response to the global financial system’s 
regulatory reform following the 2008 global financial crisis. In particular, given the 
importance of the banking sector in financial stability, the Chinese authorities published 
the first list of systemically important banks in October 2021. As a result, the study of 
China’s systemically important banks (C-SIBs) has become critical for financial regula-
tors in allocating regulatory resources and mitigating systemic financial risk.

Previous literature has emphasized that interdependencies among financial institu-
tions can be vital for understanding the repercussions of systemic financial risk (Silva 
et al. 2017). Indeed, the network interconnectedness of financial institutions defines the 
characteristics and extent to which systemic financial risk spillovers occur (Billio et al. 
2012). As a result, the nature of systemic financial risk has been shifting to the finan-
cial system as a whole rather than its components, making interconnectedness more rel-
evant and critical in studying financial institutions. Several studies have demonstrated 
how widespread interconnectedness has become for academic research on financial 
institutions (Foglia and Angelini 2020; Fan et  al. 2021; Roncoroni et  al. 2021; Andries 
et  al. 2022). Most of these studies rely on simple mean-based estimators, such as the 
Granger-causality methods (Billio et al. 2012) and the vector autoregression framework 
(Diebold and Yilmaz 2014), which fall short of accommodating heterogeneous effects 
across the size distribution of shocks. From the perspective of prudently supervising the 
financial system, network interconnectedness under extreme market conditions makes 
more sense than conventional average-based correlations (Betz et al. 2016). Therefore, 
“extreme risk connectedness” has inevitably drawn attention, which is critical to the 
financial system’s stability despite adverse market conditions. Many studies have used 
return quantiles to assess extreme risk dependencies among financial institutions (Här-
dle et al. 2016; Yousaf et al. 2022).

Nonetheless, these previous studies have all derived their findings from the first 
moment of the return distribution, which falls into the conventional models of choice 
under risk, assuming that investors are rational and use all observable information pre-
sented in the decision frame. A large body of literature has observed the scarcity of 
investors’ attention and processing power (Kahneman 1973; March 1982; Berger 1996), 
which makes the traditional theory of choice under risk more vulnerable. Accordingly, 
we should notice this when studying the extreme risk connectedness among financial 
institutions. Bordalo et al. (2012) propose a salience theory that assumes investors focus 
on stocks with the most unusual, salient payoffs to account for the cognitive limita-
tions incompatible with the expected utility theory. On this basis, Cosemans and Fre-
hen (2021) formulate a salience theory value (STV)1 measure to capture the salience of 
past returns distributions with weights adjustment. The concept of STV is applied in 
other studies, including Cakici and Zaremba (2022), Chen et al. (2022b), Hu et al. (2023) 

1  Cosemans and Frehen (2021) state that a stock’s salience theory value (STV) is defined as the degree to which an inves-
tor’s return expectations are distorted by its salient thinking. A positive STV could be attained when the forecast of an 
investor with salient thinking exceeds the forecast associated with objective probabilities. Please refer to Section "Con-
struction of banks’ STV using high-frequency data" for how the STV is constructed.
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and Sun et al. (2023). These studies show that the salience theory can effectively explain 
many empirical phenomena in the stock, fund, and cryptocurrency markets; however, 
they have all confined themselves to the asset pricing implications of salience theory but 
leave the connectedness implications untouched.

From the standpoint of salience theory, we must ask how financial institutions are 
interconnected. On the one hand, investors’ mental accounting exerts a significant 
impact on their trading decisions and asset prices (Barberis and Huang 2001). On the 
other hand, following Barberis et al. (2016), investors with mental accounting may rep-
resent a stock by the distribution of its past returns that are salience-weight extrapo-
lated as long as they engage in salient thinking. Through the key concept of mental 
accounting, investors’ salient thinking plays an essential role in their trading behavior 
and the formation of stock prices. Furthermore, observing from the market perspective, 
the interconnectedness of financial institutions is well defined by their sentiment and 
trading behavior across time and space (Baruník and Křehlík 2018). Overall, to a cer-
tain extent, the interconnectedness of financial institutions can trace its origin to inves-
tors’ salient thinking that the salience theory has been well formalized. In other words, 
salience theory may provide some theoretical arguments for the interconnectedness of 
financial institutions; however, as far as we know, no studies have examined the inter-
connectedness of financial institutions from the salience theory perspective.

To fill this gap in the literature, we compile empirical evidence on the quantile inter-
connectedness of C-SIBs from the salience theory perspective. The setting of employ-
ing a natural experiment in C-SIBs is appealing from an empirical standpoint. As the 
second largest economy in the world, China’s financial system has also rapidly expanded 
and drawn growing global attention after proposing a series of liberalization policies 
since 2010. However, no matter how China’s financial system is liberalized, the Chinese 
authorities have always put stability at the heart of their financial reform; therefore, they 
are concerned about the issue of “too interconnected to fail,” enabling the investigation 
of the interconnectedness of C-SIBs to be more relevant. Basu et al. (2019) indicate that 
a key gradient in understanding the systemic risk of any economy is understanding the 
interconnectedness of its large institutions. Regarding the analyzing procedure, first, we 
follow Cosemans and Frehen (2021) to construct the STV for 15 C-SIBs stock returns 
from August 18, 2010 to June 30, 2022. Following Bordalo et al. (2012), we assume inves-
tors measure a bank’s potential payoff by reviewing the distribution of its historical 
returns. The previous literature (Cosemans and Frehen 2021; Hu et al. 2023; Sun et al. 
2023) considers daily returns to be the state space over the recent month or quarter. In 
contrast, we define a bank’s high-frequency returns over the past 48 5-min intervals in 
one day as its state space because investors usually evaluate their trading performance 
over a much shorter period, i.e., intraday intervals. Investors with salient thinking are 
assumed to have limited attention (Cosemans and Frehen 2021), which makes it pos-
sible for them to project their future expectations on intraday returns. Second, we 
use the quantile-based connectedness approach of Ando et  al. (2022) to uncover the 
dynamic STV interconnectedness of C-SIBs under normal, bearish, and bullish market 
conditions. Our study attempts to answer the following questions. Do market condi-
tions matter for the STV interconnectedness of C-SIBs? Does a bank’s systemic impor-
tance matter for its role as a net receiver or net transmitter of spillover? What are the 
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differences between the STV and higher-order moment interconnectedness of C-SIBs? 
These research questions have been neglected in the existing literature, even if a sound 
analysis would enlighten policymakers and investors in formulating their regulatory 
mechanism and risk management.

This study’s main contributions can be highlighted in several directions. First, to the 
best of our knowledge, this study is the first to investigate the STV interconnectedness, 
providing a new direction for understanding how financial institutions are intercon-
nected. Based on the STV interconnectedness of C-SIBs, policymakers and investors 
can further improve the effectiveness of the supervision framework. Furthermore, we 
consider risk management strategy as investors’ salient thinking. Second, as far as we 
know, this study is the first to examine the quantile interconnectedness of C-SIBs; thus, 
we shed new light on the time-varying and asymmetric interconnectivity of C-SIBs, 
which exposes the unsuitability of mean-based connectedness estimators. Consider-
ing the extreme risk interconnectedness of C-SIBs can help policymakers and investors 
design a better early warning system and risk response mechanism. Third, this paper is 
the first attempt to demonstrate how a bank performs in the C-SIBs system depending 
on its systemic importance and market conditions. Specifically, as the market conditions 
become increasingly bullish, a bank with lower systemic importance will transform from 
a net receiver of spillover to a net transmitter of spillover. In contrast, a bank with higher 
systemic importance will transform from a net transmitter of spillover to a net receiver 
of spillover. Finally, as a part of comparative analysis, this is the first time that the higher-
order moment interconnectedness of C-SIBs is under consideration. This approach 
shows that STV could provide more information than higher-order moments in captur-
ing the dynamic change in the C-SIBs system and detecting some market events more 
precisely. By employing a HAR-RV-X model, we also quantitatively corroborate the 
better predictive power of STV interconnectedness than higher-order moment inter-
connectedness in conveying information about future market development; however, 
the unique information embedded in the higher-order moment interconnectedness of 
C-SIBs makes it a helpful supplement to the STV interconnectedness of C-SIBs.2 Nev-
ertheless, the inherent economic implications of using STV interconnectedness relative 
to higher-order moment interconnectedness is how the C-SIBs system is interconnected 
from the standpoint of investors’ salient thinking. This desirable feature cannot be 
inferred from the higher-order moment interconnectedness.

The structure of this paper is summarized as follows. Section "Literature review" pre-
sents the related literature, Section  "Methodology" introduces the econometric meth-
ods, and Section  "Data description" describes the dataset and preliminary statistics. 
Section "Empirical analysis" shows the empirical results, and Section "Conclusions and 
policy implications" presents some closing remarks and policy implications.

2  The STV and higher-order moments consider different models of choice under risk. Therefore, we argue that the 
higher-order moment interconnectedness of C-SIBs contains unique information not captured by the STV intercon-
nectedness of C-SIBs.
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Literature review
The consequential costs and turbulence caused by the global financial crisis of 2007–
2008 demonstrate that we should not regulate systemically important financial institu-
tions (SIFI) in a business-as-usual manner. Public bail-outs, in the name of stabilizing 
economic and financial developments, prop up SIFI that fall into deep trouble. Unsur-
prisingly, the undesirable consequence of such actions may be that public funds are in 
jeopardy and an inevitable moral hazard problem.3 To lift the global society from the 
threat of such blackmail, responsible regulatory bodies take concrete steps to improve 
financial regulations for banks that fall into trouble and may inflict severe costs on the 
financial system. Guided by these considerations, the global regulatory bodies proposed 
the term Global Systemically Important Bank (G-SIBs) after intensive deliberation, sub-
jecting 29 “too-systemically-relevant to fail” banks4 in November 2011 to the revamped 
regulation regimes. The four biggest banks in China5 have always been included on the 
list of G-SIBs, indicating that the international community has recognized the achieve-
ments of financial reform in China and the importance of China’s financial sector to 
the global financial system. Taking this as an opportunity, Chinese regulators gradually 
established the methodology and continuous evaluation framework of SIFI by combin-
ing the international standards and the characteristics of the Chinese banking industry. 
Marked by the list of 19 systemically important banks released on October 15, 2021, the 
regulatory framework for C-SIBs was implemented.

Which banks are designated as too systemically important to fail and why? Besides 
the cross-jurisdictional activity, size, substitutability, and complexity, Eisenberg and 
Noe (2001) indicate that network connections play a prominent role in determining 
SIFI. In line with this consideration, the Bank for International Settlements (2013) has 
recognized the interconnectedness of financial institutions as a critical factor when 
designating SIFI; however, Benoit et  al. (2017) emphasize that the unobservability of 
the interconnectedness of financial institutions often induces the “hard-to-define-but-
you-know-it-when-you-see-it” problem. Yellen (2013) also indicates that the complex-
ity of the interconnectedness of financial institutions makes the financial system more 
vulnerable to sudden stops and further facilitates the spreading of idiosyncratic shocks. 
Dealing with this problem has become a priority for policymakers to stabilize financial 
systems and alleviate financial crises without preventing their outbreak (Liu et al. 2020). 
It is encouraging that the extensive attention from policymakers has promoted academic 
research on this issue, as evidenced by the rich literature on the interconnectedness of 
financial institutions (Diebold and Yilmaz 2014; Roncoroni et  al. 2021; Andries et  al. 
2022).

In recent years, one strand of literature, i.e., physical networks, has attempted to solve 
this problem by comprehensively analyzing the transaction-level data of financial insti-
tutions. For instance, Allen and Gale (2000) define the interconnectedness of financial 
institutions as an equilibrium phenomenon with the higher level of interbank lending, 

3  Mariathasan et al. (2014) discuss the adverse consequences of bailing out SIFI with public funds.
4  https://​www.​fsb.​org/​wp-​conte​nt/​uploa​ds/r_​11110​4bb.​pdf?​page_​moved=1.
5  The Bank of China, the Industrial and Commercial Bank of China, the Agricultural Bank of China, and the Construc-
tion Bank of China.

https://www.fsb.org/wp-content/uploads/r_111104bb.pdf?page_moved=1
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the higher the possibility of spillover. Krause and Giansante (2012) also show that a 
network of interbank lending may attenuate or exacerbate the spread of bank failure, 
indicating the insufficiency of regulating banking systems relying on balance sheet infor-
mation. Affinito and Pozzolo (2017) adopt the social network analysis approach to better 
capture how Italian banks’ interbank positions may impact each bank’s network central-
ity and expose the adverse effect of excessive interconnectedness. With the help of an 
agent-based model approach, Liu et al. (2020) describe how interbank lending can trans-
mit financial distress, thereby improving the understanding of network transitions in the 
US banking system.

Several research articles pinpoint how mutual asset exposure can transmit financial 
distress within physical networks. For example, Braverman and Minca (2014) suggest 
that as mutual asset exposure increases in size, the level of bank interconnectedness also 
increases, which reduces diversification opportunities and increases financial network 
fragility. Applying their proposed model to European banks, Greenwood et  al. (2015) 
argue that propagating shocks from one bank to another may occur under the condition 
of banks holding common assets. Furthermore, Brunetti et al. (2019) propose a physical 
network to explore how the global financial crisis may impact bank interconnectedness 
due to shared asset credit. Barucca et  al. (2021) find that forced fire sales of common 
holding assets may intensify the interconnectedness of multiple European financial 
institutions. Additionally, several papers have focused on modeling the interconnect-
edness of financial institutions due to derivative exposure (Markose et al. 2012), inter-
bank liquidity management (Denbee et al. 2021), and geographic home lending, which 
are also part of physical networks. While the abundance of physical network literature 
has proven applicable for analyzing the interconnectedness of financial institutions, 
this strand of literature finds no escape path for data availability. Detailed information 
on proprietary balance sheets is often privately held and not publicly accessible. The 
comparative analysis conducted by Brunetti et  al. (2019) emphasizes that the physical 
network is better equipped to analyze liquidity issues, while the information spillover 
network is more suitable for predicting systemic risk.

A second strand of research, i.e., correlation networks, analyzes the interconnected-
ness of financial institutions relying on publicly traded market data. In this literature, 
asset return correlations are the building block of interconnectedness (Billio et al. 2012), 
while agent choices, i.e., interbank lending and common assets holding, as in Affinito 
and Pozzolo (2017), determine the degree of interconnectedness in physical networks. 
Cai et  al. (2010) propose a correlation-based weighted complex network to uncover 
the interactional mechanism of financial markets. The empirical findings of Patro et al. 
(2013) show that the correlation network, built on stock return correlations among the 
US 22 largest financial institutions, is a useful analytical tool for timely detecting sys-
temic risk and understanding financial interconnectivity. Hui et  al. (2013) claim that 
interconnectedness is a function of the implied correlation derived from publicly traded 
options on Europe CDS indexes, highlighting interdependence among financial institu-
tions. Furthermore, Fan et al. (2021) claim that the interconnectedness of China’s finan-
cial institutions will amplify the impact of financial shocks, measuring linkages among 
financial institutions, such as the stock return correlation, public sentiment correlation, 
and the degree of risk correlation. When estimating the interconnectedness of financial 
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institutions, correlation networks take full advantage of publicly traded market data, i.e., 
high data frequency and easy availability; thus, they explore a wide range of intercon-
nectivity. This exploration is forward-looking as the underlying dataset reflects investors’ 
expectations for the future performance of financial institutions. Undeniably, correlation 
networks cannot separate common exposures from transmission among financial insti-
tutions. Likewise, correlation networks cannot identify the direction and channels of 
transmission, which is desirable for policymakers to take preventive actions for financial 
stability.

Another burgeoning strand of literature, i.e., information spillover networks, exam-
ines information transmission and interconnectedness of financial institutions similar to 
the correlation networks in that they rely heavily on publicly traded market data. Unlike 
correlation networks, information spillover networks can detect the direction and chan-
nels of information transmission, which is desirable from a policy perspective. Several 
studies also corroborate the popularity and effectiveness of information spillover net-
works as far as quantifying the interconnectedness of financial institutions (Wang et al. 
2018a; Liang et al. 2020). Information spillover networks generally fall into three catego-
ries: mean spillover network, volatility spillover network, and risk spillover network. For 
instance, from the perspective of the mean spillover network based on the Granger-cau-
sality method, Billio et al. (2012) document that the US 100 financial institutions appear 
highly interrelated over the past decade. Furthermore, Baruník and Křehlík (2018) 
argue that how the interconnectedness dynamizes in the frequency domain is crucial to 
understanding the sources of interconnectedness; institution-specific factors may exert 
a differential influence on the future performance of financial institutions than market 
factors. Therefore, Wang et al. (2021b) expand the Granger-causality mean spillover net-
work into the frequency domain that shows system- and individual-level interconnect-
edness concentrates on different frequencies, which is significantly affected by major 
financial events and macroeconomic situations.

Regarding the volatility spillover network, Diebold and Yilmaz (2014) make a semi-
nal contribution to defining interconnectedness in financial markets, presenting a the-
oretical framework (i.e., the DY spillover index) based on variance decompositions to 
show that the interconnectedness of major US financial institutions is a consequence 
of network structure. In their work, the defined DY spillover index extracts the most 
attractive information and simplifies the complex financial system to a financial net-
work, providing a graphical and insightful description of interconnectedness. Diebold 
and Yilmaz (2015) further explore how volatility connectedness evolves in major finan-
cial institutions in American and European markets. Similarly, Demirer et  al. (2018) 
estimate a high-dimensional network structure, showing that the world’s largest 150 
banks illustrate a significant geographic clustering, and the interconnectedness index 
increases dramatically during the global financial crisis. Demirer et al. (2018) conclude 
that improved interconnectedness results from fluctuations in cross-country linkages, 
not within the country. Wang et al. (2018b) take the same approach, emphasizing that 
the banking system in China is interlinked from the perspective of volatility transmis-
sion, and non-state-owned banks contribute more to volatility connectedness than state-
owned banks. Similar to Wang et  al. (2021b), Baruník and Křehlík (2018) borrow the 
principle of the DY spillover index and develop a frequency interconnectedness model 
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based on the spectral representation of variance decompositions that documents abun-
dant frequency dynamics of volatility interconnectedness in US financial sector. Liang 
et al. (2020) utilize the frequency connectedness approach to investigate how financial 
institutions in China are interlinked at the frequency domain, indicating that market 
risk is the source of high-frequency interconnectedness and business interaction among 
financial institutions is the source of low-frequency interconnectedness.

Some works consider that mean and volatility spillover networks are insufficient to 
capture the interconnectedness between financial agents in extreme market conditions 
(Bali 2000; Longin 2000). In practice, the more frequent outbreak of financial crises and 
geopolitical events inspires exploration of the dynamics of interconnectedness under 
extreme market conditions. For example, Betz et al. (2016) extend the tail risk network 
of Hautsch et al. (2015) to accommodate the high-dimensional financial system, show-
ing how the interconnectedness between European financial institutions and sovereigns 
evolves. After concurrently considering the tail event and network dynamics, Härdle 
et al. (2016) present a tail-event-driven network (TENET) based on conditional value-at-
risk that captures the tail interconnectedness of US financial institutions, simultaneously 
bringing the issue of “too big to fail” and “too big to interconnected” into consideration. 
Foglia and Angelini (2020) and Pacelli et al. (2022) also employ the TENET approach to 
measure the interconnectedness of European financial institutions. Wang et  al. (2017) 
highlight an extreme risk spillover network based on the conditional autoregressive 
value-at-risk mode of Engle and Manganelli (2004) and the Granger-causality risk test 
of Hong et al. (2009) to discover the interconnectedness of the US financial institutions. 
Wang et  al. (2021a) argue that mapping financial systems into a multilayer network 
structure is more suitable for identifying the channels of information transmission and 
interconnectedness of financial institutions. They design a novel multilayer informa-
tion spillover network consisting of return, volatility, and extreme risk spillover layers 
to review the interconnectedness of 30 Chinese financial institutions. From the quantile 
perspective, Li et al. (2020) propose a novel extreme risk network based on the Granger-
causality test across quantiles of Candelon and Tokpavi (2016) and the network density 
of Billio et al. (2012) to investigate the interconnectedness between US financial and Fin-
Tech institutions. In a recent paper, Foglia et al. (2022) apply this approach to compare 
how the Eurozone financial system is interconnected under bearish and bullish markets.

In summation, the interconnectedness of financial institutions has been widely studied 
through physical networks, correlation networks, and information spillover networks, 
providing a diversified and abundant perspective on the dynamic and complex linkage 
among financial institutions. Considering heteroscedasticity in economic conditions and 
firm-specific factors, it might be better for academics to approach this study from dif-
ferent angles. Methodologically, Ando et  al. (2022) propose a theoretical model based 
on quantile regression and the DY spillover index to investigate how credit risk is inter-
linked among 18 sovereign countries. Abundant application of this model has been 
found in the literature (Chen et al. 2022a; Billah et al. 2022; Yousaf et al. 2022; Rehman 
et al. 2023; Ghosh et al. 2023). The quantile connectedness approach offers a rich frame-
work for studying the interconnectedness of financial institutions under different market 
conditions, as well as highlighting how tail events affect the dynamics and magnitude 
of the interconnectivity of financial institutions. This approach can capture the relative 
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dependencies of the quantiles and other extreme spillovers that cannot be attained by 
the remaining information spillover networks, which is sufficient for policymakers to 
understand the information transmission mechanism when economic conditions are not 
helpful. To the best of our knowledge, we are the first to study the interconnectedness 
of financial institutions using the quantile connectedness approach, which complements 
the existing research.

We now examine the key concept of salience theory that forms the foundation of 
this study. Li and Camerer (2022) define the concept of salience as the features of an 
attention-grabbing stimulus. In the past decade, as part of a growing body of behavio-
ral economics, salience has attracted the attention of many researchers when exploring 
individuals’ decision-making processes.6 Bordalo et  al. (2012) propose a novel frame-
work (salience theory) to accommodate investors’ cognitive limitations, including inat-
tention and shortage of processing power. Their approach assumes investors focus on 
stocks with the most unusual—or salient—payoffs, and they formalize how investors’ 
salient thinking will impact their choice under risk. Bordalo et al. (2012) indicate that 
salience allows for a theory of context-dependent choice consistent with a broad range 
of evidence, which distinguishes the salience theory from the cumulative prospect 
theory of Tversky and Kahneman (1992), enabling it to accommodate many violations 
of traditional theory of choice under risk. Salience theory has been applied in various 
areas, including asset pricing (Bordalo et  al. 2013a; Cosemans and Frehen 2021; Cak-
ici and Zaremba 2022; Chen et  al. 2022b; Sun et  al. 2023), consumer choice (Bordalo 
et al. 2013b), judicial decision (Bordalo et al. 2015), corporate cash holdings (Dessaint 
and Matray 2017), investor skewness preference (Dertwinkel-Kalt and Koster 2020), 
asset allocation (Alok et al. 2020), stock trading models (Huang et al. 2018; Frydman and 
Wang 2020; Sim and Kim 2022), and mutual fund flows (Hu et al. 2023).

Following Bordalo et al. (2012), Cosemans and Frehen (2021) assume that investors’ 
salient thinking may impact how they evaluate a stock’s representation. Consequently, 
they formulate a salience theory value (STV) measure to capture the salience of past 
returns distributions with weights adjustment. They empirically examine the predictive 
power of the salience-based asset pricing model of Bordalo et al. (2013a) with the key 
premise of making choices in context. Their study shows that a negative salient return 
effect occurs in the US stock market in the context of salient thinking. Likewise, Sun 
et al. (2023) confirm a similar phenomenon in the Chinese stock market even after con-
sidering its unique features in structures of investors, private-information preferences, 
and institutional arrangement (Song and Xiong 2018). Hu et al. (2023) show that Chi-
nese investors also make choices under risk among mutual funds in the context of sali-
ent thinking. Under the guidance of salience theory, Sim and Kim (2022) propose an 
enhanced momentum strategy that is more profitable than the traditional momentum 
strategy. Furthermore, Chen et al. (2022b) show the presence of salience-induced behav-
ioral biases in the cryptocurrency market. These studies indicate the broad application 
of STV measures in understanding many empirical phenomena in the stock, fund, and 
cryptocurrency markets; however, they have all confined themselves to the asset pricing 

6  Notable contributions related to salience include salience theory (Bordalo et al. 2012, 2013a, 2013b), dynamic inatten-
tion (Schwartzstein 2014), and theories of rational (Caplin and Dean 2015; Caplin et al. 2019; Caplin et al. 2020).
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implications of salience theory but leave the connectedness implications untouched. 
This study attempts to extend the application of salience theory to the interconnected-
ness of financial institutions. We believe that investors’ salient thinking impacts their 
trading behavior as measured by the STV of Cosemans and Frehen (2021) and affects 
the interconnectedness of financial institutions from the market perspective.7 Therefore, 
we are the first to thoroughly investigate the implications of salience theory for the inter-
connectedness of financial institutions, which extends the application of salience theory 
and highlights this study’s novelty.

Methodology
Construction of banks’ STV using high‑frequency data

We follow the guidance of Cosemans and Frehen (2021) to define the STV on banks’ 
return attribute and investigate the interconnectedness of C-SIBs from the salience the-
ory perspective.8 For compatibility with the initial parameterization proposed by Bor-
dalo et  al. (2012), we first transform five-minute returns into daily returns.9 We then 
employ the salience function to calculate the salience of each bank’s five-minute returns 
in a given state, s, and day, t, as follows:

where r′s;t is the benchmark index return for the corresponding state space. Following 
Cosemans and Frehen (2021), the salience parameter ( θ ) is assumed to equal 0.1 and 
measures the relative deviation of the returns from the whole state space. The state 
returns of bank i are subsequently ranked from most to least salient, with a value assign-
ment of 1 to St . The total number of state spaces ( St ) is 48 in a given day t. We next 
define the salience weights for the returns in a given day as follows:

where δranki,s;t represents the salience rank of return, r′i,s;t , and πi,s;t is the objective prob-
ability with a value of 1 St . The parameter, δ ∈ (0, 1] , defines how much the salience of 
returns distorts the decision weights from the objective probabilities. As the value of δ 
approaches zero, the salience status becomes increasingly prominent. We follow Cose-
mans and Frehen (2021) to set δ = 0.7 . The normalization process of Eq. (2) ensures the 
presence of E

(

ω̃i,s;t

)

= E
(

πi,s;t

)

= 1 , which indicates the sum of expected distortion 
equals zero. Finally, the STV for bank i in a given day t is defined as:

(1)σ
(

r′i,s;t , r
′
s;t

)

=

∣

∣

∣
r′i,s;t − r′s;t

∣

∣

∣

∣

∣

∣
r′i,s;t

∣

∣

∣
+

∣

∣

∣
r′s;t

∣

∣

∣
+ θ

,

(2)ω̃i,s;t =
δranki,s;t

∑

s′ δ
ranki,s′;tπi,s′;t

· πi,s;t

7  Please refer to paragraph four of Section  "Introduction" for a detailed explanation of financial institutions’ intercon-
nectedness from the salience theory perspective.
8  Section "Introduction" summarizes why we consider the state space from the high-frequency perspective.
9  The transformation process considers the following formula: r′

i,s;t =
(

1+ ri,s;t

)48
− 1 , in which ri,s;t is the five-minute 

return in a given interval s and day t and r′
i,s;t is the transformed version on a daily basis.
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By definition, STVi;t measures the deviation between salience-adjusted and equal-
weighted bank returns; therefore, as the value of STVi;t increases, the salience status of 
bank i becomes increasingly prominent.

Interconnectedness analysis at various quantiles

We employ the quantile connectedness approach of Ando et al. (2022) to conduct the 
interconnectedness analysis of C-SIBs at various quantiles.10 Following Koenker and 
Bassett (1978), we adopt a quantile regression to investigate the dependence of yt on 
xt at each quantile τ (τ ∈ (0, 1)) of the conditional distribution of yt/xt, which can be 
denoted as:

where Qτ is designated as the function of yt at the quantile τ . Furthermore, xt is a vector 
of dependent variables, and β(τ) defines the dependence structure between xt and yt at 
the quantile τ . The estimation of the parameter vector of β(τ) is expressed as:

Subsequently, a quantile vector autoregression with p lags is constructed as follows:

Here, yt and yt−j are endogenous k × 1 dimensional vectors representing the matrices 
for the STV of C-SIBs. µ(τ) represents the  k × 1 dimensional intercept term at quantile 
τ . ϕj(τ ) signifies the lagged coefficient matrix with k dimensions at quantile τ , and ut(τ ) 
displays a N-dimensional error vector at quantile τ . The estimated values of ϕj(τ ) and 
µ(τ) are defined as ϕ̂j(τ ) and µ̂(τ ) respectively; these are obtained by assuming that the 
error term ut(τ ) satisfies the population quantile restriction Qτ

(

ut(τ )
∣

∣yt−1, ..., yt−p

)

= 0 . 
The population τth conditional quantile of response y is defined as:

Following Ando et al. (2022), Eq. (7) can be estimated on an equation-by-equation at 
the quantile τ . Its moving average representation is given as:

(3)STVi;t ≡ cov
(

ω̃i,s;t , r
′
i,s;t

)

=

St
∑

S

ω̃i,s;t · r
′
i,s;t −

St
∑

S

πi,s;t · r
′
i,s;t .

(4)Qτ

(

yt |xt
)

= xtβ(τ)

(5)β̂(τ ) = arg min
β(τ)

T
∑

t=1

(

τ − 1{yt<xtβ(τ)}

)

∣

∣yt < xtβ(τ)
∣

∣.

(6)yt = µ(τ)+

p
∑

j=1

ϕj(τ )yt−j + ut(τ ).

(7)Qτ

(

ut(τ )
∣

∣yt−1, . . . , yt−p

)

= µ̂(τ )+

p
∑

j=1

ϕ̂j(τ )yt−j .

10  The full implementation of this analysis is based on David Gabauer’s open-source code of the R program, which is 
available at: https://​sites.​google.​com/​view/​david​gabau​er/​econo​metric-​code.

https://sites.google.com/view/davidgabauer/econometric-code
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where yt is defined by the sum of the errors ut(τ ).
We invoke the generalized variance decomposition function of Koop et  al. (1996) and 

Pesaran and Shin (1998). We calculate a standard decomposition with an H-step forward 
horizon, given as:

where ej signifies a vector with a value of 1 for the j-th variable and 0 for others, and 
ψ

g
ij(τ ) defines the extent of a shock in variable j on variable i at quantile τ . Consequently, 

we follow the normalization approach and obtain the normalized version of Eq. (9) as:

where 
∑k

j=1 ψ̃
g
ij(τ ) = 1 and 

∑k
i,j=1 ψ̃

g
ij(τ ) = k.

Following Diebold and Yilmaz (2012, 2014), the “TO” directional connectedness index, 
which measures the influence of variable i on all variables j at the quantile τ , is defined as:

Conversely, the “FROM” directional connectedness index, which quantifies the influence 
of all variables j on variable i at the quantile is τ, is given as:

The “NET” directional connectedness index measures how the variable i influences the 
whole network at the quantile τ . NET is obtained after comparing the “TO” and “FROM” 
directional connectedness indices; it is defined as:

A positive (negative) sign for Cg
i (τ ) signifies a net transmitter (receiver). Finally, the total 

connectedness index at the quantile τ , which is a common way to illustrate the total con-
nectedness effect in the entire system at the quantile τ, is given as:

(8)yt = µ(τ)+

∞
∑

i=0

ψi(τ )ut−i(τ )

(9)ψ
g
ij(τ ) =

∑

(τ )−1

ii

∑H−1

h=0

(

e′iψh(τ )
∑

(τ )ej
)2

∑H−1

h=0

(

e′iψh(τ )
∑

(τ )ψh(τ )
′ei
)2

(10)ψ̃
g
ij(τ ) =

ψ
g
ij(τ )

∑k
j=1 ϕ

g
ij(τ )

(11)C
g
i→j(τ ) =

k
∑

j=1,j �=i

ψ̃
g
ij(τ )× 100.

(12)C
g
i←j(τ ) =

k
∑

j=1,j �=i

ψ̃
g
ji(τ )× 100.

(13)C
g
i (τ ) = C

g
i→j(τ )− C

g
i←j(τ ).

(14)TCI(τ ) =

∑k
i,j=1,j �=i ψ̃

g
ij(τ )

k
.
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Data description
Our sample comprises 15 commercial banks included in the list of systemically impor-
tant banks published by China’s supervisory authorities and traded in China’s A-share 
market, ensuring the availability of price information. Table  1 shows an overview of 
banks’ codes, institutions, abbreviations, and groups. The 15 C-SIBs fall into four groups. 
The second group (G2) is the most systemically important, whereas the fifth group (G5) 
is the least. This study deploys a high-frequency price series from August 18, 2010, to 
June 30, 2022, to gauge the STV interconnectedness of C-SIBs.11 Based on previous 
studies (Corsi et al. 2008; Kumar 2017), we believe that a sample interval of five minutes 
attains a reasonable trade-off between measurement accuracy and microstructure noise 
due to asynchronous trading, infrequent trading, price discreteness, and bid-ask bounce. 
All the data is from the RESSET Financial Terminal on a 4-h basis; we obtain 48 5-min 
intervals with matched date/time information set at Beijing time per trading day. We 
calculate the 5-min price returns of each bank as the first logarithmic closing price dif-
ference in two consecutive intervals and use them to estimate STVs.

Table 2 presents the descriptive statistics and test results for the STV of C-SIBs, show-
ing that all C-SIBs report positive mean STV, indicating the presence of investors’ sali-
ent thinking. The significant difference among all C-SIBs’ mean STV, highlighted by the 
highest and lowest values recorded by BON and BoCom, suggests that the extent to 
which investors’ salient thinking preference varies across C-SIBs. The reported variance 
still fluctuates across all C-SIBs, implying BON and BoCom have the highest and low-
est volatility among all C-SIBs, respectively. Another descriptive statistic is skewness. All 
C-SIBs represent positive values, indicating that the frequency of positive STVs is higher 
than negative ones in reverse. For the kurtosis statistic, total STVs follow a leptokurtic 

Table 1  Bank information

Code Institution Abbreviation Group

000001.SZ Ping An Bank PAB G5

002142.SZ Bank of Ningbo BON G5

600015.SH Huaxia Bank Co., Ltd HXB G5

600016.SH China Minsheng Banking Corp., Ltd CMBC G5

601169.SH Bank of Beijing BOB G5

601818.SH China Everbright Bank CEB G5

600000.SH Shanghai Pudong Development Bank SPD G4

601998.SH China CITIC Bank CITIC G4

600036.SH Chin Merchants Bank CMB G3

601166.SH Industrial Bank CIB G3

601328.SH Bank of Communications BoCom G3

601288.SH Agricultural Bank of China ABC G2

601398.SH Industrial and Commercial Bank of China ICBC G2

601939.SH China Construction Bank CCB G2

601988.SH Bank of China BOC G2

11  Initially, there were 19 commercial banks included in the list of systemically important banks published by China’s 
regulatory bodies. We preselect 15 of 19 C-SIBs due to the consideration that restricts them to those in existence as of 
August 18, 2010. Regarding the benchmark index for composing the state space, we consider the representative stock 
index for China’s stock market, i.e., the SSEC stock index.
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distribution. Furthermore, all JB statistics significantly differ from 0, indicating that nor-
mal distribution is unsuitable for all C-SIBs. According to the Elliott, Rothenberg, and 
Stock unit root test, on the whole, the STVs of C-SIBs show stationary characteristics. 
Finally, the Fisher and Gallagher statistics confirm the presence of significant autocor-
relation for the STVs of C-SIBs.

Empirical analysis
Static quantile interconnectedness of C‑SIBs

This study employs the quantile connectedness approach of Ando et al. (2022) to inves-
tigate the interconnectedness of C-SIBs under various market conditions. Before con-
ducting the related analysis, we determine an optimal lag length of order one and a 
10-step-ahead forecast horizon based on the AIC.

We start our empirical analysis by investigating the static interconnectedness mech-
anism in C-SIBs under normal market conditions and report all related results in 
Table 3.12 As shown in Table 3, the total STV interconnectedness of C-SIBs is 45.57%, 
implying that the C-SIBs system exhibits moderate spillover effects under normal mar-
ket conditions. When analyzing the interconnectedness of China’s financial institu-
tions, including commercial banks, security firms, and insurance companies, Liang et al. 
(2020) report a total connectedness of 88.66, significantly higher than our empirical 
finding. However, their results are derived from the return series of financial institutions 
rather than the STV of financial institutions. Nevertheless, the spillover effects could 
explain almost half of the forecast error in the C-SIBs system, providing solid evidence 
of the interconnected status of C-SIBs. This phenomenon could be interpreted as market 
shocks simultaneously affecting commercial banks with similar or related fundamentals 

Table 2  Descriptive statistic and test results

The Jarque–Bera statistic is used to test the null hypothesis that the STV series is normally distributed. ERS is the Elliott, 
Rothenberg, and Stock statistic that is used to test the null hypothesis that the STV series has a unit root. Q(20) and Q2(20) 
are the Fisher and Gallagher statistics for time series goodness of fit testing. *** denotes the statistical significance of the 
estimates at the 1% level

Mean Variance Skewness Ex. Kurtosis JB ERS Q(20) Q2(20)

PAB 0.060 0.016 2.434*** 9.745*** 14,249.428*** − 4.821*** 916.423*** 671.366***

BON 0.079 0.023 2.596*** 10.609*** 16,752.234*** − 18.965*** 350.067*** 98.751***

HXB 0.033 0.008 2.325*** 8.991*** 12,304.131*** − 15.230*** 346.383*** 237.195***

CMBC 0.034 0.009 3.124*** 16.014*** 35,482.284*** − 9.712*** 690.272*** 850.364***

BOB 0.032 0.008 2.317*** 9.282*** 12,925.623*** − 16.568*** 513.668*** 714.793***

CEB 0.065 0.016 3.417*** 19.615*** 51,808.952*** − 1.357 335.478*** 420.251***

SPD 0.032 0.010 2.809*** 11.980*** 21,026.140*** − 8.597*** 2137.595*** 4914.244***

CITIC 0.073 0.033 4.564*** 28.589*** 108,154.388*** − 15.062*** 1082.575*** 548.402***

CMB 0.035 0.007 1.124*** 2.511*** 1363.437*** − 20.814*** 132.324*** 312.093***

CIB 0.034 0.008 1.831*** 6.118*** 6105.000*** − 9.635*** 413.477*** 508.503***

BoCom 0.028 0.007 2.947*** 16.981*** 38,798.081*** − 10.016*** 235.360*** 468.482***

ABC 0.052 0.006 0.332*** 0.630*** 100.578*** − 19.916*** 189.884*** 329.293***

ICBC 0.029 0.006 2.029*** 10.548*** 15,337.333*** − 11.417*** 334.839*** 1496.611***

CCB 0.030 0.006 1.446*** 4.713*** 3671.491*** − 18.907*** 221.709*** 794.043***

BOC 0.049 0.008 2.275*** 13.277*** 23,652.027*** − 16.557*** 213.961*** 712.953***

12  This study defines τ = 0.05 , τ = 0.50 , and τ = 0.95 as bearish, normal, and bullish market conditions, respectively.
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such that one bank’s changes will be relevant to others. SPD and CIB record the most 
significant spillover effect (7.18%), whereas ABC and CIB exhibit the least prominent 
spillover effect (0.93%). The “TO” values in Table 3 confirm that CIB and ABC are the 
strongest and weakest spillover transmitters, respectively. Similarly, the “FROM” values 
in Table 3 also suggest that CIB and ABC could be labeled as the largest and smallest 
spillover receivers, respectively. This finding is roughly in line with the observation of 
Mensah and Premaratne (2017); a bank’s size and systemic importance matter for its role 
in the interconnectedness, i.e., the smaller the market capitalization, the more promi-
nent the directional STV interconnectedness. Notably, a positive relationship exists 
between a systemically important bank’s STV “FROM” and “TO” connectedness. This 
finding indicates that information spillover is bidirectional, albeit the to-connectedness 
is more significant than the from-connectedness as measured by their values.13 Our 
findings are also consistent with Yousaf et al. (2022), who find that investors’ sentiment 
significantly affects the interconnectedness of financial markets. In other words, evi-
dence shows that investors’ salient thinking influences risk connectedness.

From the group perspective, G4 is the smallest spillover transmitter (32.32%) and 
receiver (36.82%), whereas G2 is the largest spillover transmitter (56.27%) and receiver 
(50.43%).14 As a bank’s systemic importance becomes more prominent, i.e., ascending 
from G5 to G2, its status as a spillover transmitter or receiver decreases. Focusing on 
the net spillover effect, BON and ABC report the strongest spillover effects with posi-
tive (6.76%) and negative (− 6.21%) directions, respectively, indicating their status as the 
largest net transmitter of spillover and net receiver. From the group perspective, G4 is 
the largest net transmitter of spillover (5.85%), whereas G2 is the largest receiver of spill-
over (− 4.50%). Generally, the more prominent a bank’s systemic importance becomes, 
i.e., moving up from G5 to G2, the more significant its role as a net receiver of spillover 
becomes, i.e., gradually transforming from a net transmitter of spillover to a net receiver 
of spillover.15

Tables  4 and 5 summarize how C-SIBs entertain their static interconnectedness 
mechanism under extreme market conditions. Excessive spillover effects are recorded 
under extreme market conditions. The total STV interconnectedness of C-SIBs is 86.32% 
(91.09%) under bearish (bullish) market conditions, significantly higher than the total 
STV interconnectedness of C-SIBs under normal market conditions. This finding indi-
cates that unexpected events tend to have a more significant impact when the market 
is in extreme conditions. The extent to which shocks impact the interconnectedness of 
C-SIBs depends on market conditions and justifies our choice of the quantile connect-
edness approach of Ando et al. (2022) to reveal the evolving connectedness at different 
market states. The higher total STV interconnectedness measured under extreme mar-
ket conditions is reminiscent of how tailed or extreme shocks exert a higher impact on 
the connectedness. This finding is consistent with the observation of Umar et al. (2023), 

13  Due to space limitations, the summary statistics of C-SIBs’ market capitalization are not presented here and are avail-
able upon request.
14  Calculated from the value of “TO” in Table  3, G5 to G2 report the spillover effect of 50.27%, 56.27%, 46.69%, and 
32.32%, respectively. Similarly, calculated from the value of “FROM” in Table 3, G5 to G2 report the spillover effect of 
48.67%, 50.43%, 47.80%, and 36.82%, respectively.
15  Calculated from the value of “NET” in Table  3, G5 to G2 report the net spillover effect of 1.61%, 5.85%, − 1.11%, 
and − 4.50%, respectively.
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who focus on the commodity and exchange markets. The more volatile the market con-
ditions become, the more prominent the interconnectedness of C-SIBs will be. This 
phenomenon aligns with investors’ preference for flight to quality under more volatile 
market conditions. Furthermore, investors’ speculation on the changes in one C-SIB will 
lead to more information diffusion to other C-SIBs if market conditions become more 
volatile, which results in the more prominent interconnectedness of C-SIBs. In other 
words, when the C-SIBs system is affected by extreme shocks, both interconnectedness 
and risk spread between C-SIBs increase. This finding also corroborates previous conta-
gion literature that illustrates how extreme shocks spill over under extreme market con-
ditions (Londono 2019).

Focusing on the group perspective, when the market becomes more bearish, G4 is still 
the smallest spillover transmitter (82.80%) and receiver (85.79%), whereas G3 is the larg-
est spillover transmitter (88.01%) and receiver (86.60%).16 Similarly, under more bull-
ish market conditions, G2 and G4 are the smallest spillover transmitters (84.72%) and 
receivers (90.23%), respectively, whereas G4 and G3 are the largest spillover transmit-
ters (103.43%) and receivers (91.51%), respectively.17 Moreover, the difference between 
the largest and smallest spillover transmitter (receiver) is significantly lower under bear-
ish or bullish market conditions than under normal market conditions, suggesting that 
a bank’s systemic importance becomes less relevant under extreme market conditions. 
When examining the net spillover effect, under bearish market conditions, G3 is the 
largest net transmitter of spillover (1.41%), whereas G4 is the largest receiver of spillover 
(− 2.99%). Roughly speaking, increasing a bank’s systemic importance will turn it from a 
net receiver of spillover to a net transmitter of spillover, which is the direct opposite of 
the C-SIBs system experiences under normal market conditions.18 By comparison, under 
bullish market conditions, G4 is the largest net transmitter of spillover (13.13%), whereas 
G2 is the largest receiver of spillover (− 6.50%). The gradual strengthening of a bank’s 
systemic importance will transform it from a net transmitter of spillover to a net receiver 
of spillover, consistent with what will happen when the market is under normal con-
ditions.19 Overall, as market conditions become increasingly bullish, i.e., from extreme 
lower quantile to extreme upper quantile, a bank with lower systemic importance, i.e., 
G5, will transform from a net receiver of spillover to a net transmitter. In contrast, a 
bank with higher systemic importance, i.e., G2, will transform from a net transmitter 
of spillover to a net receiver. From a policymaker’s perspective, C-SIBs with higher sys-
temic importance should be assigned more attention when the market is under bullish 
conditions since they dominate the C-SIBs system as the net transmitter of spillover. In 
contrast, policymakers should allocate more regulatory resources to C-SIBs with lower 

16  Calculated from the value of “TO” in Table  4, G5 to G2 report the spillover effect of 86.04%, 82.80%, 88.01%, and 
87.23%, respectively. Similarly, calculated from the value of “FROM” in Table 4, G5 to G2 report the spillover effect of 
86.24%, 85.79%, 86.60%, and 86.50%, respectively.
17  Calculated from the value of “TO” in Table 5, G5 to G2 report the spillover effect of 93.15%, 103.43%, 87.30%, and 
84.72%, respectively. Similarly, calculated from the value of “FROM” in Table 5, G5 to G2 report the spillover effect of 
91.08%, 90.28%, 91.51%, and 91.22%, respectively.
18  Calculated from the value of “NET” in Table 4, G5 to G2 report the net spillover effect of –0.20%, –2.99%, 1.41%, and 
0.73%, respectively.
19  Calculated from the value of “NET” in Table 5, G5 to G2 report the net spillover effect of 2.06%, 13.13%, − 4.21%, 
and − 6.50%, respectively.
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systemic importance when the market is under bearish conditions since they are now 
the net transmitters of spillover.

Figure  1 illustrates the network visualization of net pairwise directional STV inter-
connectedness under normal, bearish, and bullish market conditions. The node’s size 
signifies the extent of the spillover effect, and node colors specify whether a C-SIB is 
a net transmitter (steel blue) or receiver (gold) of spillovers. The thickness of the edges 
represents the strength of spillover toward other C-SIBs, while the direction of the 
arrows specifies the direction of pairwise spillovers. Figure  1a vividly depicts a dense 
and robust STV interconnectedness structure of C-SIBs under normal market condi-
tions. Most C-SIBs are the net receivers of spillovers under normal market conditions. 
From the group perspective, half the members of G5, i.e., PAB, BON, and HXB, are net 

Fig. 1  Net pairwise directional STV interconnectedness network at different quantiles over the full-sample 
period. a–c Present results of net pairwise directional STV interconnectedness at median (τ = 0.5), lower 
(τ = 0.05) and upper (τ = 0.95) quantile conditions. The size of the nodes signifies the extent of the spillover 
effect, and the color of the nodes specifies whether a C-SIB is a net transmitter (steel blue) or receiver (gold) 
of spillovers. The thickness of the edges represents the strength of spillover towards other C-SIBs, while the 
direction of the arrows specifies the direction of pairwise spillovers. Note: Results are based on a 200-days 
rolling-window QVAR model with a lag length of order one (based on the AIC criterion) and a 10-step-ahead 
generalized forecast error variance decomposition
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transmitters of spillovers, whereas the remaining members, i.e., CMBC, BOB, and CEB, 
are net receivers of spillovers. Due to the opposite roles played by G5 members, its status 
as a net transmitter of spillovers is relatively weak. In contrast, all the members of G4, 
i.e., SPD and CITIC, are the net transmitters of spillovers; therefore, as a net transmitter 
of spillovers, G4 plays a relatively major role in the C-SIBs system. CMB and BoCom, as 
net receivers of spillovers, dominate CIB as the net transmitter of spillovers in G3, weak-
ening G3’s status as a net receiver of spillovers. Last, all members of G2, i.e., ABC, ICBC, 
CCB, and BOC, are the net receiver of spillovers, implying that the strength of G2 as a 
net receiver of spillover is comparatively strong. Overall, within the dense and robust 
STV interconnectedness structure of C-SIBs, a bank’s increasing systemic importance is 
usually associated with transforming from a net transmitter of spillover to a net receiver 
of spillover.

Likewise, contrary to the dense and robust STV interconnectedness structure of 
C-SIBs under normal market conditions, Fig. 1b and c illustrate a relatively sparse but 
stronger STV interconnectedness structure of C-SIBs under bearish and bullish mar-
ket conditions, respectively. Under extreme market conditions, the intensity of net 
spillovers between the C-SIBs is more pronounced, as illustrated by the thicker arrows, 
which indicates that large shocks propagate considerably more forcefully than weaker 
shocks (Ando et al. 2022). Compared to normal market conditions, most C-SIBs are the 
net transmitters of spillovers under bearish market conditions, whereas the C-SIBs are 
roughly split between the net transmitter of spillovers and the net receiver of spillovers 
under bullish market conditions. Furthermore, as a bank becomes more systemically 
important, it will gradually transform from a net receiver of spillover to a net transmitter 
of spillover under bearish market conditions and take an opposite transformation under 
bullish market conditions. Combining previous analysis, we conclude that the extent of 
spillover among the C-SIBs system varies considerably under different market condi-
tions, which aligns with Li et al. (2019). Moreover, a bank with lower systemic impor-
tance will transform from a net receiver of spillover to a net transmitter of spillover, and 
a bank with higher systemic importance will experience an opposite transformation as 
market conditions become increasingly bullish. The graphical visualization illustrated in 
Fig. 1 is consistent with the empirical results summarized in Table 3, 4 and 5.

We plot the total and directional net STV interconnectedness index at different quan-
tiles to further examine how the STV interconnectedness of C-SIBs varies across vari-
ous quantiles. The first plot of Fig. 2 shows that the total STV interconnectedness index 
exhibits a distinct U-shaped characteristic with the lowest points around the median 
and the highest points at the upper and lower quantiles. The total STV interconnect-
edness index change between the extremes of the lower and upper quantiles appears 
to follow a symmetrical pattern. This observation is consistent with prior research on 
contagion and indicates that extreme occurrences have a roughly equal possibility of 
spreading to higher and lower quantiles (Londono 2019). This result again shows that 
the STV interconnectedness of C-SIBs tends to increase significantly under extreme 
market conditions and further corroborates the necessity of considering the quantile-
based connectedness method, as the mean-based connectedness method cannot cap-
ture this critical feature. This finding follows Betz et al. (2016) and Mensi et al. (2023); 
network interconnectedness under extreme market conditions makes more sense than 
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conventional average-based correlations in terms of adequately supervising the financial 
system as the usage of mean-based connectedness measures does not provide accurate 
results. Notably, this conclusion is also consistent with other scholars investigating stock 
markets (Wang et al. 2023), cryptocurrency markets (Mensi et al. 2023), and commod-
ity markets (Asadi et al. 2023). Furthermore, the remaining plots of Fig. 2 indicate that 
the intensity of STV interconnectedness still varies across various quantiles even if the 
U-shaped curve does not apply to the directional net STV interconnectedness index, 
which justifies the choice of the quantile-based connectedness method.

Dynamic quantile interconnectedness of C‑SIBs

As summarized in Table  3, 4 and 5, the previous static quantile interconnectedness 
analysis reveals the variation of the STV interconnectedness of C-SIBs under different 
market conditions; however, the static analysis sheds no light on the evolutionary char-
acteristics of STV interconnectedness of C-SIBs. Moreover, Ang and Bekaert (2002) sug-
gest that the intensity of market linkages is stronger under turbulent market conditions 
than in normal market conditions, indicating the necessity of time-varying analysis. 
Therefore, to better understand how the STV interconnectedness of C-SIBs fluctuates 
during the sample period, we consider a 200-day rolling-window quantile vector autore-
gressive model with a lag length of order one and a 10-step-ahead forecast horizon 
based on the AIC. Figure 3 illustrates the trajectory of dynamic STV interconnectedness 
of C-SIBs under different market conditions.

The first plot of Fig. 3 shows that for normal market conditions, the STV interconnect-
edness of C-SIBs varies considerably between 35 and 65%, with a clear trough recorded 
in 2012. This short-term trough is categorized as the post-European debt crisis period. 
From the beginning of 2013, the STV interconnectedness of C-SIBs sharply bounced 

Fig. 2  Variation in the STV interconnectedness across various quantiles. Notes: The first panel reports the 
value of the total STV interconnectedness index at the τth conditional quantile. The remaining panels report 
the value of the net directional STV interconnectedness index at the τth conditional quantile. Note: Please 
refer to Fig. 1
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back to approximately 45%, exhibiting some small fluctuations around this level until the 
end of 2014. Subsequently, the STV interconnectedness of C-SIBs experienced a sharp 
increase and stayed at a high level of roughly 60% from 2015 to 2016, categorized by 
the Chinese stock market turbulence. The waning influence of the Chinese stock market 
turbulence enabled the STV interconnectedness of C-SIBs to experience a sharp decline 
and keep a low level until the end of 2019. Following the outbreak and deterioration of 
the COVID-19 pandemic, the STV interconnectedness of C-SIBs gradually ascended to 
approximately 60% but fell to about 35% at the end of the first half of 2022. The quick 
reversion could be attributed to the expansionary nature of monetary and fiscal policies 
(Umar et al. 2023), partly contributing to easing financial hardships and market volatility 
(Antonakakis et al. 2023). Thus, the STV interconnectedness of C-SIBs fluctuates widely 
over time and witnesses two spikes, consistent with two turbulence periods, implying 
the time-varying characteristics of STV interconnectedness of C-SIBs. This outcome 
also supports the argument proposed by Andries et al. (2022) that the interconnected-
ness between systemically important institutions will experience a significant increase 
when unexpected shock occurs. The increased interconnectedness may hurt financial 
stability by amplifying C-SIBs’ mistakes of underestimating risk. This observation is 
consistent with the empirical findings summarized by Chen (2022) that build a network 
model to examine the relationship between financial stability and interconnectedness 
among banks.

A natural question is whether the STV interconnectedness of C-SIBs evaluated under 
normal market conditions shares typical dynamics with the STV interconnectedness of 
C-SIBs evaluated under extreme market conditions. Observing the evolutionary nature 
of the STV interconnectedness of C-SIBs under extreme market conditions will provide 
invaluable information for investors to design their investment strategy promptly. The 

Fig. 3  Dynamic total STV interconnectedness at different quantiles. Relative tail dependence is defined 
as the difference between the total STV interconnectedness at the 95th quantile and the total STV 
interconnectedness at the 5th quantile. A negative (positive) value indicates a strong dependence at the 
lower (upper) quantile. The strength of the total STV interconnectedness at all quantiles is shown by the 
colored bar with warm (red) shade refers to higher total STV interconnectedness and cold (blue) shade 
denotes lower total STV interconnectedness. Note: Please refer to Fig. 1
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second plot of Fig. 3 illustrates the STV interconnectedness of C-SIBs under both bear-
ish and bullish market conditions. This finding conveys that common dynamics are not 
the case for the STV interconnectedness of C-SIBs evaluated under different market 
conditions. On the one hand, the STV interconnectedness of C-SIBs is much stronger 
under extreme market conditions than in normal market conditions. On the other hand, 
unlike under normal market conditions, the STV interconnectedness of C-SIBs fluctu-
ates within a smaller boundary of 88–102% under extreme market conditions, indicating 
a moderate time-varying characteristic.

Notably, the STV interconnectedness of C-SIBs under bearish market conditions 
negatively correlates to the STV interconnectedness of C-SIBs under bullish market 
conditions. This result suggests that changes under bearish market conditions synchro-
nize somewhat with oppositely-signed changes under bullish market conditions. At 
this stage, a prolonged downward drift is observed in the STV interconnectedness of 
C-SIBs under bearish market conditions, signaling a weakened appetite for transmitting 
good news. Meanwhile, a sustained peak is illustrated in the STV interconnectedness of 
C-SIBs under bullish market conditions, indicating a pronounced increase in investors’ 
sensitivity to bad news. Furthermore, during the COVID-19 period, a similar but mod-
erate comparison arises between the STV interconnectedness of C-SIBs under bearish 
and bullish market conditions. The comparison could be attributed to investors’ aggre-
gate behavior if bad news associated with adverse shocks prompts a non-trivial propor-
tion of investors to disproportionately fix their attention on subsequent bad news while 
focusing less on good news (Ando et al. 2022). Take the post-European debt crisis period 
as an example of beneficial shock. A significant reduction is recorded in the STV inter-
connectedness of C-SIBs under bullish market conditions, and a sustained increase is 
illustrated in the STV interconnectedness of C-SIBs under bearish market conditions. 
The opposite comparison manifests that investors’ optimism is gaining ground, and, as 
good news, improving the economic situation can stimulate a significant intensification 
of stabilizing beneficial spillovers. Overall, it is intuitive to infer that periods of increas-
ing fragility, characterized by the propensity for spreading adverse shocks, are also peri-
ods of intensively spreading positive shocks, and vice versa. The observation derived 
from the quantile connectedness aligns with those of Bouri et al. (2021) and Umar et al. 
(2023). It has been extensively reviewed that major economic and social events tend to 
increase the connectedness of financial markets (Aharon et al. 2022; Umar et al. 2023). 
Our findings infer that these dynamics are much more intense and observable under 
extreme market conditions than in normal market conditions; hence, the quantile-based 
connectedness is relevant to discovering the hidden reality behind C-SIBs’ linkages in 
periods of heightened turbulence and widespread uncertainty.

Thus far, our findings indicate that major adverse events, i.e., the Chinese stock mar-
ket turbulence and the COVID-19 pandemic, coincide with a significant and sustained 
increase in average interconnectedness of C-SIBs; however, their effects on the tails vary 
sharply. These findings support Ando et  al. (2022) and Chen et  al. (2022a) that tradi-
tional mean-based estimators are unsuitable for analyzing extreme risk propagation 
across markets. Against this backdrop, we follow Ando et  al. (2022) to investigate the 
relative tail dependence (RTD) that measures the difference between the STV intercon-
nectedness of C-SIBs under bullish market conditions and the STV interconnectedness 
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of C-SIBs under bearish market conditions. A positive (negative) value indicates a strong 
dependence at the upper (lower) quantile. The graphical illustration of RTD is presented 
in the third plot of Fig.  3. The RTD noticeably fluctuates within a 1–12% boundary, 
highlighting that the C-SIBs system is asymmetrically interconnected across quan-
tiles and at higher levels under bullish than bearish market conditions. The asymme-
try may be attributed to the amplification of market volatility during the crisis periods 
(Kocaarslan and Soytas 2019; Rehman et al. 2023). The time-varying characteristic of the 
RTD implies how effectively forecasting market movements and the occurrence of sig-
nificant events is critical for policymakers and market participants in terms of effective 
policymaking and risk management. During the Chinese stock market turbulence and 
the COVID-19 pandemic periods, the RTD increased significantly. This result extends 
the study by Ando et al. (2022) that the increase in RTD provides evidence of the rising 
financial fragility of the C-SIBs system during these periods.

The heatmap, presented as the last plot of Fig. 3, graphs the dynamic STV intercon-
nectedness of C-SIBs across a quantile range of 0.05–0.95, with warm (red) and cold 
(blue) shades referring to the strong and weak STC interconnectedness of C-SIBs, 
respectively. Interconnectedness is strong under bearish (below the 25% quantile) and 
bullish (above the 75% quantile) market conditions; however, the C-SIBs system is asym-
metrically interconnected as shocks in the upper quantiles impact the system of inter-
connectedness more than shocks estimated at the lower quantiles. Furthermore, the 
STC interconnectedness of C-SIBs under normal market conditions, associated with the 
50% quantile, presents more volatile and frequent changes in color shades, indicating 
its dynamic characteristics. During some specific periods, i.e., the Chinese stock market 
turbulence and the COVID-19 pandemic, significant values are recorded for the STC 
interconnectedness of C-SIBs under normal market conditions. This finding indicates 
the cyclical pattern and event-driven feature of STV interconnectedness of C-SIBs.

Fig. 4  Dynamic net directional STV interconnectedness at the median (τ = 0.05) condition. Note: Please refer 
to Fig. 1



Page 26 of 39Jin ﻿Financial Innovation           (2024) 10:40 

We next analyze the net spillover effects of each C-SIB by observing each S-SIB’s 
position in the whole C-SIB system under different market conditions. Figures  4, 5 
and 6 illustrate the dynamic net directional STV interconnectedness of C-SIBs under 
normal, bearish, and bullish market conditions. From the group perspective, there 
are two modes of net spillovers in Fig.  4. The first includes G5 and G4, which are 
the transmitters of spillover because their net spillovers are mainly positive during 
the sample period. The second mode comprises G3 and G2, whose net spillovers are 
predominantly negative over the sample period, implying their role as net receivers 
of spillover. As a net transmitter of spillover, G4 plays a more significant role than 

Fig. 5  Dynamic net directional STV interconnectedness at the extreme lower (τ = 0.05) quantile condition. 
Note: Please refer to Fig. 1

Fig. 6  Dynamic net directional STV interconnectedness at the extreme upper (τ = 0.95) quantile condition. 
Note: Please refer to Fig. 1
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G5, which is also the case of G2 compared to G3 as a net receiver of spillover. This 
finding implies that the role of C-SIBs has changed from a net transmitter of spillo-
ver to a net receiver of spillover in the wake of the gradual increase of their systemic 
importance. At the same time, the plots in Fig. 5 depict a different picture. G5 and G4 
could be classified as net receivers of spillover, whereas G3 and G2 fall into the mode 
of the net transmitter of spillover. The general pattern from this finding suggests that 
under bearish market conditions, C-SIBs will transform from a net receiver of spillo-
ver to a net transmitter of spillover following the increase of their systemic impor-
tance. In contrast, Fig. 6 indicates a similar but enhanced pattern to that presented 
under normal market conditions. Overall, we again conclude that the role played by a 
C-SIB with different systemic importance depends on changes in market conditions. 
As market conditions gradually improve, i.e., turning from bearish to bullish, a C-SIB 
will transform from a net receiver of spillover to a net transmitter of spillover if its 
systemic importance is labeled “low.” In contrast, a C-SIB will transform from a net 
transmitter of spillover to a net receiver if its systemic importance is labeled “high.”

To better understand how sensitive the net spillover effects of C-SIBs are to market 
conditions, we visualize the dynamic net interconnectedness of C-SIBs across a broad 
spectrum of quantiles spanning from 0.05 to 0.95. Figure  7 illustrates the results in 
heatmap matrices, with warmer shades indicating a net transmitter of spillover and 
colder shades representing a net receiver of spillover. Figure  7 shows that the net 
spillover effects of C-SIBs are relatively sensitive to market conditions. In the con-
text of market conditions becoming more bullish, a C-SIB with a lower level of sys-
temic importance has more potential to act as a net transmitter of spillover than a 
net receiver of spillover. In contrast, a C-SIB with a higher level of systemic impor-
tance has more potential to act as a net receiver of spillover than a net transmitter. 
Furthermore, the warmer shades are more significant in the heatmaps for the C-SIBs 

Fig. 7  Dynamic net directional STV interconnectedness at all quantile conditions. Note: Please refer to Fig. 1
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with a lower level of systemic importance, indicating they predominantly act as the 
net transmitter of spillover. In comparison, the C-SIBs with a higher level of systemic 
importance play the net receiver of spillover more constantly, as shown by more pro-
nounced colder shades in the heatmaps. Overall, the general findings of Figs.  4, 5, 
6 and 7 corroborate those discussed in Section "Static quantile interconnectedness 
of C-SIBs"/these results provide policymakers and market participants guidelines for 
scrutinizing the dynamic changes of spillover effects of C-SIBs depending on their 
systemic importance and market conditions.

The comparison between STV and higher‑order moments interconnectedness of C‑SIBs

The previous two subsections provided a thorough analysis of the STV interconnected-
ness of C-SIBs, which significantly expands the sphere of application of the salience the-
ory proposed by Bordalo et al. (2012). Notably, from the salience theory perspective, we 
effectively confirm that the interconnectedness between systemically important institu-
tions will experience a significant increase when unexpected shock occurs. At this stage, 
an obvious question arises: does this confirmation hold if the interconnectedness of 
C-SIBs is measured from the return, volatility, or higher-order moments perspective?20 
Specifically, we attempt to answer the following critical question. What are the differ-
ences between STV interconnectedness and higher-order moment interconnectedness? 
This research question has never arisen in the existing studies; however, it is of practi-
cal importance for policymakers and market participants in formulating their regulatory 
strategies and risk management.

Figures  8, 9, 10 and 11 compare the dynamic STV and higher-order moment inter-
connectedness of C-SIBs under different market conditions.21 In general, the graphical 
evidence illustrates that the interconnectedness of C-SIBs prominently varies with the 
order of the moments, and a significant difference exists between the higher-order and 
STV interconnectedness of C-SIBs. Specifically, as the first plot of Figs. 8, 9, 10 and 11 
shows for the normal market conditions, the higher-order moment interconnectedness 
of C-SIBs is higher than the STV interconnectedness of C-SIBs; however, the STV inter-
connectedness of C-SIBs has been more accurate and robust in responding to significant 
market events, i.e., the Chinese stock market turbulence and the COVID-19 pandemic. 
This result could be explained by the fact that compared to the higher-order moment 
estimators, the STV estimator contains more information about investors’ expectations 
for the future performance of C-SIBs in reaction to the outbreak of significant market 
events. Moreover, the STV interconnectedness of C-SIBs illustrates a more obvious fluc-
tuating characteristic, making the trajectory steeper. Although the initial confirmation 
has been upheld from the higher-order moments perspective, we should acknowledge 

20  Numerous studies of the interconnectedness of financial institutions have appeared in the literature (Billio et  al. 
2012; Diebold and Yilmaz 2014; Demirer et al. 2018; Wang et al. 2018a; Liang et al. 2020). These existing studies have all 
confined themselves to the return and volatility interconnectedness. Scant attention has been paid to the higher-order 
moment interconnectedness of financial institutions. In this sense, this study is the first to present the higher-order 
moment interconnectedness of financial institutions.
21  ri,s;t is the 5-min return in a given interval s and day t for bank i, and the daily realized return RRi,t is defined as: 
RRi,t =

∑St

S
ri,s;t . Inspired by Andersen and Bollerslev (1998) and Amaya et al. (2015), we further construct the daily real-
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that STV could provide more information than higher-order moments in capturing the 
dynamic change in the C-SIBs system and detecting some market events more precisely.

The second plot of Figs.  8, 9, 10 and 11 compares STV and higher-order moments 
interconnectedness of C-SIBs under bearish market conditions. Besides the kurtosis 
interconnectedness of C-SIBs, the remaining higher-order moment interconnected-
ness of C-SIBs is relatively higher than the STV interconnectedness of C-SIBs. Like STV 
interconnectedness, the higher-order moment interconnectedness reflects the impact of 
the Chinese stock market turbulence in a pronounced manner. Furthermore, during the 

Fig. 8  Comparison of dynamic STV and Return interconnectedness at different quantiles. Relative tail 
dependence is defined as the difference between the STV (Return) interconnectedness at the 95th quantile 
and the STV (Return) interconnectedness at the 5th quantile. Note: Please refer to Fig. 1

Fig. 9  Comparison of dynamic STV and Volatility interconnectedness at different quantiles. Relative tail 
dependence is defined as the difference between the STV (Volatility) interconnectedness at the 95th quantile 
and the STV (Volatility) interconnectedness at the 5th quantile. Note: Please refer to Fig. 1
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COVID-19 period, a similar but moderate comparison arises between the STV inter-
connectedness of C-SIBs and the higher-order moment interconnectedness of C-SIBs. 
Overall, compared to the sharp changes observed in higher-order moment intercon-
nectedness, the responses of STV interconnectedness to important market events are 
sustained and forward-looking. The forward-looking merit is essential for policymakers 
and market participants attempting to forecast crisis events in advance. We can draw 
the same conclusion after graphically visualizing the comparison between STV and 
higher-order moments interconnectedness of C-SIBs under bullish market conditions as 

Fig. 10  Comparison of dynamic STV and Skewness interconnectedness at different quantiles. Relative 
tail dependence is defined as the difference between the STV (Skewness) interconnectedness at the 95th 
quantile and the STV (Skewness) interconnectedness at the 5th quantile. Note: Please refer to Fig. 1

Fig. 11  Comparison of dynamic STV and Kurtosis interconnectedness at different quantiles. Relative tail 
dependence is defined as the difference between the STV (Kurtosis) interconnectedness at the 95th quantile 
and the STV (Kurtosis) interconnectedness at the 5th quantile. Note: Please refer to Fig. 1
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presented in the third plot of Figs. 8, 9, 10 and 11. This finding’s credibility is also sup-
ported by the last plot of Figs. 8, 9, 10 and 11; the STV interconnectedness of C-SIBs 
records more significant changes of relative tail dependence than the higher-order 
moment interconnectedness of C-SIBs could in responding to the Chinese stock market 
turbulence, and the COVID-19 pandemic. However, capturing the higher-order moment 
interconnectedness of C-SIBs is still worthwhile, as they contain information about mar-
ket risk and consequently become a helpful supplement to the STV interconnectedness 
of C-SIBs. This finding corroborates Fengler and Gisler (2015); the analysis of spillovers 
should extend to higher-order moments. Finally, the comparative analysis extends the 
studies of Adekoya and Oliyide (2021) and Cui and Maghyereh (2023) that cover the 
higher-order moment risk spillover transmissions across oil and commodity markets.

We next focus on the quantitative evidence supporting the superior predicting perfor-
mance of STV interconnectedness. As interconnectedness jumps whenever the financial 
market experiences distress, which could be measured as significant volatility fluctua-
tions, we expect that the interconnectedness of financial institutions will convey infor-
mation regarding future volatility and exhibit a certain degree of predictive power for 
significant market events, i.e., the Chinese stock market turbulence and the COVID-19 
pandemic. We start from the in-sample estimation, employing the HAR-RV-X22 model:

where RVM
t  is the daily realized volatility of China’s stock market, represented by the 

SSE Composite Index. IV X denotes the STV interconnectedness of C-SIBs or one of the 
higher-order moment interconnectedness of C-SIBs. We consider s-days ahead forecasts 
for s = 1, 22 , equivalent to one-day and one-month forecasting horizons, respectively. 
εt represents white noise. The initial sample period is T̃ = 726  days to ensure a large 
sample size for estimating the Eq.  (15). The initial sample period is used to obtain the 
first out-of-sample forecasts for 1  day and 22  days ahead. We consider a rolling-win-
dow approach for each subsequent forecast, with a fixed length of 726 days. Two well-
known evaluation functions, i.e., the mean squared predicted error (MSE) and the mean 
absolute predicted error (MAE), are employed to evaluate the forecasting accuracy of 
Eq. (15).

Table 6 summarizes the MAE and MSE ratios of the HAR-RV-X model with higher-
order moment interconnectedness as exogenous variables to the HAR-RV-X model with 
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22  Degiannakis and Filis (2017) indicate that the heterogeneous autoregressive model (HAR) by Corsi (2009) is consid-
ered the most suitable method for modeling and forecasting asset price volatility.
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STV interconnectedness as exogenous variables. A ratio above 1 suggests that the MAE/
MSE of the HAR-RV-X model with STV interconnectedness as an exogenous variable 
outperforms those of the HAR-RV-X models with higher-order moment interconnect-
edness as exogenous variables. Table 6 shows that in most cases, STV interconnected-
ness provides more predictive power than higher-order interconnectedness. This result 
may quantitatively corroborate the effectiveness of STV interconnectedness in convey-
ing information about future market development; however, the main idea of this study 
is not to identify out-of-sample forecasting but to use it for economic inference. Never-
theless, compared to Fengler and Gisler (2015), we conclude that the analysis of spillo-
vers should be extended to other higher-order moments.

Robustness analysis

To ensure the robustness of our empirical results, we conduct the sensitivity analysis 
with two alternative settings. Figure 12 shows the robustness of our empirical results to 
the selections of rolling-window lengths at different quantiles. The selection of rolling-
window length affects the level of the interconnectedness index under normal market 
conditions, with shorter window lengths yielding relatively higher values. This basic fea-
ture is also apparent under bearish and bullish market conditions, although with greater 
noise; however, the time-varying characteristics of the STV interconnectedness, our 
primary concern, are largely unaffected by the selection of rolling-window length. This 
finding holds even if the relative tail dependence is under consideration, as shown in the 
last plot of Fig. 12. Second, we test the robustness of our empirical results under differ-
ent forecast horizons. The first two plots of Fig. 13 show that the forecast horizon selec-
tion does not exert a discernable effect on the STV interconnectedness under normal 
and bearish market conditions. Moreover, the last two plots of Fig. 13 illustrate that the 

Fig. 12  Robustness to the selections of rolling window lengths at different quantiles. Relative tail 
dependence is defined as the difference between the STV interconnectedness at the 95th quantile and 
the STV interconnectedness at the 5th quantile. Note: Results are based on 150-, 200-, and 250-days 
rolling-window QVAR models with lag length of order one (based on the AIC criterion) and a 10-step-ahead 
generalized forecast error variance decomposition
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time-varying trend of STV interconnectedness and relative tail dependence is consist-
ent under different forecast horizons. Therefore, we conclude that the choice of rolling-
window length and forecast horizon does not influence our empirical results, confirming 
the robustness of our empirical findings.23

Conclusions and policy implications
This paper contributes to the existing literature on the spillover property of financial 
institutions by exploring the interconnectedness of C-SIBs under different market con-
ditions from the salience theory perspective. As far as we know, this is a unique study 
where the analysis considers the STV. Building on Cosemans and Frehen (2021), we con-
struct the STV for C-SIBs stock high-frequency returns and apply the quantile-based 
connectedness method proposed by Ando et  al. (2022) to examine the STV intercon-
nectedness of C-SIBs under different market conditions from 2010 to 2022. Our primary 
motivation is twofold. On the one hand, STV may contain unique information not cap-
tured by traditional higher-order moments, i.e., return, volatility, skewness, and kurtosis, 
which makes the spillover analysis more attractive and enlightening. On the other hand, 
the mean-based interconnectedness of C-SIBs may not share the same features as those 
appearing under extreme market conditions, indicating the need for a more refined 
model of STV interconnectedness to uncover the complexity in the time-varying con-
nectivity of C-SIBs.

Fig. 13  Robustness to the selections of forecasting horizons at different quantiles. Relative tail dependence 
is defined as the difference between the STV interconnectedness at the 95th quantile and the STV 
interconnectedness at the 5th quantile. Note: Results are based on a 200-days rolling-window QVAR models 
with lag length of order 1 (based on the AIC criterion) and 5-, 10-, and 15-step-ahead generalized forecast 
error variance decompositions

23  We also investigate the robustness of our empirical results on selecting the remaining combinations of rolling-window 
length and forecast horizon. The test results also show the robustness of our empirical results. Due to space limitations, 
the detailed graphical visualizations of these test results are not presented here and are available from the author upon 
request.
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Our empirical analysis summarizes convincing evidence for several significant results. 
First, our findings suggest stronger time-varying STV interconnectedness of C-SIBs 
under extreme market conditions compared to normal market conditions. Furthermore, 
evidence suggests that the C-SIBs system is asymmetrically interconnected across quan-
tiles and at higher levels under bullish than bearish market conditions. Accordingly, 
applying the quantile-based connectivity approach explains the asymmetric tail risk dis-
persion in the C-SIBs system, which could be masked by only considering mean-based 
connectedness measures. Second, we show that a bank’s performance in the C-SIBs sys-
tem depends on its systemic importance and market conditions. As market conditions 
become increasingly bullish, a bank with lower systemic importance will transform from 
a net receiver of spillover to a net transmitter of spillover. In contrast, a bank with higher 
systemic importance will transform from a net transmitter of spillover to a net receiver 
of spillover. Finally, this study provides clear evidence that STV could provide more 
information than higher-order moments in capturing the dynamic change in the C-SIBs 
system and detecting some market events more precisely. Our empirical findings in this 
study are crucial for policymakers and market participants to formulate regulatory pol-
icy and design risk management strategies. For policymakers, evidence of asymmetrical 
interconnectedness under extreme market conditions provides a nuanced understand-
ing of the importance of extreme risk transmission within the C-SIBs system. This infor-
mation makes the quantile-based method essential to a sound early warning system and 
a risk response mechanism. By extending our knowledge regarding the dynamic changes 
of spillover effects of C-SIBs in response to their systemic importance and market condi-
tions, policymakers should pay more attention to C-SIBs with higher (lower) systemic 
importance under bullish (bearish) market conditions. Otherwise, focusing only on sys-
temic importance or market conditions within the interconnectedness of C-SIBs will 
likely lead to the misallocation of valuable supervision resources and the application of 
inappropriate policy tools and surveillance mechanisms. For instance, most regulatory 
efforts are allocated to large state-owned commercial banks due to their higher systemic 
importance; however, we show that small and medium-sized commercial banks mat-
ter to the stability of the interconnectedness of C-SIBs, especially under bearish market 
conditions, even if their systemic importance is relatively low. Regarding market par-
ticipants, our empirical analysis may help them refine their decision-making procedure 
under extreme market conditions and improve risk management effectiveness. The 
results concerning dynamic and asymmetric interconnectedness have helpful implica-
tions for market participants designing investment strategies. Furthermore, the fore-
sight of the STV indicator can help market participants effectively predict future market 
events and promptly adjust their investment decisions. It is also helpful for policymakers 
to construct an STV-based surveillance mechanism with higher-order moment-based 
tools to more effectively predict systemic risk arising from the interconnectedness of 
C-SIBs under extreme market conditions. Last, this paper provides a possible framework 
or reference for C-SIBs to implement internal risk management. Based on the quantile 
interconnectedness approach, C-SIBs can manage their internal risk from the perspec-
tive of market conditions, investors’ salient thinking, and risk-return preference. C-SIBs 
especially should behave carefully under bearish and bullish market conditions as inves-
tors’ salient thinking and risk-return preference could be affected by market conditions.
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Nonetheless, our study does not address whether the empirical finding is reliable if 
other intraday frequencies are considered, e.g., 10-, 15-, and 30-min intervals. The 
robustness of our empirical findings should be further examined by following the path 
of Cosemans and Frehen (2021) to formulate a salience theory value based on daily 
frequency. By pursuing this direction, we will have the opportunity to examine the 
robustness of this study to data frequency. Furthermore, our proposed STV intercon-
nectedness only focuses on C-SIBs. It can be extended to global systemically important 
banks in future studies to depict a clear picture concerning the interconnectedness of 
global systemically important banks with the consideration of investors’ salient think-
ing and risk-return preference as well as market conditions. Moreover, with the help of 
Baruník and Křehlík (2018) and Chatziantoniou et al. (2022), this study can be extended 
to analyze the STV interconnectedness of C-SIBs from the frequency perspective. By 
addressing these limitations, future research can build upon our empirical findings and 
contribute to a deeper understanding of how China’s systemically important banks are 
affected by the interaction among market conditions, investors’ salient thinking, and 
their risk-return preference.
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