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Abstract 

This study proposed a cutting-edge, multistep workflow and upgraded it by address-
ing its flaw of not considering how to determine the index system objectively. It then 
used the updated workflow to identify the probability of China’s systemic financial crisis 
and analyzed the impact of macroeconomic indicators on the crisis. The final workflow 
comprises four steps: selecting rational indicators, modeling using supervised learning, 
decomposing the model’s internal function, and conducting the non-linear, non-
parametric statistical inference, with advantages of objective index selection, accu-
rate prediction, and high model transparency. In addition, since China’s international 
influence is progressively increasing, and the report of the 19th National Congress 
of the Communist Party of China has demonstrated that China is facing severe risk 
control challenges and stressed that the government should ensure that no systemic 
risks would emerge, this study selected China’s systemic financial crisis as an example. 
Specifically, one global trade factor and 11 country-level macroeconomic indica-
tors were selected to conduct the machine learning models. The prediction models 
captured six risk-rising periods in China’s financial system from 1990 to 2020, which 
is consistent with reality. The interpretation techniques show the non-linearities of risk 
drivers, expressed as threshold and interval effects. Furthermore, Shapley regression 
validates the alignment of the indicators. The final workflow is suitable for categorical 
and regression analyses in several areas. These methods can also be used indepen-
dently or in combination, depending on the research requirements. Researchers can 
switch to other suitable shallow machine learning models or deep neural networks 
for modeling. The results regarding crises could provide specific references for bank 
regulators and policymakers to develop critical measures to maintain macroeconomic 
and financial stability.

Keywords: China, Machine learning, SHAP value, Shapley regression, Systemic 
financial crisis

Introduction
The coronavirus disease (COVID-19) pandemic posed a significant threat to the global 
economy. Therefore, preventing financial collapse based on new technical methods and 
comprehensive case studies is of great significance in the post-pandemic period, when 
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an uneven global rebound is more likely to challenge the financial stability of emerging 
markets and developing economies (Nivorozhkin and Chondrogiannis 2020). Moreover, 
prevention and monitoring of systemic financial risk in China is a top priority.

First, as the second-largest market in the world, China has become deeply integrated 
into the global economy and is now one of the critical driving forces of global economic 
growth. Consequently, attention focused on the Chinese financial system has increased 
globally. Second, the report of the 19th National Congress of the Communist Party of 
China demonstrated that China was confronted with severe challenges. It stressed that 
the government would strengthen monitoring, early warning, mitigation, and control 
of financial risks to ensure that no systemic risks would emerge. Thus, it is essential to 
monitor China’s systemic risks to both the country and other economies.

Some empirical studies on systemic risk have used conventional economic models, 
including regression, but the performance of the predictions has not been excellent (Nag 
and Mitra 1999; Franck and Schmied 2003; Roy 2009; Sekmen and Kurkcu 2014; Tölö 
2020). Therefore, some academics have proposed machine learning models to improve 
the prediction of systemic risk (Joy et al. 2017; Carmona et al. 2019; Tölö 2020). How-
ever, new problems have emerged because most of these models are non-parametric, 
non-linear and non-human-readable. Some cutting-edge research has employed addi-
tional explanatory models (Son et al. 2019; Suss and Treitel 2019; Bluwstein et al. 2020) 
following machine learning models to describe the model’s results; however, the decom-
position is only a part of the explanation of the model. We also need statistical inference 
as a hypothesis test to evaluate the confidence in a specific model’s output (Joseph 2019). 
To the best of our knowledge, this is unusual in China’s systematic risk research; there-
fore, we applied a new workflow for this purpose.

The workflow comprises three steps: relative model evaluation, decomposition of pro-
jected values into feature contributions, and statistical inference of feature attributes. 
First, modeling was conducted using machine learning techniques. Unlike most theo-
retical and econometric models, machine learning modeling does not require preset 
causality or specific constraints. However, they can provide higher accuracy and enable 
high-dimensional data processing, which is a shortcut to traditional methods. However, 
conventional methods are easier to interpret than machine learning models. Because 
machine learning models are highly complex and non-parametric, it is difficult to 
extract decision rules from them. There are, however, additional interpretation models 
for machine learning that increase the model’s transparency. Compared with traditional 
models, machine learning models can learn more information and make the best use of 
data (Tölö 2020), which gives the interpretive model the opportunity to explain more to 
users.

Second, in this workflow, SHAP (SHapley Additive exPlanations) was selected to 
explain the findings of machine learning models. SHAP is a powerful approach that 
was developed to explain the output of any machine learning algorithm at the global 
and local levels. Locally, they explain why a given observation is assigned to a class, 
the contribution of each variable, and whether the effect is positive or negative. Glob-
ally, they estimate each variable’s overall contribution and direction toward the tar-
get (Ariza-Garzón et  al. 2020). Compared with the feature importance interface in 
Python, which is only used for the total feature importance ranking in training, SHAP 
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is extractable, additive, and comparable, with excellent flexibility. Furthermore, the 
direction and size of the SHAP value can be visualized, improving the intuitiveness 
and readability of the interpretation (Lundberg et al. 2018).

Third, statistical inference was conducted using Shapley regression. This enabled us 
to validate the feature-to-label alignment in the trained model by establishing local 
and linear regression procedures in the additive parameter space. The SHAP value 
approach creates space by transforming non-linear and non-extractable prediction 
functions constructed using machine learning models. It extends the parametric 
statistical inference to non-linear, non-parametric models. This is the only general 
framework for jointly conducting rigorous statistical inferences on all parameters in 
these complex models (Buckmann et  al. 2021), which could expand the application 
of machine learning (Suss and Treitel 2019; Bluwstein et al. 2020; Joseph et al. 2021; 
Buckmann and Joseph 2022).

The workflow covers the parts from modeling to interpretation to statistical inference, 
with high predictive performance and explanatory transparency advantages. However, 
there is another crucial step in machine learning pipelines: feature engineering. Feature 
engineering uses domain knowledge to extract features from raw data to better fit the 
input data to the model (Zaidi 2015) and is frequently used for the transformation of 
unstructured data and dimensionality reduction of high-dimensional data. It is essential 
for the success of machine learning (Locklin 2014), and the correct features can ease the 
challenge of modeling, enabling the pipeline to output results of higher quality (Zheng 
and Casari 2018). We also note that most indicators chosen in the literature on China’s 
systemic risk studies are based on theoretical analyses and prior knowledge, which are 
not conducive to the performance of machine learning models. Therefore, we updated 
this workflow by integrating the feature engineering phase before modeling rather than 
just the predetermined phase. This is more objective, yields more accurate results, and 
may yield unforeseeable indicators.

To select the indicators, we added a global trade factor. International credit is typically 
chosen in existing literature. However, Cesa-Bianchi et al. (2019) showed that the global 
trade factor has a modest effect on the domestic risk of countries that are more open 
to trade. Considering that China is open to trade, we expected foreign risks to affect 
China’s domestic risks through international trade; therefore, we added global trade fac-
tors to represent the international environment. We then asked the model to determine 
whether this factor was useful for the prediction.

The training dataset of this study was obtained from the Jordà–Schularick–Taylor Mac-
rohistory Database (Jordà et al. 2017, 2019) from 1870 to 2016, one of the most extended 
macroeconomic databases available. More importantly, it summarizes each country’s 
systemic financial risk over a long period and provides additional risk characteristics for 
our study. Although it includes 17 countries whose production accounts for more than 
90% of the output of developed countries and more than 50% of all countries worldwide, 
it does not only include these countries as a representative sample. Simultaneously, the 
indicators come from various sources, including many macroeconomic characteristics 
such as GDP, money, and interest rates, as well as financial parameters containing bank 
credit and returns on all types of assets, giving us the opportunity for feature engineer-
ing. Several meaningful studies have been conducted using this database. For example, 



Page 4 of 40Wang and Zhou  Financial Innovation          (2024) 10:103 

Schularick and Taylor (2012) and Bianchi (2020) used this database to make significant 
progress in research on risk and depression.

This study aimed to upgrade a new workflow and combine it with macro data to depict 
the probability of China’s systemic financial crisis (the definition is given in “Datasets” 
section) and analyze the macro-level risk drivers and their confidence. Specifically, the 
main process is as follows: We selected the feature subset with the best performance 
of the risk model with feature engineering and ultra-long-term risk data from 16 coun-
tries. On this basis, we determined the optimal model parameters by cross-validation 
(CV) and then used this model to calculate the risk probability of China from 1990 to 
2020. Finally, we decomposed the probability into the contribution of each feature by the 
interpretation model and calculated its confidence via statistical inference.

In summary, this study contributes to the literature in three ways. First, with respect 
to methodology, we upgraded a new workflow, which now involves four steps: objective 
selection of indicators, relative model assessment, decomposition of predicted values 
into feature contributions, and statistical inference of feature attributions. Compared 
with the traditional workflow, combining these four moves is more conducive to recog-
nizing significant features and enhancing the quality of the subsequent model. Moreover, 
this routine serves as a firm reference for other researchers. It can be applied to any pre-
diction and regression problem, regardless of the field. Second, because feature selection 
and non-parametric, non-linear model statistical inference are rare in systematic risk 
studies in China, much less a combination of the two, this study is an essential attempt 
to address this topic. Third, regarding the data and results, we considered an ultralong 
sample period, and the risk information was more comprehensive and richer, giving us 
the opportunity to capture more risk features and select more representative indicators. 
Besides, we added an international trade factor for feature selection. The findings reveal 
that this factor is conducive to measuring China’s risk. Furthermore, we elucidated and 
quantified the possible non-linear and non-parametric relationships between systemic 
financial risk and country-level macroeconomic factors. Finally, we determined a safe 
haven zone that may benefit policymakers.

The balance of this paper is structured as follows: The second section, “Literature 
review,” summarizes relevant literature from the perspectives of methods and indica-
tors. The third section, “Datasets” describes the targets, variables, and samples used in 
this study. Section “Workflow and methodology” introduces the upgraded workflow and 
methods selected in this article. We proceed in the following order of workflow steps: 
“Feature engineering”, “Building the model”, “Decomposing model results”, and “Statisti-
cal inference on the decomposition” sections. The fifth part, “Workflow performance” 
section shows the empirical results in the global dataset and the sixth part, “Trained 
workflow in China’s risk” presents in-depth details of its risks. In addition, the results 
presented in the fifth and sixth sections are organized in the workflow order. Finally, 
Section “Discussion and conclusion,” concludes the paper.

Literature review
Methods

Many early warning models have been proposed to recognize and predict systemic risk 
after the outbreak of regional financial crises in the 1990s. For example, the probit model 
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(Frankel and Rose 1996), Kaminsky–Lizondo–Reinhart (KLR) signal analysis (Kaminsky 
et al. 1997; Kaminsky 1999; Shi and Gao 2009), and the cross-section regression Model 
(Sachs et al. 1996) have been extensively used. Nevertheless, the cross-section regression 
model cannot compute the accurate risk probability, and the KLR signal analysis is sub-
jective in setting indicators and thresholds.

Consequently, more models have been studied, beginning with the developing country 
studies division (DCSD) model (Berg and Pattillo 1999) combining probit with KLR, fol-
lowed by the logit model (Su and Xiao 2011) and synthetic index technique (Illing and 
Liu 2006; Cardarelli et al. 2011; Tao and Zhu 2016; Tsinghua University Research Team 
2019). Additionally, the conditional value-at-risk (CoVaR) (Chen and Wang 2014; Adrian 
and Brunnermeier 2016; Fang et al. 2018), Expected Shortfall (Fan et al. 2011; Acharya 
et al. 2017; Yang et al. 2018, 2019), and CoRisk (Chan-Lau et al. 2009) have been widely 
applied. Other innovative techniques are based on assets and liabilities (Greenwood 
et al. 2015; Fang 2016).

Bisias et  al. (2012) divided systemic risk measurement techniques into six groups: 
macroeconomic measures, granular foundations, network measures, forward-looking 
risk measurements, stress tests, cross-sectional measures, and measures of illiquidity 
and insolvency, including 31 specific methods that are systematically reviewed and com-
pared. Billio et al. (2017) also introduced systemic risk measurement models. Generally, 
traditional risk identification models have considerable advantages in interpretation but 
are restricted to the distribution and dimensions of the input data and may show poor 
predictability.

Therefore, academics have introduced machine learning models into risk analysis. 
Many scholars have conducted studies on supervised learning. For instance, Ecer (2013), 
Eygi (2013), Jones et al. (2015), and Ekinci and Erdal (2017) demonstrated the validity of 
supervised learning for risk identification. Some scholars, such as Li et al. (2022), pro-
vided research on risk using unsupervised learning. In particular, the performance of 
deep neural networks, which fall into the category of supervised learning, is much better; 
however, they require much data, limiting their application in the macroeconomy and 
finance. Nevertheless, the most advanced technologies in computer vision, such as One-
Shot Learning, Meta-Learning, and Transfer Learning, aim to simulate human brains 
and let the model learn “learning,” enabling us to conclude rapidly from limited data and 
enhance the model generalization ability, which increases the possibilities to apply deep 
neural networks in economics and finance and shows a direction for our future research. 
Kou et al. (2019) surveyed existing research and methodologies for the assessment and 
measurement of financial systemic risk combined with machine learning technologies 
and identified future challenges, as well as suggesting further research topics.

This study selected a prediction model from two widely used supervised learning mod-
els: random forest (RF) and gradient boosting decision tree (GBDT). First, RF has made 
considerable progress in risk prediction. For example, Ward (2017) used RF to predict 
systemic banking risk under two sample times, including from 1870 to 2011 and after 
1970, with very good results; Suss and Treitel (2019) developed an early warning system 
of banking systemic risk with FSA’s bank-scoring database and showed that the perfor-
mance of RF was better than conventional models and other machine learning algo-
rithms; Wang and Zhou (2020) also revealed that in systemic risk identification, machine 
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learning models are significantly better than conventional models both in terms of learn-
ing and risk recognition abilities, and machine learning models are more stable; Wang 
(2019) constructed an experimental study with data of Global Financial Crises from 
1970 to 2011 and provided evidence that RF was effective at both identifying the leading 
indicators and risk prediction.

Second, researchers at the Bank of England and other major central banks gradually 
applied GBDT to macroeconomic and financial research. For instance, Momparler et al. 
(2016) applied this approach to predict the failure of commercial banks in 155 Euro-
zone countries between 2006 and 2012 and derived four useful indicators. Carmona 
et al. (2019) concentrated on a performance comparison and showed that GBDT outper-
formed logit and RF in 156 US commercial banks’ bankruptcy predictions between 2001 
and 2015. Zięba et al. (2016) highlighted that the GBDT showed the best performance in 
binary classification, such as crisis identification, compared with traditional linear and 
most machine learning models.

According to Altmann et  al. (2020), additional interpretation models can be classi-
fied according to various criteria, including whether they are model-specific or model-
agnostic, and whether they explain the individual prediction (local) or the entire model 
behavior (global). There are several popular methods belonging to Global Model-Agnos-
tic Methods, such as the partial dependence plot (PDP; Friedman 2001) and permuta-
tion feature importance (Fisher et al. 2018). In addition, Local Model-Agnostic Methods 
include local interpretable model-agnostic explanations (Ribeiro et al. 2016), individual 
conditional expectations (Goldstein et al. 2015), and explanation vectors (Baehrens and 
Schroeter 2010). Johansson et al. (2004), Barbella et al. (2009), Florez-Lopez and Ramon-
Jeronimo (2015), and Son et al. (2019) investigated the application of different interpre-
tation methods to different machine learning algorithms with superior findings.

Based on cooperative game theory, the interaction-based method of explanation (IME) 
is more suitable for complex interactions between variables and targets (Strumbelj and 
Kononenko 2010). This is a clear characteristic of economic and financial research. 
The SHAP value (Lundberg and Lee 2017) is a typical IME model, and recent investi-
gations have shown its advantages in interpreting complex models in economic studies 
(Chakraborty and Joseph 2019; Bracke et al. 2019; Wang et al. 2020) and in feature selec-
tion (Chu and Chan 2020). Simultaneously, numerous recent criticisms and concerns of 
the Shapley-value-based explanations in machine learning have indicated that we should 
have a better understanding of its limitations (Kumar et al. 2020; Chen et al. 2020).

Additionally, the Bank of England proposed the Shapley regression method (Joseph 
2019) based on the SHAP value to further test the economic and statistical significance 
of the features. Joseph (2019) illustrated the feasibility of this framework in machine 
learning by proving the polynomial consistency of machine learning estimators and 
the composition bias theorem of Shapley values. Furthermore, Joseph highlighted two 
conditions that make the inference valid: independence between the model optimiza-
tion and coefficient estimation and sufficiently fast convergence of the model. Both can 
be addressed through unbalanced sample splitting between the training and test sets, 
as is typical in machine learning applications.1 It has been successfully used to predict 

1 Sample splitting during training process was achieved by cross-validation in this paper due to the small size of data.
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long-term systemic risk (Bluwstein et al. 2020), early warning systems for bank distress 
(Suss and Treitel 2019), US unemployment (Buckmann and Joseph 2022), and UK infla-
tion (Buckmann et al. 2021). This is the crucial theoretical basis of the present study.

Furthermore, Zheng and Casari (2018) stated that feature engineering is a crucial step 
in machine learning pipelines and provided a detailed description. Heaton (2016) dem-
onstrated that most models performed differently for different engineering features. In 
economics, the least absolute shrinkage and selection operator (LASSO) is frequently 
used for feature selection. Yan et al. (2020) used LASSO to design an early warning sys-
tem for financial distress experienced by listed companies. However, many more meth-
ods and ideas can be borrowed from machine learning. For instance, Heiberger (2018) 
applied the recursive feature elimination (RFE) method to project economic trends 
using listed company stock data, providing much help by yielding more compact sub-
sets of features and eliminating information redundancy. Therefore, we selected the 
RFE method for this study. In addition, Kou et al. (2021) proposed a two-stage, multi-
objective feature selection method to determine the final feature subsets, and the results 
showed that the proposed model achieved similar and sometimes better performance 
when using far fewer features than multi-objective, wrapper-based feature selection 
methods and other benchmarks. This coincides with the idea of this study, where we also 
adopted the approach of first filtering the features with a univariate filtering method and 
then combining the model to select the final subset among the remaining subsets.

Indicators

Since we predicted risk using macroeconomic data, we found a summary from the rel-
evant literature that macropredictors of risk can be roughly divided into the following 
categories2:

(1) Economic performance: Economic health significantly impacts the financial mar-
ket, and overheating or a recession can pose risks. Representative indicators include 
the GDP growth rate, inflation rate, and Consumer Price Index (Frankel and Sara-
velos 2012; Caggiano et al. 2014; Schularick and Taylor 2012).

(2) Fiscal: Fiscal indicators reflect government revenue or liabilities and are more likely 
to be at risk if the government spends more than it earns. The indicators usually 
used in the literature are the ratio of government spending to revenue, government 
revenue to GDP, and the ratio of government liabilities to income (Tao and Zhu 
2016; Laeven and Valencia 2013).

(3) Money: Monetary indicators are directly connected to financial markets. For 
instance, deposit and loan interest rates influence the credit scale and broad money 
reflects market liquidity, both of which are highly sensitive to risk. In addition, 
broad money can also measure the degree of financialization of a country and 
whether there is a bubble economy, which is closely connected to risk (Kaminsky 
et al. 1997; Kaminsky 1999; Caggiano et al. 2014).

(4) Real estate: Asset price bubbles led by the real estate market are a characteristic 
feature of recent financial crises. For instance, the 2008 Global Financial Crisis was 

2 To be clear, here we focus on classifying the indicators used in the literature and analyzing the association of each cat-
egory with risk. The link between the final indicators and risk can be seen in “Feature selection and evaluation” section.
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triggered by a decline in the quality of real estate loans. Real estate prices, com-
monly represented in the literature by the one-year growth rate of real house prices, 
affect a financial system’s stability through financial leverage. The higher or faster 
house prices rise, the more likely it is that risk will occur (Joy et al. 2017; Tölö 2020).

(5) Financial submarkets: Financial submarkets are locations for the direct transmis-
sion of risk, which is of great significance for systemic risk prediction. Loan-to-
deposit ratios and nonperforming loans are often employed to measure banking 
system performance (Tao and Zhu 2016; Lainà et  al. 2015). The stock market is 
measured using the stock price and overall market value of listed companies (Tao 
and Zhu 2016; Tölö 2020), interest rates on long-term or short-term government 
bonds, and the slope of the yield curve are representative of the bond market (Joy 
et al. 2017).

(6) Balance of payments: This group refers to how closely the domestic economy is 
connected to the global economy, including imports, exports, foreign assets, and 
the current account or its ratio to GDP, which can affect capital flow between home 
and abroad. The more closely a country is linked to the global economy, the more 
vulnerable it is to external risks. For example, a persistent current account deficit 
hinders the growth of the domestic economy, and long-term foreign debt affects a 
country’s reputation and may exacerbate risks. In contrast, if the current account 
continues to be in surplus, the domestic economy becomes highly dependent on 
foreign capital, increasing economic instability and financial risks (Reinhart and 
Rogoff 2008; Su and Xiao 2011; Frankel and Saravelos 2012; Tölö 2020).

(7) External impact: This category represents the vulnerability of the world economy. 
Nations are now closely financially linked, and risk spillovers across borders are 
clear. Generally, the worse the performance of risk-sensitive factors abroad, the 
more likely the risk is in the country. In other words, the probabilities of threats 
at home and abroad are highly correlated. Presently, the literature has widely used 
the exchange rate, global GDP, global credit, and global slope of the yield curve as 
external impact factors (Kinkyo 2019; Cesa-Bianchi et  al. 2019; Lo and Peltonen 
2013; Bluwstein et  al. 2020; Abbritti et  al. 2018). However, the existing literature 
indicates that countries with open trade are not suitable for the global credit indica-
tor without further extension. Considering that China is much more open in terms 
of trade than finance, global trade can be considered as a measure of the global 
environment.

The abovementioned database includes primary economic and financial data, allow-
ing us to calculate other common indicators, and the obtained indicators can cover the 
above seven categories. Feature engineering was conducted to select the feature subset 
with the best prediction performance.

Overall, there is room for further investigation into the systemic risk. For example, 
most existing systemic risk literature has chosen variables based on theory and expe-
rience, which are subjective and may not lead to the best results. In addition, global 
trade factors have not been fully considered in countries that are open to trade. Besides, 
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regarding studies with machine learning techniques, because of the “black box” nature3 
of machine learning, most current risk research fails to detail the internal function of the 
model (i.e., how a variable impacts the dependent variable) or the statistical inference. 
These are the three aspects in which we are trying to make a breakthrough.

Datasets
In addition to the abovementioned database, we collected data on China from the World 
Bank and IFS databases.

Systemic financial crises are defined by the Jordà–Schularick–Taylor Macrohistory 
Database as “events during which a country’s banking sector experiences bank-runs, 
sharp increases in default rates accompanied by large losses of capital that result in pub-
lic intervention, bankruptcy, or forced merger of financial institutions” (Schularick and 
Taylor 2012). It is a binary label, named “crisisJST” in the database. The target of the 
training set determined the type of crisis captured by the model; thus, when applied to 
China, the model captured the same type of risk. Because the database used for training 
does not contain China’s risks, we are concerned that the definition of risk in other data-
bases may differ from that in the training dataset, which may cause errors in checking 
the validity of the model to identify China’s risks. Therefore, instead of selecting Chinese 
risk data from other databases for numerical validation, we directly used Chinese indica-
tors and trained models to calculate Chinese risk probabilities and validate the identifi-
cation of risk probabilities based on relevant literature and the reality in China.

For the indicators, 22 original variables remained after data pre-processing (see 
Table 2). After feature engineering, 10 features (listed in Table 4) were selected.

For the training samples, based on the selection of the above database and countries, 
we performed some sample processing. Specifically, we set one and two years before the 
crisis as the positive samples (the lead-lag method4). Following Bluwstein et al. (2020), 
we eliminated the crisis year and the four years immediately following the crisis to pre-
vent the interference of economic recovery on the risk prediction, which could also filter 
the noise for the model. In addition, we eliminated samples from the post-Great Depres-
sion economic recovery period of 1933–1939 and the two world wars of 1914–1918 and 
1939–1945, as well as samples with missing values. Finally, 1005 samples were obtained, 
including 912 non-risk and 93 risk samples, and Table 1 summarizes the crisis years.

Workflow and methodology
This section explains the updated workflow and techniques employed at each stage, 
organizing it into a mind map, as shown in Fig. 1. The green square is the workflow 
step, and the white square is the method used in this study.

3 The black-box nature of machine learning models refers to the fact that the model is highly complex, and we do 
not obtain the interactions between the different features within the model. As Molnar (2023) indicated, “black box” 
describes models that cannot be understood by looking at their parameters. Savage (2022) also pointed out that the 
decision-making process of a machine learning model is often referred to as a black box—researchers and users typically 
know the inputs and outputs, but it is hard to see what’s going on inside.
4 Generally speaking, the methods to study time series by machine learning include sliding window, lead-lag, and time 
series clustering, etc. Also there are other machine learning algorithms which itself has taken time into account such as 
recursive neural network and online learning (Chakraborty and Joseph 2019), but their computational complexity and 
hardware requirements are both very high due to the need of constantly updated data, so they are suitable for high-
frequency and large-scale dataset. Considering data scale of this study and the data detrending in the latter, lead-lag is 
more suitable for us.
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Feature engineering

This process aims to determine the best subset of features from the original datasets 
to improve the model performance for classification or regression (Zheng and Casari 
2018). It can be divided into four steps—feature construction, extraction, selection, 
and evaluation—which can be freely combined. In most cases, the dataset is large 
and chaotic; therefore, determining a subset of features usually requires an iterative 
spiral of the above stages. Alternatively, feature engineering is a highly iterative and 
repeated trial and error process.

Feature construction

Feature construction involves discovering missing information regarding the relation-
ships between features and augmenting the space between them by inferring or creating 

Table 1 Crisis years in samples

Country Crisis years in samples

Australia 1989

Belgium 2008

Denmark 1885, 1908, 1931, 1987, 2008

Finland 1921, 1931, 1991

France 1930, 2008

Germany 1891, 1901, 1907, 1931, 2008

Italy 1990, 2008

Japan 1920, 1927, 1997

Netherlands 1907, 2008

Norway 1899, 1922, 1931, 1988

Portugal 2008

Spain 1977, 2008

Sweden 1878, 1907, 1922, 1931, 1991, 2008

Switzerland 1991, 2008

UK 1974, 1991, 2007

USA 1893, 1907, 1929, 1984, 2007

Fig. 1 Flowchart
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more features. For numerical features, such as economics, researchers usually use a 
combination or decomposition of initial features by simple algebraic operators, such as 
average, addition, subtraction, multiplication, division, and their combinations (Motoda 
and Liu 2002).

The methodology employed in this paper at this stage:

(1) Calculate eight indicators using variables mentioned above while taking into 
account the knowledge of economics and with the economic significance consid-
ered: yield curve slope (difference between long-term and short-term interest rate), 
degree of foreign trade dependence (100 times of sum of import and export over 
GDP), the balance of trade (difference of export and import), commercial bank 
fixed deposit (difference of broad money and narrow money), bank loan-to-deposit 
ratio (ratio of credit to the commercial bank fixed deposit), cost of the long-term 
loan (total loans times long-term interest rate), the ratio of government spending to 
revenue and elasticity coefficient of government expenditure and revenue, shown in 
Table 3.

(2) We attempted to eliminate the time trend for all the above indicators based on the 
following principles5:

(i) Indicators developed using differencing, such as the balance of trade, calculate its 
ratio over GDP and the one-year difference in the ratio.

(ii) Index indicators, including CPI and GDP, calculate the one-year difference and 
annual growth rate of the index.

Table 2 Variables

Original variables Type Categories Original variables Type Categories

rgdpmad Level Economic perfor-
mance

eq_tr Composite calcu-
lated

Financial submarkets

GDP Level Economic perfor-
mance

housing_capgain Composite calcu-
lated

Real estate

ca Level Balance of pay-
ments

eq_capgain Composite calcu-
lated

Financial submarkets

imports Level Balance of pay-
ments

rgdppc index Economic perfor-
mance

exports Level Balance of pay-
ments

rconpc index Economic perfor-
mance

narrowm Level Monetary cpi index Economic perfor-
mance

money Level Monetary iy Ratio Economic perfor-
mance

revenue Level Fiscal debtgdp Ratio Fiscal

expenditure Level Fiscal eq_dp Ratio Financial submarkets

tloans Level Financial submar-
kets

eq_div_rtn Ratio Financial submarkets

stir Level Monetary ltrate Level Monetary

5 All indicators and their corresponding processing methods were organized in Additional file 2: Appendix S1.
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(iii) The level indicators like imports, calculate its annual growth rate, a ratio over GDP, 
and the one-year difference in the ratio.6,7

(iv) For elastic coefficient index: no obvious trend, retain the original value.
(v) Ratio indicators and other composite-calculated indicators retain their original val-

ues and calculate the one-year differences.

(3) The global factor is calculated to represent the international environment. There 
are four global trade factors: Global-minus, Global-sum, Global-im, and Global-ex. 
The calculation formula for each country c, c = 1, 2, . . .N  in year y is as follows:

where DomesticAi,y represents the indicator of country i in year y , which we select 
as the net export to GDP ratio (Global-minus), the sum of imports and exports to 
GDP ratio (Global-sum), the import to GDP ratio (Global-im), and the export to 
GDP ratio (Global-ex).

Feature extraction

Feature extraction is a process that extracts a set of new features from original features 
via functional mapping (Motoda and Liu 2002). It transforms arbitrary unstructured 
data, including text or images, into numerical features that can be used for machine 
learning modeling (Zheng and Casari 2018). Furthermore, principal component analysis 
(PCA), independent component analysis, linear discriminant analysis, and other tech-
niques are crucial for reducing the dimensionality (Khalid et al. 2014).

This study did not involve data such as text or images. Moreover, using methods such 
as PCA to synthesize indicators considering the following clearer interpretation is inap-
propriate; therefore, we did not work at this stage.

(1)GlobalAc,y =
1

N−1
i∈N ,i �=c

DomesticAi,y

Table 3 Constructed variables

Constructed variables Types Categories

Degree of foreign trade dependence Ratio Balance of payments

Loan-to-deposit ratio Ratio Financial submarkets

Ratio of government spending to revenue Ratio Fiscal

Balance of trade Level Balance of payments

Commercial bank fixed deposit Level Financial submarkets

Cost of long-term toan Level Financial submarkets

Elasticity coefficient of government revenue Composite calculated Fiscal

Elasticity coefficient of government expenditure Composite calculated Fiscal

Yield curve slope Level Monetary

Global-minus Composite calculated External impact

Global-sum Composite calculated External impact

Global-im Composite calculated External impact

Global-ex Composite calculated External impact

6 Considering the economic relevance, the Yield Curve Slope only maintains the original value.
7 We also calculated the one-year difference value for such indicators, but most indicators still showed an obvious time 
trend after this processing, so we abandoned this method.
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Feature selection

Feature selection is a process that selects a subset of features from the original features 
such that the feature space is optimally reduced based on a particular criterion (Motoda 
and Liu 2002). Feature-selection techniques can be classified into three categories: filter-
ing, embedded, and wrapper. Among them, the first evaluates only the goodness of a 
single variable, which is different from the latter two with the involvement of the learn-
ing algorithm, in which the wrapper technique performs the best. Typically, filtering 
first chooses, followed by embedded or wrapper methods for accurate feature selection 
(Zheng and Casari 2018).

The methodology applied at this stage in this study is mutual information (MI), 
the Spearman correlation matrix, which belongs to the filtering method, and RFE, 
which belongs to the wrapper class. An introduction to MI and RFE is provided 
below.

MI, which has good generalizability, captures the linear and non-linear correlations 
between features and labels. The MI score is calculated using the joint probability, which 
can be regarded as the probability of features and labels emerging simultaneously. Con-
sequently, the correlation between the characteristics and labels gradually shifts from 
completely uncorrelated to perfectly correlated, as indicated by the value ranging from 
0 to 1, which signifies that the two never come together, or always appear together. This 
study adopted the following calculation formula for discrete distributions considering 
the discreteness of the label8:

where p(x, y) represents the joint probability distribution function of X and Y , p(x) , and 
p(y) are the marginal probability distribution functions of X and Y, respectively.

RFE (Guyon et  al. 2002) is an extensively used feature selection technique in 
machine learning. It belongs to the wrapper category, which is the best way to enhance 
the model performance relative to filtering and embedded. This applies when the algo-
rithm is determined because feature selection and model training are performed con-
currently. It chooses features by recursively fitting the model and then removing the 
weakest characteristics (the number can be set manually) until the specified feature 
number (which also can be given in advance) is attained or the entire feature set is 
explored. The optimal feature subset was selected as that with the highest CV score 
(Wu et  al. 2017). It is worth noting that RFE needs the feature importance ranking 
returned by the learner when removing features, so there are specific requirements for 
the training models.

(2)I(X ,Y ) =
∑

y∈Y

∑

x∈X

p
(
x, y

)
log

(
p(x,y)

p1(x)p2(y)

)

8 The calculation formula for continuous distributions:I(X , Y) =
∫
Y

∫
X p(x , y)log

(
p(x ,y)

p(x)p(y)

)
dxdy
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Feature evaluation

Feature evaluation is typically conducted along with feature selection to assess the per-
formance of a currently chosen subset of features. The assessment criteria included 
the accuracy of classification and MSE for regression (Motoda and Liu 2002). After the 
experiments and comparisons, the negative log-likelihood loss9 under the fivefold cross-
validation was used, which was more stable on this dataset.

Building the model

The first step is to frame the problem: whether it is supervised or unsupervised, and 
whether it is a classification task, regression task, or something else. The appropriate 
model is then determined based on the problem type, data size, and computational 
resources (Géron 2017). All machine learning algorithms were chosen. However, for a 
more convincing subsequent interpretation of SHAP values, non-additive models are 
not appropriate.

This study selected tree-based models for the following reasons. First, tree-based mod-
els are additive models (Kumar et al. 2020), which are SHAP-friendly. Second, there is no 
need for standardized data in tree modeling, which can provide a more precise explana-
tion later. Specifically, we selected RF and GBDT. RF has a low variance but high accu-
racy and may prevent overfitting to an extent by bagging. The RF computation is also 
small because of the randomization of the samples and features before modeling. The 
GBDT is appropriate for all classification issues, with good generalization ability and tol-
erance for different indicators. It is also helpful in handling overfitting, similar to RF. The 
formulae and steps for these two are as follows:

Random forest (RF)

RF, which combines the results of multiple decision trees using bagging, is a classifica-
tion and regression technique proposed by Breiman (2001). It performs much better 
than a single tree (Breiman 1996). In this study, an RF model was developed using an 
ID3 classification decision tree. The algorithm in our specifications follows the following 
steps.

(1) Randomly extracted bootstrapped training samples of equal size from the original 
dataset and arbitrarily selected n(specified constant,n < N  ) feature subsets from all 
features.

(2) Build a tree model on the dataset developed in step (1). Compute the entropy value 
for each feature of each sample: entropy(t) = −

∑c−1
i=0p(i|t)log2p(i|t),

10 and consec-
utively choose the point to split datasets with the highest entropy value until all the 
datasets are completely divided (or stop if the pruning condition is met when prun-
ing exists) to form a decision tree.

9 Negative log-likelihood loss of per sample: loss(y, p) = −(ylog(p)+ (1− y)log(1− p)) . y is true label and p = Pr(y = 1).
10 Where t  represents the node and i  represents the label of the classification, p(i|t) is the ratio of class i instances 
among the training instances in the ith node. it is frequently used as an impurity measure in machine learning: a set’s 
entropy is zero when it contains instances of only one class (Géron 2017). That is, it is an important indicator to measure 
the concentration of the sample point distribution. The greater the Entropy is, the more samples can be distinguished, 
and the more classification information is contained in the features.



Page 15 of 40Wang and Zhou  Financial Innovation          (2024) 10:103  

(3) Repeat the above steps F  times (which can be set manually) to form an RF with F  
trees.

(4) Vote on the results of F  trees and determine the ultimate result using the majority 
rule. Calculate the classification probability of sample i:Pr

(
yi = 1

)
= f /F  and f  is 

the number of decision trees which classify sample i into category one.

Gradient boosting decision tree (GBDT)

GBDT is another tree-based algorithm proposed by Friedman (2001) that works by suc-
cessively adding predictors to an ensemble, with each one correcting for its predeces-
sor’s mistakes. The experimental process for the GBDT in this study is as follows:

We choose log-loss function in this research.

Initialize it to f0(x) = 1
2
log

( ∑N
i=1yi∑N

i=1(1−yi)

)

 , and then repeat steps (1)–(4) for the mth 

tree ( m = 1, 2, . . .M):

(1) Calculate the value of the negative gradient for each sample:ỹi = −

[
∂L(yi ,f (xi))

∂f (xi)

]

f (x)=fm−1(x)
 

where L
(
yi, fm(xi)

)
= −

[
yilogpi +

(
1− yi

)
log(1− pi)

]
 because of the log-loss func-

tion and pi = 1

1+e[−fm(xi)]
 , simplify it to L

(
yi, fm(xi)

)
= −

[
yifm(xi)− log

(
1+ efm(xi)

)]
 

and the final negative gradient value calculation formula is given as

(2) Determine the best regression decision tree using the gradient value com-
puted in step (1), and suppose, in tree modeling, we finally get J  terminal nodes: 
Rjm, j = 1...J  , in which all unions contain all sample sets.

(3) Calculate the output for each terminal node in step (2): γjm =

∑
xi∈Rjm

ỹi
∑

xi∈Rjm
(yi−ỹi)×(1−yi+ỹi)

.

(4) Update the outcome of GBDT: fm(x) = fm−1(x)+
∑J

j=1γjmI
(
x ∈ Rjm

)
 , where 

I(x ∈ Rjm) =

{
1, x ∈ Rjm

0, x /∈ Rjm
.

(5) Obtain the final result by integrating the results of M trees: FM(x) =
∑M

m=1fm(x) , and 

probability calculation formula of risk occurrence is pi = 1

1+e[−FM(xi)]
, i = 1 . . .N .

Evaluation of results

In this study, we determined the performance of machine learning models using the 
receiver operating characteristic (ROC) Curve and the area under curve (AUC) as well 
as the confusion matrix, which is a multidimensional assessment table of imbalanced 
samples in classification problems, in which the main indexes are accuracy, recall, pre-
cision, and F1-score.11 Among them, recall can determine the ability of the model to 

(3)ỹi = −

[
∂L(yi ,f (xi))

∂f (xi)

]

f (x)=fm−1(x)
= yi −

1

1+e[−(fm−1(xi))]

11 Specific calculation formulae were shown in the Additional file 2: Appendix S8.
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capture the minority class, that is, risk, whereas the F1-score denotes the worldwide 
quality of the model. Similarly, the ROC and AUC also aid in overall model performance. 
Furthermore, ROC curves are typically convex. The closer the curve is to the upper left 
and the larger the AUC area, the better the classification performance for minority cat-
egories (Huang et al. 2019). Additionally, the ROC curve can also be applied to raise the 
recall by shifting the decision threshold, especially during the unbalanced sample clas-
sification, and according to experience, the best threshold point is Max(Recall − FPR) 
(Hilden and Glasziou 1996), which would be used later in model tuning.

Decomposing model results

This step was primarily implemented using the SHAP values. SHAP was suggested by 
Lundberg and Lee (2017), with visualization in Lundberg et al. (2018). It is suitable for 
all machine learning model outputs. Nevertheless, it should be known that the optimum 
case for feature attribution is when the features that are being perturbed are independ-
ent at the outset (Kumar et al. 2020; Chen et al. 2020), and for the model, the additive 
model is the best (Kumar et  al. 2020). Therefore, in this study, we attempted to make 
SHAP more consistent by selecting tree-based models and authenticating the feature 
subset using the Variance Inflation Factor (VIF).

SHAP is based on the cooperative game theory (Shapley 1953). It explains all features 
as contributors to the model results. This principle is explained as follows.

For feature i, i = 1, 2, 3 . . .N  , if the contribution ψi(N , v) , i.e., Shapley value satisfies 
the properties of Efficiency, Symmetry, Dummy, and Additivity,12 then its precise calcu-
lation formula is expressed as follows:

where v(·) represents the sum of the contributions made by all features in brackets.
Denote the Shapley value of feature i and sample j, j = 1, 2, 3 . . .M as ψi

j(N , v) , work 
out the Base Value E

(
ŷ
)
 , which is the average of the fitted values of the target variable in 

the training set, then the projected value of sample j can be expressed as follows:

where the magnitude of ψi
j(N , v) represents how much contribution the feature i does 

to sample j, and the sign shows its impact direction.
Lundberg and Lee (2017) proposed several improved calculation methods suitable for 

complex models. Although the original study summarized the characteristics of local accu-
racy, missingness, and consistency and indicated the different calculation procedures, we 
do not go into detail in this study because the basic principle is the same as above. Over-
all, an appropriate SHAP kernel can be chosen based on the selected model: Kernel SHAP, 
which is model-agnostic (Lundberg and Lee 2017), Tree SHAP for high-speed and precise 
computation of tree-based models (Lundberg et al. 2020), Deep SHAP and DeepLIFT for 
deep learning models (Shrikumar et al. 2017).

(4)ψi(N , v) = 1
N !

∑
S⊆N\{i}|S|!(|N | − |S| − 1)![v(S ∪ {i})− v(S)]

(5)yj = E
(
ŷ
)
+ψ1

j(N , v)+ψ2
j(N , v)+ · · ·+ψN

j(N , v)

12 A description of the specific characteristics can be found in Additional file 2: Appendix S8.



Page 17 of 40Wang and Zhou  Financial Innovation          (2024) 10:103  

Statistical inference on the decomposition

This step was performed using the Shapley regression to evaluate the statistical significance 
of the predictors according to the SHAP calculated in the previous step. It was first sug-
gested by Joseph (2019), involving calculated the Shapley Share Coefficients (SSC) and 
regression.

Regression

The Shapley regression is the regression of the model output on the SHAP values of indi-
vidual data points in a limited local region. Joseph (2019) experimented using numerical 
cases and Brazilian educational datasets. Suss and Treitel (2019) and Bluwstein et al. (2020) 
have proposed extensions. The construction and explanation are summarized as follows.

Let the dependent variable in the regression be ln
(

yrisk
1−yrisk

)
 , then the Shapley regression 

model is expressed as follows:

Theoretically, the coefficients determine the alignment of Shapley components ϕi with 
the target yrisk . Coefficient values near one indicate the optimum alignment and conver-
gence of the learning process. A value greater than 1 implies that the model underestimates 
the impact of the variable on the outcome, with a value less than 1 signifying the opposite 
(Buckmann and Joseph 2022). A coefficient of zero indicates no clear alignment. Negative 
coefficients indicate a poor fit for the training model. However, in the case of out-of-sam-
ple predictions, they point to surprising findings, especially those with high significance 
(Joseph et al. 2021). In terms of specific values, suppose ϕ1 increases by one unit and other 
variables remain unchanged. The new regression equation can be transformed into

Take the natural logarithm on both sides of the equation as:

It can be observed that 
(

yrisk
1−yrisk

)
 will become eβ1 times the original. That is, the proba-

bility ratio will vary by 100×
(
eβ1 − 1

)
% , consistent with Suss and Treitel (2019).

Shapley share coefficients (SSC)

Define the SSC of variable xk:

(6)ln
(

yrisk
1−yrisk

)
= β0 + β1ϕ1 + β2ϕ2 + · · · + βnϕn

(7)
ln

(
yrisk

1− yrisk

)′

= β0 + β1(ϕ1 + 1)+ β2ϕ2 + · · · + βnϕn

= β0 + β1ϕ1 + β2ϕ2 + · · · + βnϕn + β1 = ln

(
yrisk

1− yrisk

)

+ β1

(8)
(

yrisk
1−yrisk

)′
=

(
yrisk

1−yrisk

)
· eβ1

(9)Ŵs
k

(
f̂ ,�

)
≡

[

sign
(

ˆ
β lin
k

)
�

∣
∣
∣ϕsk

(
f̂
)∣
∣
∣

∑n
l=1

∣
∣
∣ϕsl

(
f̂
)∣
∣
∣
�

�k

](∗)

∈ (−1, 1)
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where ϕs
k

(
f̂
)
 denotes the SHAP value of the variable xk , �·�� represents the mean of all 

data in Ω, sign
(
β̂ lin
k

)
 stands for the sign of the variable xk in the linear model,13 and (∗) 

shows the significance level against the null hypothesis.

The Ŵs
k

(
f̂ ,�

)
 denotes the expected change in probability caused by variable xk , rela-

tive to other variables. Moreover, as Ŵs
k

(
f̂ ,�

)
 has been normalized, the sum of the abso-

lute values of SSC is 1.
It should be known that Shapley regression also has certain practical limitations, such 

as the necessity of dividing the data into a training set and test set (standard in machine 
learning) and the necessity of using CV (to help model’s convergence), the details can be 
found in Joseph (2019).

Workflow performance
Feature engineering

The database contains 47 variables. Therefore, first, we eradicated worthless variables 
(such as “xx_ipolated” which denotes whether to interpolate the xx feature) and those 
with numerous missing values, finally leaving 22 original variables. Table 2 lists the indi-
cators and their categories.

Feature construction

The features constructed according to economic meaning are listed in Table  3. They 
were classified into the seven categories mentioned above.

After eliminating the time trends of the features mentioned above, 63 features were 
obtained. Taking the US as an example, plotting each indicator’s value over time shows 
that the time trend has been roughly removed (see the graph presented in Additional 
file  2: Appendix S3). We maintained all indicators for future selection because it is 
uncertain how the indicators would be more beneficial to the forecast. So far, 63 indica-
tors have been prepared for this purpose.

Feature selection and evaluation

MI, Spearman correlation matrix, and RFE were used for feature filtering and selection.

(1) MI filtering: Compute the mutual information scores of each feature and take the 
average of 100 iterations to prevent computing contingency, and then remove fea-
tures whose MI scores are less than 0 (the remaining 50 indicators and their MI 
scores are presented in Additional file 2: Appendix S2).

(2) Spearman correlation matrix filtering: Compute the Spearman correlation matrix 
(shown in Additional file 1: Accessory 1) for the residual features following step (1), 
determine the set of features with a coefficient greater than 0.7,14 and eliminate the 
feature with a smaller MI score.

13 For data of China, we extracted it from the annual mean of this feature’s SHAP value.
14 As a rule of thumb, a correlation coefficient between two characteristics bigger than 0.7 indicates a strong correlation 
between the two indicators.
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(3) RFE: This method combines RFE and RF. Two features were removed each time, 
and the final feature subset was selected by the highest score using the mean nega-
tive log-likelihood loss of fivefold CV with the remaining features.

There are 38 features left after steps (1) and (2). We called the RFE and plotted the 
number of features remaining following each elimination and their respective perfor-
mances (see Additional file 2: Appendix S2), with 10 features performing the best, signi-
fying that this feature subset is the most efficient for risk prediction. The characteristics 
and their symbols are listed in Table 4.

The following is the link between each indicator and systemic financial crisis, as well as 
the assumptions of its impact on risk:

The systemic financial crisis can spread through international trade channels. On the 
one hand, a country’s international trade influences the operation of enterprises, which 
affects enterprises’ financing and credit and has an impact on commercial banks and 
the financial system. On the other hand, international trade also affects the banking and 
financial systems through cross-border transactions and international settlement busi-
ness (Yang and Wang 2021; Asgharian et al. 2013). NetExport represents the degree of 
dependence on foreign trade, and the more closely related it is to the international econ-
omy, the more likely it is to be affected by spillovers from foreign systemic financial risk. 
GlobalNetExport indicates the global trade environment, which reflects the vulnerability 
of global countries’ economic and financial systems. The indicator represents the imbal-
ance of the international trade market and could affect the national financial system; a 
larger GlobalNetExport indicates that trade deficits are concentrated in a small number 
of countries, and the larger the value, the worse the deficits, and therefore more prone 
to sovereign debt risks and spread to other countries, which could result in financial tur-
moil; a small GlobalNetExport shows a slowdown or even recession in the international 
economy, which increases the systemic financial crisis spillover. Therefore, we assume 
that when the feature value is moderate, the possibility of a crisis is low.

NarrowMoney refers to the amount of money in circulation and the current purchas-
ing power. It also represents market demand and can affect systemic financial crises 
through bank credit channels. Demand expansion stimulates investment by enterprises. 
When demand expands, consumption and investment are strong and enterprises and 

Table 4 Final features

Variables Symbols Construction method

Global net export GlobalNetExport Original value

Domestic net export NetExport (Exports − imports)/GDP

Narrow money NarrowMoney Narrow money/GDP

Domestic yield curve slope YieldCurveSlope Short-term interest rates–Long-term interest rates

National financial concentration FinancialConcentration Government revenue/GDP

Loan cost CreditCostGrowth Growth rate of loans*Long-term interest rates

Domestic credit Credit Total credit/GDP

Domestic credit annual increase Credit-Dif (Total credit/GDP)[t] − (Total credit/GDP)[t–1]

CPI annual increase CPI-Dif CPI[t] − CPI[t–1]

Dividend yield ratio DidYield Dividend / Share price
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households have a high willingness to borrow and a strong ability to repay loans, which 
have little negative impact on the systemic financial crisis. Demand retrenchment leads 
to poor-quality credit assets, threatening the stability of the entire banking industry and 
financial system (Wang and Tian 2016). At the same time, liquidity may be transferred 
to the financial system if investment in the real economy is nonprofitable owing to insuf-
ficient demand, which may also cause greater pressure on the financial system and make 
it more prone to risks. In summary, demand expansion is more likely to lead to future 
prosperity and less market volatility than insufficient demand. Therefore, our assump-
tion is that the lower the feature value, the more likely the risk.

The YieldCurveSlope represents market expectations or confidence. When market 
expectations change, investors’ investment behaviors change accordingly, which leads to 
market volatility and risk spillovers and is not conducive to the stability of the finan-
cial system (Yang and Wang 2021). Specifically, pessimistic market expectations prompt 
investors to sell their financial assets, resulting in a decline in asset prices, which fur-
ther leads to worse market expectations and larger financial asset selling and may even 
trigger the “herd effect.” In other words, asset prices and market expectations form a 
vicious spiral cycle with self-reinforcing characteristics, driving financial system risk. 
However, overly optimistic market expectations could lead to an excessive expansion of 
credit and leverage, exacerbating the vulnerability and accumulating risk of the financial 
system (Ma 2013). In contrast, the vicious circle created by pessimistic expectations is 
more likely to break the financial system. In this study, YieldCurveSlope is calculated by 
short-term interest rates minus long-term interest rates, such that larger value indicates 
stronger pessimistic expectations. Therefore, our assumption is that the higher the slope, 
the more likely the risk.

FinancialConcentration is a fiscal indicator. Low government revenue stimulates gov-
ernment borrowing. The expansion of government credit could crowd out the total 
credit scale and cause a resource mismatch, which is not conducive to financial sys-
tem stability. Moreover, if the government fails to repay its debts and the government’s 
default rate rises, it will influence the quality of financial assets and lead to a systemic 
financial crisis. In other words, there is the possibility of a fiscal crisis transforming into 
systemic risk (Xiong and Jin 2018). For large government revenue, the government is less 
likely to face debt risk. However, if revenue is increased by raising taxes, it could reduce 
corporate profits, and companies are more likely to expand production through loans as 
well as pressure the banking and financial systems (Mao et al. 2018). Considering that 
taxes are a part of government revenue, we speculate that small government revenue has 
a greater impact on risk. Therefore, we assume that the higher the revenue, the less likely 
the risk.

Among the credit indicators, CreditCostGrowth represents the cost of long-term 
loans, Credit is the scale of credit, and Credit-Dif is the annual increase in the credit 
scale. These indicators measure credit security from different perspectives. Financial 
turbulence typically occurs during loan expansions. Massive lending or rapid credit 
increases may reduce bank credit ratings and lead to bankruptcy, which is directly 
related to the risk of banking and financial systems (Schularick and Taylor 2012). 
Moreover, the cost of loans also measures the fragility of credit repayment: the longer 
the credit repayment period, the more unstable the factors affecting the repayment, 
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such as personal income and interest rate, adding pressure on banks’ balance sheets 
(Bluwstein et al. 2020). Consequently, we assume that for all three factors, the higher 
the value, the more likely the risk.

CPI-Dif is the yearly increase in inflation reflecting the degree of currency devalu-
ation. On the one hand, the rise in inflation could reduce enterprises’ profits, which 
may lead to enterprises’ repayment default or additional loans and affect the systemic 
financial crisis through credit channels. Similarly, deflation also affects the financial 
system through this channel, as deflation adds a burden to enterprises’ debt, and 
when enterprises are unable to repay, rising nonperforming loans would increase risk 
(Wei and Yang 2017). On the other hand, deflation, or a continuous rise in inflation, 
raises risk by lowering market expectations (Ma 2013). Taken together, we propose 
the assumption that the more the value deviates from 0, the more likely the risk.

DidYield refers to dividend distribution and investment returns. It affects the enter-
prise’s profit and thus influences its investment and debt. Enterprise investment has 
a direct impact on the macroeconomy, affecting the stability of the financial system, 
whereas the scale and quality of enterprise loans affect bank credit and systemic 
financial crises. In addition, DidYield is associated with stock market returns and can 
be used to measure market prosperity. A booming stock market can create bubbles 
and risk spillover. In conclusion, we assume that the higher the dividend rate, the 
more likely the risk (Zhou et al. 2020).

Thus far, a dataset of 1005 samples from 16 nations and 10 features has been 
obtained. It is fed into the model, uses CV and Bayesian Optimization for training, 
and performs out-of-sample measurements with Chinese systemic risk. For clarity, 
owing to data limitations, only the risk during 1990–2020 was analyzed.

Data description

T-test results for the final features are presented in Table  5, which shows that most 
features are significantly different between the risk and non-risk periods, except for 

Table 5 T-test

The null hypothesis of the t-test is that the mean value of the difference between the risk and non-risk periods is 0; ***, **, 
and * indicate that the null hypothesis is rejected at significance levels of 1%, 5%, and 10%, respectively

Variables Mean of 
non-risk 
period

Standard 
deviation 
for non-risk 
periods

Mean 
of risk 
period

Standard 
deviation for 
risk periods

T-test and 
significance

P value VIF

DidYield 0.04 0.02 0.04 0.02  − 2.00** 0.048 1.46

Credit 64.12 31.78 80.92 37.05  − 4.20*** 0.000 1.57

CPI-Dif 178.12 188.60 190.20 234.54  − 0.48 0.633 1.58

Credit-Dif 1.06 3.35 3.42 5.31  − 4.17*** 0.000 1.29

CreditCost-
Growth

8.51 19.01 17.52 17.65  − 4.38*** 0.000 1.36

NarrowMoney 21.38 17.12 19.98 15.25 0.76 0.447 1.31

NetExport  − 0.96 5.06  − 3.00 7.07 2.69*** 0.008 1.25

FinancialCon-
centration

19.87 10.18 16.72 11.11 2.82*** 0.005 1.76

YieldCurveSlope  − 0.83 1.72 0.21 1.42  − 5.58*** 0.000 1.15

GlobalNetExport  − 1.48 2.49  − 1.84 3.21 1.02 0.309 3.28
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CPI-Dif, NarrowMoney, and GlobalNetExport. We also computed the VIF among the 
selected features, which were all less than 5. Based on this rule of thumb, there was no 
multicollinearity (Jin and Tao 2016).

Building the model

To build the model, we needed to determine the hyperparameters of each model, which 
were determined by Bayesian Optimization and fivefold cross-validation.

For the RF, we experimented with six hyperparameters. Among them, “criterion” and 
“n_estimators” are the roots of RF, and we finally settled on 460 trees with Entropy to 
form a random forest. The parameters “max_depth,” “min_samples_leaf,” “min_sam-
ples_split” and “max_features” were designed to prevent over-fitting of the model, and 
we finally determined the parameters as 12, 1, 2, 2. The parament “class_weight” adjusts 
the sample imbalance, and we determined the ratio of non-risk samples to risk samples 
as 1:1.225, and the final AUC (CVmean) can reach 0.804.

For the GBDT, we experimented with seven hyperparameters. We first plotted the 
learning curve of “learning_rate” and “n_estimators” to determine the approximate 
range. We then employed the grid search method to pinpoint their values, where 
“learning_rate” was 0.061 and “n_estimators” was 40. On this basis, we drew the learn-
ing curve of the remaining six parameters to determine the parameter range and fed 
them into the Bayesian Optimization. The final parameter values are: “subsample” is 
0.7744261168207747, “min_samples_split” is 8, “min_samples_leaf” is 2, “max_depth” is 
4, and “max_features” is 3. The final AUC (CVmean) was 0.806.

Table 6 Model performance in training set

Algorithms AUC 
(CVmean)

Accuracy Weighted
precision

Risk recall Weighted
F1-score

RF 0.804 0.76 0.90 0.73 0.81

GBDT 0.806 0.77 0.90 0.73 0.81

Fig. 2 ROC graph in training. The dots in the figure indicate the threshold points used for tuning
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Prediction of the model’s performance

The confusion matrix, ROC, and AUC measure the prediction of the model’s perfor-
mance. The findings for the training set are summarized in Table 6. We also present the 
ROC curves of 5-folds cross-validations in the training set in Fig. 2.

None of the trained models suffered from severe overfitting. The Weighted precision, 
risk recall and Weighted f1-score are exactly the same. The accuracy of the GBDT was 
higher in the training set, and the AUC of the GBDT was also slightly higher, as shown 
in Fig.  2. Overall, there was little difference in the performances of the two models. 
Although the GBDT’s accuracy is slightly higher, the RF models lower the variance when 
modeling, which makes the RF model more stable. Therefore, we chose RF for the inter-
pretation of the latter. The GBDT findings are shown in the Additional file 2: Appendix.

Variable importance

Variable importance analysis was applied to identify the essential variables. However, 
this is only applicable to the overall training sample and cannot be conducted for the 
out-of-sample set, which restricts our research to China. Therefore, we only present it in 
Fig. 3 as a supplement and compare it with the subsequent analysis. This finding high-
lights the significance of GlobalNetExport, Yield CurveSlope, Credit-Dif, CPI-Dif, and 
CreditCostGrowth in terms of global systemic risk.

SHAP value

We computed the contribution of each feature to the systemic financial crisis for each 
year and analyzed it independently from the time and feature dimensions.

Time dimension

For each indicator, we averaged the SHAP value of all countries in each year, and the 
average SHAP value of each indicator in each year indicated the contribution of the indi-
cator to the global average risk probability in that year.15

This section describes the changes in risk drivers in the time dimension of the train-
ing set. However, because the training set had a wide time range and was not the focus 

Fig. 3 Variable importance

15 We also plotted the average SHAP of both RF and GBDT in Additional file 2: Appendix S11.
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of this study, we only analyzed the three periods with the top three largest SHAP values. 
In 1877, the average SHAP of FinancialConcentration and CPI-Dif were 0.097 and 0.094, 
respectively, maximally increasing the risk. In 1929–1931, DidYield and CPI-Dif made 
the greatest contributions, boosting the risk probability by 0.095 and 0.103 in 1930, 
respectively. From 2006 to 2008, the contributions of most features to risk increased, 
particularly CreditCostGrowth, GlobalNetExport, and Credit. GlobalNetExport made 
the largest contribution in 2006, with an SHAP of 0.090, and in 2007, CreditCostGrowth 
and Credit made the most significant contributions to the risk probability, with SHAP of 
0.100 and 0.074, respectively.

Feature dimension

In the feature dimension, as Fig. 4 demonstrated, we drew scatter plots to reveal the 
relationship between the SHAP values and the corresponding feature values.16 Most 
features have a non-linear effect on risk, which can be explicitly divided into threshold 

Fig. 4 Scatter plots showing the relationship between SHAP value and feature value. Only a few of them are 
shown here. The others can be found in Additional file 2: Appendix S4. Red dots represent the global training 
data points, while blue dots are data from China

Table 7 Threshold effect

The brackets 30(100) indicate that the probability of risk rises sharply when the feature value exceeds 30, and if it exceeds 
100, it is almost impossible not to occur the risk

Features Threshold Notes

CreditCostGrowth 7 Larger feature value, larger SHAP value, larger impact; Feature value beyond the 
threshold, the pulling force increases sharplyCredit 30(100)

Credit-Dif 2.5

YieldCurveSlope  − 1

16 GBDT’s plots showed in Additional file 2: Appendix S6.
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and interval effects. Finally, we summarized the thresholds and intervals of the fea-
tures based on the global training set, as presented in Table 7 and 8, respectively.

Risk is more likely to occur when the yield curve is inverted. In fact, when the dif-
ference between the short-term interest rate and the long-term interest rate is close 
to -1, it is already a sign of risk. If the difference continues to increase, the risk con-
tinues to increase with increasing pulling force. As shown in the lower right of Fig. 4, 
the SHAP value of YieldCurveSlope, which is the impact of the slope on crisis, shows 
an overall upward trend in the scatter plot, consistent with the previous assumption. 
Specifically, as the slope increases, its effect on reducing the risk gradually decreases 
until the value of − 1, it turns to increasing risk, which indicates a significant thresh-
old effect of the yield curve slope on the risk.

The credit indicators are similar and their SHAP values show an upward trend. 
Moreover, financial risk is more likely to occur when annual inrease of credit jumps 
by more than 2.5% in a year. The higher the annual increase, the greater the risk prob-
ability. This indicator can increase risk probability by 20% within a year. The Credit 
to GDP ratio and growth in credit costs also show thresholds of 30% and 7%, respec-
tively. All these findings are consistent with previous assumptions.

NetExport has a V-shaped effect on risk; when the ratio falls to the left of 4, the 
driving force of risk decreases as the ratio increases. When the ratio exceeded 4, the 
force started to increase. Moreover, when the ratio varied from 0 to 2%, it had a mod-
est impact on the risk, increasing in only a few cases. However, the safest ratio ranged 
from 2 to 7%, which barely increase the risk probability. In other words, it is relatively 
safe for a country to maintain a proper trade surplus or at least no deficit, and a defi-
cit is more likely to cause risks than a surplus. GlobalNetExport’s scatter plot tends 
to be U-shaped and is higher on the right than on the left (top right of Fig. 4). Spe-
cifically, the average ratio of net exports to GDP of all countries in the world exceeds 
2% or is less than − 3.5%, both of which increase risks, with the former being more 
powerful. Combined with the previous analysis and assumptions, we conclude that 
the sovereign debt risk contagion caused by the deficit of a few countries has a greater 
impact on the financial system than the global economic slowdown.

Table 8 Interval effect

The brackets 200(400) mean the same thing as above. The brackets 2(0) indicate that the safest range is [2,7], and the worst 
ratio cannot be less than 0

Features Safe-haven zone Notes

FinancialConcentration [13, 35] Concave impact; Compared with the 
feature value larger than the maxi-
mum of the safe-haven zone, the 
feature value less than the minimum 
of the safe-haven zone is more likely 
to increase the probability of risk

CPI-Dif [3, 200(400)]

NarrowMoney [7, 30]

NetExport [2(0), 7]

DidYield [0. 01, 0. 07] Concave impact; Compared with the 
feature value less than the minimum 
of the safe-haven zone, the feature 
value larger than the maximum of 
the safe-haven zone is more likely to 
increase the probability of risk

GlobalNetExport [− 3.5, 2]
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The figure of CPI-Dif is in line with previous analyses and shows that the driving 
force of inflation on risk is concave, first decreasing and then increasing (as shown 
in the top left of Fig. 4). Moreover, deflation has a more pronounced impact on risk 
than does inflation. The impact of NarrowMoney on risk has a shape similar to that of 
the CPI-Dif, which is also consistent with the previous assumption. Moreover, risk is 
more likely to increase when NarrowMoney is low, especially when it is lower than 7.

For fiscal indicators, if the FinancialConcentration is too small (e.g., lower than 
13%), it is easy to accumulate the risk of government debt default. However, if it is too 
large (e.g., more than 35%), it is not conducive to the healthy operation of the entire 
economy, resulting in the accumulation of risk. Both can damage the stability of the 
financial system, but the force of the latter is much lower than that of the former. 
Therefore, overall, lower government revenue is more prone to risk, which is consist-
ent with previous analyses and assumptions. Combining the previous analysis, we can 
conclude that FinancialConcentration is more prone to risk through government debt 
defaults.

For DidYield, as expected, an excessive ratio (e.g., greater than 0.07) leads to over-
heated investment and bubbles and increases risk. However, beyond our assump-
tion, a small ratio also increases the risk. This may be because the very low rate is 
closely related to the incomplete development of the stock market. In such cases, it 
is difficult for enterprises to finance, which results in a single debt structure and puts 
pressure on the banking industry. However, its impact was far less than that of an 
excessive rate. According to the plot, the optimal range of the market dividend rate is 
0.01–0.07.

We also drew PDP plots to verify robustness, and the plots are shown in Additional 
file 2: Appendix S7. These trends were primarily consistent with those of SHAP.

Table 9 RF-Shapley regression in global set (Sorted by the size of share)

***, **, and * respectively means that the null hypothesis is rejected at the significance level of 1%, 5%, 10%

Feature Sign Share
(SSCvalue)

Coefficients P value Exponentiation Change of yrisk
1−yrisk

CreditCostGrowth  + 0.1379*** 0.0401 0.000 1.0409 Significantly increased 
by 4.09%

CPI-Dif  + 0.1365*** 0.0373 0.000 1.0380 Significantly increased 
by 3.80%

YieldCurveSlope  + 0.1222*** 0.0469 0.000 1.0480 Significantly increased 
by 4.80%

Credit-Dif  + 0.1151*** 0.0547 0.000 1.0562 Significantly increased 
by 5.62%

GlobalNetExport  − 0.1013*** 0.0323 0.000 1.0328 Significantly decreased 
by 3.28%

NarrowMoney  − 0.0970 -0.0455 0.000 0.9555 Insignificant increase

FinancialConcentration  − 0.0959 -0.0157 0.038 0.9844 Insignificant increase

Credit  + 0.0816*** 0.0560 0.000 1.0576 Significantly increased 
by 5.76%

DidYield  + 0.0610 -0.0255 0.000 0.9748 Insignificant increase

NetExport  − 0.0515 -0.0393 0.000 0.9615 Insignificant increase
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Shapley regression

In this section, we turn to statistical inference using the Shapley regression to assess the 
confidence of the prediction. The results17 of the training set are summarized in Table 9.

Table  9 shows that CreditCostGrowth, YieldCurveSlope, CPI-Dif, Credit-Dif, 
GlobalNetExport, and Credit are statistically significant in global dataset. Other indi-
cators’ changes are not markedly aligned with changes in the risk probability (Joseph 
et al. 2021). We speculate that the possible reason for this is that we did not fit the global 
dataset completely in order to improve the out-of-sample predictive and generalization 
capabilities of the model.

In particular, the coefficient of Credit shows that an increase of one unit in its SHAP 
value will increase yrisk

1−yrisk
 by 5.76%, showing its significant role in predicting systemic 

financial risk in the global dataset. Another factor that significantly increases the risk 
probability is Credit-Dif, where an increase in the SHAP value by one unit leads to an 
yrisk

1−yrisk
 increase of 5.62%.

Similarly, for CreditCostGrowth, a one-unit increase in SHAP raises yrisk
1−yrisk

 by 4.09%. 
YieldCurveSlope and CPI-Dif were also vital predictors of risk, with a unit change in the 
SHAP value boosting the probability ratio by approximately 4%.

Additionally, a one-unit increase in the SHAP of GlobalNetExport decreased the prob-
ability ratio by 3.28%. As previously noted, GlobalNetExport had a U-shaped impact. 
Although the impact of GlobalNetExport to risk is going to jump when it exceeds 2, it is 
an uncommon circumstance. Extreme values are expected to be ignored when the OLS 
is fitted. Therefore, the negative coefficient of GlobalNetExport indicates that it contrib-
utes less to the systemic financial crisis as the economy accelerates out of a recession.

Trained workflow in China’s risk
Building the model

We used the established model to measure systemic financial risk in China. Similarly, RF 
and GBDT captured six periods of risk rising since 1990 in China. We drew a time plot 
of the model-calculated probability of systemic financial risk in China after 1990, as pre-
sented in Fig. 5, where the blue horizontal line denotes the optimal threshold in tuning 

Fig. 5 Model-calculated probability of systemic financial risk in China

17 GBDT’s table showed in Additional file 2: Appendix S9.
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with the ROC, and the probability falls in the area above the blue line which shows the 
risk. The graph is based on the RF results, and the GBDT line is similar; therefore, it will 
not be repeated (see Additional file 2: Appendix S5).

The following is an analysis of the timing change18 of systemic risk probability in China 
from a macroeconomic perspective, based on China’s reality and the relevant literature.

In 1993, the probability of a systemic financial crisis in China increased for the first 
time since 1990. Because China’s credit growth increased in this year due to Deng 
Xiaoping’s Southern Talks in 1992, which affected the stability of the financial system 
(Chen et al. 2009; Zhang 2015).

From 1996 to 2000, the Southeast Asian financial crisis significantly affected China’s 
foreign trade and stock markets and led to deflation (Wei and Yang 2017), which aggra-
vated the turmoil in China’s financial system. In addition, China’s tax reform in 1994 
created fluctuations in government revenue during this period (Chen et al. 2009), which 
also increased the risk probability. However, benefiting from China’s proactive fiscal 
and monetary policies, the probability of a systemic financial crisis ultimately decreased 
(Wei and Yang 2017).

By 2003, there was another increase in China’s risk because during this time, some 
large state-owned banks had huge burdens of nonperforming loans and some were even 
on the verge of “technical bankruptcy” (e.g., the Agricultural Bank of China; Li and Liang 
2021; Zhang 2015). The real economy was hit by the outbreak of SARS, which lowered 
market expectations and affected the financial system (Yang et al. 2020).

In 2006, China increased the release of loans, leading to an overheating of investments 
in fixed assets (Chen et al. 2009). The U.S. subprime crisis occurred in 2007. These fac-
tors jointly triggered fluctuations in China’s financial system and increased the probabil-
ity of systemic financial crises in 2006 and 200719 (Li and Liang 2021; Tao and Zhu 2016; 
Guo et al. 2018). By 2008, owing to the Four Thousand Billion Stimulus Plan, the risk 
probability had not increased significantly (Guo et al. 2018; Li and Liang 2021).

From 2011 to 2013, there was a liquidity strain in China’s financial system and inter-
bank market, along with the European sovereign debt crisis and recession expectations 
in global economies, resulting in another peak in risk probability (Guo et al. 2018; Li and 
Liang 2021). However, as revealed by Li and Liang (2021), the impact of the liquidity 
squeeze on risk was not durable, and risk probability decreased in 2014 and 2015.

From 2016 to 2017, China experienced a surge in credit again: on the one hand, China’s 
“steady growth” policy led to an increase in the supply of medium-term and long-term 
loans; on the other hand, real estate loans also grew significantly because of the rapid devel-
opment of real estate and the rise of housing prices. Thus, the probability of the systemic 
financial crisis increased again (Guo et  al. 2018; Li and Liang 2021). In addition, China’s 
efforts to deleverage its financial sector during this period were also an important factor 
in raising risks. Moreover, the outbreak of a trade conflict between China and the United 

18 It should be noted that China officially proposed the goal of establishing a socialist market economy system in 1992, 
and the market was not well established before 1992, which may lead to imprecise outcomes, therefore, we started our 
analysis in 1992. Meanwhile, the outbreak of COVID-19 pandemic in 2020 may influence the systemic risk, but we do 
not include epidemiological factors in our model, so the risk in 2020 is also excluded from the analysis. And we shall 
consider the non-economic factors in future studies.
19 This conclusion has not reached a consensus in the academia and some papers suggest that there are no risks in 
China during this time, such as Zhang (2015).
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States in 2018 also impacted market expectations and international trade, driving up risk 
probability.

In summary, China’s financial system was more prone to risk during 1993, 1996–2000, 
2003, 2006–2009, 2011–2013, and 2017–2019, which is in line with the actual conditions 
and most of the literature. In other words, the trained model can simulate the general 
trend of risk in China, which proves the validity of the model on Chinese data and dem-
onstrates its good generalization.

SHAP value

We analyzed the results of SHAP decomposition in two dimensions, as we did previously.

Time dimension

Regarding the time dimension, Fig. 6 displays the annual SHAP value trends of the vari-
ables with apparent fluctuations in China.20 For example, according to Fig.  6, the sig-
nificant drivers of each increase in systemic risk in China over the past 30 years21 are as 
follows:

Form 1992 to 1993, the driving force of CreditCostGrowth increased sharply, consist-
ent with the previous timing analysis. By 1994, although CreditCostGrowth dropped, it 
was still at a high level, and its driving force for risk (0.040) ranked first. In addition, 
the CPI-Dif also made a significant contribution (0.015), and its contribution rose the 
most in this year, in line with the reality of inflation. Moreover, DidYield was the most 
prominent driving force preceding 1993, which may be because China’s DidYield was 
extremely low during this period, and according to our previous link analysis it could 
burden the banking and financial sectors. Overall, before 1995, DidYield and CreditCost-
Growth were the most prominent driving forces, and CreditCostGrowth and CPI-Dif 
were the most sensitive to risk. Furthermore, compared to CPI-Dif, CreditCostGrowth 
and DidYield exhibited a larger range of changes.
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Fig. 6 Annual SHAP value trend of some variables with China data

20 GBDT’S plot showed in Additional file 2: Appendix S12.
21 Referring to footnote 18, scenarios before 1992 and after 2020 were still not included in the analysis here.
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From 1996 to 2000, DidYield was the most influential factor in increasing the risk 
probability, and its effect peaked in 1998 and 1999. This can be attributed to the impact 
of the Southeast Asian financial crisis on trade, the real economy, and the accompany-
ing deflation, which led to poor corporate earnings, reduced dividends, and fluctuating 
stock markets. GlobalNetExport, NarrowMoney and CPI also have direct driving forces 
on risk. In addition, FinancialConcentration had a notable impact on risk between 1994 
and 1999, which is in line with the analysis of tax reform mentioned above.

In 2003, CreditCostGrowth contributes the most to risk. The volatility of CreditCost-
Growth may have been due to China’s chaotic banking system during this period, with 
a low capital adequacy ratio, poor risk management, and poor operating performance. 
In 2002, SARS broke out, and both disorganized banking system and SARS could lower 
market expectations (i.e., YieldCurveSlope). SARS may have also negatively affected risk 
probability through the international trade channel (i.e., GlobalNetExport). In addition, 
NarrowMoney’s value increased in China during this time, but the risk also increased, 
which is not consistent with the theoretical analysis and conclusions of the training set 
that an increase in NarrowMoney is generally related to the expansion of consumption 
and demand with a small impact on the financial system. This may be because in China, 
on the one hand, enterprise demand deposits account for a high proportion in Narrow-
Money and the rise in NarrowMoney is mainly driven by the rapid increase of enterprise 
demand deposits, which reflects in the falling of return on assets, the decrease of enter-
prise investment intention, and the decline in investment in reality. On the other hand, 
Zhou and Wang (2009) pointed out that money supply is closely linked to fluctuations in 
real estate asset prices, so the rise in real estate asset prices could lead to an increase in 
real estate demand deposits, which then caused the growth of NarrowMoney. Therefore, 
the expansion of NarrowMoney in China may result in a decrease in investment and an 
increase in real estate deposits, which is distinctive and not conducive to the develop-
ment of the real economy and financial system (He and Yu 2018). Thus, the surge in 
China’s property prices in 2003 can explain why NarrowMoney’s expansion led to a rise 
in risk.

During 2006–2009, CreditCostGrowth was the largest risk driver in 2006, in line 
with China’s 2006 credit boom. By 2007, it had changed to DidYield, possibly because 
the subprime crisis led companies to take protective measures to cut dividends, which 
rebounded in 2008 after the Chinese government took effective measures. GlobalNet-
Export represents an unfriendly international environment that also makes a few contri-
butions. In addition, the contributions of NetExport and CPI-Dif increased to different 
degrees, which corresponded to the impact of external demand and deflation during 
this period. Furthermore, GlobalNetExport has a more significant impact on risk than 
NetExport.

From 2011 to 2013, the “cash crunch” increased banking risk and lowered market 
confidence. CreditCostGrowth, GlobalNetExport, YieldCurveSlope, and NarrowMoney 
contributed significantly to risk, which is related to the poor global environment and 
poor expectations caused by the European debt crisis in 2012 as well as the rise in Chi-
na’s real estate asset prices in 2013.

From 2016 to 2017, CreditCostGrowth increased dramatically, making it the most 
sensitive risk driver; that is, its SHAP increased by 0.042 from 2016 to 2017, which is 
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consistent with the previous analysis. Since 2017, because of financial deleveraging and 
the US–China trade conflict, NarrowMoney, GlobalNetExport, and market expectations 
have been strong driving forces for risk.

Feature dimension

In the feature dimension, we drew scatter plots similar to the above but added time, as 
shown in Fig.  7, to examine the relationship between SHAP and the feature values in 
the China dataset.22,23 Again, most feature plots exhibited trends similar to those in the 
global dataset.

Specifically, DidYield is a significant driving force for risk when DidYield is less than 
0.01, and because the DidYield in China does not reach 0.07, a suitable threshold cannot 
be determined. Regarding time, China’s DidYield has performed well most of the time 
since 2000, but there is still room for development.

Fig. 7 Scatter plots showing the relationship between SHAP value and feature value in China data. Only a 
few are shown here. The others can be found in Additional file 2: Appendix S4. Figure legends are as follows: 
1990 covers 1990–2000, and 2000 indicates 2000–2010, 2010 represents 2010–2020

22 GBDT’s plots with China data showed in Additional file 2: Appendix S6.
23 China’s PDP plots showed in Additional file 2: Appendix S7.
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GlobalNetExport is in a position similar to DidYield. Because of the minimum limit, 
there is no pulling force on the left. However, on the right, the threshold in China, which 
is close to 1.5, is slightly smaller than the global threshold (2), possibly because China is 
export-oriented, which makes it more sensitive to the global trade environment.

In both the global and China datasets, YieldCurveSlope has the same threshold 
of − 1, and when the feature value exceeds the threshold, it is more likely to occur at 
risk. In China, the yield curve slope has gradually increased since 1990, especially after 
2010, most of it in the region of increasing risk. This indicates that the market has low-
ered economic expectations, and there is an obvious risk aversion, which is worthy of 
consideration.

Most NetExport values in China fall within the safe haven zone. The threshold and 
trend of CreditCostGrowth do not differ much from the global set, nor do the CPI-Dif 
trends.

For FinancialConcentration, whether in Global set or China set, its SHAP shows a 
tendency to fall first and then rise as FinancialConcentration grows. Numerically, when 
FinancialConcentration exceeds 13, it will reduce the probability of risk in most cases. 
While on the right, similar to GlobalNetExport and DidYield, the suitable threshold can-
not be determined since the FinancialConcentration in China does not reach 35. It can 
also be seen from the combination of times that China’s national financial concentration 
gradually increased from 1990 and performed well from 2000 to 2010, but it gradually 
approached the global alert boundary after 2010, which requires much attention.

NarrowMoney has always contributed to risk and shows a slight upward trend, which 
is consistent with the analysis above.

The pulling force of Credit is not obvious in China, which is inconsistent with the 
conclusions of most studies, possibly because the information in these two indicators is 
similar to that in CreditCostGrowth. Therefore, the model selects the factor with better 
performance and skips features with repeated information, indicating that credit cost is 
a better factor than credit itself for capturing risk.

Combined with the annual SHAP value trend in China above, it is evident that Cred-
itCostGrowth is almost sensitive to each rise in risk. In addition, GlobalNetExport, Nar-
rowMoney, and DidYield all float significantly during distinct risk increases, whereas 
DidYield slightly lags behind the others. These three indicators contributed to the risk 
calculation for the six periods. Taken together, the three indicators of CreditCost-
Growth, NarrowMoney, and GlobalNetExport are more suitable for monitoring risk in 
China, not only because of the variation in the risk probability ratio caused by changes in 
the SHAP value, but also because of their high sensitivity to risk.

Shapley regression

The results of the Shapley regression on the Chinese dataset24 are presented in Table 10. 
The regression coefficients in Table 10 reveal that most factors are statistically significant 
for measuring systemic financial risk in China, demonstrating the robustness of the indi-
cators. For YieldCurveSlope and CreditCostGrowth, an increase of one unit in their 
SHAP values increases yrisk

1−yrisk
 by 3.66% and 3.32%, respectively, which are the most influ-

24 GBDT’s table was in Additional file 2: Appendix S9.
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ential factors for capturing risks in China. The increase in SHAP for Credit and Credit-
Dif has a minor impact on risk, which we speculate is influenced by CreditCostGrowth, 
again suggesting that CreditCostGrowth is more appropriate than Credit and Credit-Dif 
for risk identification in China. A one-unit increase in DidYield’s SHAP could decrease 
yrisk

1−yrisk
 by 3.16%, which is different from the global dataset because from 1990 to 2020, 

DidYield in China has always been less than 0.01 and China’s stock market is developing. 
In addition, consistent with a previous analysis in China, it is different from the training 
set in that a one-unit increase in NarrowMoney’s SHAP could increase yrisk

1−yrisk
 by 1.17%. 

In addition, an increase of one unit in NetExport’s SHAP value decreases yrisk
1−yrisk

 by 0.62%, 
which is consistent with China’s export-oriented reality. Another difference is that 
GlobalNetExport increases risk, which is inconsistent with the above. Therefore, we 
draw another scatter25 of GlobalNetExport in the global set after 1990. Most of the 
points fall on the right half of the U-shaped curve, which is understandable because 
there was more international trade and communication than before the 1990s. There is 
an upward trend, indicating that after 1990, GlobalNetExport’s increase raised the risk. 
It is reasonable and similar to previous studies that international trade may increase risk 
contagion, and the larger the GlobalNetExport, the greater the likelihood of sovereign 
debt risk. Additionally, we note that the coefficient on CPI-Dif is also negative, which is 
inconsistent with the analysis, and we think it is because the effect of CPI-Dif on risk is 
non-linear and the regression is influenced by the deflation outlier because of the small 

Table 10 RF-Shapley regression with China data (sorted by the size of share)

***, **and * respectively means that the null hypothesis is rejected at the significance level of 1%, 5%, 10%
a  Since we don’t have risk target of China, it is impossible to determine sign for China with Logistic Regression. Therefore, 
we took the feature value as the independent variable, the corresponding SHAP value as the dependent variable, and 
then fitted the line to obtain the sign. Moreover, to be robust, we averaged the SHAP value calculated by RF and GBDT for 
features.

Feature Signa Share
(SSCvalue)

Coefficient P value Exponentiation Change of yrisk
1−yrisk

YieldCurveSlope  + 0.1660*** 0.0359 0.000 1.0366 Significantly increased 
by 3.66%

Credit  + 0.1398*** 0.0075 0.000 1.0075 Significantly increased 
by 0.75%

NarrowMoney  + 0.1382*** 0.0116 0.000 1.0117 Significantly increased 
by 1.17%

Credit-Dif  + 0.1106*** 0.0082 0.000 1.0082 Significantly increased 
by 0.82%

CreditCostGrowth  + 0.1091*** 0.0327 0.000 1.0332 Significantly increased 
by 3.32%

DidYield  − 0.1081*** 0.0311 0.000 1.0316 Significantly decreased 
by 3.16%

CPI-Dif  − 0.0823*** 0.0190 0.000 1.0192 Significantly decreased 
by 1.92%

GlobalNetExport  + 0.0611*** 0.0134 0.000 1.0135 Significantly increased 
by 1.35%

FinancialConcentration  − 0.0432*** 0.0091 0.000 1.0091 Significantly decreased 
by 0.91%

NetExport  − 0.0417*** 0.0062 0.000 1.0062 Significantly decreased 
by 0.62%

25 The scatter can be found in Additional file 2: Appendix S10.
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volume of Chinese data. For FinancialConcentration, according to the previous analysis, 
it has a concave impact on risk, and the feature value that is less than the minimum of 
the safe-haven zone has a greater effect on risk, so the overall coefficient appears to be 
negative.

Discussion and conclusion
This study upgrades a workflow consisting of selecting indicators, modeling, decompos-
ing results, and statistical inference, enabling the workflow to accurately classify and 
interpret, as well as select the best subset of features. Compared with the old workflow, 
the new workflow has the advantage of selecting features and can lead to better model 
performance. In addition, the workflow in this study is well suited to categorical or 
regression studies in many areas. These techniques can also be applied independently or 
in combination, depending on the research requirements. Our results benefit from the 
distinct advantages of feature engineering techniques, including RFE, machine learning 
algorithms, RF and GBDT, cutting-edge interpretation models, SHAP values, and the 
Shapley regression statistical inference framework. The combination of these techno-
logical techniques can not only determine proper features and acquire high prediction 
precision, but also allow us to decompose the intrinsic functions of the model and con-
duct statistical inferences on all variables in non-linear, non-parametric models, com-
bining the merits of difficult models and statistical inference. This study can serve as an 
example for others, and scholars can switch to other preferred shallow machine learning 
models or even deep learning algorithms for modeling.

We experimented with this in China’s systemic financial risk research by investigating 
numerous impact factors. We collected training samples primarily from the Jordà–Schu-
larick–Taylor Macrohistory Database, including 16 countries from 1870 to 2016, with a 
rich set of indicators, giving us an opportunity for feature engineering and providing us 
with many risk samples and properties. Inspired by international credit, we added four 
factors to the global trade environment to verify the usefulness of GlobalNetExport in 
predicting risk.

According to the selected samples and indicators, we captured six periods of rising 
risk probabilities in China since the 1990s, which are consistent with reality. We also 
detected the driving factors of each period, as well as the safe haven zone for each char-
acteristic. In addition, we found that CreditCostGrowth, NarrowMoney, and GlobalNe-
tExport are appropriate indicators for monitoring systemic risk in China, given their 
massive effect and high sensitivity to risk. More significantly, we confirmed the confi-
dence of the variables and model. Finally, based on the analysis results, we offer the fol-
lowing recommendations:

First, for global economies, the cost of credit impacts risk more than credit itself. In 
addition, the prosperity of the stock market needs to be moderate because both exces-
sively prosperous and underdeveloped stock markets have negative effects on systemic 
risk. In contrast, national financial concentration should not be too low because it has a 
great pull on risk through the channel of the government debt crisis. Additionally, inter-
national trade became more frequent after 1990. The scatter plots of the global trade 
environment during this time indicate that the higher the global average net export, the 
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greater its drive for systemic risk, signifying that countries should maintain a balanced 
current account to avoid debt accumulation, which could lead to a debt crisis and cause 
financial system turbulence.

Second, for countries with incomplete financial openness such as China, existing 
research demonstrates that global credit plays little role in the measurement of systemic 
risk, and this study shows that global trade is beneficial for China’s risk calculation. 
Therefore, for similar countries, the global trade environment can also be considered 
when predicting risks or even in other research areas that need to consider the external 
environment.

There are also a few recommendations for China:
First, as noted above, the cost of credit is a better indicator of risk than the credit itself.
Second, Chinese stock market is not currently a major risk driver and there is room for 

development. China can prompt its stock market to take suitable measures to increase 
dividend rates, including guiding listed companies to develop reasonable dividend distri-
bution plans.

Third, China needs to pay attention to the national financial concentration because it 
is increasing and moving closer to the border of the safe haven zone. Therefore, to avoid 
systemic risk, it is essential to optimize the tax structure, liberalize the domestic market, 
and achieve moderate financial concentration.

Fourth, China should focus on its international trade. Moreover, since the global trade 
environment will also have an impact on risks, and even its alignment with risks exceeds 
China’s net export, it can be said that this is a new risk monitoring indicator, and China 
needs to pay close attention to global import and export exchanges and establish a 
dynamic management mechanism.

Fifth, the impact of narrow money on risk in China is distinctive: an increase in nar-
row money increases the crisis. The rise in NarrowMoney in China was driven mainly by 
the rapid increase in enterprise demand deposits and the increase in real estate demand 
deposits, which shows weak domestic demand in China. Therefore, China should expand 
domestic demand in a timely manner, which is also consistent with China’s “dual circula-
tion” development pattern.

Finally, because YieldCurveSlope is more likely to be prone to risk when it exceeds − 1, 
and China’s YieldCurveSlope has been rising and exceeded the threshold after 2010, the 
Chinese government should strengthen its communication with the market, guide posi-
tive market expectations, actively relieve risk aversion, and improve investor confidence.

The main limitation of this study was data availability, which is a typical drawback of 
macro studies. However, in future studies, Data mining methods can be used to collect 
data, find more distinguishing regulatory indicators that differ from macro features, and 
monitor systemic risk in a timely manner without suffering from data unavailability and 
delays. Further research is required to add submarket-specific features to the model. 
For example, the relationship between micro-characteristics and macro-indicators can 
be clarified using methods that deal with mixed-frequency data. Noneconomic factors, 
such as epidemics and politics, can also be added. In addition, other machine learning 
algorithms can be applied to predict systemic risk.
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