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Abstract 

Value at risk (VaR) and expected shortfall (ES) have emerged as standard measures 
for detecting the market risk of financial assets and play essential roles in invest-
ment decisions, external regulations, and risk capital allocation. However, existing VaR 
estimation approaches fail to accurately reflect downside risks, and the ES estima-
tion technique is quite limited owing to its challenging implementation. This causes 
financial institutions to overestimate or underestimate investment risk and finally 
leads to the inefficient allocation of financial resources. The main purpose of this study 
is to use machine learning to improve the accuracy of VaR estimation and provide 
an effective tool for ES estimation. Specifically, this study proposes a VaR estimator 
by combining quantile regression with “Mogrifier” recurrent neural networks to capture 
the “long memory” and “clustering” properties of financial assets; while for estimating 
ES, this study directly models the quantile of assets and employs generative adversarial 
networks to generate future tail risk scenarios. In addition to the typical properties 
of financial assets, the model design is also consistent with heterogeneous market 
theory. An empirical application to four major global stock indices shows that our 
model is superior to other existing models.

Keywords:  Value at risk, Expected shortfall, Quantile regression, Recurrent neural 
networks, Generative adversarial networks

Introduction
In the ongoing credit and financial crises, it is essential to manage risk using appropriate 
measurement tools. Value at risk (VaR) is a widely used risk measure in financial institu-
tions owing to its easy calculation and clear definition. However, the drawbacks of VaR 
(Artzner et  al. 1999; Kwon 2021) are apparent: (1) VaR does not measure the left-tail 
risk beyond the quantile at the desired level and (2) VaR is not a consistent risk measure 
and does not satisfy some desirable properties such as subadditivity and convexity. These 
drawbacks cause investors and risk managers to overestimate or underestimate risk. In 
the recent Basel Accords, expected shortfall (ES) replaced VaR as the standard measure 
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of market risk, making it the most popular risk measure for financial institutions and 
investors (Acerbi and Tasche 2002). ES, in addition to having many other desirable prop-
erties, is a consistent risk measure defined as the conditional mean of the loss over VaR 
at a given confidence level (Rockafellar and Uryasev 2000). Although the ES employed in 
Basel III and IV can provide more information about the left tail of assets, estimation is 
inherently challenging, as ES is not elicitable, which means there exists no scoring func-
tion for which the expectation is minimized by the true ES (Gneiting 2011).

Classical approaches for forecasting VaR can be divided into three major categories: 
nonparametric, parametric, and semi-parametric. The nonparametric approach does 
not require assumptions regarding the distribution of returns. Historical simulation is 
the primary representative of this category, where the empirical distribution of historical 
returns is used to calculate VaR. Although the calculation complexity of this approach 
is relatively low, it cannot capture fluctuations that do not exist in the historical window 
used (Chang et al. 2003). To estimate VaR using a parametric approach, it is necessary to 
define an effective model of return distribution. Some well-known methods in this cat-
egory are the variance–covariance model and many GARCH-type models. However, the 
distribution assumptions of this method (such as Gaussian and Student’s t distributions) 
are not applicable to most financial time-series data. Semi-parametric approaches to 
VaR forecasting include those that use extreme value theory (Ener et al. 2012) and those 
that directly model the conditional quantile for a chosen probability level using quantile 
regression (QR), such as conditional autoregressive VaR (CAViaR) modeling (Engle and 
Manganelli 2004). In empirical studies on VaR forecast accuracy, the CAViaR models 
have performed well (Ener et al. 2012). Given the performance of QR in VaR estimation, 
scholars have combined it with machine learning methods, such as quantile regression 
neural networks (QRNN) and LASSO-QR, to further improve forecast accuracy. Moreo-
ver, there are inherently suitable methods for forecasting financial time series using deep 
learning such as recurrent neural networks (RNNs) and their variants. In particular, the 
MogLSTM proposed by Melis et al. (2019) has received widespread attention owing to 
the interaction operation between the hidden layer state and the current input first. We 
argue that through this interaction operation, the stored historical return information 
can be sufficiently combined with the currently available information to mimic long 
memory and nonlinear dependencies as well as the volatility clustering of returns. In 
addition, the forget gate in the MogLSTM cell can discard historical information that 
does not contribute to risk estimation, thereby avoiding serious clustered VaR violations. 
Therefore, we combined QR with a Mogrifier long short-term memory (MogLSTM) and 
Mogrifier gated recurrent unit (MogGRU) (Qin 2020) to propose two new deep learning 
QR (deep-QR) models: QRMogLSTM and QRMogGRU. For ease of expression, we call 
MogLSTM and MogGRU the Mogrifier recurrent neural networks (MogRNNs).

ES forecasts can be produced as byproducts of many VaR forecasting methods. 
Historical simulation and kernel density estimation in the nonparametric category 
can estimate ES by generating density forecasting. This is also the case for paramet-
ric approaches that involve a model for conditional variance, such as the GARCH 
model, and a distributional assumption. ES has always been regarded as not elicit-
able, whereas Fissler et al. (2015) show that VaR and ES are jointly elicitable. There-
fore, another recently popular method is to jointly estimate VaR and ES based on the 
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AL scoring function (Taylor 2019). Although machine learning methods can achieve 
accurate VaR estimations by combining QR, they provide no apparent means of pro-
ducing ES forecasts. There is no scoring function for which the expectation is mini-
mized by the true ES (Gneiting 2011) to construct supervised learning directly. In 
recent years, many data-driven methods based on Generative Adversarial Networks 
(GANs) (Goodfellow et  al. 2014) have been utilized to generate renewable resource 
scenarios, particularly for wind power (see, Ma et al. 2013; Liang and Tang 2020; Yuan 
et al. 2021). Although the potential benefits of the physical process from wind energy 
to wind power generation are obvious, one of the main obstacles to its implementa-
tion is the uncertainty of predicting meteorological variables. Therefore, researchers 
have developed data-driven methods for GANs that can generate scenarios based on 
historical data related to meteorological variables, and achieve satisfactory results for 
uncertainty prediction. In the field of risk management, a few studies have applied 
GANs to capture the uncertainty of financial asset returns and prices and obtain VaR 
estimations (see, Zhu et  al. 2021; Fatouros et  al. 2022). Although these generative 
models accurately portray variable uncertainty without the need to fit probabilistic 
models of stochastic variables, they do not provide an efficient way to estimate ES. 
Inspired by the above generative model-based research, this study employs GANs to 
specifically model uncertainty scenarios in the left tail of asset returns, and accord-
ingly proposes an ES estimation method based on scenario generation. Specifically, 
after generating tail risk scenarios, ES can be estimated by calculating the arithme-
tic average of the risk scenarios below the VaR. This ES estimation method based on 
GANs risk scenario generation, which is interesting and promising, has never been 
explored.

In addition to the aforementioned VaR and ES modeling methods, the hypothesis of 
a heterogeneous market (Müller et  al. 1993) potentially contributes to the estimation 
of risk measures. Different participants in a heterogeneous market have different time 
horizons and dealing frequencies, and can have different degrees of risk aversion, insti-
tutional constraints, and transaction costs. The risk measures in a heterogeneous mar-
ket can be affected by participants with different dealing frequencies. In the VaR and 
ES estimation processes, we consider the heterogeneous market hypothesis as a guiding 
theory in the design of our estimation framework.

According to the pertinent literature, most existing VaR and ES methods face various 
challenges. First, traditional methods and simple machine learning models find it diffi-
cult to capture long memory and nonlinear dependencies in financial time series, which 
leads to the low accuracy of these models in the estimation of VaR and ES. The second 
challenge is severe VaR violations during which the asset realizes a loss exceeding the 
VaR value owing to dependencies between VaR forecasts, especially for the 99% confi-
dence level. This is often the case when sharp market plunges occur, especially for devel-
oped markets (Žiković and Filer 2013). Third, although machine learning methods can 
achieve accurate VaR estimations by combining QR, they provide no apparent means of 
producing ES forecasts. Finally, financial market risk can be affected by participants with 
different time horizons and dealing frequencies, and existing risk-forecasting methods 
often ignore the importance of these factors. These challenges of VaR and ES methods 
reflect additional motivations for the framework proposed in this study.
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In summary, this study introduces a data-driven framework that forecasts the VaR 
and ES of assets, addressing the aforementioned challenges with the following key 
innovations:

(1)	 Two VaR estimation methods based on deep learning: QRMogLSTM and QRMog-
GRU. These two methods not only mimic long memory and nonlinear dependen-
cies to capture rare market events, but also discard unimportant historical informa-
tion to avoid clustered VaR violations.

(2)	 An ES estimation model based on GANs to solve the problem in which QR-based 
machine learning methods have difficulty generating ES estimates.

(3)	 The use of the decomposition-aggregation mechanism to implement risk meas-
ure forecasting to capture the behavior of market participants with multiple time 
scales. Additionally, this study considers the heterogeneous market hypothesis as 
theoretical guidance in the design of the estimation model.

Related work
In finance, there is a growing interest in QR, with a particular focus on VaR models. 
There are two reasons for this: (1) QR provides a complete characterization of the ran-
dom relationship between variables and (2) QR offers a more robust and thus more 
effective estimation in some non-Gaussian settings. The majority of the QR literature 
has focused on statistical models that generate future VaR in fixed model forms. For 
example, Koenker and Bassett (1978) propose a linear estimation process for condi-
tional quantiles, extending the ordinary regression model by setting the loss function to 
quantile loss. Engle and Manganelli (2004) propose another quantile estimation method 
based on the linear QR technique to model the quantile directly, namely CAViaR. How-
ever, the return data of the real stock market are usually nonlinear and do not satisfy a 
normal distribution, and it is difficult to find suitable functional forms for the linear QR 
and CAViaR models (Huang 2013). To solve these estimation problems, Taylor (2000) 
applies the QRNN proposed by White (1992) to estimate conditional quantiles. The 
empirical results prove that the QRNN outperforms traditional GARCH-class models 
in terms of forecasting performance. The motivation for using QRNN to estimate VaR 
is clear: to find a suitable nonlinear functional form for the QR process with the power-
ful nonlinear mapping capability of artificial neural networks. Unfortunately, a QRNN 
is essentially a feedback-type neural network, and thus suffers from overfitting, under-
fitting, and a tendency to fall into local optimal points (Qiu and Song 2016). Inspired 
by Taylor, the following research idea is clear to scholars: extend the better-performing 
point forecasting model to the field of quantile estimation. For example, Takeuchi et al. 
(2006) and Li et al. (2007) proposed QR-SVM, and Xu et al. (2016) applied this method 
to VaR estimation and concluded that QR-SVM outperformed traditional GARCH-like 
and linear QR models. Nguyen et al. (2020) also propose the use of LASSO-QR to study 
tail risk in the cryptocurrency market.

With the development of deep learning, scholars have again turned their attention 
to deep neural networks, especially RNNs (Wang et  al. 2022b) and their variants. For 
example, Wang et  al. (2020) estimated quantiles using a QR long short-term memory 
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network (LSTM) and constructed forecasting intervals from the upper and lower quan-
tile estimation results. However, few studies have focused on deep-QR to estimate the 
VaR. This may be because the financial sequence is more volatile, resulting in complex 
neural networks that are difficult to train and need a large number of hyperparameters 
to be set appropriately.

ES is a standard risk measure in the recent Basel Accord, while its related modeling 
work is less. Mainly because ES is not an elicitable measure, constructing a loss function 
for its estimation process is challenging (Cai and Wang 2008; Grabchak and Christou 
2021). Scholars such as Du and Escanciano (2017) and Patton et al. (2019) have explored 
ES estimation approaches. Recently, a popular method has been proposed to jointly esti-
mate VaR and ES based on the research theories of Fissler et  al. (2015). For example, 
Meng and Taylor (2020) and Merlo et al. (2021) jointly estimated VaR and ES using CAV-
iaR-type models based on the AL scoring function. In addition, the current literature 
on risk measurement modeling using generative models focuses only on VaR estimation 
without providing ideas for ES estimation. For example, Zhu et al. (2021) and Fatouros 
et  al. (2022) employed GANs to generate price/return scenarios for future assets and 
obtained VaR by calculating the quantiles of all the scenarios. These methods are the 
same as scenario generation in the field of renewable energy (Li et al. 2020) and generally 
follow two steps: (1) obtaining the probability distribution of the sequence itself or the 
forecasting error, and (2) sampling the scenarios from the statistical distribution.

In a broad strand of the financial literature, the hypothesis of a heterogeneous mar-
ket mainly guides the forecasting of asset volatility, such as the heterogeneous autore-
gressive (HAR) model (Corsi 2009). Decomposition-aggregation forecasting is a method 
that captures multi-timescale behaviors for the prediction of financial asset returns. The 
application scenarios of decomposition-aggregation forecasting in finance include, but 
are not limited to futures (Jiang et  al. 2021; Guo et  al. 2022), stock (Deng et  al. 2022; 
Wang et  al. 2022a), and cryptocurrency (Parvini et  al. 2022) markets. The research 
results in the above studies show that forecasts based on decomposition-aggregation 
learning can improve accuracy. Moreover, the main idea of decomposition-aggregation 
forecasting is compatible with the heterogeneous market hypothesis.

Based on the above, the main contribution of the current study is fourfold: First, we 
propose a novel probabilistic framework for VaR estimation based on QRMogLSTM 
and QRMogGRU. This framework performs better in terms of both VaR 95% and VaR 
99% than prevalent VaR estimation methods. Second, we developed an ES estimation 
approach based on GANs, providing future risk scenarios based on the generation tech-
nology of tail distribution, and solving the problem of machine learning methods hav-
ing difficulties in producing ES forecasts. Various evaluation indices and statistical tests 
prove the validity of the ES forecasting approach. Third, we consider investors’ different 
time horizons and dealing frequencies based on the heterogeneous market hypothesis. 
It captures the investment behaviors of short-, medium-, and long-term investors and 
does not significantly increase the computational burden. Finally, we explore a relatively 
complete QR model space using CAViaR-type models, QRNN, LASSO-QR, QR-SVM, 
QR-tree models, and QR-deep learning as benchmark models. The backtesting results of 
all the models were compared against four main stock indices, exploring questions that 
contribute to our understanding of the accurate estimation of risk measures.
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VaR and ES estimation framework
In this study, we extend the decomposition-aggregation strategy, state-of-the-art deep 
learning methods, and Bayesian optimization technology to the field of risk measures esti-
mation. These technologies are compatible with the properties of financial assets. The cor-
responding mathematical principles and financial theories are presented below.

The hypothesis of a heterogeneous market

Müller et al. (1993) proposed the hypothesis of a heterogeneous market, which states that 
different participants in a heterogeneous market have different time horizons and dealing 
frequencies. Therefore, the time horizon of participants has a "fractal" structure, which con-
sists of short-, medium- and long-term components. Each component has its own reaction 
time to events or news, and different degrees of risk aversion, institutional constraints, and 
transaction costs. We argue that the risk measure of financial assets is likewise affected by 
the unique dealing frequency of heterogeneous participants. Therefore, we incorporate the 
heterogeneous market hypothesis into the design of our estimation framework. We use the 
decomposition-aggregation strategy ("Decomposition and aggregation based on investor 
heterogeneity" section) to distinguish participants with different time horizons and dealing 
frequencies and employ MogRNNs ("Quantile regression Mogrifier RNNs (QRMogRNNs)" 
section) to generate risk estimation specifically.

Decomposition and aggregation based on investor heterogeneity

Forecasting technology based on decomposition-aggregation learning has been applied in 
many research fields, such as finance, energy (Wang et al. 2022c; Neshat et al. 2022), and 
the environment (Kim et al. 2022; Wang et al. 2022d). Research findings in these fields show 
that forecasts based on decomposition-aggregation learning can improve accuracy. In risk 
measure estimation, we argue that this mechanism can identify and extract asset sequences 
at different frequencies (P H and Rishad 2020) for analysis and forecasts. This mechanism 
is compatible with the heterogeneous market hypothesis that short-term investors affect 
signals with higher frequencies, whereas the trading behaviors of medium- and long-term 
investors affect those with lower frequencies. Therefore, this study extends decomposi-
tion-aggregation learning to the field of risk measure estimation. Specifically, we propose a 
real-time decomposition-aggregation approach that uses the available information to learn 
decomposition and aggregation rules. Whenever new data are known, they are added to the 
available information set and then decomposed and aggregated according to the rules.

Variational mode decomposition

The decomposition method used in this study is the variational mode decomposition 
(VMD). VMD (Dragomiretskiy and Zosso 2014) is a powerful signal decomposition algo-
rithm that decomposes a complex signal into several intrinsic mode functions (IMFs) with 
a specific center frequency and bandwidth that are completely nonrecursive. In the decom-
position mode of the VMD, we can redefine the IMF as

where AK (t) and ϕk(t) indicate the instantaneous amplitude and phase of uk(t) , respec-
tively; wk(t) is the instantaneous angular frequency. From wk(t) = dϕk(t)

/
dt > 0 

(1)uk(t) = AK (t)cos(ϕk(t)),
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(Dragomiretskiy and Zosso 2014), we know that ϕk(t) must be differentiable at least 
once and ϕ′

k(t) > 0.
The VMD algorithm is realized by solving the following constrained variable problem:

where vk(t) is the input signal, j2 = −1 , and δ(t) represents the Dirac distribution func-
tion. The Lagrange multiplier is used to transform Eq. (2) into an unconstrained optimi-
zation problem:

where �(t) is the Lagrange multiplier used to enhance the constraint and α > 0 is the 
quadratic penalty factor. 

∥∥∥v(t) −
∑K

k=1 uk(t)
∥∥∥
2

2
 is a quadratic penalty term that acceler-

ates the convergence rate and ensures minimum squared error.
According to the ADMM optimization method (Bertsekas and DimitriP 1982; Drago-

miretskiy and Zosso 2014), the update modes of uk and wk can be expressed by the fol-
lowing equations:

where ûn+1
k (w) , x̂(w) , and �̂(w) are the Fourier transforms of the signals un+1

k (t) , x(t) , and 
�(w) , respectively. Moreover, the stop condition of VMD is expressed based on the toler-
ance of the convergence criterion:

This study chooses the VMD algorithm instead of the empirical mode decomposition 
(EMD)-class (Huang et al. 1996) algorithm, because VMD can fix the number of gener-
ated IMFs, thus avoiding the inconsistency between in-sample and out-sample decom-
position results.

IMFs aggregation based on fuzzy entropy

To balance forecasting accuracy and time consumption, we do not model each IMF, but 
the subseries aggregated by all the IMFs. However, there is no clear division between 
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∥∥∥ûn+1
k (w) − ûnk(w)
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different frequencies of financial assets (IMFs), and the boundary is fuzzy. Thus, we 
employ the fuzzy entropy and approximation criterion (Fu et al. 2020) to aggregate all 
the IMFs. The approximation criterion is defined in Eqs. (7) and (8):

where l denotes the number of decomposed IMFs and 
{
FEi|i = 1, ..., l

}
 represents the 

fuzzy entropy value corresponding to the ith IMF.

Real‑time decomposition and aggregation mechanism

Let Ot be the financial asset data, and Mt be the available information set at time t. The 
real-time decomposition-aggregation mechanism can be implemented as follows:

(1)	 Decompose O1,O2, . . . ,Ot−1 at t-1, into k IMFs using VMD and information of 
Mt−1 , such that the jth IMF can be denoted as 

(
IMF j|Mt−1

)
.

(2)	 Calculate the fuzzy entropy of all decomposed IMFs, then acquire the aggrega-
tion rule (H |Mt−1) , and obtain p subseries 

−→
F1 ,

−→
F2 , . . . ,

−→
Fp , (p ≤ k) according to the 

approximate criterion.
(3)	 Calculate the jth IMF, that is, 

(
IMFt,j|Mt

)
 when new information is available at t 

using the VMD and information from Mt.
(4)	 Calculate the fuzzy entropy FEt

(
IMFt,j|Mt

)
 of each IMF at t and apply (H |Mt−1) to 

FEt
(
IMFt,j|Mt

)
 to obtain the aggregated subseries Ft,1, Ft,2, . . . , Ft,p, (p ≤ k) at t.

Figure 1 shows the decomposition and aggregation results of the SPX500 index for the 
training set. As shown in Fig. 1, the frequency of subseries (Sub) 1 is low; some research-
ers have argued that this sequence is a trend sequence (Zhang et al. 2008). The frequency 
of Sub 2 is relatively high, which is the medium- and long-term impact brought to the 
market by particular events or the behavior of medium- and long-term investors. Subs 3 
and 4 are high-frequency sequences influenced by short-term shocks (such as monetary 
policy and the release of US macroeconomic data) or short-term investor behavior.

(7)criterion =
max (FEi|i = 1, ..., l) − min (FEi|i = 1, ..., l)

l
/
2

,

(8)�FEij =
∣∣FEi − FEj

∣∣ < criterion,

Fig. 1  Decomposition and aggregation results of SPX500
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In the subsequent estimation, we only needed to model the subseries 
Ft,1, Ft,2, . . . , Ft,p , which are aggregated in real time from IMFs and summed up the 
estimation results to obtain the estimated values of the financial asset data.

Quantile regression Mogrifier RNNs (QRMogRNNs)

Forecasting VaR at significance level α at a future time is equivalent to estimating the 
τ th quantile. We called Mogrifier LSTM (MogLSTM) and Mogrifier GRU (MogGRU) 
as MogRNNs collectively. QRMogRNNs are realized by designing the loss functions 
of MogRNNs as quantile loss, which is consistent with Taylor’s study (2000) of QRNN.

Mogrifier LSTM and Mogrifier GRU​

We found that the Mogrifier (Mog) structure proved to have better performance 
owing to an interesting model improvement, that is, performing regular interactive 
operations on the current input and the previous hidden state. The advantages of 
adopting MogRNNs to estimate the risk measures of financial assets are reflected in 
the properties of financial assets and the heterogeneous market hypothesis.

Properties of financial asset  The interaction between the previous hidden layer which 
stored the historical return information and the current input enables the model to 
learn the "clustering" of financial asset volatility. By inputting the interaction results 
into the LSTM or GRU structure, the model retains or discards the historical informa-
tion to learn the long-term dependencies of the financial sequence.

Heterogeneous market hypothesis  The MogRNNs model architecture coincides well 
with the heterogeneous market hypothesis, as reflected in two ways. First, the RNNs 
choose to retain or discard historical information. Information that does not contrib-
ute to risk estimation is discarded (such as the impact of short-term speculation on 
the long-run market), whereas information that contributes to risk estimation (such 
as medium- and long-term investment behavior) is retained in the hidden layer of the 
RNNs. Second, the Mog structure can drive retained long-term investment behavior 
and short-term investment behavior performs interactive operations to simulate the 
interaction between short-term investors and medium- or long-term investors.

In addition to the abovementioned advantages, the forget gate in the LSTM cell 
can discard historical information that does not contribute to the estimation, thereby 
avoiding serious clustered VaR violations. Therefore, we combined QR with MogL-
STM and MogGRU to propose two new deep-QR models to model the quantiles of 
financial assets, namely, QRMogLSTM and QRMogGR.

As LSTM and GRU have similar cell structures, we introduce the structure of 
MogLSTM to explain the model improvement. A schematic of MogLSTM is pre-
sented in Fig. 2. Its mathematical principle is as follows:

To demonstrate the modifications of MogLSTM, the cell structure of LSTM is first 
presented as follows:
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where σ(·) is the sigmoid function; F , I , J , and O are gates of the LSTM cell; they decide 
which information will be retained or discarded. The current input to the LSTM x must 
be related to the previous hidden state hprev . Thus, MogLSTM performs iterative inter-
action operations on x and hprev in advance to obtain the modulated inputs x↑ and h↑

prev . 
These inputs,x↑ and h↑

prev , can be defined as xi and hiprev respectively, and expressed as 
follows:

with x−1 = x and h0prev = hprev . The iterative round (also known as Mog step), r ∈ N , is a 
hyperparameter; r = 0 recovers standard LSTM. Qi and Ri are matrices resulting from 
random initialization To reduce the number of additional model parameters, the Qi and 
Ri matrices are decomposed into the products of the low-rank matrices: Qi = Qi

leftQ
i
right 

with Qi ∈ Rm×n , Qi
left ∈ Rm×k , Qi

right ∈ Rk×n , where k < min (m, n) is the rank.

(9)

F = σ

(
WFxx + WFhhprev + bF

)
,

I = σ

(
WIxx + WIhhprev + bI

)
,

J = tanh
(
WJxx + WJhhprev + bJ

)
,

O = σ

(
WOxx + WOhhprev + bO

)
,

C = F ⊙ Cprev + I ⊙ J,

h = O ⊙ tanh (C),

(10)

{
xi = 2σ

(
Qihi−1

prev

)
⊙ xi−2, for oddi ∈ [1, 2, . . . , r]

hiprev = 2σ
(
Rixi−1

)
⊙ hi−2

prev , for eveni ∈ [1, 2, . . . , r]
,

Fig. 2  Schematic of MogLSTM with r = 5
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MogGRU can be modified by the same mechanism, that is, the hidden state hprev and 
current input x are operated interactively before they are inputted into the GRU cells.

QRMogRNNs

We assume that f (Xi, θ) indicates the forecasting model and θ represents all the parameters 
of this model. Next, we design the loss function in Eq. (11), where the parameter θ(τ ) is esti-
mated corresponding to τ , so we can estimate VaR using the model f

(
Xi, θ̂ (τ )

)
 based on 

QR theory:

The condition quantile of yacti  obtained by QRMogRNNs (i.e., QRMogGRU and 
QRMogLSTM) can be formulated based on the aforementioned forward propagation of 
MogLSTM and MogGRU as follows:

where W(τ ) and b(τ ) indicate the weight matrix and bias corresponding to the quantile 
τ , respectively; hprev(τ ) represents the hidden state with respect to τ.

Bayesian hyperparameter optimization and model selection

The importance of using Bayesian theory and Bayesian formulas to realize model selection 
and hyperparameter optimization is reflected in two ways: First, the deep learning model 
has many hyperparameters that affect the accuracy of the model, especially for MogL-
STM and MogGRU structures, which both have an extra parameter, r. Second, accord-
ing to the "No free lunch" theorem, while model A outperforms model B on one specific 
task, there must be another specific task on which A performs worse than model B. There-
fore, we regard the type of neural network layer as a hyperparameter that has two choices: 
QRMogLSTM and QRMogGRU. We coded them as 0 and 1, respectively, to realize the 
model selection. Table  1 presents the hyperparameters to be optimized and their value 
ranges, and the Bayesian optimization (BO) can be implemented as follows:

(11)QL =

N∑

i=1

max
{
τ
(
f (Xi, θ(τ )) − yacti

)
, (τ − 1)

(
f (Xi, θ(τ )) − yacti

)}
.

(12)Q(τ |Xi) = f
(
Xi, θ̂ (τ )

)
= σ

(
WOx(τ )x + WOh(τ )hprev(τ ) + bO(τ )

)
,

Table 1  Value range of hyperparameter to be optimized

Hyperparameter Symbol Value Determination method

Number of features Nf [1,5] Trial and error approach

Number of hidden units Nh [5,50] Bias-variance tradeoff

Mog step r [0,10] Preset

Number of layers NL [1,4] Bias-variance tradeoff

Layer type LT [0,1] Model selection principle

Epoch epoch [50,500] Trial and error approach
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BO is based on Bayes’ theorem, described as

where �UN indicates the unknown information, P
(
�UN

)
 refers to the prior distribution, 

P
(
�|�UN

)
 indicates the probability, and P

(
�UN |�

)
 denotes the posterior distribution.

The basic steps of BO are given as.

(1)	 Build a surrogate probability model of the objective function.
(2)	 Find the ideal hyperparameters on the surrogate.
(3)	 Apply these hyperparameters to the true objective function to assess them.
(4)	 Update the surrogate model incorporating the new results.
(5)	 Repeat steps (2–4) until max iterations are evaluated.

After considering the layer type as a hyperparameter and introducing the extra param-
eter r , we have four alternative models to select:

(1)	 When r = 0 and LT = 0 , the QRLSTM model is selected.
(2)	 When r = 0 and LT = 1 , the QRGRU model is selected.
(3)	 When r > 0 and LT = 0 , the QRMogLSTM model is selected, and the hidden layer 

state and the current input are operated interactively r times.
(4)	 When r > 0 and LT = 1 , the QRMogGRU model is selected.

Other parameters of our model are set by default: learning rate = 0.01, opti-
mizer = "Adam" and dropout ratio = 0.2.

Estimate ES based on scenario generation

Although ES has replaced VaR as the standard risk measure in the recent Basel Accord, 
there are few ES estimation methods because they cannot construct a loss function. This 
study employs the generative model GANs to estimate ES. Inspired by the direct quantile 
modeling of the well-known CAViaR model proposed by Engle and Manganelli (2004), 
we employed GANs as a powerful tool to generate asset-tail scenarios. The principle is 
that the estimated quantile values are inputted into the GANs to generate many future 
risk scenarios at the tail of the assets, then the ES can be obtained by averaging scenarios 
lower than the estimated VaR value.

Least squares generative adversarial network

Least squares generative adversarial network (LSGAN) is a variant of the GANs pro-
posed by Mao et al. (2017). This model maintains the core structure of the GAN, which 
consists of a generator G and discriminator D. The goal of G is to generate new data 
that D cannot determine as true or fake by learning the underlying distribution of the 
training-set data. D is a binary classifier that determines whether the data come from the 

(13)P
(
�UN |�

)
=

P
(
�|�UN

)
P
(
�UN

)

P(�)
,
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training set or G by classifying the input data as true or false. During the iterative pro-
cess, G and D alternately update their weights to improve their discriminative or gen-
erative power and generate an adversarial model to reach the Nash equilibrium when D 
cannot discriminate between true and false.

The input to the generator is a latent variable Z, which can be a simple random distri-
bution such as a Gaussian distribution. The goal of G is to map Z to G(Z) such that it 
approximates the true distribution as closely as possible. The inputs to D are the fake 
data generated by G and the training set �

train

1  . Because neural networks can fit arbitrary 
functions, generators and discriminators are generally designed as multilayer neural net-
works. This is achieved by designing the loss functions L(D)

(
θ(D), θ(G)

)
 and 

L(G)
(
θ(D), θ(G)

)
 for D and G. The main improvement in LSGAN is the modification of 

the loss functions of G and D to the form of a squared error. In LSGAN, the mathemati-
cal expressions for L(D)

(
θ(D), θ(G)

)
 and L(G)

(
θ(D), θ(G)

)
 are as follows:

where α , β , and γ are predefined parameters. Minimizing the objective function mini-
mizes the Pearsonχ2 scatter when β − γ = 1 and β − α = 2 are satisfied such that 
α = −1 , β = 1 , and γ = 0 . For D, a smaller L(D)

(
θ(D), θ(G)

)
 indicates that it is more 

capable of distinguishing true from fake. For G, a smaller L(G)
(
θ(D), θ(G)

)
 indicates that 

it is more capable of falsifying.
Training GANs is difficult in practice because of the instability of GANs learning. The 

discriminator of the original GAN uses a sigmoid cross-entropy loss function, which 
may lead to the problem of gradient vanishing during the learning process. The LSGAN 
uses the least square loss function (LSF) as its discriminator. The idea is simple and 
efficient: the LSF can move fake samples to the decision boundary because it punishes 
samples that lie on the correct side of the decision boundary for a long time. Based on 
this characteristic, the LSGAN is comparable to the Wasserstein generative adversarial 
network (WGAN) in generating samples that are closer to real data; however, the train-
ing process and convergence speed of the LSGAN are faster than those of the complex 
WGAN.

In addition, we considered a two-time-scale update rule training strategy (Heusel 
et al. 2017) to optimize the learning process of the LSGAN. Specifically, this study 
employs the "Adam" optimizer with different learning rates for the discriminator 
network D and the generator G. G uses the low-speed update rule with the learning 
rate set at 0.0001, and D uses the relatively fast update rule with the learning rate 
set at 0.0005.

Although the LSGAN ensures that the punishment for the outlier sample is greater, 
which solves the problem of unstable (insufficient) GANs training, the following 

(14)

L(D)
(
θ(D), θ(G)

)
=

1

2
E

�
train

1 ∼pdata

[(
D

(
�

train

1

)
− β

)2
]

+
1

2
EZ

[
(D(G(Z)) − α)2

]
,

(15)L(G)
(
θ(D), θ(G)

)
=

1

2
EZ

[
(D(G(Z)) − γ )2

]
,
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limitations remain. Excessive punishment of outliers by LSGAN may lead to a decrease 
in the "diversity" of sample generation, and the generator may have the problem of gra-
dient vanishing when the discriminator is excellent enough. This study provides ideas 
for GANs to estimate ES and employs the LSGAN to implement the empirical study. In 
future research, we will explore other GANs variants with better performance to realize 
ES estimation.

Generating the future risk scenarios using LSGAN

Training GANs can be difficult and there are many possible setups. Therefore, we 
referred to the recent literature (Zhu et al. 2021; Fatouros et al. 2022) on modeling VaR 
using GANs to construct the structure and parameter settings of the LSGAN in this 
study. We implemented a conditional LSGAN in which the first step was a pretrain-
ing process. Generator G first estimates the in-sample VaR values to learn the future 
risk scenarios according to the critic scores given by discriminator D. The second step 
involves an extra training and forecasting process using the rolling window mechanism. 
Generator G takes b periods of the previous VaR values for additional training to gener-
ate the tail distribution of the following future f periods. The data are represented by M 
containing a total of W periods of VaR, split into two parts: the Mb containing VaR for 
the b previous periods, and the Mf  that contains the VaR for the f following periods. 
Therefore, the generator generates simulations M̂f  using the previous VaR Mb and latent 
vector Z. In practice, the latent vector represents the unknown future events affecting 
the market index. A schematic of the conditional LSGAN is shown in Fig. 3.

The generator is composed of a conditioning network and a simulator network. The 
conditioning network takes the historical risk trend Mb followed by a data normalization 
(Norm) process and 1D convolutional layers (Conv layers), where convolution is done 
over the time dimension. This output is then flattened and followed by a fully connected 
layer (Dense). The conditioning network then takes the latent input Z and concatenates 
it with the input of the previous layer. This is followed by a fully connected layer (Dense) 
before it is reshaped and followed by 1D convolutional layers (Conv layers) to shrink it 

Fig. 3  Schematic of LSGAN
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down to the desired output shape. The output of the generator M̂f
 is a vector with simu-

lated tail risk for a market index. The discriminator takes a concatenation of real data Mb 
and fake data M̂f  . This is processed by normalization (Norm) and several 1D convolu-
tional layers (Conv layers), flattened, and finally there is a fully connected output layer 
(Dense). The discriminator gives a critic score, assigning a larger value if it believes the 
data comes from the true distribution, and a smaller value if it believes it comes from the 
distribution learned by the generator.

Forecasting ES based on risk scenarios and estimated VaR

As mentioned above, this study used risk scenarios to calculate the ES. Risk scenarios 
(i.e., quantile scenarios) sample approximate representations of the tail uncertainty 
relationship of asset indicators (e.g., log returns) on a future date. Suppose we obtain 
Min observations of the in-sample VaR forecast results provided by any method: 
VaR(τ ) =

{
VaR1(τ ), VaR2(τ ), . . . , VaRMin(τ )

}
 . We directly model the estimated 

VaR(τ ) to generate future risk scenarios that follow a tail distribution. The ES value at 
the specified confidence level can then be calculated by averaging the scenarios lower 
than the corresponding VaR. This study forecasts ES based on rolling window exercises, 
and the model is retrained for every specific period. Assuming that the rolling window 
size is b, the model receives additional training for every f period according to the previ-
ous b periods estimated VaR values, and the epochs of pretraining and additional train-
ing are E1 and E2.

The detailed steps for estimating ES using the LSGAN scenario generation approach 
are as follows:

(1)	 Input the estimated in-sample VaR values 
VaR(τ ) =

{
VaR1(τ ), VaR2(τ ), . . . , VaRMin(τ )

}
 into the LSGAN model for pre-

training. The epoch of LSGAN is E1 = 1000 . The generator and discriminator game 
against each other, and the pretrained LSGAN LSGANtrained = LSGAN

(
VaR(τ )

)
 

can generate future risk scenarios when they reach the Nash equilibrium.
(2)	 Let the trained LSGAN generate N risk scenarios: S̃G =

{
S1G , S

2
G , . . . , S

N
G

}

= LSGANtrained(Z) , where Z is the latent vector. The generated risk scenarios con-
tain the uncertain information at the tail of the asset.

(3)	 Forecast the out-of-sample VaR value, VaRQRMogRNNs , at a given confidence level 
(95% in this study) for time t from the QRMogRNNs and select scenarios with (
S̃G|S̃G < VaRQRMogRNNs

)
 lower than VaRQRMogRNNs.

(4)	 Average the selected scenarios to obtain the future f periods ES values: 
ES = E

(
S̃G|S̃G < VaRQRMogRNNs

)
.

(5)	 Train the LSGAN every f period according to the previous b periods VaR and set 
the epoch as E2 = 500.

(6)	 Repeat (2–5) steps to estimate all the out-of-sample ES values.

Since ES is not elicitable (Gneiting 2011), we chose to first estimate the tail risk 
of assets (i.e., VaR) and then model the tail risk scenarios based on the historical VaR 
values to estimate ES. Another potential modeling method is to use GANs directly to 
generate return scenarios and then calculate the arithmetic average of return scenarios 
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below the VaR value as the ES value. We also verified this method but found the follow-
ing problems: if the asset returns are modeled directly, the available tail risk scenarios 
will be relatively few, especially during crisis periods. Furthermore, the tail scenarios of 
returns may be higher than the VaR values produced by the VaR estimator, which can 
lead to inaccurate or even ineffective risk forecast models. The method proposed in this 
study can be flexibly combined with any VaR estimator to jointly forecast ES without the 
abovementioned problems.

Evaluation methodology

VaR backtesting is typically based on coverage, which measures the percentage of 
times returns exceed the estimated VaR at a probability level of α (Emenogu et  al. 
2020). This study implements five commonly used VaR backtesting tests and one loss 
function: the unconditional coverage (UC) test (also known as Kupiec’s POF test) 
(Kupiec 1995), independence (IND) test, conditional coverage (CC) test (Christoffer-
sen 1998), dynamic quantile (DQ) test (Engle and Manganelli 2004), and Lopez’s mag-
nitude loss function (M-Loss) (Lopez 1999).

(1)	 LRUC

where N1 and N0 are the number of times the VaR estimate is and is not exceeded, 
respectively, α indicates the desired level, and �̃ is the Hit Ratio (HR), which can be 
calculated using N1/(N1 + N0).

(2)	 LRIND

where njk is the number of j values followed by a k value in the sequence (with 
j, k = [0, 0], [0, 1] or [1, 1] , and 0 indicating that the actual return does not exceed 
the VaR estimate; otherwise, 1), and �̃s are defined as

(3)	 LRCC

(16)LRUC = −2 ln




αN1(1 − α)N0

�̃N1

�
1 − �̃

�N0


 ∼ χ2

1 ,

(17)LRIND = −2 ln




�
1 − �̃2

�(n00+n10)
�̃

(n01+n11)
2�

1 − �̃01

�n00
�̃

n01
01

�
1 − �̃11

�n10
�̃

n11
11


 ∼ χ2

1 ,

(18)�̃01 =
n01

n00 + n01
, �̃11 =

n11

n10 + n11
and �̃2 =

n01 + n11

n00 + n01 + n10 + n11
.



Page 17 of 35Wang et al. Financial Innovation           (2024) 10:36 	

(4)	 DQ test

Engle and Manganelli (2004) proposed the DQ test, and the statistical Hit con-
sidered in this test is very similar to �̃ with Hit = �̃ − α . Constructing a regression 
model of this variable with its lagged term as well as the estimated VaR series and 
other variables that should be considered, the regression form, considering the 4th 
order lagged term, is expressed as

where ut takes the value of −α with probability 1 − α , and 1 − α with probability α.
The matrix representation of Eq.  (1) is Hit = βHitlag + u . The null hypothesis is 

constructed as in H0 : β = 0 . According to the least squares method, 

β̂ =
(
Hit′lagHitlag

)−1
Hit′lagHit ∼ N

(
0,α(1 − α)

(
Hit′lagHitlag

)−1
)

 . In the case of the 

null hypothesis H0 , the DQ test statistic can be expressed as

The DQ test statistic asymptotically follows a chi-square distribution with six degrees 
of freedom.

(5) Lopez’s magnitude loss function
The magnitude loss (M-Loss) function not only considers the number of losses but also 

the magnitude of extreme tail events; thus, the M-Loss function is more in line with eco-
nomic significance. The M-Loss function can be defined as

where Yt is the observed return, Ŷ α
t  is the estimated VaR, and I(·) is an indicator function.

(6) Assessment of ES forecasts
To evaluate ES forecasts, this study implemented six ES backtesting tests: conditional 

( ESC ), unconditional ( ESUC ) (Du and Escanciano 2017), minimally biased absolute 
(MBA), minimally biased relative (MBR) (Acerbi and Szekely 2014, 2017), N&Z (Nolde 
and Ziegel 2017), and M&F tests (McNeil and Frey 2000).

The hypothesis test form of ESUC is H0 : P
[α]
t = F

[α]
t , ∀t ; H1 : ESFα,t ≥ ESα,t , for all t 

and ESFα,t > ESα,t for some t; VaRF
α,t = VaRα,t , for all t, where P[α]

t  is the distribution of 
the forecasting model, F [α]

t  is a real (unknowable) distribution of assets, and ESFα,t and 
VaRF

α,t indicate the risk measure value along a F distribution. The hypothesis test form 

(19)LRCC = −2 ln


 αn1(1 − α)n0�

1 − �̃01

�n00
�̃

n01
01

�
1 − �̃11

�n10
�̃

n11
11


 ∼ χ2

2 .

(20)Hitt = β0 + β1Hitt−1 + β2Hitt−2 + β3Hitt−3 + β4Hitt−4 + β5V̂aRt + ut ,

(21)DQ =
ˆβHit

′

lagHitlagβ̂

α(1 − α)
∼ χ2

6 .

(22)M − Loss = I
(
Yt < Ŷ α

t

)(
1 +

(
Yt − Ŷ α

t

)2
)
,
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of ESC is H0 : P
[α]
t = F

[α]
t ,∀t ; H1 : ESFα,t ≥ ESα,t , for all t and ESFα,t > ESα,t for some t; 

VaRF
α,t ≥ VaRα,t , for all t. The other four hypothesis test forms were adopted unaltered 

from the original literature.

Flow of the proposed model
The primary goal of this study was to devise a compound model for VaR and ES fore-
casts. QRMogLSTM and QRMogGRU were implemented on PyTorch, whereas LSGAN 
was built on TensorFlow. The sequence flow of the proposed model is presented in Algo-
rithm 1 and the overall process is as follows:

Step 1: Divide the stock market index datasets into training, validation, and testing 
sets. The training and validation sets are used as in-sample data, whereas the testing set 
is used as out-of-sample data. A more detailed division of the data is presented in "Data" 
section.

Step 2: Using the subseries generation mechanism introduced in "The hypothesis of a 
heterogeneous market" section, learn the decomposition and aggregation rules on the 
training set and generate subseries according to the rules for every time data outside the 
training set are obtained.

Step 3: Estimate the quantiles of the subseries using the QRMogRNNs based on the 
Bayesian hyperparameter optimization and model selection in "Quantile regression 
Mogrifier RNNs (QRMogRNNs)" section. After that, sum up the subseries estimation 
values to obtain the final VaR estimation results for the stock market indices.

Step 4: Model the estimated quantiles directly using the LSGAN such that the genera-
tor and discriminator are trained by a zero-sum game, and the ES is estimated according 
to the rolling estimation mechanism.

Step 5: Backtest the VaR and ES estimation results, including the five VaR tests, risk 
scenario generation evaluation, six ES tests, and two joint scoring functions.

It should be noted that since ES can only be jointly elicitable with VaR, the ES estima-
tion method in this study also relies on VaR estimation; thus, there is an inherent incon-
venience in the training of the model. Other ES estimation studies have encountered the 
same challenge. For example, Taylor (2019) estimated VaR values based on the CAViaR-
type model and then used the VaR values within a rolling window to estimate the param-
eters of the formula capable of deriving ES values. This method also requires obtaining 
the next-period VaR estimated value VaRt+1 and then using a rolling window to select 
the VaR values as the training data to estimate the parameters of the jointly elicitable 
formula to obtain the next-period ES estimated value. In this study, the rolling window 
method was used to train the LSGAN and forecast the VaR. The VaRt+1 is estimated 
first, and then the rolling window is employed to select the VaR sequence to be inputted 
into the LSGAN as the training data. The ES value in the next period is estimated based 
on VaRt+1 and the risk scenarios generated by the trained LSGAN.
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Algorithm 1  VaR and ES forecasting framework. 

Empirical study
Data

We took a sample of 1,683 weekly log-return from RESSET for the FTSE100, N225, 
SPX500, and DAX stock market indexes. The samples ranged from January 5, 1990, to 
April 1, 2022. In the VaR estimation, we used the first 1,262 data points as in-sample 
data to learn the decomposition-aggregation rules, train QRMogLSTM and QRMog-
GRU, and divide the validation set for Bayesian hyperparameter optimization and model 
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selection. The final 421 data points were used as out-of-sample data for the backtesting 
procedure. In the ES estimation, we used the estimated 1,262 in-sample VaR values to 
pre-train LSGAN and the last 421 data points as out-of-sample data for the backtest-
ing procedure. In this study, the pretraining epoch E1 was 1000, the rolling window size 
was b = 100 , and the model was extra-trained with additional E2 = 500 epochs for every 
f = 10 period. Figure 4a–d show the division of the dataset and the purpose of each part 
schematically from four aspects. The experiment was implemented on a personal com-
puter with an AMD Ryzen 5 5600H six-core processor, with Radeon Graphics 3.30 GHz, 
16 GB RAM, and a single NVIDIA GeForce GTX 1650 GPU.

Table  2 presents the summary statistics, and the results confirm the prevalence of 
financial asset characteristics such as high kurtosis and fat tails. In addition, the log-
return of all indices has negative skewness; the null hypothesis of the normal distribu-
tion of the Jarque–Bera test is rejected, and the null hypothesis of the existence of the 
unit root of the Augmented Dickey-Fuller test is also rejected. These results drove us to 
employ QR combined with deep learning to predict the quantiles and LSGAN to capture 
the tail uncertainty information of the assets.

Out‑of‑sample VaR forecasting

In this section, the proposed model is compared with key benchmarks. The statis-
tics in "Evaluation methodology" section are used to backtest the VaR estimation 
results at two probability levels, namely, τ = 0.05 and τ = 0.01 . This study includes 
14 benchmarks: (1) Historical Simulation (Hist); (2) Normal distribution method 
(Normal); (3) CAViaR series models: CAViaR-SAV, CAViaR-AS, CAViaR-IGARCH, 

Fig. 4  Schematic of dataset division

Table 2  Summary statistics of the weekly log-return of the four indexes

Index Mean STD Skewness Kurtosis J-B test ADF test

FTSE100 0.067 2.332 − 1.006 13.821 8494.452 − 43.631

N225 − 0.020 3.048 − 0.653 8.878 2540.792 − 42.111

SPX500 0.152 2.326 − 0.852 10.583 4236.150 − 44.315

DAX 0.124 3.065 − 0.825 8.981 2699.387 − 41.727
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CAViaR-Adaptive; (4) QRNN; (5) LASSO-QR; (6) QR-random forest (QR-RF) and 
QR-gradient boosting decision trees (QR-GBDT); (7) QR-SVM; (8) QR-convolutional 
neural networks (QR-CNN); (9) QR-LSTM and QRGRU. The CAViaR-type models 
and QR-SVM were implemented in R, and the other models were implemented in 
Python.

Before the backtesting procedure, we analyzed the results of the hyperparameter 
determination and model selection, and the results are presented in Table 3.

(1) From the perspective of model selection, r is always greater than 0, which 
indicates that QRMogLSTM or QRMogGRU is superior to the naive QRLSTM or 
QRGRU; On the other hand, the optimal models are different on a specific subset of 
a specific dataset, which is consistent with the "No free lunch" theorem, which shows 
the importance of selecting models based on different datasets.

The data frequency in this study was weekly, between daily and monthly, and the 
data volume was relatively moderate. Therefore, the number of times the LSTM was 
selected was slightly higher than that of the GRU. Suppose that we model the data at 
a higher frequency (daily). In this case, the dataset would be larger, the LSTM with 
more parameters would be fully optimized, and the performance of the LSTM would 
be expected to improve. In contrast, because the GRU has fewer parameters to train, 
if we model lower-frequency (monthly) data, the learning process of the GRU con-
verges more easily than that of the LSTM, and its performance may be better.

(2) There are many cases where the number of optimal model layers is three or four, 
and the number of hidden layer units is more than 10, which shows that QR combined 
with a complicated deep neural network can improve the prediction performance.

(3) From S1 to S4, the number of optimal feature inputs to the proposed model 
decreased. S1 is a low-frequency sequence and the proposed model requires addi-
tional lag features. As a high-frequency sequence, S4 always takes one as its optimal 

Table 3  Hyperparameter values determined by Bayesian optimization

In this paper, the model selection is realized by different values of LT and r  . S refers to sub-series, which is aggregated by 
decomposed IMFs according to fuzzy entropy and approximation criterion.

FTSE100 N225 SPX500 DAX

S 1 S 2 S 3 S 4 S 1 S 2 S 3 S 4 S 1 S 2 S 3 S 4 S 1 S 2 S 3 S 4

τ = 0.01

 Nf 2 2 1 1 2 2 2 1 2 1 1 1 1 1 1 1

 Nh 80 48 98 43 89 71 45 100 70 94 83 67 35 61 79 39

 r 2 6 4 2 3 8 1 1 3 2 10 6 8 2 2 4

 NL 1 3 3 4 3 3 4 4 1 2 4 4 3 4 2 3

 LT 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0

 Epoch 205 373 108 346 218 178 165 356 438 347 434 157 273 152 228 90

τ = 0.05

 Nf 4 2 2 1 3 1 1 1 2 2 1 1 2 1 1 1

 Nh 21 81 60 88 47 44 24 63 42 72 70 8 100 100 100 24

 r 6 3 4 8 10 4 1 5 10 2 9 6 1 1 3 8

 NL 3 3 1 3 3 2 1 4 1 2 3 3 4 4 2 3

 LT 1 0 1 0 0 0 1 0 0 1 0 0 1 1 1 1

 Epoch 300 434 162 456 248 115 122 330 133 119 137 500 155 500 81 269
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feature, indicating that it is more susceptible to short-term impacts. Furthermore, 
when τ = 0.01 is used, the optimal feature number is always between one and two, 
which means that more attention should be paid to the impact of short-term shocks 
when measuring risk with a higher confidence level.

The next section analyzes the performance of the proposed model and key bench-
marks in the real market; the evaluation results of the out-of-sample VaR forecasts 
of the four tests are presented in Tables 4, 5, 6 and 7. The backtesting results for the 

Table 4  Out-of-sample VaR forecast evaluation of FTSE100

In brackets are the p values corresponding to the statistics. HR = N1/(N1 + N0), N1 and N0 are respectively the numbers of 
times that the VaR estimate is and is not exceeded. Bold values mean that the null hypothesis is not rejected

HR LRUC LRIND LRCC DQ M-Loss

FTSE100 ( τ = 0.01)

 Hist 0.0119 0.1451 (0.7033) 0.1205 (0.7285) 0.2656 (0.8757) 21.6577 (0.0014) 0.5430

 Normal 0.0238 5.8313 (0.0157) 0.4879 (0.4849) 6.3192 (0.0424) 16.8946 (0.0097) 0.6574

 CAViaR-SAV 0.0143 0.6879 (0.4069) 0.1739 (0.6767) 0.8618 (0.6499) 17.3118 (0.0082) 0.4599

 CAViaR-AS 0.0119 0.1451 (0.7033) 0.1205 (0.7285) 0.2656 (0.8757) 21.4963 (0.0015) 0.3109

 CAViaR-
IGARCH

0.0119 0.1451 (0.7033) 0.1205 (0.7285) 0.2656 (0.8757) 20.5383 (0.0022) 0.4081

 CAViaR-Adap-
tive

0.0119 0.1451 (0.7033) 0.1205 (0.7285) 0.2656 (0.8757) 21.9149 (0.0013) 0.3567

 QRNN 0.0190 2.7446 (0.0976) 0.3107 (0.5773) 3.0553 (0.2171) 12.5440 (0.0509) 0.2695

 LASSO-QR 0.0285 9.7430 (0.0018) 0.9032 (0.3419) 10.6462 (0.0049) 63.6024 (0.0000) 0.6429

 QR-RF 0.0190 2.7629 (0.0964) 0.3114 (0.5767) 3.0744 (0.2149) 7.0202 (0.3189) 0.1465

 QR-GBDT 0.0237 5.8313 (0.0157) 0.4878 (0.4848) 6.3191 (0.0424) 20.1541 (0.0026) 0.2352

 QR-SVM 0.0047 1.4438 (0.2295) 0.0191 (0.8899) 1.4630 (0.4811) 67.9498 (0.0000) 0.3003

 QR-CNN 0.0142 0.6879 (0.4068) 0.1739 (0.6766) 0.8618 (0.6499) 16.2832 (0.0123) 0.4346

 QR-LSTM 0.0095 0.0097 (0.9212) 0.0769 (0.7815) 0.0866 (0.9575) 25.6281 (0.0002) 0.3166

 QR-GRU​ 0.0095 0.0097 (0.9212) 0.0769 (0.7815) 0.0866 (0.9575) 25.6967 (0.0002) 0.2739

 Proposed 
model

0.0095 0.0098 (0.9212) 0.0769 (0.7815) 0.0867 (0.9576) 1.5349 (0.9571) 0.0752

FTSE100 ( τ = 0.05)

 Hist 0.0190 10.9777 (0.0009) 0.3107 (0.5773) 11.2884 (0.0035) 12.2992 (0.0556) 0.6499

 Normal 0.0238 7.4618 (0.0063) 0.4879 (0.4849) 7.9496 (0.0188) 9.3648 (0.1541) 0.6789

 CAViaR-SAV 0.0689 2.8823 (0.0896) 0.5078 (0.4761) 3.3901 (0.1836) 19.4318 (0.0035) 0.8580

 CAViaR-AS 0.0523 0.0494 (0.8241) 0.0234 (0.8785) 0.0728 (0.9643) 5.6001 (0.4694) 0.7585

 CAViaR-
IGARCH

0.0618 1.1688 (0.2797) 0.1009 (0.7508) 1.2696 (0.5300) 11.9362 (0.0634) 0.7417

 CAViaR-Adap-
tive

0.0523 0.0494 (0.8241) -0.0486 (1.0000) 0.0008 (0.9996) 11.6363 (0.0706) 0.7584

 QRNN 0.0808 7.1932 (0.0073) 0.0788 (0.7790) 7.2720 (0.0264) 20.2884 (0.0025) 0.6577

 LASSO-QR 0.0404 0.8555 (0.3550) 0.1361 (0.7122) 0.9916 (0.6091) 21.8211 (0.0013) 0.8343

 QR-RF 0.0667 2.2692 (0.1319) 0.0099 (0.9203) 2.2792 (0.3199) 7.9304 (0.2432) 0.4509

 QR-GBDT 0.0689 2.8823 (0.0896) 0.0000 (0.9986) 2.8823 (0.2367) 13.4368 (0.0366) 0.5641

 QR-SVM 0.0190 10.9777 (0.0009) 0.3106 (0.5772) 11.2884 (0.0035) 10.9918 (0.0886) 0.6224

 QR-CNN 0.0617 1.1687 (0.2796) 0.2983 (0.5848) 1.4671 (0.4801) 13.6996 (0.0331) 0.5077

 QR-LSTM 0.0237 7.4617 (0.0063) 0.4962 (0.4811) 7.9580 (0.0187) 9.0742 (0.1694) 0.5667

 QR-GRU​ 0.0380 1.3605 (0.2434) 1.2676 (0.2602) 2.6281 (0.2687) 10.1684 (0.1177) 0.6394

 Proposed 
model

0.0475 0.0509 (0.8215) -0.0335 (1.0000) 0.0174 (0.9914) 9.8586 (0.1307) 0.2592
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FTSE100 index are presented in Table 4, the N225 index in Table 5, the SPX500 index 
in Table 6 and the DAX index in Table 7.

The first objective was to compare our model with competing benchmarks using five 
VaR evaluation measures. To facilitate a comparison of the backtesting results of the 
different models, we report the number of test rejections and average M-Loss values in 
Table 8.

Looking at the evaluation results for all four indices at both quantile levels, we find that 
the proposed model is successfully backtested at the 1% significance level and 5% confi-
dence level, except for the SPX500 index at the τ = 0.01 level. Our model obtained the 
minimum value of the average M-Loss, meaning that the magnitude of extreme events 

Table 5  Out-of-sample VaR forecast evaluation of N225

In brackets are the p values corresponding to the statistics. HR = N1/(N1 + N0), N1 and N0 are respectively the numbers of 
times that the VaR estimate is and is not exceeded. Bold values mean that the null hypothesis is not rejected

HR LRUC LRIND LRCC DQ M-Loss

FTSE100 ( τ = 0.01)

 Hist 0.0143 0.6879 (0.4069) 0.1739 (0.6767) 0.8618 (0.6499) 17.7829 (0.0068) 0.2771

 Normal 0.0190 2.7446 (0.0976) 0.3107 (0.5773) 3.0553 (0.2171) 28.1403 (0.0001) 0.4588

 CAViaR-SAV 0.0143 0.6879 (0.4069) 0.1739 (0.6767) 0.8618 (0.6499) 17.2207 (0.0085) 0.2356

 CAViaR-AS 0.0166 1.5705 (0.2101) 0.2373 (0.6262) 1.8078 (0.4050) 24.1412 (0.0005) 0.0776

 CAViaR-IGARCH 0.0166 1.5705 (0.2101) 0.2373 (0.6262) 1.8078 (0.4050) 27.8503 (0.0001) 0.2287

 CAViaR-Adap-
tive

0.0166 1.5705 (0.2101) 0.2373 (0.6262) 1.8078 (0.4050) 29.3186 (0.0001) 0.3251

 QRNN 0.0238 5.8313 (0.0157) 0.4879 (0.4849) 6.3192 (0.0424) 22.9050 (0.0008) 0.2766

 LASSO-QR 0.0309 11.9641 (0.0005) 0.6840 (0.4082) 12.6481 (0.0018) 65.5847 (0.0000) 0.5607

 QR-RF 0.0214 4.1974 (0.0404) 0.4252 (0.5143) 4.6227 (0.0991) 20.5688 (0.0021) 0.0059

 QR-GBDT 0.0190 2.7629 (0.0964) 0.3666 (0.5448) 3.1295 (0.2091) 21.2311 (0.0016) 0.0140

 QR-SVM 0.0190 2.7629 (0.0964) 0.3114 (0.5767) 3.0744 (0.2149) 24.1986 (0.0004) 0.3314

 QR-CNN 0.0095 0.0097 (0.9212) 0.0769 (0.7815) 0.0866 (0.9575) 26.6151 (0.0001) 0.1799

 QR-LSTM 0.0166 1.5704 (0.2101) 0.2372 (0.6261) 1.8077 (0.4049) 24.4211 (0.0004) 0.1601

 QR-GRU​ 0.0095 0.0097 (0.9212) 0.0769 (0.7815) 0.0866 (0.9575) 26.6151 (0.0002) 0.1164

 Proposed 
Model

0.0071 0.3846 (0.5351) 0.0432 (0.8354) 0.4278 (0.8074) 7.6041 (0.2686) 0.0539

FTSE100 ( τ = 0.05)

 Hist 0.0475 0.0509 (0.8215) 0.0026 (0.9594) 0.0535 (0.9736) 9.2246 (0.1613) 0.7780

 Normal 0.0499 0.0000 (1.0000) 0.0027 (0.9587) 0.0027 (0.9987) 14.8019 (0.0219) 0.8230

 CAViaR-SAV 0.0475 0.0509 (0.8215) 2.0008 (0.1572) 2.0517 (0.3585) 6.3994 (0.3800) 0.7570

 CAViaR-AS 0.0570 0.4321 (0.5110) 2.9109 (0.0880) 3.3430 (0.1880) 6.6924 (0.3502) 0.5730

 CAViaR-IGARCH 0.0428 0.4731 (0.4916) 1.6125 (0.2041) 2.0856 (0.3525) 9.5196 (0.1464) 0.7122

 CAViaR-Adap-
tive

0.0475 0.0509 (0.8215) 2.0008 (0.1572) 2.0517 (0.3585) 12.3425 (0.0548) 0.9100

 QRNN 0.0784 6.1956 (0.0128) 1.4514 (0.2283) 7.6470 (0.0219) 11.1709 (0.0832) 1.2096

 LASSO-QR 0.0475 0.0509 (0.8215) 0.0026 (0.9594) 0.0535 (0.9736) 9.5989 (0.1426) 0.7427

 QR-RF 0.0500 0.0001 (0.9910) 2.0569 (0.1515) 2.0570 (0.3575) 6.1982 (0.4013) 0.1075

 QR-GBDT 0.0571 0.4473 (0.5035) 2.7198 (0.0991) 3.1672 (0.2052) 4.7453 (0.5768) 0.3773

 QR-SVM 0.0523 0.0545 (0.8153) -0.0482 (1.0000) 0.0062 (0.9968) 11.0896 (0.0856) 0.7758

 QR-CNN 0.0522 0.0493 (0.8241) 2.4334 (0.1187) 2.4827 (0.2889) 7.3555 (0.2892) 0.6974

 QR-LSTM 0.0617 1.1687 (0.2796) 3.4339 (0.0638) 4.6027 (0.1001) 6.8096 (0.3388) 0.7412

 QR-GRU​ 0.0427 0.4730 (0.4915) 1.6124 (0.2041) 2.0855 (0.3524) 10.9791 (0.0890) 0.5282

 Proposed 
model

0.0333 2.7691 (0.0961) 0.9657 (0.3258) 3.7348 (0.1545) 9.6196 (0.1416) 0.2862
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beyond the forecast was small. Other benchmarks have significantly fewer successful 
backtesting scenarios, mainly because they cannot pass the DQ test at τ = 0.01 , and 
there are cases of risk overestimation or underestimation. The advantage of our model 
is also reflected in the VaR backtesting results at τ = 0.01 , which can be used to assess 
risk more accurately. Therefore, our model does not significantly underestimate extreme 
losses. In addition, it is worth noting that the CAViaR-AS model also outperforms other 
CAViaR models in terms of forecast performance, which is consistent with the findings 
of Merlo et al. (2021).

The above analysis, based on typical tests, shows that the proposed model can fore-
cast risk accurately in more scenarios than the other 14 benchmarks. We also found 

Table 6  Out-of-sample VaR forecast evaluation of SPX500

In brackets are the p values corresponding to the statistics. HR = N1/(N1 + N0), N1 and N0 are respectively the numbers of 
times that the VaR estimate is and is not exceeded. Bold values mean that the null hypothesis is not rejected

HR LRUC LRIND LRCC DQ M-Loss

FTSE100 ( τ = 0.01)

 Hist 0.0214 4.1742 (0.0411) 6.5479 (0.0105) 10.7221 (0.0047) 57.3800 (0.0001) 0.3337

 Normal 0.0285 9.7430 (0.0018) 4.2422 (0.0394) 13.9852 (0.0009) 110.5046 (0.0000) 0.6047

 CAViaR-SAV 0.0166 1.5705 (0.2101) 0.2373 (0.6262) 1.8078 (0.4050) 14.0880 (0.0287) 0.1270

 CAViaR-AS 0.0166 1.5705 (0.2101) 0.2373 (0.6262) 1.8078 (0.4050) 3.6195 (0.7280) 0.1107

 CAViaR-IGARCH 0.0143 0.6879 (0.4069) 0.1739 (0.6767) 0.8618 (0.6499) 1.9139 (0.9274) 0.1211

 CAViaR-Adap-
tive

0.0166 1.5705 (0.2101) 2.7692 (0.0961) 4.3397 (0.1142) 34.3068 (0.0000) 0.1808

 QRNN 0.0190 2.7446 (0.0976) 0.3107 (0.5773) 3.0553 (0.2171) 18.8983 (0.0043) 0.1487

 LASSO-QR 0.0238 5.8313 (0.0157) 1.4700 (0.2254) 7.3013 (0.0260) 39.3872 (0.0000) 0.6639

 QR-RF 0.0167 1.5840 (0.2081) 0.2378 (0.6257) 1.8218 (0.4021) 3.3463 (0.7642) 0.0055

 QR-GBDT 0.0285 9.7809 (0.0017) 0.8998 (0.3428) 10.6808 (0.0047) 31.8562 (0.0000) 0.0106

 QR-SVM 0.0095 0.0088 (0.9251) 5.1193 (0.0236) 5.1282 (0.0769) 57.6851 (0.0000) 0.3503

 QR-CNN 0.0095 1.5704 (0.2101) 0.2372 (0.6261) 1.8077 (0.4049) 2.9629 (0.8134) 0.1223

 QR-LSTM 0.0166 1.5704 (0.2101) 2.7692 (0.0960) 4.3396 (0.1141) 35.2707 (0.0000) 0.2261

 QR-GRU​ 0.0095 0.0097 (0.9212) 0.0769 (0.7815) 0.0866 (0.9575) 23.6436 (0.0006) 0.1555

 Proposed 
model

0.0166 1.5705 (0.2101) 0.2373 (0.6262) 1.8078 (0.4050) 13.8936 (0.0309) 0.2413

FTSE100 ( τ = 0.05)

 Hist 0.0475 0.0509 (0.8215) 0.9928 (0.3191) 1.0437 (0.5934) 25.9359 (0.0002) 0.8358

 Normal 0.0499 0.0000 (1.0000) 0.7718 (0.3797) 0.7718 (0.6799) 23.7367 (0.0006) 0.9056

 CAViaR-SAV 0.0475 0.0509 (0.8215) 0.9928 (0.3191) 1.0437 (0.5934) 4.1866 (0.6515) 0.5249

 CAViaR-AS 0.0546 0.1947 (0.6590) 0.4212 (0.5164) 0.6159 (0.7349) 4.2419 (0.6440) 0.4051

 CAViaR-IGARCH 0.0499 0.0000 (1.0000) 0.7718 (0.3797) 0.7718 (0.6799) 11.5924 (0.0717) 0.4300

 CAViaR-Adap-
tive

0.0570 0.4321 (0.5110) 0.2883 (0.5913) 0.7205 (0.6975) 16.5270 (0.0112) 0.6931

 QRNN 0.0594 0.7579 (0.3840) 3.1667 (0.0752) 3.9246 (0.1405) 18.1966 (0.0058) 0.5948

 LASSO-QR 0.0451 0.2068 (0.6493) 1.2470 (0.2641) 1.4539 (0.4834) 21.3708 (0.0016) 0.8884

 QR-RF 0.0619 1.1941 (0.2744) 3.4427 (0.0635) 4.6368 (0.0984) 4.9043 (0.5561) 0.0732

 QR-GBDT 0.0642 1.6921 (0.1933) 0.4165 (0.5186) 2.1086 (0.3484) 6.9544 (0.3250) 0.0397

 QR-SVM 0.0452 0.1969 (0.6571) 1.2410 (0.2652) 1.4380 (0.4872) 20.8298 (0.0019) 0.7870

 QR-CNN 0.0403 0.8554 (0.3550) 1.8654 (0.1719) 2.7209 (0.2565) 14.6888 (0.0228) 0.5434

 QR-LSTM 0.0427 0.4730 (0.4915) 1.5369 (0.2150) 2.0100 (0.3660) 13.7159 (0.0329) 0.7124

 QR-GRU​ 0.0427 0.4730 (0.4915) 1.5369 (0.2150) 2.0100 (0.3660) 13.2865 (0.0387) 0.6553

 Proposed 
model

0.0475 0.0509 (0.8215) 3.2571 (0.0711) 3.3080 (0.1913) 11.7756 (0.0672) 0.4115
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evidence of this in the sequence diagrams. To obtain more explicit images of how dif-
ferent models differ in their risk forecasts, we plot the series for only the three mod-
els that performed better in the above tests: CAViaR-AS, QRNN, and our proposed 
model. The circles in the plot represent the actual returns, with yellow and green 
representing positive and negative returns, respectively; the red circles represent the 
actual returns, where the losses exceed the forecasts of the proposed model. The anal-
ysis in Fig. 5 reveals that the risk forecast curve of CAViaR-AS is smoother, whereas 
those of the proposed model and QRNN are volatile. Moreover, the difference in per-
formance between the models is not significant during periods of stable stock prices, 
whereas it is more significant in the aftermath of major financial crises such as the 
Chinese stock market crash, Brexit, and the breakout of COVID-19. In March 2020 
(enlarged area in the figure), the global stock market showed violent fluctuations 

Table 7  Out-of-sample VaR forecast evaluation of DAX

In brackets are the p values corresponding to the statistics. HR = N1/(N1 + N0), N1 and N0 are respectively the numbers of 
times that the VaR estimate is and is not exceeded. Bold values mean that the null hypothesis is not rejected

HR LRUC LRIND LRCC DQ M-Loss

FTSE100 ( τ = 0.01)

 Hist 0.0143 0.6879 (0.4069) 0.1739 (0.6767) 0.8618 (0.6499) 17.2559 (0.0084) 0.6477

 Normal 0.0166 1.5705 (0.2101) 0.2373 (0.6261) 1.8078 (0.4050) 15.7729 (0.0150) 0.8753

 CAViaR-SAV 0.0166 1.5705 (0.2101) 0.2373 (0.6261) 1.8078 (0.4050) 14.5064 (0.0245) 0.4353

 CAViaR-AS 0.0119 0.1451 (0.7033) 0.1205 (0.7285) 0.2656 (0.8757) 20.5229 (0.0022) 0.3184

 CAViaR-IGARCH 0.0119 0.1451 (0.7033) 0.1205 (0.7285) 0.2656 (0.8757) 19.5541 (0.0033) 0.3134

 CAViaR-Adaptive 0.0190 2.7446 (0.0976) 0.3107 (0.5773) 3.0553 (0.2171) 19.3534 (0.0036) 0.2989

 QRNN 0.0071 0.3846 (0.5351) 0.0432 (0.8354) 0.4278 (0.8074) 1.2566 (0.9740) 0.1013

 LASSO-QR 0.0143 0.6879 (0.4069) 0.1739 (0.6767) 0.8618 (0.6499) 26.1722 (0.0002) 0.7968

 QR-RF 0.0214 4.1974 (0.0404) 0.3951 (0.5296) 4.5925 (0.1006) 24.2296 (0.0005) 0.6218

 QR-GBDT 0.0214 4.1742 (0.0411) 0.3942 (0.5301) 4.5683 (0.1019) 20.0751 (0.0027) 0.6056

 QR-SVM 0.0142 0.6879 (0.4068) 0.1739 (0.6766) 0.8618 (0.6499) 16.4757 (0.0114) 0.5806

 QR-CNN 0.0166 1.5704 (0.2101) 0.2372 (0.6261) 1.8077 (0.4049) 14.8120 (0.0217) 0.4762

 QR-LSTM 0.0142 0.6879 (0.4068) 0.1739 (0.6766) 0.8618 (0.6499) 16.3423 (0.0120) 0.4536

 QR-GRU​ 0.0190 2.7445 (0.0975) 0.3106 (0.5772) 3.0552 (0.2170) 14.2153 (0.0273) 0.5161

 Proposed model 0.0071 0.3846 (0.5351) 0.0432 (0.8354) 0.4278 (0.8074) 1.7891 (0.9380) 0.1812

FTSE100 ( τ = 0.05)

 Hist 0.0546 0.1947 (0.6590) 0.0639 (0.8004) 0.2587 (0.8787) 3.3210 (0.7676) 1.2893

 Normal 0.0546 0.1947 (0.6590) 0.0639 (0.8004) 0.2587 (0.8787) 4.2481 (0.6431) 1.2728

 CAViaR-SAV 0.0475 0.0509 (0.8215) 0.0026 (0.9594) 0.0535 (0.9736) 3.4985 (0.7442) 1.0248

 CAViaR-AS 0.0499 0.0000 (1.0000) 0.0027 (0.9587) 0.0027 (0.9987) 0.5658 (0.9969) 0.9339

 CAViaR-IGARCH 0.0546 0.1947 (0.6590) 0.4212 (0.5164) 0.6159 (0.7349) 4.4775 (0.6124) 0.9515

 CAViaR-Adaptive 0.0475 0.0509 (0.8215) 0.0026 (0.9594) 0.0535 (0.9736) 8.2815 (0.2182) 1.2434

 QRNN 0.0736 4.3996 (0.0360) 1.0393 (0.3080) 5.4388 (0.0659) 17.8002 (0.0068) 0.7259

 LASSO-QR 0.0285 4.7707 (0.0290) 0.7060 (0.4008) 5.4767 (0.0647) 6.3422 (0.3860) 1.0813

 QR-RF 0.0593 0.7579 (0.3839) 0.2019 (0.6531) 0.9598 (0.6188) 3.9701 (0.6807) 0.9914

 QR-GBDT 0.0475 0.0509 (0.8215) 2.0008 (0.1572) 2.0517 (0.3585) 3.1034 (0.7958) 0.8558

 QR-SVM 0.0427 0.4730 (0.4915) 0.0681 (0.7941) 0.5411 (0.7629) 1.1158 (0.9808) 1.1616

 QR-CNN 0.0570 0.4321 (0.5109) 0.2883 (0.5912) 0.7204 (0.6975) 3.2423 (0.7778) 0.8453

 QR-LSTM 0.0783 6.1955 (0.0128) 0.0010 (0.9744) 6.1966 (0.0451) 12.6532 (0.0488) 1.1551

 QR-GRU​ 0.0285 4.7707 (0.0289) 0.7059 (0.4007) 5.4767 (0.0646) 5.9811 (0.4253) 0.7904

 Proposed model 0.0333 2.7691 (0.0961) 0.9657 (0.3258) 3.7348 (0.1545) 4.9745 (0.5471) 0.3911
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owing to the COVID-19 pandemic, and stock prices fell sharply. The excess red circles 
also appear more intensively during this period, which indicates that the forecasting 
model does not accurately forecast sudden risks. Nevertheless, the difference between 
the actual and forecasted values of the proposed model was not significant, whereas 
the other models were more likely to overestimate the risk at τ = 0.01 and underesti-
mate it at τ = 0.05 , suggesting that our model is still significantly more accurate.

In addition to estimation accuracy, we also need to consider the time required to 
generate a VaR forecasting result, as our forecasting framework includes time-con-
suming tasks such as hyperparameter optimization, model selection, and deep learn-
ing training. Among these, BO is the most time-consuming process. We performed 

Table 8  Summary of the backtesting results for each probability level for the stock indices. Number 
of test rejections for the four indexes

Smaller values are preferred

Model τ = 0.01 τ = 0.05

UC IND CC DQ Mean (M-Loss) UC IND CC DQ Mean (M-Loss)

Hist 1 1 1 4 0.4504 1 0 1 1 0.8882

Normal 2 1 1 4 0.6490 1 0 1 2 0.9201

CAViaR-SAV 0 0 0 4 0.3144 0 0 0 1 0.7912

CAViaR-AS 0 0 0 3 0.2044 0 0 0 0 0.6677

CAViaR-IGARCH 0 0 0 3 0.2678 0 0 0 1 0.7088

CAViaR-Adaptive 0 0 0 4 0.2904 0 0 0 1 0.9012

QRNN 1 0 1 2 0.1990 2 0 2 3 0.7970

LASSO-QR 3 0 3 4 0.6661 1 0 0 2 0.8867

QR-RF 2 0 0 2 0.1949 0 0 0 0 0.4057

QR-GBDT 3 0 2 4 0.2164 0 0 0 1 0.4592

QR-SVM 0 1 0 4 0.3907 1 0 1 1 0.8367

QR-CNN 0 0 0 3 0.3032 0 0 0 2 0.6485

QR-LSTM 0 0 0 4 0.2891 2 0 2 2 0.7939

QR-GRU​ 0 0 0 4 0.2655 1 0 0 1 0.6533

Proposed Model 0 0 0 1 0.1379 0 0 0 0 0.3370

Fig. 5  Out-of-sample forecasts of VaR for the four stock market indexes. The top panels refer to τ = 0.01 and 
the case of τ = 0.05 is presented in the lower panels. Gray bands correspond to Chinese stock market crash 
(2015, 07–2016, 09), 2018 recession (2018, 01–2018, 06), Brexit (2018, 08–2019, 03), and COVID-19 outbreak 
(2020, 02–2020, 03)
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a BO process with 50 iterations for each of the four subseries, each subseries took 
196  s, and the time consumption for calculating the four components was 784  s. 
Nonetheless, BO determines the structure of our VaR estimation model and the cor-
responding parameter values over a period; therefore, we do not need to perform BO 
for every forecast. After the BO, the training time of our model was relatively short. It 
only took 1.84 s to obtain the VaR value of a subseries; therefore, a total of 7.36 s were 
required to obtain a forecasted VaR value. This time consumption is relatively short; 
therefore, our model can also be used for daily VaR estimations.

Finally, ablation studies were performed to evaluate the effects of the decomposition 
and aggregation technique (DA), BO, and Mogrifier structure (Mog) on the proposed 
model. We report the number of test rejections and average M-Loss values for the four 
indices. The results are summarized in Table  9. It can be observed that DA, BO, and 
Mog significantly improve the proposed model. In particular, DA preprocessing tech-
niques and the Mog structure are more important than the BO. The proposed model, 
without hyperparameter optimization and model selection, can also achieve better risk-
forecasting results than the CAViaR-type models and QRNN.

Out‑of‑sample ES forecasting

This section evaluates the out-of-sample ES forecasting results. The risk scenarios gen-
erated by the LSGAN are assessed in "Evaluation of risk scenario generation results" 
section. Furthermore, the out-of-sample ES forecasting results are evaluated using sta-
tistical tests and scoring functions, as presented in "Backtesting ES with statistical tests 
and joint scoring functions" section.

Evaluation of risk scenario generation results

After pretraining, the LSGAN performs additional training based on the latest 100 VaR 
historical data at the 95% probability level and generates 500 quantile scenarios for out-
of-sample ES estimation. The model architecture and parameter settings of the LSGAN 
designed in this study are listed in Table 10.

The evaluation of scenario generation techniques commonly encompasses three pri-
mary categories (Li et  al. 2020): (1) output-based evaluation, which leverages error 
metrics such as the mean squared error to gauge performance; (2) distribution-based 
evaluation, entailing assessment via computations of the energy score; and (3) event-
based evaluation, encompassing metrics such as coverage rate and correlation coeffi-
cients. We carefully selected the coverage rate (CR) and correlation coefficients (CC) of 

Table 9  Summary of the backtesting results for ablation studies

-(DA), -(BO) and -(Mog) denote the removal of DA, BO and Mog from the proposed framework, respectively

τ UC CC DQ Mean (M-Loss)

0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

Proposed Model 0 0 0 0 1 0 0.1379 0.3370

-(DA) 0 0 0 0 2 1 0.2629 0.5036

-(BO) 0 0 0 0 2 1 0.1862 0.4220

-(Mog) 0 0 0 0 3 1 0.1143 0.4774



Page 28 of 35Wang et al. Financial Innovation           (2024) 10:36 

the event-based evaluation method for the initial evaluation of the scenario generation 
results. This is because using other evaluation methods requires obtaining actual obser-
vations, which do not exist for risk measures (i.e., VaR and ES). To calculate the ES value 
at a certain significance level based on the risk scenarios, it is necessary to ensure that 
the ES value is lower than the corresponding VaR value at that significance level. There-
fore, the CR defined in this study represents the probability that the VaR values are pre-
sent within a set of generated scenarios. A higher CR value indicates that the generated 
scenarios are more likely to represent tail risk, indicating that the generated scenarios 
are more reliable. The formula for the CR (Wang et al. 2017) is

where C(τ ) represents the CR with respect to VaRt(τ ) and I(·) represents an indicator 
function. Ps,t represents the s-th scenario value at t time and S represents the number of 
scenarios.

(23)C(τ ) =
1

T

T∑

t=1

I
(
Pmin
t ≤ VaRt(τ )

)

(24)Pmin
t = min

(
Ps,t

)
, s = 1, 2, . . . , S

Table 10  List of LSGAN parameter

Description Value

Generator G
Conditioning network

Size of latent vector Z 2*1

Rolling window b 100

Forward window f 10

1D Conv layers 4

Input and output channels in all Conv layers 2*1

Dense layer output size 1

Simulator network

Dense layer output size f*1

Transpose Conv layers 2

Input channels in the first transpose Conv layer 4*1

Output channels in the first transpose Conv layer 2*1

Input channels in the second transpose Conv layer 2*1

Output channels in the second transpose Conv layer 1

Conditioning and Simulator networks

Layers’ activation function Relu

Conv and transpose conv kernel length 5

Conv and transpose conv stride 2

Discriminator D
Convolution layers 4

Input channels for the kth Conv layer 2k−1

Output channels for the kth Conv layer 2k

Layers’ activation function Leaky_Relu

Conv and transpose conv kernel length 5

Conv and transpose conv stride 2
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According to previous studies (Ma et  al. 2016; Garatti et  al. 2019), we can also use 
correlation coefficients to measure the similarity in the dynamics between VaR and the 
generated risk scenarios. We compared the LSGAN model with three commonly used 
scenario generation methods: the Gaussian distribution (GD), kernel density estimation 
(KDE), and Markov chain Monte Carlo (MCMC) methods. The evaluation results of the 
risk scenarios generated using the four methods are listed in Table 11.

Based on the evaluation results presented in Table 11, it is evident that the risk scenar-
ios produced by the LSGAN exhibit a higher probability of encompassing the VaR values 
and demonstrate a stronger correlation with the VaR dynamics at both significance lev-
els. This observation suggests that utilizing risk scenarios generated by the LSGAN for 
calculating ES is in line with market risk theory and yields more accurate results than 
other benchmarks.

Furthermore, as depicted in Fig. 6, the risk scenarios for the four indices were gener-
ated using the LSGAN. The 95% probability-level VaR forecasts from QRMogRNNs are 
denoted by a dashed black line. It can be seen that LSGAN achieves accurate sampling 
of the tail return distribution beyond VaR, and ensures the diversity and dynamism of 
the generated risk scenarios. The probability density curves in Fig. 7 depict the distribu-
tion of the in-sample 95% VaR data versus the 500 scenarios generated by the pretrained 
LSGAN. By observing the distribution fit, it was found that the LSGAN could learn the 
characteristics of historical data well and generate reliable synthetic data. The goodness-
of-fit between the probability density function (PDF) of the risk scenarios generated by 
the LSGAN and the PDF of the in-sample VaR values was 0.8882 for FTSE, 0.9298 for 
N225, 0.8874 for SPX, and 0.9018 for DAX.

Backtesting ES with statistical tests and joint scoring functions

In this section, we verify the performance of the model in terms of ES forecasts, which 
is a backtesting procedure with six statistical tests and two joint scoring functions. This 
proved to be effective if the proposed model was successfully tested in more situations. 
Table 12 presents the p values of the resulting test statistics; the null hypotheses are not 
rejected in all situations for all desired levels. This shows that the ES estimation approach 

Table 11  Comparision of models using the coverage rate and correlation coefficients

Bold in columns indicate the best method

FTSE100 N225 SPX500 DAX

CR CC CR CC CR CC CR CC

τ = 0.05

 GD 0.9762 0.1846 0.9881 0.2427 0.9786 0.2336 0.9762 0.1531

 KDE 0.9857 0.1744 0.9929 0.1976 0.9881 0.2408 0.9881 0.1478

 MCMC 0.9667 0.2268 0.9691 0.2515 0.9596 0.3002 0.9715 0.1751

 LSGAN 1.0000 0.2651 1.0000 0.3147 1.0000 0.3140 1.0000 0.2418
τ = 0.01

 GD 0.9549 0.3328 0.9644 0.3175 0.8955 0.3190 0.9620 0.3077

 KDE 0.9881 0.3110 0.9810 0.3407 0.9596 0.3170 0.9834 0.3072

 MCMC 0.9335 0.3845 0.9359 0.4695 0.8670 0.4659 0.9216 0.3937

 LSGAN 1.0000 0.4339 1.0000 0.6691 1.0000 0.6314 1.0000 0.6006
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based on LSGAN scenario generation is effective and provides a new tool for estimating 
the ES in tail risk management.

For comparison with ES forecasts produced by other commonly used scenario gen-
eration methods, Table 13 reports the values of the joint scoring functions SFZN (Nolde 
and Ziegel 2017) and SFZ0 (Patton et al. 2019) averaged over the out-of-sample period. 
A lower scoring function value represents a more accurate ES estimation. The ES 

Fig. 6  Risk scenarios generated by LSGAN for the four stock market indexes. Gray bands correspond to 
Chinese stock market crash (2015, 07–2016, 09), 2018 recession (2018, 01–2018, 06), Brexit (2018, 08–2019, 
03), and COVID-19 outbreak (2020, 02–2020, 03)

Fig. 7  The distribution of the in-sample 95% VaR data versus 500 scenarios generated by the pre-trained 
LSGAN
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estimation process based on the scenario generation of the GD, KDE, and MCMC was 
the same as that of the LSGAN-based method. The evaluation results of the two joint 
scoring functions in Table 13 show that the ES estimation results based on the LSGAN 
scenario generation are more accurate than those based on other scenario generation 
methods (i.e., GD, KDE, and MCMC).

To offer graphical intuition to support the results, Fig. 8 presents the results of ES out-
of-sample estimation graphically. By analyzing Fig. 8, we find that the estimated ES is 
relatively stable during calm periods and larger during periods of turbulent markets, 
with a better ability to capture extreme risks. The high volatility of ES is obvious during 
recessions and major economic and financial crises, such as the Chinese stock market 
crash in 2016, Brexit in 2018, and the COVID-19 outbreak in 2020. Moreover, during the 
COVID-19 outbreak, the ES values estimated using the proposed model were greater 
than those after other major adverse events. This shows that the proposed model can 

Table 12  Out-of-sample ES forecast evaluation by using statistical tests

The bold result indicates that the null hypothesis is not rejected. The hypothesis test form of ESUC is: H0 : P[
α]
t = F [

α]
t , ∀t ; 

H1 : ESFα,t ≥ ESα,t , for all t and > for some t, VaRFα,t = VaRα,t , for all t. The hypothesis test form of ESC is: H0 : P[
α]
t = F [

α]
t , ∀t ; 

H1 : ESFα,t ≥ ESα,t , for all t and > for some t, VaRFα,t ≥ VaRα,t , for all t.

ESUC ESC MBA MBR N&Z M&F

τ = 0.01

 FTSE100 0.9230 0.5030 0.8140 0.8270 1.0000 0.7749
 N225 0.8390 0.9074 0.6860 0.7160 0.7252 0.7569
 SPX500 0.9240 0.1343 0.4480 0.7270 0.5524 0.7431
 DAX 0.5570 0.0589 0.3450 0.2650 0.7252 0.6284

τ = 0.05

 FTSE100 0.9980 0.9850 0.9920 0.9980 1.0000 0.7630
 N225 0.9870 0.7430 0.9550 0.9770 0.0846 0.4970
 SPX500 1.0000 0.9780 0.9780 0.9970 1.0000 0.8440
 DAX 0.8970 0.2640 0.8370 0.8890 0.0846 0.7470

Table 13  Out-of-sample ES forecast evaluation using joint scoring functions

Bold text in columns indicates the best method

FTSE100 N225 SPX500 DAX

SFZN SFZ0 SFZN SFZ0 SFZN SFZ0 SFZN SFZ0

τ = 0.05

 GD 3.0831 4.8030 2.7255 2.1201 2.9327 3.1874 4.1507 7.6814

 KDE 3.1668 4.8842 2.7424 2.1253 2.9239 3.1650 4.2828 8.1125

 MCMC 3.1112 4.7895 2.7123 2.1101 2.9078 3.1540 4.1330 7.7470

 LSGAN 2.6262 2.2113 2.9775 2.2288 2.6070 1.7495 3.3790 2.6315
τ = 0.01

 GD 4.1411 4.0132 2.6054 1.9298 3.8268 3.4683 3.8268 3.4683

 KDE 4.0906 3.9082 2.6791 1.9877 3.6573 3.2680 3.6573 3.2680

 MCMC 4.1067 3.9767 2.6171 1.9374 3.7924 3.4298 3.7924 3.4298

 LSGAN 3.1220 2.3192 2.7616 1.9758 3.2685 2.4135 3.2918 2.9071



Page 32 of 35Wang et al. Financial Innovation           (2024) 10:36 

accurately estimate the ES and provide efficient guidance to financial institutions and 
investors regarding asset allocation.

The training and forecasting of our ES estimation framework do not consume much 
time. Before out-of-sample forecasting, the LSGAN requires a pretraining process that 
takes 150 s. In out-of-sample forecasting, we conducted extra training on the LSGAN 
every ten periods, and the time required to obtain the ES values of the ten periods was 
510 s. Therefore, our estimation model can also be used to forecast daily ES.

Summary and conclusions
Finance and economics scholars have long explored better methods for estimating VaR 
and ES. The structure of the proposed models is often related to the properties of the 
financial assets. This study follows this research direction and proposes an estimation 
framework that combines decomposition-aggregation learning with MogRNNs. The 
estimation framework is consistent with market heterogeneity theory and the proper-
ties of asset volatility. MogLSTM and MogGRU can better capture the "long memory" 
and "clustering" of financial assets by their particular cell structure and the interactive 
operation between the previous hidden state and the current input. However, these two 
models have not been extended to predict financial uncertainty. This study proposes 
combining the above two models with QR to estimate VaR and adds BO to improve 
practicability. The backtesting results indicate that the model produces reliable VaR 
estimates. Furthermore, to implement ES estimation, this study proposes a new estima-
tion method using LSGAN to model the distribution of quantiles and generate possible 
future scenarios of downside risk at a specific probability level. This study also pro-
vides a compromise between direct and decomposition forecasts, which balances fore-
casting accuracy and computational burden. Taking four crucial stock market indices 
as research objects, five VaR backtesting tests, six ES backtesting tests, and two scor-
ing functions show that the proposed model can forecast risks more accurately than 14 
popular benchmarks. We conclude that the proposed model is a promising modeling 
framework for forecasting risk and is worthy of further study to expand its application.

Fig. 8  Out-of-sample forecasts of ES for the four stock market indexes. Gray bands correspond to Chinese 
stock market crash (2015, 07–2016, 09), 2018 recession (2018, 01–2018, 06), Brexit (2018, 08–2019, 03), and 
COVID-19 outbreak (2020, 02–2020, 03)
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