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Abstract 

This study explores whether the COVID‑19 outbreak and Russian–Ukrainian (R–U) 
conflict have impacted the efficiency of cryptocurrencies. The novelty of this study 
is the use of the Cramér‑von Mises test to examine cryptocurrency efficiency. We 
used a sample of daily prices for the six largest cryptocurrencies, covering the period 
from September 11, 2017, to September 30, 2022. Cryptocurrencies are found to be 
weakly efficient but exhibit heterogeneous levels of efficiency across currencies. 
Extraordinary events (COVID‑19 and R–U) play a vital role in the degree of efficiency, 
where a trend toward inefficiency appears in all cryptocurrencies except for Ethereum 
Classic and Ripple. During the COVID‑19 pandemic, the degree of inefficiency 
was higher than the level of inefficiency during R–U. This study provides useful guid‑
ance for investors and portfolio diversifiers to adjust their asset allocations during nor‑
mal and stressful market periods.

Keywords: Cryptocurrencies, Efficiency, Cramér‑von Mises test, COVID‑19, Russian–
Ukrainian war

Introduction
Market informational efficiency, whereby all available information is reflected in the 
prices of financial assets, particularly stock prices (Fama 1970), is one of the more debat-
able concepts in finance literature. Weak efficiency signifies that stock prices cannot be 
predicted because current stock prices reflect the information conveyed by past stock 
prices. Although the literature is flooded with articles examining the efficiency of differ-
ent financial markets such as stock, futures, and foreign exchange markets, very limited 
research has examined informational efficiency in cryptocurrency markets. The rapid 
increase in cryptocurrency price volatility, as well as the value arising from their detach-
ment from the global financial system, has given cryptocurrencies the position to be very 
influential assets due to their risk management capabilities and their unique blockchain 
technology features compared to conventional assets. If cryptocurrencies are considered 
hedges, their efficiency remains relatively stable during various market conditions and 
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crises. Otherwise, their valuable role in conventional assets could be endangered and 
their price predictability could be disguised. Thus, the recent popularity of cryptocur-
rencies has attracted the interest of researchers and practitioners alike, especially those 
seeking a better understanding of the dynamic behavior of efficiency in the cryptocur-
rency market.

A growing body of literature on the information efficiency of cryptocurrency markets 
has emerged in recent years. However, existing studies produce mixed results regarding 
the degree of market efficiency. Some of these studies have reported evidence of a weak 
form of efficiency (Nadarajah and Chi 2017; Yaya et al. 2019; Hawaldar et al. 2019; Kaki-
naka and Umeno 2022; Apopo and Phiri 2021), while others have found evidence of inef-
ficiency (Urquhart 2016; Bariviera 2017; Brauneis and Mestel 2018; Tiwari et al. 2018; 
Mandaci and Cagli 2022; Zhang et al. 2018) and a few have resulted in no such evidence 
(Grobys and Sapkota 2019; Hua et al. 2019; Palamalai et al. 2021). The most common 
justification for this difference in results is that cryptocurrencies differ in their operating 
systems and functionalities (e.g., blockchain and digital); thus, their prices might have 
different levels of predictability.

Although prior studies have used different methodological approaches and procedures 
to test for the presence of efficiency evolution in cryptocurrencies markets such as time-
varying Hurst exponent analysis (Bariviera 2017; Wei 2018; Jena et al. 2022), multifrac-
tal detrended-fluctuation-analysis (MF-DFA) (Al-Yahyaee et al. 2018; Zhang et al. 2020; 
Kakinaka and Umeno 2022), traditional unit root tests (Hawaldar et al. 2019; Yaya et al. 
2019), the log‐periodic power law (Ghosh et al. 2022) and long-range dependence, frac-
tal dimension and entropy components (Kristoufek and Vosvrda 2019; Sensoy 2019), 
they have rarely used the most recently developed methodology, the Cramér-von Mises 
test statistic (CvM) which was created by Hill and Motegi (2019, 2020). Furthermore, 
while existing studies (e.g., Fernandes et al. 2022; Ghosh et al. 2022; Zhang et al. 2020) 
have examined the evolution of market efficiency during the COVID-19 outbreak, they 
have not used the most updated sample period that covers the COVID-19 vaccination 
offering and the Russian–Ukrainian (R–U) war. Thus, the evolution of the cryptocur-
rency market efficiency remains fertile for further research.

Our main motivation stems from the recent noticeable high volatility shown in global 
cryptocurrency markets in normal times as well as during recent crisis periods, such as 
the COVID-19 and R–U conflict. Higher volatility of cryptocurrency prices may affect 
market efficiency. Apart from the well-known significant drop in cryptocurrency prices 
after the Bitcoin crash in early 2018, the global cryptocurrency market’s market capi-
talization has fluctuated greatly over the past several years.1 For instance, directly after 
the confirmation of COVID-19 as a pandemic in March 2020, the market capitalization 
of the global cryptocurrency market started to rise, from 226.7 USD billion in March 
2020 to 2,463.3 USD billion in mid-May 2021, an increase of approximately 11 times. 
However, after around two months, in July 2021, market capitalization began to decline 
significantly, reaching 1,285.5 USD billion, which could be due to the confirmation of the 
coronavirus vaccine. Once the R–U conflict started in the early months of 2022, market 

1 The empirical data about market capitalizations of the global cryptocurrency market were obtained from https:// 
coinm arket cap. com/.

https://coinmarketcap.com/
https://coinmarketcap.com/
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capitalization began to decline, reaching approximately 797 USD billion by the end of 
October 2022. Thus, the high volatility in global market capitalization that occurred dur-
ing the recent crises may have influenced the degree of market efficiency.

The highly influential recent global crises, namely the COVID-19 pandemic and the 
R–U conflict, are considered very strong motives in the investigation of the efficient 
market hypothesis (EHM) in cryptocurrency markets. The COVID-19 pandemic has 
been regarded as one of the most significant global crises in more than a century, result-
ing in a significant increase in human deaths and casualties as well as a dramatic increase 
in global poverty and economic inequality. Thus, these negative consequences have cre-
ated behavioral biases in cryptocurrency markets.

The ongoing conflict between Russia and Ukraine has generated political and eco-
nomic tension worldwide. This conflict has caused financial market downturns and 
sharply increased uncertainty in the global economy, in which higher commodity prices 
are intensifying, long-term high inflation looms, and the risk of stagflation and social 
instability increases. Industry sectors such as automotive, transportation, and chemical 
spheres suffer the most.2 This turbulence has influenced cryptocurrency traders’ behav-
ior. Thus, given the increase in the level of volatility in cryptocurrency prices during 
COVID-19 and the R–U war, examining the impact of these crises on market efficiency 
is an attractive topic for investigation.

Our main objective is to investigate the effect of the COVID-19 crisis and the Russian–
Ukrainian (R–U) war on the dynamic behavior of evolving efficiency in cryptocurrency 
markets. Specifically, we aim to answer three questions. First, how has the efficiency of 
cryptocurrencies evolved over the last five years? Second, are there any noticeable differ-
ences in the efficiency of cryptocurrencies during extreme events such as the COVID-19 
pandemic and the R–U war compared to non-crisis periods? Third, how did the effi-
ciency of different cryptocurrencies vary during the COVID-19 pandemic and the R–U 
war, and did any specific cryptocurrencies exhibit unique patterns?

This study contributes to the existing literature in several ways. It provides a compre-
hensive analysis of the debate on the evolution of market efficiency for six cryptocurren-
cies (Bitcoin, Ethereum, Binance [BNB], Ripple [XRP], Ethereum Classic, and Litecoin)3 
and extends the body of knowledge on cryptocurrencies’ evolving efficiency after most 
global events, such as the COVID-19 pandemic and the R–U war. In addition, our 
study is the first to use the CvM test statistic, created by Hill and Motegi (2019, 2020), 
to examine how efficiency changes during extraordinary circumstances. In contrast to 
other existing approaches,4 this novel framework is based on blockwise wild bootstrap-
ping in a rolling window (Shao 2011), thereby not being sensitive to the choice of block 

2 European countries have been most substantially affected, showing an increase in the inflation rate, reaching 8.5% in 
September 2022, while the GDP growth in Europe decreased by up to 4 percentage points (IFM 2022; Eurostat 2022).
3 To enrich the analysis of market efficiency, we carefully selected this mix of cryptocurrencies due to their heavy use 
in previous studies, their higher liquidity and market coverage, and their well-established statuses (e.g., Bitcoin and 
Ethereum), older digital currencies with lower market capitalizations (Ripple and Litecoin), and younger ones with 
smaller market capitalizations (Binance and Ethereum Classic). For more details about the market capitalization of each 
cryptocurrency as a percentage of the total market capitalization of the global cryptocurrency market, as of October 
2022, see Table 1.
4 The most commonly used efficiency testing approaches are the variance ratio test by Lo and MacKinlay (1988), the 
bicorrelation test by Hinich (1996), the spectral test by Hong (1996), the sign/rank test by Wright (2000), the multifractal 
detrended-fluctuation-analysis (MF-DFA) by Kantelhardt et al. (2002), the generalized spectral test by Escanciano and 
Valasco (2006), and the robust automatic portmanteau test of Escanciano and Lobato (2009).
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size for a large sample size and providing more reliable inference for testing white noise 
than the rolling window subsample techniques used in previous studies. In addition, the 
existing approaches are not genuine white noise tests because they do not asymptotically 
capture serial correlations at all lags (Hill and Motegi 2019).

The results reveal that cryptocurrencies are weak-form efficient and that their degree 
of efficiency evolves over time. The weak form of cryptocurrency efficiency is heteroge-
neous across currencies. This means that cryptocurrency prices are less predictable and 
that arbitrage opportunities are very limited in these markets. We also show that, during 
the extreme events, there was a trend toward inefficiency in all cryptocurrencies except 
for Ethereum Classic and Ripple. The COVID-19 crisis resulted in a higher degree of 
inefficiency than has the R–U war. Our study offers useful information to investors, gov-
ernments, prudential regulatory authorities, and portfolio diversifiers.

The remainder of the paper is organized as follows: Section  “Introduction” presents 
the introduction, and Section  “Literature review” contains a literature review. Sec-
tion  “Methodology” presents the methodology and data. The results and analyses are 
discussed in Sections “Data and preliminary statistics” and “Results and analysis” con-
cludes the paper.

Literature review
Existing studies suggest that market efficiency is not only a static phenomenon, but also 
one that evolves over time because market conditions and crises often have a strong 
influence on its behavior. Most prior studies have focused on the degree of evolving 
efficiency in different types of financial markets. For example, some studies have found 
evidence of evolving efficiency in stock markets (Al-Shboul and Alsharari 2019; Tiwari 
et al. 2019; Gaio et al. 2022; Ozkan 2021), while others have found evidence of evolving 
efficiency in foreign exchange markets (traditional currencies) (see Yamani 2021; Aslam 
et al. 2020; Yang et al. 2019). Evidence of evolving efficiency has also been found in other 
markets, such as oil and gold markets (Okoroafor and Leirvik 2022; Bariviera et al. 2019; 
Iwatsubo et al. 2018; Al-Yahyaee et al. 2018). These studies indicate that most conven-
tional assets experience different levels of return predictability, supporting the adaptive 
market hypothesis.

Table 1 The Sample cryptocurrencies by market capitalization

The data is based on October 1, 2022. The data are obtained from https:// coinm arket cap. com/

Symbol Total market capitalization

US$ Market share (%)

Bitcoin 370.568B 39.48

Ethereum 162.151B 17.27

Binance 21.049B 2.24

XRP 23.913B 2.55

Ethereum classic 3.781B 0.40

Litecoin 3.796 0.40

Total market 938.730B 62.35

https://coinmarketcap.com/
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Another group of studies examined the efficiency of Bitcoin and other large traded 
cryptocurrencies such as Ethereum, Litecoin, and Ripple. However, they reported dif-
ferent findings owing to differences in the functionalities of cryptocurrencies. Before 
addressing the literature, the differences between cryptocurrencies need to be dis-
cussed.5 For example, Litecoin (LTC) is a cryptocurrency based on the Bitcoin protocol. 
However, the two currencies differ in terms of their algorithms, hard caps, block trans-
action times, transaction speeds, and levels of privacy. LTC provides fast, secure, and 
low transaction fees and is suitable for microtransactions and point-of-sale payments. 
Ethereum (ETH) allows for the creation of smart contracts and decentralized appli-
cations. ETH has its own cryptocurrency and functions as a platform for many other 
cryptocurrencies. In contrast, Ripple (XRP) provides a variety of open-source protocols 
and arranges for payments, including micropayments such as DeFi, tokenization, stable-
coins, and NFTs. Ripple also supports tokens of fiat currencies, other cryptocurrencies, 
commodities, and other units of value. It enables secure and nearly free global financial 
transactions of any size at no charge. Given these differences between the above cryp-
tocurrencies, investors’ behavior and reactions to market changes may differ, leading to 
differences in the degree of market efficiency.

Hawaldar et al. (2019), when using the traditional efficiency tests (unit root and sta-
tionary tests) argue that cryptocurrencies (Bitcoin and Litecoin) exhibit random walk 
behavior, supporting the efficient market hypothesis. Using the detrended-fluctuation-
analysis (DFA) method, Zhang et al. (2020) found that Bitcoin, Ethereum, and Litecoin 
are efficient in bull markets but inefficient in bear markets. Naeem et al. (2021) studied 
asymmetric multifractal DFA and found evidence of asymmetric efficiency in Bitcoin, 
Ethereum, Litecoin, and Ripple; in particular, upward trends exhibited stronger efficiency 
than did downward trends. However, during the COVID-19 crisis, there was a substan-
tial increase in inefficiency; Bitcoin and Ethereum were the hardest-hit cryptocurren-
cies. Similarly, Kakinaka and Umeno (2022) used asymmetric MF-DFA and showed that 
the COVID-19 outbreak greatly changed the level of asymmetry in the cryptocurrency 
markets for Bitcoin and Ethereum. After the COVID-19 outbreak, stronger evidence of 
efficiency appeared in the short term and weaker evidence in the long term.

In addition to the popularly traded cryptocurrencies, recent studies have started 
focusing on a mix of cryptocurrencies with various functionalities and designs such as 
the Binance Coin (BNB), Cardano, NEM, Stellar, Dash, Monero, Verge, and EOS, among 
others. Cryptocurrencies can be classified into tokens and coins. For instance, by tak-
ing the 2017–2018 Bitcoin price crash, Yaya et al. (2019), employing the fractional inte-
gration approach, found that after the Bitcoin crash, Bitcoin and other digital coins and 
tokens (namely, Ethereum, Ripple, Litecoin, Dash, Digibyte, Doge, Maidsafecoin, Mon-
ero, Nem, Stellar, Verge, and Vertcoin) were highly efficient because of speculative trans-
actions among cryptocurrency traders that caused non-mean reversions. Le Tran and 
Leirvik (2020) analyzed five cryptocurrencies (Bitcoin, Ethereum, Ripple, Litecoin, and 
EOS) and reported that before 2017, these cryptocurrencies were mostly inefficient but 
showed a trend toward efficiency during the Bitcoin crash, as in the 2017–2019 period.

5 We have addressed these difference thanks to the suggestion by an anonymous referee.



Page 6 of 28Maghyereh and Al‑Shboul  Financial Innovation            (2024) 10:8 

Fernandes et  al. (2022), by constructing the Shannon-Fisher causality plane (SFCP), 
argued that five cryptocurrencies (Bitcoin, Binance Coin, Cardano, Ethereum, and Rip-
ple) exhibited high but slightly evolving efficiency behavior in the periods before and 
during the COVID-19 crisis, but Cardano was the most efficient. The researchers stated 
that the difference in evolution might be due to an increase in maturity and a low poten-
tial for price predictability. Zhang et al. (2018) used a battery of efficiency tests to con-
firm that cryptocurrency markets (Bitcoin, Ripple, Ethereum, NEM, Stellar, Litecoin, 
Dash, Monero, and Verge) are informationally inefficient. Using the Hurst exponent, 
Wei (2018) showed that while Bitcoin exhibits some evidence of efficiency, other cryp-
tocurrencies (DASH, Litecoin, Monero, Ripple, and Stellar) exhibit signs of inefficiency. 
Within the 2007–2008 global financial crisis (GFC), Apopo and Phiri (2021) argued that 
the daily returns of cryptocurrencies (namely Bitcoin, Ethereum, Litecoin, Bitcoin Cash, 
and Ripple) supported the random walk hypothesis, that is, evidence of a weak form of 
efficiency, while weekly returns did not support the weak form of efficiency.

In another study using the 20 most liquid cryptocurrencies in September 2016, Braun-
eis and Mestel (2018) argued that the efficiency of cryptocurrencies was less predictable 
when liquidity rose because of the use of different cryptocurrencies operated by differ-
ent mechanisms. Kristoufek and Vosvrda (2019), who utilized an Efficiency Index based 
on long-range dependence, fractal dimension, and entropy components, argue that his-
torical currencies (e.g., Bitcoin, DASH, Litecoin, Monero, Ripple, and Stellar) were con-
sistently inefficient over the full sample period. However, most coins and tokens were 
efficient only between July 2017 and June 2018. The weakest efficiency for digital coins 
was observed for Ethereum and Litecoin, whereas Dash was the most efficient.

Other studies examined the impact of anomalies (day-of-the-week, month-of-the-
year, and calendar anomalies) on the level of efficiency for different cryptocurrency 
markets. Ahraron and Qadan (2019) found evidence of the day-of-the-week effect on 
returns and the volatility of Bitcoin, confirming its strong independence. By consider-
ing noneconomic events (calendar anomalies), Qadan et al. (2022) argued that anomalies 
(the day of the week) had an impact only on the Bitcoin market and made it inefficient. 
However, they report that the within-month effect affects all cryptocurrencies. Caporale 
and Plastun (2019) confirmed the impact of the day of the week on Bitcoin; the Bitcoin 
market remains somewhat efficient. However, they argue that other cryptocurrencies 
(Litecoin, Ripple, and Dash) are not affected by the day-of-the-week anomalies. Robi-
yanto et al. (2019) argued that the day of the week and month of the year led the Bitcoin 
and Litecoin markets to become inefficient. Nevertheless, Kinateder and Papavassiliou 
(2021) showed no evidence of the effects of the Halloween calendar and day-of-the-week 
anomalies in Bitcoin, indicating that cryptocurrency prices remain less predictable; that 
is, the Bitcoin market is efficient.

By comparing the degree of efficiency before and after the COVID-19 pandemic for 
a mix of 18 major traded digital cryptocurrencies during periods of extreme events, El 
Montasser et al. (2022) indicated that cryptocurrency efficiency strongly increased dur-
ing the COVID-19 pandemic compared to before COVID-19. Using a set of 143 cryp-
tocurrencies, Grobys and Sapkota (2019) found no evidence of a significant momentum 
payoff strategy in the cryptocurrency market, confirming that such a market is not 
efficient. Hua et  al. (2019), allowing for cross-sectional dependence and considering 
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possible structural breaks, showed no empirical support for the efficient market hypoth-
esis for 31 of the top market-cap cryptocurrencies.

Palamalai et  al. (2021), using non-parametric and parametric random walk testing 
methods with structural breaks and asymmetric effects, found no evidence to support 
the random walk hypothesis owing to the occurrence of asymmetric volatility clusters. 
Based on the time-varying generalized Hurst exponent, Jena et  al. (2022) stated that 
although cryptocurrencies (Bitcoin, DASH, Litecoin, Monero, Ripple, and Ethereum) 
have different degrees of (in)efficiency, they exhibit evidence of evolving inefficiency 
owing to differences in their functionality; for example, privacy coins (Monero) and digi-
tal cash (DASH) use different technologies, such as zero-knowledge proofs, to ensure 
the privacy and confidentiality of transactions. Sensoy (2019) found that Bitcoin-US and 
Bitcoin-Euro have become more informationally efficient at the intraday level since the 
beginning of 2016, and Bitcoin-US was slightly more efficient than Bitcoin-Euro in the 
sample period. As these cryptocurrencies are pegged against the US dollar, which brings 
traditional currencies to blockchain technology, they could be subject to government 
prudential regulations; therefore, they might behave differently, leading to different lev-
els of market efficiency.

Most recently, a noticeable shift in the literature has been directed toward examining 
the behavior of asset-linked cryptocurrencies during COVID-19 and the R–U war, such 
as energy cryptocurrencies, traditional cryptocurrencies, and energy-conserving cryp-
tocurrency markets. For example, Mnif et al. (2023) provide different results regarding 
the efficiency of traditional cryptocurrencies (Ethereum and Bitcoin) and energy-con-
serving cryptocurrencies (Green Bitcoin, Cardano, SolarCoin, and Ripple). They argue 
that Bitcoin and SolarCoin had the lowest degree of inefficiency before COVID-19. 
However, Ethereum was the most effective after COVID-19. Similarly, Ripple was the 
most efficient cryptocurrency during the R–U crisis. This resulted from the energy crisis 
caused by the R–U conflict, which led to an increase in the efficiency of energy-con-
serving cryptocurrencies. Yousaf et  al. (2023), using the TVP-VAR method, show that 
energy cryptocurrencies (POWR, GRID+ , and SNC) are strongly connected only to Bit-
coin. Conversely, the degree of connectedness changed rapidly during COVID-19 and 
the R–U war and was highly sensitive to shocks in uncertainty. By employing the QVAR 
approach, Le (2023) argues that stressful market periods, such as COVID-19 and the 
R–U war, influence the degree of connectedness between the cryptocurrency volatility 
index and renewable energy volatility (Green Bonds, Clean Energy, Wind Energy, Solar 
Energy, Natural Gas, and Crude Oil). This confirms that these crises affected the effi-
ciency of both types of assets. These studies point out that asset-linked cryptocurrencies 
exhibit different levels of evolving efficiency.

Overall, while the studies cited above attempted to investigate the presence of evolu-
tion in the efficiency of cryptocurrency markets, they failed to provide convincing evi-
dence as to whether such markets are clearly efficient or whether their efficiency evolves 
over time. Most importantly, although the aforementioned studies use different meth-
odological approaches to examine efficiency and evolving efficiency, our study is the 
first to use the CvM test procedure created by Hill and Motegi (2019, 2020) to examine 
efficiency. Furthermore, given that the above studies used different and mixed types of 
cryptocurrencies with different operating systems, they missed the opportunity to use 
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mixed types of digital and blockchain currencies (decentralized digital, tokens, altcoins, 
and coins), which have different operating systems and are older and well-established 
currencies (Bitcoin and Ethereum) or more liquid and new currencies (younger in age) 
with lower market capitalization (Ethereum Classic and Binance). While a few studies 
have examined the evolution of market efficiency during COVID-19 and the R–U war, 
they have not used the most updated sample period that covers the full R–U war period. 
This study examines the evolution of efficiency in cryptocurrency markets by covering 
the above research gaps. Thus, we tested the following hypothesis.

H1 Extraordinary circumstances (i.e., COVID-19 and the R–U war) have an impact on 
the evolution of cryptocurrency market efficiency.

By rigorously testing this hypothesis, we not only provide robust empirical evidence 
regarding the evolution of cryptocurrency efficiency over time but also examine whether 
notable variations in efficiency arise during extreme events such as the COVID-19 pan-
demic and the R–U war and whether specific cryptocurrencies exhibit distinctive pat-
terns in such circumstances.

Methodology
In this study, the CvM developed by Hill and Motegi (2019, 2020) was applied to exam-
ine the impact of the COVID-19 pandemic and the R–U war on the dynamic evolution 
of cryptocurrency market efficiency. Compared to rolling window subsample methods, 
this novel framework is based on blockwise wild bootstrapping in a rolling window,6 
thereby being less sensitive to the choice of block size for a large sample size and provid-
ing a more reliable inference for testing white noise. In this section, we briefly describe 
the proposed method.7

Let rt be a strictly stationary time series (i.e., cryptocurrency returns) at day 
, t ∈ {1, . . . , n} . Consider that the mean, autocovariances, and autocorrelations are 
defined as µ = E(rt), γ (h) = E (rt − µ) rt−h − µ  , andρ(h) = γ (h)

γ (0) forh ∈ {0, . . . ,N } , 
respectively. Weak-form efficiency (white noise hypothesis) can then be tested using the 
following two hypotheses:

Acceptance of the null hypothesis ( H0 ) supports weak-form efficiency, whereas rejec-
tion is evidence against weak-form efficiency.

Likewise, writing the sample mean, autocovariances, and autocorrelations as 
µ̂n(h) = 1

n

∑
n

t=1 rt , γ̂n(h) = 1
n

∑
n

t=h+1

(
rt − µ̂n

)(
rt−h − µ̂n

)
, and ρ̂n(h) = µ̂n(h)

γ̂n(0)
for h ∈ {0, . . . ,N } , 

respectively, the CvM statistic for testing white noise under general weak dependent 
assumptions is defined as spectral density f (�) by

(1)H0 : ρ(h) = 0, for h ∈ {0, . . . ,N }againstH1 : ρ(h) �= 0 for some h ∈ {0, . . . ,N }

6 This method was initially proposed by Shao (2011).
7 Most discussion and notation contained in this section follows Hill and Motegi (2019, 2020).
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where ψh(�) = sin(h�)
hπ

forh �= 0 . To perform the dynamic evolution of the CvM test for 
CvMn , we use a blockwise wild bootstrap in a rolling-window framework. Following Hill 
and Motegi (2019, 2020), the blockwise wild bootstrap for CvMn can be executed using 
the following steps:

1. Decide on block size bn with 1 ≤ bn < n . Indicate the blocks with 
Bs =

{
(s − 1)bn + 1, . . . , n/bn

}
 , where s = 1, 2, . . . , Ln , Ln = n/bn.

2. Generate iid random numbers such that 
{
ξ1, . . . , ξn/bn

}
 with E[ξi] = 0,E

[
ξ2i

]
= 1 

and E
[
ξ4i

]
< ∞ . Create auxiliary variables ωt = δsift ∈ Bs for t − 1, . . . , n.

3. Calculate the bootstrapped autocovariance as: γ̂ COV
n (h) = √

n
∑n−1

h=1 γ̂
∗
n (h)ψh(�) , 

where γ̂ ∗
n (h) = 1

n

∑n
t=h+1

(
rt − µ̂n

)(
rt−h − µ̂n

)
− γ̂n(h).

4. Then, compute the bootstrapped test statistic such that CvM∗
n =

∫ π

0 γ̂
COV
n (h).

5. Repeat steps 2 and 3 M times, and label the results using 
{
CvM∗

n,i

}M
i=1

 . The approxi-
mate p-values are p̂∗n,M = (1/M)

∑M
i=1I(CvM

∗
n,i ≥ ĈvMn) . We then reject the null 

hypothesis of white noise at the significance level α if p̂∗n,M < α.

Finally, in order to capture time-varying market efficiency, we perform a rolling win-
dow analysis based on randomizing the block size for each bootstrap sample and win-
dow using window sizes of n ∈ {240, 480, 720} days.8 For the blockwise wild bootstrap 
(bn) , we chose bn = c

√
n , where c ∈ {0.5, 1, 2} so thatbn ∈ {15, 21, 61}.9 A total of 5,000 

replicates were performed using bootstrapping for each window.

Data and preliminary statistics
This study explores whether cryptocurrencies are weak-form efficient. Therefore, we 
choose the six largest cryptocurrencies in the market: Bitcoin, Ethereum, Binance, 
XRP, Ethereum Classic, and Litecoin. These six constitute approximately 62% of total 
cryptocurrency market capitalization (see Table  1).10 Our cryptocurrency sample is 
priced in US dollars. The dataset consists of daily closing prices, spanning the period 
from September 11, 2017, to September 30, 2022, with 1786 observations.11 The time 
span of the data includes the most recent crises, namely, the ongoing COVID-19 
pandemic and the R–U war. Data were obtained from Thomson Reuters Datastream. 
The daily returns for each cryptocurrency are calculated as the natural logarithmic 

(2)CvMn = n

∫ π

0

{∑n−1

h=1
γ̂n(h)ψh(�)

}2

d(�)

8 These window sizes were chosen for two reasons: (i) they represent short-term (1-year window), medium-term (2-year 
window), and long-term (3-year window) effects; and (ii) these sizes are mostly less sensitive to the choice of block size 
for a large sample size, which provides more reliable inference for testing white noise. Using window sizes higher than 
240 blocks can cover the crisis periods, lead to smoother autocorrelations and confidence intervals, and avoid generating 
any periodicities like those reported when using a 240-block fixed window size.
9 Hill and Motegi (2019, 2020) demonstrate that non-periodic and smooth confidence bands can be obtained using a 
blockwise wild bootstrap with block size bn = c

√
n.

10 See https:// www. stati sta. com/ stati stics/ 12690 13/ bigge st- crypto- per- categ ory- world wide/. In addition, these crypto-
currencies have recently triggered the attention of investors and academic researchers (e.g., Cui and Maghyereh 2022; 
Wang et  al. 2022b; Maghyereh and Abdoh 2021; 2022; Pace and Rao 2023; Al-Shboul et  al. 2022, 2023; among many 
others).
11 The starting date of the sample was selected based on the data availability.

https://www.statista.com/statistics/1269013/biggest-crypto-per-category-worldwide/
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difference between two continuous price observations: rit = ln(pit)− ln(pit−1) , where 
rit denotes the daily returns and pit represents the i-th daily price.

Figure 1 shows the dynamic evolution of the daily cryptocurrency prices. The fig-
ure shows that all cryptocurrencies exhibit similar evolutionary features. The prices 
showed a sudden increase in December 2018, then fluctuated at lower levels in 2019 
and 2020 (when the US–China trade war occurred and COVID-19 was confirmed as 
a pandemic on March 11, 2020), and then rose rapidly and reached an all-time high in 
April 2021 (when the COVID-19 vaccine was becoming widely available). The prices 
fell rapidly until rising again in July 2021 and peaked in November 2021 before falling 
again in March 2022 (the beginning of the R–U war). A graphical representation of 
the return series (Fig. 2) indicates high volatility in the cryptocurrency market, par-
ticularly during the COVID-19 crisis.

Table  2 displays descriptive statistics for the daily returns of cryptocurren-
cies. Binance has the highest mean positive value, followed by Ethereum, Bitcoin, 
Ethereum Classic, and XRP, while the mean value of Litecoin is negative. While XRP 
has the highest volatility, Bitcoin has the lowest standard deviation. Regarding the 
distribution properties of the cryptocurrencies, all of the series are right heavy-tail. 
In addition, all of the series exhibited excess kurtosis, indicating that they are lepto-
kurtic. According to the Jarque–Bera test results, all return series are non-normal. 
The quantile–quantile (Q–Q) plots, which are shown alongside histograms in Fig. 3, 
confirm the result. The results of the ADF unit root test show that all return series are 
stationary. Even more importantly, as illustrated in Table 2, the Q(10) and  Q2(10) test 
for autocorrelation of returns and squared returns, respectively, the Variance-Ratio 
test, R/S test, the Runs test, and the BDS test all reject the hypothesis of independ-
ence in cryptocurrency returns. This justifies the use of Hill and Motegi’s (2019; 2020) 
white noise test, which assumes that weak dependence exists in return series.

Fig. 1 Evolution of daily prices series. Notes the figures disply the sample cryptocurrencies’ historical daily 
closing prices from September 11, 2017 through September 30, 2022. In the vertical axis, all cryptocurrencies 
are priced in US dollars
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Finally, Fig.  4 presents a correlation heatmap of the six studied cryptocurrencies. 
Stronger correlations correspond to warmer colors (red). The graph shows that the 
returns of all six cryptocurrencies are highly related to one another. This finding is 

Fig. 2 Evolution of daily returns series. Notes the figures disply the sample cryptocurrencies’ historical daily 
returns (%) calculated as the natural logarithmic difference between two continuous price observations. 

Table 2 Summary descriptive statistics

The table show the summary descriptive statistics of the daily returns of cryptocurrencies. The Jarque–Bera statistic the 
normality test of the sample distribution. ADF is the Augmented Dickey‑Fuller test of unit root. Q(10) and  Q2(10) are Li and 
McLeod test for autocorrelation of returns and squared returns respectively. Variance‑Ratio Test is the Lo and MacKinlay 
statistics for testing the random walk hypothesis (weak‑form efficiency which are robust under homoscedasticity and 
heteroscedasticity. R/S (range over standard deviation) test is the Hurst‑Mandelbrot statistics for testing the hypothesis 
of no long‑range dependence. Runs Test (also called Wald‑Wolfowitz test) is the Lo’s statistic (a non‑parametric statistic) 
that test the random walk hypothesis. BDS test (initiated by Brock, Dechert, Scheinkman and LeBaron) is a non‑parametric 
statistic of testing the nonlinear serial dependence in time series using spatial dimensions from 2 to 6. ***, **, and * indicate 
significance at the 10%, 5%, and 1% levels, respectively. The sample period is 11/09/2017–30/09/2022

Bitcoin Ethereum Binance XRP Ethereum classic Litecoin

Mean 0.00025 0.00036 0.00121 0.00014 0.0002 − 0.00003

Max 0.09777 0.10195 0.22984 0.26357 0.15308 0.16908

Min − 0.20183 − 0.23918 − 0.23586 − 0.23908 − 0.21992 − 0.19503

Std. Dev 0.01778 0.02255 0.02596 0.02798 0.02792 0.02431

Skewness − 0.80762 − 0.91065 0.38542 0.83215 − 0.10954 − 0.13829

Kurtosis 14.71101 12.50943 17.42898 19.39155 10.67991 11.52421

J‑B 10,330.3*** 6929.41*** 15,433.04*** 20,064.89*** 4363.22*** 5376.59***

ADF − 43.450*** − 28.412*** − 27.64*** − 41.831*** − 42.879*** − 43.357***

Q(10) 18.6755** 26.1702*** 41.3476*** 20.4137** 16.0249* 18.0468**

Q2(10) 46.0623* 52.262*** 308.931*** 191.534*** 194.006*** 143.824***

Variance‑ratio test 0.19435 0.58274 0.70095 0.87198 0.40564 0.36437

R/S test 1.44376 1.50027 1.24291 1.26962 1.26338 1.21698

Runs test 2.37565** 2.80597*** 3.2156*** 4.20952*** 3.61372*** 2.61404***

BDS test

Dimension

2 5.0270*** 3.9657*** 10.1987*** 10.9165*** 8.5719*** 5.6492***

3 6.6425*** 5.7120*** 12.7241*** 12.6963*** 11.3498*** 7.3051***

4 7.5004*** 6.7478*** 14.1455*** 13.8784*** 12.7082*** 8.1639***

5 8.6387*** 7.4868*** 15.4217*** 15.4535*** 13.5220*** 9.1827***

6 9.5135*** 8.3270*** 16.5656*** 16.6495*** 14.2998*** 9.8311***
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consistent with previous research (i.e., Hu et  al. 2019a, b; Ferreira et  al. 2020; Zhang 
et al. 2021; Al-Shboul et al. 2022, among others), which shows that most cryptocurrency 
returns are positively correlated.

Fig. 3 Density distribution and Q–Q plots. Notes the figures disply the density empirical distribution and 
quantile‑quantile (Q–Q) plots of the sample cryptocurrencies’ historical daily returns

Fig. 4 Heatmap correlation matrix. Notes: The figure displays the correlation matrix heatmap between the 
sample cryptocurrencies’ daily returns.  Numbers in heatmap presents the correlation coefficients. The colors 
bar on the right‑hand side of the plot presents the strength of correlation
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Results and analysis
This section reports the results of the CvM test statistic in different forms, such as 
autocorrelation with windows of different sizes (fixed and random block sizes), rolling 
windows of the value of the CvM test, and p values of the CvM test for selected win-
dow sizes (240, 480, and 720). Before reporting the results of this test, we report the 
efficiency rejection ratios of the CvM test statistics for all cryptocurrencies in Table 3. 
Interestingly, Table  3 shows evidence of very low rejection ratios for all currencies, 
providing strong evidence supporting the white noise hypothesis—the existence of 
weak-form efficiency in all currency markets.

Our main aim is to capture the potentially time-varying degree of cryptocurrency 
market efficiency using a rolling-window analysis of cryptocurrency price returns. To 
measure the time-varying degree of efficiency, autocorrelations with different window 
sizes (240, 480, and 720 days) are reported in Figs. 5, 6, and 7. In each graph of these 
figures, the autocorrelation series is drawn in black, solid lines, and 5% critical values 
(i.e., 95% confidence bands) in red dotted lines.

In general, the results show a periodic pattern that fluctuates rhythmically in 
every window, in contrast to the true iid data generation structure. In Fig. 5, where 
a 240 days window is used, the white noise hypothesis is accepted for all cryptocur-
rency markets, indicating that these markets are weak-form efficient, especially in 
non-crisis periods, but are often rejected during crisis periods such as the COVID-19 
crisis and the R–U war. In addition, at the start of 2019, all cryptocurrencies (except 
Litecoin and Binance) showed signs of inefficiency (where the trade wars and crash 
in the Bitcoin market were clear). One possible reason for this rejection is the large 
negative autocorrelation of cryptocurrency prices. Our results contradict the findings 
of Urquhart (2016) and Bariviera (2017), who argued that cryptocurrencies are mostly 
inefficient, and are in line with the results of Brauneis and Mestel (2019) and Hawal-
dar et al. (2019). When weak-form efficiency is present, whereby public information 
is reflected in prices, there is limited cryptocurrency price predictability (i.e., fewer 
arbitrage opportunities) because of the difference in the degree of shocks in infor-
mation transmission across investors within the market. Thus, cryptocurrencies can 
be considered beneficial investment tools that investors can use to reduce the risk of 
their portfolios under normal conditions, while they can be used as safe haven assets 
during crisis periods. During crises, investors may be less advantaged when invest-
ing in cryptocurrencies; thus, policymakers must follow certain regulatory reforms 
and prudential policies to stabilize cryptocurrency prices and implement effective 
risk controls during extreme conditions. In this case, the market may have regained 
efficiency quickly.

Table 3 Rejection ratio of cram´er‑von mises test over rolling windows

The table reports the ratio of rolling windows. At the 5% level, the null hypothesis of white noise is rejected

Bitcoin Ethereum Binance XRP Ethereum classic Litecoin

n = 240 0.00404 0.00692 0.0060 0.0000 0.0000 0.0512

n = 480 0.00328 0.00407 0.0024 0.0000 0.0000 0.0000

n = 720 0.00273 0.00451 0.0009 0.0000 0.0000 0.0029
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When larger window sizes (480 and 720) are used, as shown in Figs. 6 and 7, evidence 
similar to that reported in Fig. 5 is observed. In general, negative autocorrelations shift 
over time, with the trend shifting from inefficiency to a weak form of efficiency. We 
found that all cryptocurrency markets are weakly efficient during non-crisis periods but 
inefficient during crisis periods. However, this does not apply to Binance and Ethereum 
Classic, which show evidence of a weak form of efficiency during the COVID-19 cri-
sis and the R–U war. Thus, the increase in window size shows smoother autocorrela-
tions and confidence intervals and does not generate any periodicities similar to those 

Fig. 5 Autocorrelations with Window Size n = 240 (Fixed Block Size). Notes The figure displays 
autocorrelations with lag h = 1 over rolling windows. Correlations are shown by solid black lines, while 
95% confidence bands are represented by dotted red lines. Under the null hypothesis of white noise, the 
confidence band is produced using a blockwise wild bootstrap of 5000 iterations for each window. Each 
point on the horizontal axis represents the initial date of each window
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reported when using a 240-block fixed window size. The higher the window size, the 
smoother and less periodic the autocorrelations and their confidence bands. The same 
results were obtained using larger window sizes, providing empirical support for the 
EMH and confirming the presence of efficiency evolution in cryptocurrencies. In sum-
mary, although our analysis uses larger window sizes to avoid periodicity and smoothen 
autocorrelations, our results show similar benefits for investors. Based on our results, 
investors can reallocate their portfolio assets by adding cryptocurrencies to reduce the 
risk of their portfolios during normal market conditions and use cryptocurrencies as 
safe haven assets during crisis periods.

Fig. 6 Autocorrelations with Window Size n = 480 (Fixed Block Size). Notes The figure displays 
autocorrelations with lag h = 1 over rolling windows. Correlations are shown by solid black lines, while 
95% confidence bands are represented by dotted red lines. Under the null hypothesis of white noise, the 
confidence band is produced using a blockwise wild bootstrap of 5,000 iterations for each window. Each 
point on the horizontal axis represents the initial date of each window
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Several possible reasons led to the presence of inefficiencies during the COVID-
19 crisis and the R–U war. Despite their differences in nature, these crises negatively 
impacted cryptocurrency prices and the global economy. These negative conse-
quences of COVID-19 include fear and sadness, negative sentiments, the application 
of social distancing, the long-term lockdown of business activities, and an increase in 
deaths and casualties. This led to a dramatic rise in global poverty and economic ine-
quality, and ultimately, an increase in uncertainty across markets. Such consequences 
resulted in disparities in the degree to which cryptocurrency investors and policy-
makers responded to price changes, leading to market inefficiency. This is because of 
the delay in price adjustments within the cryptocurrency market, in which the flow 

Fig. 7 Autocorrelations with Window Size n = 720 (Fixed Block Size). Notes The figure displays 
autocorrelations with lag h = 1 over rolling windows. Correlations are shown by solid black lines, while 
95% confidence bands are represented by dotted red lines. Under the null hypothesis of white noise, the 
confidence band is produced using a blockwise wild bootstrap of 5000 iterations for each window. Each 
point on the horizontal axis represents the initial date of each window



Page 17 of 28Maghyereh and Al‑Shboul  Financial Innovation            (2024) 10:8  

of information is conveyed at the same time, speed, and quality. Although investors 
respond instantly to changes in cryptocurrency prices, policymakers and regulators 
take longer to respond to such changes during crises. The severe impact of the crisis 
led to a significant movement in cryptocurrency prices, which affected intraday price 
behavior. Furthermore, changes in the persistence of cryptocurrency price behavior 
caused market inefficiencies during these economic upheavals. James (2021) argues 
that the degree of efficiency in cryptocurrencies varies over time owing to less con-
sistency in cryptocurrency price structural breaks.

Based on the negative impact of the R–U war, the high correlation and co-movement 
among cryptocurrencies as well as other financial assets resulted in a significant depre-
ciation of the major global traditional currencies and an increase in interest rates. These 
effects led cryptocurrency investors to move intentionally and directly toward other 
financial markets that offer higher returns. Although there was a noticeable recovery 
in the cryptocurrency market at the end of 2020, particularly after the distribution of 
the coronavirus vaccine, investors’ risk appetite could not lead to a price equilibrium in 
most cryptocurrencies because of the impact of the ongoing R–U war. This is because 
investors react more to the flow of information during periods of stress (Youssef and 
Waked 2022).

As cryptocurrencies are generally considered as “safe haven” tools (Al-Shboul et  al. 
2022; Melki and Nefzi 2022), they lose their value because of global negative sentiments, 
worry, and fear. In summary, the varying impacts of these crises on the degree of effi-
ciency can also be explained by the structures of the markets and trader behavior. Dur-
ing both crises, media coverage, such as international news headlines, generated fear and 
sadness, negative sentiments, and uncertainty across markets. Thus, investors tended to 
reduce their trading activities to avoid financial losses, which adversely affected financial 
and cryptocurrency markets. These crises not only affected trading behavior but also led 
to complex issues associated with a low degree of information determinacy.

The other part of our analysis examines the evolution of market efficiency using the 
rolling window of the CvM test value based on various window sizes (fixed block sizes) 
(240, 480, and 720 days). The results are shown in Figs. 8, 9, and 10. In each graph, the 
solid black lines reflect the CvM test statistics, whereas the red dotted lines represent 
5% critical values (95% confidence bands). In Fig.  8, where a 240  days window size is 
used, the time-varying values of CvM show evidence of evolving efficiencies during the 
crisis and non-crisis periods. Almost all cryptocurrencies are highly inefficient during a 
crisis. The value of the test shows a sudden jump in efficiency patterns during all crises 
(the COVID-19 crisis, the Bitcoin crash crisis after the beginning of 2018, and the trade 
wars between the US, China, and North Korea in 2019 and 2020). This finding suggests 
that during crises, there is a trend toward inefficiency. However, the efficiency evolu-
tion patterns differ across crises. The highest degree of evolving efficiency was noticed 
during the COVID-19 crisis for all currencies except for Bitcoin and Ethereum, where 
the degrees of inefficiency for these two currencies were higher during the trade wars 
between 2019 and mid-2020 and after the Bitcoin crash crisis. The R–U war showed the 
lowest degree of evolving efficiency for all currencies. Our results are consistent with the 
findings of Fernandes et al. (2022), who argue that cryptocurrency markets showed effi-
ciency trends during the COVID-19 crisis.
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In addition, we observed a higher degree of inefficiency (higher correlation) during cri-
sis periods than under normal conditions. This is due to changes in investors’ responses 
to changes in cryptocurrencies as well as negative economic conditions across the globe. 
As there is a clear trend toward inefficiency during the COVID-19 period, one can argue 
that the slowness and delay in cryptocurrency price adjustments is one of the reasons 
for the higher changes in the level of (in)efficiency over time. The higher level of inef-
ficiency during the COVID-19 pandemic was caused by the pandemic’s negative impact, 
which was more devastating and lasted longer than other crises. Furthermore, com-
pared with other crises, the COVID-19 crisis has had comprehensive socioeconomic 

Fig. 8 Rolling window Cram´er‑von Mises tests n = 240. Notes The figures display the Cram´er‑von Mises 
(CvM) tests based on the blockwise wild bootstrap. Under the null hypothesis of white noise, the confidence 
band is produced using a blockwise wild bootstrap of 5000 iterations for each window. The solid black lines 
reflect the CvM test statistics, while red, dotted lines represent 5% critical values (95% confidence bands). 
Each point on the horizontal axis represents the initial date of each window
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and humanitarian impacts. The delay in price adjustments also resulted from changes in 
market structure and trader behavior. During both crises, the massive number of deaths, 
abandonment of the entire global market, and media coverage such as international 
news headlines generated fear, sadness, negative sentiments, and uncertainty across 
markets. Thus, investors attempted to reduce their trading activities to avoid financial 
losses, which negatively impacted the cryptocurrency markets. The crises affected not 
only trading behaviors but also the complexity of information transmission from one 
currency to another.

Fig. 9 Rolling window Cram´er‑von Mises tests n = 420. Notes The figures display the Cram´er‑von Mises 
(CvM) tests based on the blockwise wild bootstrap. Under the null hypothesis of white noise, the confidence 
band is produced using a blockwise wild bootstrap of 5000 iterations for each window. The solid black lines 
reflect the CvM test statistics, while red, dotted lines represent 5% critical values (95% confidence bands). 
Each point on the horizontal axis represents the initial date of each window
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Looking at Bitcoin and Ethereum, where the degree of inefficiency during trade wars 
and the Bitcoin crash crisis was higher than that during the COVID-19 period, we argue 
that because these currencies are well established with a longer period of market survival 
and are decentralized currencies, their investors may behave differently than investors 
in other currencies during other crisis periods. Investors in such currencies may have 
shown more variability in their responses to price adjustments during the Bitcoin crash 
crisis and trade wars. Furthermore, because these cryptocurrencies have different oper-
ating systems, investors in one currency (i.e., Bitcoin) may have different trading behav-
iors than investors in another (i.e., Ethereum) because of their investment preferences 

Fig. 10 Rolling window Cram´er‑von Mises tests n = 720. Notes The figures display the Cram´er‑von Mises 
(CvM) tests based on the blockwise wild bootstrap. Under the null hypothesis of white noise, the confidence 
band is produced using a blockwise wild bootstrap of 5000 iterations for each window. The solid black lines 
reflect the CvM test statistics, while red, dotted lines represent 5% critical values (95% confidence bands). 
Each point on the horizontal axis represents the initial date of each window
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and needs. Thus, different investor responses to changes in prices would lead to different 
degrees of market efficiency across different periods of crisis.

Figures 9 and 10 show the time-varying efficiencies based on the CvM test when larger 
window sizes (420 and 720) were used. In general, these results are similar to those 
reported in Fig. 8. The degree of inefficiency increased during crisis periods. Although 
these larger window sizes with fixed blocks allow for less periodicity and smoother 
bands, the evidence of evolving efficiency remains quantitatively similar to those with 
lower window sizes during periods of crisis and non-crisis for all currency markets but 
with different degrees of efficiency evolution. We observe a higher degree of inefficiency 
during the COVID-19 crisis for almost all currencies, except for Bitcoin and Ethereum, 
which show a higher degree of inefficiency between 2019 and the end of 2020 (during 
the Bitcoin crash crisis and the trade war period) compared to the COVID-19 crisis. 
However, during the R–U war, they exhibited less inefficiency. The lower degree of inef-
ficiency during the R–U conflict is a result of the reduced impact of our sample period, 
which does not cover the entire period of the ongoing conflict and could be due to the 
slight impact of the R–U war on the price adjustments of cryptocurrencies.

To further examine the evolving efficiency in cryptocurrency markets, we report the 
patterns of p values associated with the CvM test results. The p values are shown in 
Figs. 11, 12 and 13. These figures show the patterns of the p values for different window 
sizes (240, 420, and 270) using block size randomization. In each figure, the solid black 
lines show the p values of the CvM tests, while the shaded regions represent the 5% 
critical values (95% confidence bands). Our results in these figures are consistent with 
our findings in Figs. 8, 9 and 10. In Fig. 11, our results show evidence of evolving effi-
ciency for all cryptocurrencies. The “white noise” hypothesis is accepted in most cases 
for almost all cryptocurrencies in periods of non-crisis while being rejected in periods 
of crises. During non-crisis periods, the p values rise dramatically, whereas during crisis 
periods, they fall precipitously, sometimes below the 5% confidence level. This means 
that there was a trend toward inefficiencies during the crisis period, confirming the 
results reported in Figs. 6, 7, 8, 9 and 10. However, the degree of inefficiency is heteroge-
neous across cryptocurrencies.

Given the serious political and trade tensions between the US and North Korea at 
the time, as well as the US–China trade war between mid-2017 and early 2019, Bitcoin, 
Litecoin, Binance, and Ethereum Classic showed a trend toward inefficiency. During the 
great cryptocurrency crash in early 2018, Ethereum and Litecoin showed evidence of 
a trend toward inefficiency. The COVID-19 outbreak and the R–U war had a negative 
effect on the degree of efficiency, leading cryptocurrency markets except for Ethereum 
Classic and Ripple to be inefficient.

When larger sizes of windows are taken, (e.g., 420  days and 720  days), the p value 
series of the CvM test for each cryptocurrency are shown in Figs. 12 and 13. We report 
evidence of evolving efficiency for almost all cryptocurrency markets except during the 
COVID-19 crisis. We can see that the larger the window size, the smoother the p values. 
Thus, a larger window size makes p values smoother, increasing the possibility that they 
will remain weakly efficient across almost all cryptocurrency markets and making the 
evaluation of efficiency more noticeable, even during a crisis. Evidence of inefficiency 
has been reported for almost all cryptocurrencies during crisis periods, whereas weak 
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efficiency is clearly visible during non-crisis periods. However, Ethereum and Binance 
showed a higher degree of inefficiency during the COVID-19 period. In general, the 
results in Figs. 12 and 13 provide evidence of inefficiencies during crisis periods, par-
ticularly during COVID-19 and the trade wars. This confirms our results shown in 
Figs.  8, 9, 10 and 11. Kristoufek and Vosvrda (2019) argue that the tendency of these 
cryptocurrencies to become less efficient could be attributed to anomalies (Qadan et al. 

Fig. 11 P values of Cram´er‑von Mises Test with Fixed versus Randomized Block Sizes n = 240, Notes The 
figures display the rolling window p values of Cram´er‑von Mises tests (solid black lines) based on the 
blockwise wild bootstrap under the null hypothesis of white noise. The shaded areas represent 5% critical 
values (95% confidence bands). Each point on the horizontal axis represents the initial date of each window
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2022; El Montasser et al. 2022). To interpret our results, trade wars and COVID-19 have 
had a greater negative impact on investor behavior, leading to a higher degree of inef-
ficiency. Our results help investors construct their portfolios and opt for risk diversifica-
tion among the cryptocurrencies studied.

Fig. 12 P values of Cram´er‑von Mises Test with Fixed versus Randomized Block Sizes n = 480. Notes The 
figures display the rolling window p values of Cram´er‑von Mises tests (solid black lines) based on the 
blockwise wild bootstrap under the null hypothesis of white noise. The shaded areas represent 5% critical 
values (95% confidence bands). Each point on the horizontal axis represents the initial date of each window.
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Conclusions
This study examines the evolution of cryptocurrency efficiency and whether it is affected 
by extreme events such as the COVID-19 pandemic and the R–U war. Using the CvM, 
our analysis reveals that all cryptocurrencies followed a weak form of efficiency in the 
non-crisis period, while during COVID-19 and the R–U war, the cryptocurrency mar-
kets became inefficient. Efficiency was heterogeneous across currencies. This confirms 
that cryptocurrency prices are less predictable and arbitrage opportunities are very 

Fig. 13 P values of Cram´er‑von Mises Test with Fixed versus Randomized Block Sizes n = 720. Notes The 
figures display the rolling window p values of Cram´er‑von Mises tests (solid black lines) based on the 
blockwise wild bootstrap under the null hypothesis of white noise. The shaded areas represent 5% critical 
values (95% confidence bands). Each point on the horizontal axis represents the initial date of each window
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limited in these markets. Our analysis also found evidence that the efficiency of cryp-
tocurrency markets (except for Ethereum Classic and Ripple) changes over time, with 
a tendency toward less efficiency during times of crisis. The COVID-19 crisis shows a 
higher degree of inefficiency than the R–U war. This trend appears not only during the 
COVID-19 breakout and R–U war but also during periods of high political tension and 
trade war such as the conflict between the United States and North Korea and the US–
China trade war in the middle of 2017 and early 2019 as well as during the Bitcoin crash 
in early 2018.

This study has several policy implications. First, digital currency investors can better 
understand risk-diversification strategies during normal and crisis periods. Second, our 
findings shed light on the benefits of cryptocurrency market behaviors, which would 
allow central banks and regulators to adopt certain regulatory laws, supervision, and 
prudential policies to stabilize cryptocurrency market forgery and run effective risk 
controls during extreme conditions such as the COVID-19 pandemic and the R–U war. 
These policies may strengthen oversight and enact laws and reforms to increase the effi-
ciency of cryptocurrencies compared to other financial and commodity markets. Third, 
although efficiency in cryptocurrency markets relates to price predictability and arbi-
trage opportunities, our results provide researchers and regulators with deeper insight 
into the profitability mechanism in trading strategies as well as the determinants of cryp-
tocurrency prices. Fourth, given the degree of connectedness among cryptocurrencies, 
investors and market participants may use our results to distinguish between the short- 
and long-run effects of their transmission, leading to a better evaluation of systematic 
risk. Finally, as cryptocurrencies are highly volatile, the findings of our study offer inves-
tors and portfolio managers valuable advice on how to understand cryptocurrency mar-
ket efficiency, which plays a crucial role in adjusting their portfolios, and explores the 
importance of negative and positive shocks coming in or out of each cryptocurrency.

Further research can be conducted in the domain of cryptocurrency market effi-
ciency. For example, an interesting area for future research is testing for momentum, 
where researchers can clarify why price anomalies such as momentum payoffs appear 
in cryptocurrency markets. This can explore the profitability of risk-managed momen-
tum in cryptocurrency markets. The efficiency of cryptocurrency markets can be fur-
ther explored with respect to investor sentiment, liquidity risk, and the macroeconomic 
determinants of cryptocurrency prices.
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