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Abstract 

This study attempts to accelerate the learning ability of an artificial electric field 
algorithm (AEFA) by attributing it with two mechanisms: elitism and opposition‑
based learning. Elitism advances the convergence of the AEFA towards global optima 
by retaining the fine‑tuned solutions obtained thus far, and opposition‑based learning 
helps enhance its exploration ability. The new version of the AEFA, called elitist opposi‑
tion leaning‑based AEFA (EOAEFA), retains the properties of the basic AEFA while tak‑
ing advantage of both elitism and opposition‑based learning. Hence, the improved 
version attempts to reach optimum solutions by enabling the diversification of solu‑
tions with guaranteed convergence. Higher‑order neural networks (HONNs) have 
single‑layer adjustable parameters, fast learning, a robust fault tolerance, and good 
approximation ability compared with multilayer neural networks. They consider 
a higher order of input signals, increased the dimensionality of inputs through func‑
tional expansion and could thus discriminate between them. However, determining 
the number of expansion units in HONNs along with their associated parameters (i.e., 
weight and threshold) is a bottleneck in the design of such networks. Here, we used 
EOAEFA to design two HONNs, namely, a pi‑sigma neural network and a functional link 
artificial neural network, called EOAEFA‑PSNN and EOAEFA‑FLN, respectively, in a fully 
automated manner. The proposed models were evaluated on financial time‑series 
datasets, focusing on predicting four closing prices, four exchange rates, and three 
energy prices. Experiments, comparative studies, and statistical tests were conducted 
to establish the efficacy of the proposed approach.

Keywords: AEFA, Elitism, Opposition‑based learning, Improved AEFA, HONN, PSNN, 
FLANN, Financial forecasting

Introduction
Financial time series (FTS) comprise stock market, commodity, energy, gold, sil-
ver, and currency exchange prices, etc., whose behaviors are uncertain and sensi-
tive to various international aspects and socio-economic factors (Hsu et  al. 2016). 
The inherent dynamism, nonlinearities, and non-stationarity of such FTS data make 
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the prediction process challenging (Fama 1970; Kara et al. 2011). As a complex and 
dynamic system, FTS forecasting requires an accurate prediction model and has been 
an attractive research area in the domains of data mining and financial engineering. 
Statistical methods were early approaches of FTS forecasting (Zhang 2003; Adhikari 
and Agrawal 2014; Box et al. 2015). However, their approximations are deprived and 
mostly fail to model the underlying dynamism and replicate the ever-changing pat-
terns of FTS (Akbilgic et  al. 2014; Nayak and Misra 2019a; Das et  al. 2022; Nayak 
2022).

Recently, nonlinear approximation systems such as artificial neural networks (ANNs) 
and deep-learning-based forecasting have been applied in FTS forecasting which 
are data-driven in nature and have established their predictability by exploring huge 
amounts of available historical financial data (Nayak 2022; Akman et  al. 2020). Typi-
cally, ANNs comprise a multi-layered architecture, providing a “black box” visualization. 
Multiple layers lead to multiple weight and threshold updates, an elongated conver-
gence rate, and being trapped in local optima owing to gradient descent-based learning, 
thereby attracting experts to frame simple and flat neural models. Higher- order neu-
ral networks (HONNs) are a class of feed-forward ANN capable of providing nonlin-
ear decision margins and achieving an improved classification accuracy compared with 
linear neurons (Guler and Sahin 1994). The introduction of higher-order terms differ-
entiates them from normal ANNs. Unlike summing elements in conventional ANNs, 
HONNs use both summing elements and the products of weighted inputs, which are 
called higher-order terms. Because of their single layer and smaller number of adjust-
able model parameters, they have simple and flat architectures. They can capture nonlin-
earities coupled with complex real-world data using a simple flat architecture (Shin and 
Ghosh 1995; Park et al. 2000). The representational power of these higher-order terms 
helps enhance the information capacity of a model in solving nonlinear problems with 
a smaller network and faster convergence rate (Leerink et al. 1994). Altogether, HONNs 
exhibit fast learning, a robust approximation with fault tolerance competence, and influ-
ential input–output mapping with solitary trainable weights and thresholds (Wang et al. 
2008). The functional link artificial neural network (FLANN) proposed by Pao (1992) 
and pi-sigma neural network (PSNN) proposed in Shin and Ghosh (1991) are popular 
HONNs applied in many areas of engineering optimization. Financial forecasting using 
HONNs has been determined to be better than that using conventional multilayer ANNs 
(Das et al. 2020; Ghazali 2005; Nayak et al. 2015). To alleviate the limitations of tradi-
tional ANNs, higher order product unit neural networks (HPUNNs) (Giles and Maxwell 
1987) and product unit neural networks (PUNNs) (Durbin and Rumelhart 1989) have 
been proposed in the literature with amended nonlinear mapping abilities. However, an 
exponential increase in higher-order terms increases the magnitude and complexity of 
the networks. To better control the amplified model parameters and processing units, 
a PSNN with a robust classification ability was suggested by Shin and Ghosh (1991). A 
PSNN was proposed in Nayak et al. (2015) for successful prediction of future stock indi-
ces. An HONN with a Bayesian confidence measure was proposed by Knowles et al. for 
EUR/USD exchange rate forecasting (Knowles et al. 2005). A FLANN with trigonomet-
ric basis functions and recursive LMS algorithm for weight updating were developed for 
S&P 500 and DJIA index forecasting (Majhi et al. 2009).
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The network magnitude and learning method significantly influence the performance 
of an ANN. The most widely used learning method in ANNs (gradient descent learn-
ing) has been victimized by sluggish convergence speeds, inaccurate learning, leaning 
towards local optima, and augmented computational overhead. To address these prob-
lems, a few nature-inspired learning algorithms have been developed and extensively 
used for training ANNs. Although such methods are used to train ANNs to solve multi-
faceted problems, their proficiency is mostly determined through well-modified control 
parameters. The selection of such learning parameters while designing a model neces-
sitates human intervention and domain expertise, making the method difficult to use. 
Typically, for a particular problem, the selection of such parameters requires numerous 
trial-and-error steps, and an improper assortment leads the search operation towards a 
local optimum, thereby generating an inaccurate solution. Hence, techniques with fewer 
control parameters and sophisticated approximation capabilities are of interest.

To adjust ANN parameters, evolutionary algorithms such as particle swarm optimiza-
tion (PSO), genetic algorithm (GA), and differential evolution (DE) have been demon-
strated to be proficient (Shadbolt 2004). As no solitarily apt method has been developed 
for resolving all classes of problems, incessant perfections are ongoing through the 
enhancement (Opara and Arabas 2018; Jiang et  al. 2014) or hybridization (Nayak 
and Misra 2019b; Nayak and Ansari 2019a; Chiroma et  al. 2015) of existing methods. 
Recently, the artificial electric field algorithm (AEFA) was projected as an optimization 
procedure based on the principle of electrostatic force (Yadav 2019; Yadav and Kumar 
2020, 2019). The conceptualization of the AEFA is based on the theoretical perception of 
electric fields, charged particles, and the force of attraction/repulsion. The mathemati-
cal representation of its learning ability, acceleration update, and convergence speed has 
been well demonstrated in the literature by answering benchmark optimization tasks 
(Yadav 2019; Yadav and Kumar 2020, 2019).

Metaheuristic algorithms are stochastic in nature and their performance and efficiency 
vary from one dataset to another. Several schemes have been proposed to modify exist-
ing metaheuristic algorithms to improve their accuracy. The oppositional-based learning 
(OBL) concept has been proposed to enhance the performance of machine learning algo-
rithms (Tizhoosh 2005). Several attempts have been made to establish theoretical exten-
sions, incorporating OBL with existing metaheuristics to improve their performance as 
well as real-world engineering applications. A systematic survey was conducted in Mah-
davi et al. (2018), summarizing the use and growth of OBL.

In this study, we designed an improved optimization technique by incorporating the 
concepts of elitism and OBL into the basic AEFA, called elitist-opposition-based AEFA 
(EOAEFA). Elitism advances the convergence of the AEFA towards global optima by 
retaining the finest solutions obtained thus far, and OBL helps enhance the diversifica-
tion ability of the AEFA. The EOAEFA was used to explore the potential weights and 
thresholds of two competitive HONNs, FLANN and PSNN, independently, thereby 
forming two hybrid models. The performances of the two hybrid models were evaluated 
for predicting the futures prices of 11 dynamic and chaotic FTS, including four stock 
closing prices, four currency exchange, and three energies prices series. For fair compar-
ison, five other forecasts were developed in a similar manner. The comparison models 
include the basic AEFA-based FLANN and PSNN (i.e., AEFA-FLN and AEFA-PSNN), 
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the genetic algorithm-based FLANN and PSNN (i.e., GA-FLN and GA-PSNN), and a 
back propagation neural network (BPNN). Training/test patterns were selected using 
the sliding window algorithm, data normalization was performed using the sigmoid 
method, and all models were adaptively trained to reduce training costs. Finally, com-
parative studies and statistical tests were conducted to ensure the predictive ability of 
EOAEFA + HONN. The original contributions of this study are as follows:

• An improved learning algorithm, EOAEFA, is proposed by integrating the OBL and 
elitism concepts with the basic AEFA.

• The EOAEFA was used to adjust the parameters of two HONNs; thus, two computa-
tionally efficient hybrid models were created: EOAEFA-FLN and EOAEFA-PSNN.

• The hybrid models were evaluated to predict 11 real-world FTS with a systematic 
performance evaluation.

This paper is organized into seven sections. Sect.  "Background and related work" 
summarizes problem-related studies. Sect.  "Proposed EOAEFA+HONN forecast-
ing method" describes the methodologies used. Sect. "FTS data and statistical analysis" 
briefly discusses the FTS data and their statistics. Sect. "Results and analysis" describes 
and analyzes the simulation results. Sect.  "Statistical testing and further analysis" dis-
cusses the significance of the models. Finally, Sect. "Conclusions and future work" pre-
sents the conclusions, limitations, and possible extensions of this study.

Background and related work
This section analyzes recent related research in the area of FTS forecasting using 
machine learning techniques. In addition, it explores metaheuristic learning methods, 
their variants, and opposition-based learning applied for ANN parameter tuning. To this 
end, the mathematical modelling of two HONNs, PSNN and FLANN, are discussed.

The distribution of financial data is complex because of the intricacy of human behav-
ior and varying social environments. to the detection, scope optimization, and interpre-
tation of clusters in large-scale financial datasets are difficult tasks. Li et  al. proposed 
a computationally efficient integrated approach that detects a reasonable number of 
clusters and evaluates their quality (Li et  al. 2021). Kou et  al. designed a bankruptcy 
prediction model using payment-network-based variables and transactional data, incor-
porating optimal feature subset selection and importance evaluations for small- and 
medium-sized enterprises (Kou et al. 2021a). This approach achieved a satisfactory clas-
sification accuracy with a reduced feature subset. Researchers have evaluated five finan-
cial technology-based investments in European banking services (Kou et al. 2021b). This 
study identified payment and money transfer systems as the most important investment 
alternatives for advancing the financial performance of European banks, nourishing cus-
tomer expectations, easing the banks’ collection of receivables, and reducing operational 
outlays.

Although many conventional and statistical method-based predictive systems for FTS 
forecasting have been proposed, they mostly failed to describe nonlinearities coupled 
with huge volumes of financial data. They are less competent than machine learning 
(ML) methods, such as ANN, RNN, deep learning (DL), and HONNs. ANNs have been 
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well established for FTS forecasting. Different ML models such as random forest and 
gradient boosting approaches have been used by Yoon for real GDP growth forecast-
ing (Yoon 2020). Methods such as multilayer perceptron (MLP) (Ecer et al. 2020), sup-
port vector machine (SVR) (Guo et al. 2018), and ANN (Nayak 2022; Akman et al. 2020; 
Shadbolt 2004) have proven successful in capturing nonlinearities coupled with FTS. 
However, multiple hidden layers in conventional ANNs lead to a longer convergence 
speed, become stuck in a local optimum owing to traditional back-propagation-based 
learning, and offer black-box visualization, thereby paving the path towards designing 
flat and simple ANNs.

To address the disadvantages of the backpropagation learning of HONNs, several 
evolutionary algorithms have been developed and extensively used for HONN train-
ing in the last two decades. To improve the performance of HONNs, chemical reac-
tion optimization is used for training, and the resulting hybrid model is applied to 
stock market forecasting (Nayak et  al. 2017a). The hybrid model has been demon-
strated to be superior to other comparative methods. The HONN parameters tuning 
via chemical reaction optimization (CRO) is conducted for the effective prediction 
of exchange rate series (Nayak et  al. 2017b). Adaptive HONNs trained using differ-
ent evolutionary optimization techniques were proposed in Sahu et al. (2016); Nayak 
2017; Nayak et  al. 2016) to predict fluctuations in stock market data. Some hybrid 
models called RAFLANNs have been proposed and determined to be effective in 
terms of computational cost and accuracy (Subhranginee et al. 2021). A hybrid PSNN 
model was proposed to predict GOLD/INR and GOLD/AED prices and showed sig-
nificant results (Dash et  al. 2021a). Reference (Naik et  al. 2021) developed a hybrid 
FLANN for classification whose accuracy was superior than that of other compara-
tive models. To control the uncertainties associated with crude oil prices, Nayak et al. 
(2020) proposed a hybrid forecasting model by aggregating the generalization power 
of PSNN with the effective learning ability of FWA and determined that the FWA-
PSNN model is superior to an MLP and other models (Nayak 2020). The outcome of 
a hybrid PSNN-SDE model was tested using various evaluation metrics, such as root 
mean squared error (RMSE), mean absolute percentage of error (MAPE), and Theil’s 
U statistic (TU) and exhibited an enhanced forecasting accuracy (Rajashree et  al. 
2019). PSNN and FLANN have been hybridized with different training algorithms, 
such as GA, CRO, and COA, to expand their input space portrayal and high learn-
ing ability and establish significant developments in performance (Nayak and Ansari 
2019b). The EPSNN was determined to be a better model for exchange rate predic-
tion than a backpropagation neural network (BPNN) and other models (Sahu et  al. 
2019). To determine the uncertainty associated with stock data, Nayak et al. proposed 
ACFLN and determined that it is more efficient in handling uncertainty than the MLP, 
BPNN, auto-regressive integrated moving average, and other models (Nayak et  al. 
2018). Based on the literature, HONNs and their variants (hybridized HONNs and 
metaheuristic-based learning) are widely applied in FTS, particularly in the domains 
of stock index prediction, bitcoin price prediction, wind energy forecasting, function 
regularization, classification, and electricity consumption. Evidently, HONNs and 
their variants have achieved distinguished performance in terms of a high accuracy, 



Page 6 of 43Nayak et al. Financial Innovation            (2024) 10:5 

fast convergence, and fewer prediction errors in FTS forecasting. Although several 
evolutionary algorithms have been used for HONN training to solve intricate prob-
lems, their efficiency is hindered by the learning parameters.

Many applications of AEFA have been reported in the literature. Table 1 lists some 
recent engineering applications of AEFA and its improved versions.

Behera et al. applied the basic AEFA to optimize an ANN structure for software reli-
ability dataset forecasting (Behera et al. 2022). The ANN trained with AEFA yielded a 
better model than that obtained used other algorithms. In 2021, Al-Khraisat et al. used 
the AEFA for the optimum placement of PMU (Al-Khraisat, AL-Dmour and Al-Maitah 
2021). Nayak et  al. incorporated the concept of elitism into the basic AEFA to train a 
neuro-fuzzy model for the compressive strength prediction of concrete structures and 
established the competitiveness of the AEFA (Nayak et al. 2021). An improvement in the 
AEFA through the inclusion of an inertia factor and the concept of repulsive force was 
claimed by Bi et al. in 2022. They coined the IRAEFA model and applied it to the spheri-
cal mining spanning-tree problem. Their improved version was determined to be more 
effective than the other metaheuristics. However, this is associated with long execution 
times. To supplement the convergence and poor search capability of the AEFA, a scheme 
for generating Coulomb’s constant was proposed in Cheng et al. (2022). A log-sigmoid 
function was suggested for generating the Coulomb’s constant instead of an exponential 
function, which decreases rapidly through evolution. The improved version was tested 
with 18 benchmarked functions as well as the optimization of neural networks. The 
Nelder-Mead simplex algorithm integrated with AEFA for the optimization problem was 
proposed in Izci et al. (2020). The former method helps achieve an improved local search 
ability, and the latter helps achieve a global search capacity. Another improvement found 
by the authors in Houssein et al. (2021) incorporated strategies such as a modified local 
escaping operator, opposition-based learning, and levy flight with the basic AEFA. The 
new version was tested on the parameter optimization of CEC’s 2020 functions and fuel 
cell; it was determined to be superior to nine other metaheuristics. The AEFA potential 
in determining the controlling parameters of an automatic voltage regulator was estab-
lished in Demirören et al. (2019). The AEFA accurately estimated the undefined param-
eters of the triple‐diode model of a photovoltaic unit in Selem et al. (2021). The AEFA 
pattern search method was adopted in Alanazi and Alanazi (2022) for distribution net-
work reconfiguration. The results highlight the improved performance of the anticipated 
technique in achieving a lower value of different objectives than the conventional AEFA, 
PSO, and grey wolf optimization (GWO) methods based on many-criteria reconfigu-
ration. Zheng et al. proposed a sin-cosine-based AEFA for logistic distribution vehicle 
routing (Zheng et al. 2022). The sine–cosine update mechanism was integrated with the 
AEFA, which helps achieve dynamic steadiness between the global and local searches 
of the AEFA. The basic AEFA was hybridized with a cuckoo search algorithm and 
refractive learning in Adegboye and Deniz Ülker (2023). The hybrid model was evalu-
ated using benchmark function optimization and achieved a better convergence speed 
and search ability than the basic AEFA. The aforementioned studies show rapid growth 
in the application of the AEFA and its variants to engineering optimization. However, 
AEFA applications in the domain of data mining lack, specifically in FTS forecasting, 
requiring further exploration.
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Several schemes have been proposed to modify existing metaheuristic algorithms 
and improve their accuracy. OBL is a popular concept introduced in 2005 to enhance 
the performance of machine learning algorithms (Tizhoosh 2005). Subsequently, sev-
eral attempts have been made to establish theoretical extensions, incorporating OBL 
with existing metaheuristics to improve their performance as well as real-world engi-
neering applications. A systematic survey was conducted in Mahdavi et al. (2018) that 
summarized the use and growth of OBL. Table 2 summarizes recent advances in OBL 
and its integration with existing learning algorithms.

The mathematical and theoretical aspects of OBL were determined by Tizhoosh 
in 2005. A compressive survey of OBL, its variants, and real-world engineering 
applications was conducted (Mahdavi et  al. 2018). An improved crow search algo-
rithm (ICSA) with OBL was proposed in Shekhawat and Saxena (2020), revealing the 
competitive performance of ICSA over other methods. To enhance the exploration 
capacity of the whale optimization algorithm, OBL was integrated and determined 
to be better than competitive models in evaluating different benchmarked functions 
as well as in estimating the parameters of solar cell diode models (Abd Elaziz and 
Oliva 2018). The same author proposed an enhanced sine–cosine algorithm with 
OBL for global optimization, claiming a fast convergence (Abd Elaziz et al. 2017). In 
2020, Tubishat et al. used OBL and a local search algorithm to increase the popula-
tion diversity and exploration capacity of the salp swarm algorithm and applied this 
method on 18 benchmark datasets from the UCI repository for the feature selection 
problem (Tubishat et  al. 2020). The economic dispatch problem of a power system 
was solved in Pradhan et  al. (2018) using a grey wolf optimization algorithm inte-
grating OBL (OGWO). The proposed method accelerated the convergence rate of the 
standalone method in terms of computational and fuel costs. Jain and Saxena pro-
posed OBL moth flame optimization (OB-MFO) for solving CEC-2017 functions and 
energy market datasets, and their study concluded with the potential effectiveness of 
the OB-MFO model (Jain and Saxena 2019). An opposition-based AEFA was designed 
by Demirören et al. (2021) for an FOPID controller design. The proposed method was 
determined to be statistically and computationally superior to the comparison meth-
ods. OBL has also been used with atom search optimization (which) to estimate the 
control parameters of an automatic voltage regulator system (Ekinci et al. 2020). For 
an appropriate feature selection problem, Ibrahim et al. (2019) applied OBL to social 
spider optimization and tested its performance. The dragonfly algorithm was cou-
pled with OBL and applied to image segmentation (Bao et al. 2019). A genetic algo-
rithm using OBL for FTS forecasting was developed in Kar et al. (2016). The proposed 
OBGA-trained ANN was determined to be superior to the ANN trained using the 
conventional GA. Dash et al. (Dash et al. 2021b) proposed another OBL application 
to predict cryptocurrency prices. The method was determined to be better than other 
classical predictors in terms of generating a lower prediction accuracy. A memetic 
search method using an opposition-based concept (OBMA) was developed to solve 
the maximum diversity problem (Zhou et al. 2017). The OBMA ties the best-known 
outcomes in most instances. The experimental analysis confirmed the effectiveness of 
integrating OBL with a memetic search, which significantly affected the search ability 
of the standard memetic search.
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Elitism helps retain healthy individuals across generations in evolutionary algorithms. An 
elite opposition-based learning methodology was used to advance the Grasshopper optimiza-
tion algorithm (Yildiz et al. 2022). The improved method was applied to solve several engi-
neering problems and determined to be effective. A distance strategy-based elitism method 
was proposed for selection operations in evolutionary algorithms (Du et al. 2018). In addi-
tion, elitism was used with the GA to facilitate the layout design (Jerin Leno et al. 2016). The 
sine cosine algorithm (SCA) with an elitism strategy was used in Sindhu et al. (2017) to select 
discriminative feature sets that enhanced the classification accuracy of high-dimensional 
datasets. A chaotic map was integrated into the Henry gas solubility optimization algorithm 
to enhance the convergence rate, and the robustness of the resulting method was tested and 
established to solve various constraint optimization problems in the areas of manufacturing 
and mechanical design (Yıldız et al. 2022a). The grasshopper optimization algorithm has been 
hybridized with the Nelder-Mead algorithm and performed well in real-world engineering 
optimization problems, such as in designing robot grippers (Yildiz et al. 2021). The Nelder-
Mead algorithm was hybridized with the salp swarm optimization method for the structural 
optimization of electric vehicle components (Yıldız 2020). In incorporating chaotic maps with 
a levy flight distribution, a new hybrid algorithm for engineering optimization was suggested 
in Yıldız et al. (2022b). RNNs, such as long short-term memory (LSTM), have been suggested 
for modelling sequence data. As FTS are sequential, these methods can be used as effective 
approximations of such data. Bai et al. systematically evaluated generic recurrent networks, 
such as LSTMs and convolutional architectures, in sequence modelling using a broad range 
of datasets across diversified tasks (Bai et al. 2018). The results suggest the superior perfor-
mance of a simple convolutional architecture over LSTM, i.e., a temporal convolutional net-
work. An attention mechanism-based sequence transduction model, called the transformer, 
was proposed to replace recurrent layers in the encoder-decoder model (Vaswani et al. 2017). 
This approach uses scaled dot-product attention and multi-headed self-attention methods to 
induce global input–output dependencies. A transformer assumedly trains significantly faster 
than models based on recurrent and convolutional layers.

A FLANN produces higher-order effects of input signals through nonlinear functional 
transformations via links. The attributes of an input pattern were expanded into several 
terms and passed through a functional expansion unit. The sine and cosine trigonometric 
functions are used to expand the original input dimensions. For example, input xi 
expands into several terms through trigonometric expansion functions such as 

c1(xi) = (xi), c2(xi) = sin(xi), c3(xi) = cos(xi), c4(xi) = sin(πxi), c5(xi) = cos(πxi),

c6(xi) = sin(2πxi), andc7(xi) = cos(2πxi) . The weighted sum of the functional expan-
sion unit outputs is passed to the activation function to estimate the value of the output 
neuron. The output of the model is then compared with the target output, and the abso-
lute deviation, called the error signal, is calculated. The accumulated error signal is prop-
agated back to train the model.

For a given input pattern, the FLANN computes an output as follows. Let 
X(n) = xi, xi+1, . . . . . . . . . , xn , where (n = input vector size), be an input vector. Using 
trigonometric basis functions, this vector is expanded nonlinearly as Xexpanded(N ) . 
Given the input Xexpanded(N ), the model produces an output  ŷ(n) as shown in Eq. (1):
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where W (n) are the weight associated with the nth pattern. This output is then passed 
through a sigmoid activation to produce an output y(n) as shown in Eq. 2. The error(n) is 
calculated using Eq. (3).

The weights are updated as shown in Eq. (4 – 5) using adaptive learning rules:

where (t) = [δ1(t), δ2(t), · · · , δk(t)], δi(t) = (1− ŷi
2
(t) ∗ ei(t)) , and µ is the learning 

parameter.
The PSNN computational model is as follows. It has a two-layered, fully connected feed-

forward network architecture. The first layer comprises sigma units (summing), and the 
second layer is the product (pi) layer. The inputs are connected to the neurons of the sigma 
layer, and their outputs are fed to the neurons in the pi layer. The weights and thresholds 
of the input-summing layer are trainable, whereas those of the summing-product layer are 
set to unity. Owing to the single adjustable parameter set, the training time was drastically 
reduced. Neurons at the summing units use linear activations and those at the product 
units use nonlinear activations of the network output. The product units provide a higher-
order capability by expanding the lower-dimensional input space into higher dimensions. 
The higher-dimensional space achieved offers a superior nonlinear separability without 
exponential growth in the weights. The output of the jth sigma unit is computed using the 
weight sum of each input xi and corresponding weight wij as in Eq. (6):

where n denotes the input size. The pi-layer neuron computes the product of the outputs 
of the sigma units and applies a nonlinear activation to it, as in Eq. (7):

where k is the number of sigma units, and is the order of the network. The error signal 
error(n) was calculated as follows:

(1)ŷ(n) = Xexpanded(N )×W (n)+ bias,

(2)y(n) =
1

1+ e−ŷ(n)

(3)error(n) = d(n)− y(n)

(4)wij(t + 1) = wij(t)+ µ ∗�(t),

(5)�(t) = δ(t) ∗ [f(xi)],

(6)yj =

n∑

i=1

wij ∗ xi,

(7)y = σ




k�

j=1

yj



,

(8)error(n) = d(n)− y(n).
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We reviewed recent articles on financial forecasting, different HONN applications for 
FTS forecasting, different metaheuristics for HONN optimization, OBL integration with 
existing metaheuristics, and the elitism concept in improving the learning capacity. We 
obtained the following insights from these studies:

• Automotive predictive systems with improved accuracies remain lacking in the large-
scale FTS forecasting domain.

• Metaheuristic-based HONNs have demonstrated promising performances in differ-
ent data-driven problems, and their proficiency in FTS forecasting must be assessed 
in depth.

• The AEFA has emerged as a competitive optimization mechanism. However, AEFA-
based HONNs for FTS forecasting remains limited.

• The convergence rate and population diversity of the basic AEFA must be improved 
to maintain a balance between its exploration and exploitation capacities.

• Finally, no predictive framework has been established that integrates the improved 
AEFA and HONN for large-scale FTS forecasting.

Proposed EOAEFA + HONN forecasting method
This section describes the proposed EOAEFA + HONN based forecasting method in two 
phases; Phase 1: improved the AEFA by incorporating elitism and OBL into the basic 
AEFA, called EOAEFA, and Phase 2: search for the optimal parameters of the HONN 
using EOAEFA.

Design of EOAEFA

As the basis of the proposed EOAEFA is the AEFA, OBL, and concept of elitism, recall-
ing may be helpful to understand the working principles of the EOAEFA.

Basis of EOAEFA

The AEFA mimics a charged particle as an agent in the search space, and the strength of 
such an agent can be measured in terms of its charge. A mass of these charged particles 
floats in the search domain with the help of electrostatic attraction and repulsive forces. 
Particles can interact with each other through their charges. The positions of these 
charges are measured as potential solutions to the target problem. The force of attraction 
is considered only in the basic AEFA, meaning that all particles associated with lower 
charges are attracted to the particle with the highest charge, called the best particle or 
individual. The position of the ith charged particle ( Xi ) at time t is represented by Eq. (9):
Xi(t) =

(
X1
i ,X

2
i ,X

3
i , · · · ,X

D
i

)
, i = 1, 2, 3, · · · ,Nandd = 1, 2, 3, · · · ,D , (9).

where N and D are the total numbers of charged particles and parameters (dimensions), 
respectively. The position of the ith particle at time (t + 1) is updated as in Eq. (10) when 
it achieves the best fitness value.

(10)Pd
i (t + 1) =

{
Xd
i (t + 1) if fitness(Xi(t + 1)) ≤ fitness(Pi(t))

Pd
i (t) if fitness(Xi(t + 1)) > fitness(Pi(t))



Page 14 of 43Nayak et al. Financial Innovation            (2024) 10:5 

The charge associated with the ith particle ( Qi(t) ) at time t is expressed as Eq. (11):

where qi(t) is a suitable charge function calculated as in Eq. (11) using the best- and 
worst-fit particles in the search space.

The force Fd
ij (t) experienced at the ith particle holding charge Qi(t) because of the jth 

particle holding charge Qj(t) is defined as follows:

where K (t) is Coulomb’s constant calculated in terms of the current and maximum iter-
ation (as in Eq. (14)) and ε is a small positive constant.

The value of parameter α = 30 and K0 = 500 . A larger initial value of K0 helps in 
exploring the search process and gradually decreases through the iterations to regu-
late the accuracy. The resultant electrostatic force Fd

i  acting on the ith particle at time 
t can be calculated as in Eq. (15) and the electric field is calculated as in Eq. (16).

Per Newton’s law of motion, the acceleration adi (t) of the ith charged particle with 
unit mass Mi(t) at time t is computed as in Eq. (17).

The velocity and position of the ith charged particle at time (t + 1) are updated 
according to Eqs. (18) and Eq. (19), respectively.

The particle associated with the maximum quantity of charge can be considered the 
best individual. This individual particle attracts other particles with a lower charge 
and fewer voyages in the search domain.

(11)Qi(t) =
qi(t)∑N
i=1 qi(t)

i = 1, 2, · · · ,N ,

(12)qi(t) = exp

(
fitnessi(t)−fitnessworst (t)

fitnessbest (t)−fitnessworst (t)

)

(13)Fd
ij (t) = K (t)

Qi(t) · Qj(t) ·
(
Pd
j (t)− Xd

i (t)
)

Xi(t)− Xj(t)
2 + ε

,

(14)K (t) = K0 · exp

(
−α iteration

max.iteration

)

(15)Fd
i (t) =

∑
rand · Fd

ij (t), j = 1, 2, · · · ,Nandi �= j

(16)Ed
i (t) =

Fd
i (t)

Qi(t)

(17)adi (t) =
Qi(t) · E

d
i (t)

Mi(t)

(18)Vd
i (t + 1) = randi ∗ V

d
i (t)+ accelerationdi (t)

(19)Xd
i (t + 1) = Xd

i (t)+ Vd
i (t + 1)
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Population-based search methods begin their exploration process with the initiali-
zation of a collection of potential candidate solutions called the initial population. 
The initialization of a population with random points in the search space is a com-
mon method. Exploration begins with these random solutions and is directed towards 
the global optima with the application of several control parameters and mechanisms. 
Occasionally, these random initial points lead the optimization algorithm towards a 
local optimum. To avoid such a trap, the concept of OBL, which is based on the the-
ory of an opposite point, has been proposed. According to OBL, both the initial pop-
ulation and its opposite population are included in the search space, which considers 
the existence of possible solutions in any direction, thereby enabling the algorithm to 
effectively explore the search space. In addition, an opposite number x of a given real 
number x ∈ [lb,ub] in one dimension can be computed as in Eq. (20):

where lb and ub denote the lower and upper bounds of the search domain, 
respectively. Equation  (12) can be extended to a multidimensional space. 
Letx ∈ Rn, x = [x1, x2, · · · , xn] , wherexi ∈ R ; the opposite point x = [x1, x2, · · · , xn]  can 
be computed as in Eq. (21).

In OBL, if the fitness function value of position x is inferior to that of its opposite posi-
tion x (i.e., fitness(x) < fitness(x) ), it is replaced by x ; otherwise, x is saved. The popula-
tion is updated with the better value of x or x.

Maintaining steadiness between intensification and diversification in an evolutionary 
search algorithm is a critical factor that significantly affects its performance. Elitism is 
applied to the selection operation of evolutionary algorithms for this purpose. This strat-
egy retains the most beneficial candidates and benefits exploitation. In practice, a small 
value is often set for the degree of elitism strategy or number of elites. The elitism process 
includes a few best individuals from one generation in the population of the following gen-
eration. The key purpose of using elitism is to preserve the positions of promising parts of 
the search space across generations and enable the continuous exploitation of these prom-
ising areas. Furthermore, it ensures the existence of the best individuals by considering the 
entire processing of an algorithm in the last generation created, which is the final outcome.

EOAEFA algorithm

The deprived convergence rate and trapping in a local best optimum are the two weak-
nesses of the basic AEFA that influence its overall performance. It updates the current 
particles in the search space towards the local best solution obtained thus far and may 
ignore some better-fitting solutions that are in opposite directions from the current par-
ticle. The EOAEFA method avoids simultaneous consideration of a solution and its oppo-
site. This helps improve the exploration ability of the basic AEFA. In addition, in each 
iteration, it saves the highly fit solutions as elites and carries them over to the next itera-
tion, thereby helping achieve a better convergence. The EOAEFA does not significantly 

(20)x = lb+ ub− x,

(21)xi = lbi + ubi − xi, i = 1, 2, · · · , n
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affect the configuration of the basic AEFA but improves its accuracy through the inclu-
sion of OBL and elitism. Algorithm 1 presents the steps of the EOAEFA.

The EOAEFA method begins with the initialization of the algorithm-specific parame-
ters and a randomly initialized population P . The oppositional population P is then gen-
erated from P . Both P and P are evaluated simultaneously, and N best-fit particles are 
selected from PUP . Next, the AEFA operators are applied to the updated population to 
intensify and diversify the search space. The positions and velocities of all particles were 
updated through the iterations. At the end of each iteration, M elite particles are identi-
fied. The value of M must be carefully selected and assigned a small number. A larger 
value of M may significantly alter the quality of the solutions, and many duplicate solu-
tions can exist. Finally, the same number of worst solutions was replaced by these elite 
solutions. Hence, the elite particles are carried to the next iteration, retaining the finest 
solutions obtained thus far and advancing the convergence rate of the algorithm.

EOAEFA + HONN‑based forecasting

The proposed EOAEFA was used to adjust the parameters of the two HONNs: PSNN 
and FLANN; hence, two hybrid models were formed: EOAEFA-PSNN and EOAEFA-
FLN. This process is explained as follows. An arbitrary HONN structure can be mapped 
onto a particle or agent of the EOAEFA. Therefore, the EOAEFA population can be 
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viewed as a set of potential HONN structures. Each HONN structure, along with the 
training data, was evaluated and the corresponding fitness values were calculated as in 
Eq. (22).

The EOAEFA is then applied to execute search operations as explained in the previ-
ous section on a population of the HONNs. The particles compete, and finally, the best 
solution, i.e., the best HONN architecture, evolves. The test data are then fed to the best 
HONN, and the deviation of the HONN output from the actual output is extracted and 
considered as the performance of the corresponding HONN model; the lower the devia-
tion, the better the fitness of the HONN. Figure 1 illustrates this process.

FTS data and statistical analysis
For experimental purposes, real FTS datasets were collected from Internet sources. 
Four closing prices series, NASDAQ, DJIA, S&P 500, and Russell 2000, were down-
loaded from https:// finan ce. yahoo. com/, considering financial transactional days from 
August 23, 2021 to August 19, 2022 on a daily basis. Each FTS consists of 255 index 
records with comprising the date, open, high, low, close, adj. close prices, and vol-
ume. We considered open, high, low, and closed price values only for the experiment. 
Similarly, four exchange rate series, Bitcoin (BTC), Euro (EUR), British Pound (GBP), 
and Japanese Yen (JPY), were collected from the same source in daily volume against 
the US Dollar, with each series containing 255 records. Another three FTS, crude oil 

(22)fitness(HONNi) =
1

∑inputsize
i=1

∣∣predictedi − actuali
∣∣/inputsize

Fig. 1 EOAEFA + HONN based forecasting

https://finance.yahoo.com/
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Table 3 Statistical properties of the closing prices series

Statistic DJIA S&P 500 NASDAQ Russell 2000

Minimum 2.9806e + 04 2.0631e + 04 1.1773e + 03 174.9000

Mean 3.4008e + 04 2.3318e + 04 1.3772e + 04 2.0338e + 03

Median 34,367 2.3554e + 04 1.4497e + 04 2.0346e + 03

Variance 2.6599e + 06 1.0900e + 06 9.1354e + 06 7.9047e + 04

Maximum 36,675 2.5267e + 04 16,575 2.5932e + 03

Standard deviation 1.6309e + 03 1.0440e + 03 3.0225e + 03 281.1527

Skewness  − 0.6243  − 0.5313  − 2.9437  − 2.9336

Kurtosis 2.4683 2.4387 12.6564 19.8676

Correlation coefficient 0.0205 0.0721  − 0.5124  − 0.4951

Lijung‑Box test h = 1, p = 0.0000 h = 1, p = 0.0000 h = 1, p = 0.0000 h = 1, p = 0.0000

KPSS test h = 1, p = 0.0100 h = 1, p = 0.0100 h = 1, p = 0.0100 h = 1, p = 0.0100

ADF test h = 0, p = 0.5089 h = 0, p = 0.8077 h = 0, p = 0.0626 h = 0, p = 0.2266

PP test h = 0, p = 0.5089 h = 0, p = 0.8077 h = 0, p = 0.0626 h = 0, p = 0.2266

Table 4 Statistical properties of the exchange rate series

Statistic BTC/USE EUR/USD GBP/USD JPY/USD

Minimum 1.9018e + 04 1.0026 1.1840 109.1490

Mean 4.0711e + 04 1.1055 1.3070 120.9415

Median 4.1821e + 04 1.1223 1.3265 115.5250

Variance 1.5540e + 08 0.0026 0.0038 86.40260

Maximum 6.7567e + 04 1.1886 1.3859 138.9670

Standard deviation 1.2466e + 04 0.0515 0.0612 9.2953

Skewness  − 0.0285  − 0.3447  − 0.5806 0.5318

Kurtosis 2.2440 1.9491 1.8736 1.7161

Correlation coefficient 0.0144  − 0.0091 0.0062  − 0.0434

Lijung‑box test h = 1, p = 0.0000 h = 1, p = 0.0000 h = 1, p = 0.0000 h = 1, p = 0.0000

KPSS test h = 1, p = 0.0100 h = 1, p = 0.0100 h = 1, p = 0.0100 h = 1, p = 0.0100

ADF test h = 0, p = 0.2300 h = 0, p = 0.0564 h = 0, p = 0.1063 h = 0, p = 0.9952

PP test h = 0, p = 0.2300 h = 0, p = 0.0564 h = 0, p = 0.1063 h = 0, p = 0.9952

Table 5 Statistical properties of energy price series

Statistic Crude oil Natural gas Coal price

Minimum 10.0100 1.4820 9710

Mean 64.9122 3.7350 1.1244

Median 63.8600 2.9665 11,330

Variance 646.0576 3.7836 3.7159

Maximum 123.7000 9.3290 12,606

Standard deviation 25.4177 1.9452 609.5834

Skewness 0.28360 1.0896  − 0.6352

Kurtosis 2.3024 3.3357 3.3386

Correlation coefficient  − 0.3950  − 0.1196  − 0.4043

Lijung‑box test h = 1, p = 0.0000 h = 1, p = 0.0000 h = 0, p = 0.1199

KPSS test h = 1, p = 0.0100 h = 1, p = 0.0100 h = 1, p = 0.0293

ADF test h = 0, p = 0.6359 h = 0, p = 0.0564 h = 0, p = 0.5043

PP test h = 0, p = 0.6359 h = 0, p = 0.9151 h = 0, p = 0.5043
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prices on daily volume, natural gas prices on daily volume, and weekly coal prices were 
collected from the source U.S. Energy Information Administration (website: http:// 
www. eia. doe. gov/). The crude oil and natural gas price series were collected from Jan-
uary 2, 2020, to August 16, 2022, each containing 658 records. Fifty-seven records of 
weekly coal prices were available from August 8, 2021, to August 13, 2022. Different 
are listed in Tables 3, 4, and 5 list the statistics of the closing prices, exchange rate, 
and energy data series, respectively. The NASDAQ and Russell 2000 series in Table 3 
show larger kurtosis values, indicating higher investment risks. All closing price series 
are platykurtic. The Russell 2000 series deviated significantly, whereas the other three 
were stable to an extent. All series showed weak correlations among their data points. 
The Phillips-Perron (PP) and augmented Dickey-Fuller (ADF) test results from these 
FTS show that the series are nonstationary. The Lijung-box test results indicate a lack 
of autocorrelations in the series, and the KPSS statistics support the existence of non-
stationarity around a deterministic trend. Figure 2 and Fig. 3 depict the trends in clos-
ing prices and distribution of the price series, respectively.

Figure 4 shows the daily closing price data charts for the four FTS considered. The 
charts show frequent increases and decreases in the FTS, making the prediction of 
future prices difficult. Figure  5 shows the distribution of the closing price data. All 
four series exhibit an asymmetric distribution of data about the center, i.e., random 
variation. The DJIA, NASDAQ, and S&P 500 series skew left, whereas the Russell’s 
distribution is random. The four exchange rate series and three energy prices series 
exhibit similar behaviors to the closing price series. Figures  4 and 5 present the 
exchange rate series and their distributions, respectively. Figures 6 and 7 present the 
energy price series and their distributions, respectively.

Fig. 2 Daily closing prices series

http://www.eia.doe.gov/
http://www.eia.doe.gov/
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Fig. 3 Distribution of numerical closing prices of four FTS

Fig. 4 Trend of numerical closing prices of four FTS
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Fig. 5 Distribution of numerical closing prices of four FTS

Fig. 6 Trend of numerical energy prices of four FTS
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Results and analysis
This section presents the input preparation, normalization of the model input, 
research design, experimental outcomes, their analysis, and comparative studies.

Model input preparation and normalization

The next step after the FTS collection and analysis is input preparation for the fore-
casting models and normalization of input patterns. The ordinary time-series fore-
casting process splits the available data into training and test sets. However, FTS 

Fig. 7 Distribution of numerical energy prices of four FTS

Fig. 8 Input pattern generation using sliding window process
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samples cannot be selected arbitrarily or dispensed to either set, as using future val-
ues to forecast past values is nonsensical. The temporal dependence of the data must 
be preserved during testing. Therefore, considering current data and immediate past 
observations to forecast future data is important. As the FTS prediction problem is a 
sequence prediction task, we adopted a sliding window mechanism to generate train-
ing and test patterns from the original FTS (Nayak et al. 2014). Figure 8 provides an 
example of the sliding window process, where [Xi−k , · · · ,Xi−2,Xi−1] are used, and Xi 
is considered the target forming an input pattern. The window is then moved one 
step forward and the process repeats. The window size k remains fixed throughout 
the process and is determined experimentally. The sigmoid method, as in Eq. (23), is 
used to normalize data xi into xnorm using the minimum ( xmin ) and maximum data 
points ( xmax ) of the current window under consideration.

Research design

Based on the methodologies described in Sect. "Proposed EOAEFA+HONN forecast-
ing method", different experiments were designed using standardized input patterns 
from 11 FTS. The window size in our experiments was selected to be 12, i.e., 12 data 
points from the input pattern. The same patterns were applied to all the forecasts to 
maintain an unbiased comparative study. Two consecutive patterns, formed by a one-
step movement of the window over the series, differ only in adding new data point 
and dropping the oldest. Therefore, the variance in nonlinearity coupled with two 
consecutive patterns is nominal because we used the optimized parameters of the 
previous pattern for successive training instead of considering a new random param-
eter set. Once the network is trained using the first training set, the number of itera-
tions for successive training sets is set to a small value. This type of adaptive training 
decreases the number of iterations, and thus decreases the training time. Seven mod-
els (six hybrid and one conventional ANN) were developed in a similar manner. The 
parameters of the two HONNs (i.e., FLANN and PSNN) were optimized using the 
proposed EOAEFA (forming EOAEFA-FLN and EOAEFA-PSNN-based forecasts), 
basic AEFA (forming AEFA-FLN and AEFA-PSNN-based forecasts), GA (forming 
GA-FLN- and GA-PSNN-based forecasts), and a BPNN forecast. Seven trigonometric 
functions (sine and cosine) were used in the FLANN for the functional expansion of 
the input data. Therefore, each input datum was expanded to 84 terms. For the PSNN, 
a 12–8–1 architecture was used as the base for the PSNN. Both types of HONNs used 
sigmoid activation in their neurons. The AEFA parameters were set as follows: parti-
cle size 50, α = 30 , and K0 = 500 in reference to their respective articles (Yadav and 
Kumar 2020, 2019). The elitism factor was set to 2%, and the algorithm was iterated 
100 times to reach the optimal parameter values. For the GA, the crossover and muta-
tion probability values were set to 0.6 and 0.002, respectively. The GA was allowed 
100 generations. The BPNN used an architecture of 12–25-1 neurons with a learning 
rate of 0.3, momentum factor of 0.4, and gradient descent learning. All experiments 

(23)xnorm =
1

1+ e
−
(

xi−xmin
xmax−xmin

)
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were conducted using MATLAB. To compensate for the stochastic behavior of all 
neural forecasts, each model was executed 30 times with the aforementioned param-
eters, random initial weights, and threshold values. The average prediction error val-
ues from the 30 runs were recorded for performance comparisons. The mean absolute 
percentage error (MAPE) (Eq, (24)) was used to measure the prediction accuracy of 
all the forecasts.

Analysis of the results from the closing prices series

All seven forecasts were iterated 100 times, and Fig. 9 plots the error convergence graphs 
from the four closing price series. In all series, the EOAEFA-FLN converged the fastest 
except for the Russell2000 series. The convergence of the four AEFA-based models was 
determined to be similar to and better than that of the GA-based models. The BPNN 
convergence was determined to be unsatisfactory. Table 6 lists the MAPE statistics for 
the seven forecasting approaches from the four series. Values less than 10−5 are con-
sidered to be zero. The best MAPE is indicated in bold, and the second best in italics. 
For the NASDAQ series, the EOAEFA-FLN generated the best average error of 0.010285 
whereas the EOAEFA-PSNN was second-best with an average error of 0.010823. 

(24)MAPE =
1

No.ofpattern

No.ofpattern∑

i=1

∣∣Targeti − Predictedi
∣∣

Targeti
× 100%

Fig. 9 MAPE convergence graphs from seven forecasts
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Similarly, both methods retained their respective positions in the case of the DJIA and 
Russell FTS, and tied in the S&P 500 FTS. Overall, EOAEFA-FLN-based forecasting per-
forms better than the other methods.

To confirm the success of the proposed forecasts, Fig. 10, 11, 12, 13 plot the model 
predictions against the actual closing prices for the DJIA, NASDAQ, S&P 500, and Rus-
sell 2000 FTS, respectively. Based on these plots, the nearness of the EOAEFA-HONN-
based predictions to the actual closing prices is evident. The EOAEFA-FLN predictions 
are the closest to the actual values, followed by those of the EOAEFA-PSNN. Both mod-
els were competitive and efficient in preserving the patterns of the actual closing price 
series. The basic AEFA- and GA-based HONNs predictions were moderate, whereas 
those from the BPNN-based forecasting were poor. The stability of the proposed fore-
casts is confirmed by the box–whisker plots depicted in Fig. 14.

Table 6 MAPE statistics from four closing prices series

FTS Forecast Minimum Average Maximum Median Standard 
deviation

Inter‑quartile 
range

NASDAQ EOAEFA‑FLN 0.000000 0.010285 0.047221 0.008373 0.007950 0.009886

EOAEFA‑PSNN 0.000000 0.010823 0.047684 0.008988 0.008111 0.011372

AEFA‑FLN 0.000180 0.014485 0.046684 0.009321 0.008002 0.011099

AEFA‑PSNN 0.000000 0.015937 0.050684 0.010386 0.008518 0.012499

GA‑FLN 0.000000 0.018308 0.057221 0.011145 0.010372 0.014531

GA‑PSNN 0.000000 0.017765 0.060684 0.016854 0.010766 0.015472

BPNN 0.000000 0.110892 0.052221 0.009024 0.008877 0.010797

DJIA EOAEFA‑FLN 0.000000 0.010895 0.053081 0.007725 0.009548 0.011486

EOAEFA‑PSNN 0.000260 0.011328 0.057081 0.008935 0.010004 0.010576

AEFA‑FLN 0.000000 0.011825 0.048081 0.009972 0.009586 0.013381

AEFA‑PSNN 0.000139 0.011111 0.051081 0.008455 0.009441 0.011531

GA‑FLN 0.000000 0.026721 0.059402 0.026534 0.012482 0.015450

GA‑PSNN 0.000284 0.023307 0.055402 0.022558 0.011706 0.015757

BPNN 0.002081 0.050703 0.084402 0.051507 0.014441 0.015729

S&P 500 EOAEFA‑FLN 0.000000 0.012230 0.059887 0.010394 0.009817 0.011509

EOAEFA‑PSNN 0.000000 0.012286 0.055887 0.011925 0.009812 0.013367

AEFA‑FLN 0.000208 0.01366 0.054887 0.01263 0.009895 0.013336

AEFA‑PSNN 0.000000 0.016202 0.051936 0.015824 0.010518 0.014362

GA‑FLN 0.000000 0.035946 0.075936 0.036803 0.014231 0.018783

GA‑PSNN 0.002366 0.041696 0.081936 0.042803 0.014711 0.018783

BPNN 0.020113 0.081357 0.121936 0.082803 0.015643 0.018783

Russell 2000 EOAEFA‑FLN 0.000000 0.009959 0.072251 0.007814 0.008571 0.010630

EOAEFA‑PSNN 0.000297 0.010636 0.068251 0.008912 0.008273 0.009840

AEFA‑FLN 0.000303 0.010884 0.067251 0.009200 0.008388 0.010089

AEFA‑PSNN 0.000104 0.013014 0.062251 0.011916 0.009258 0.012947

GA‑FLN 0.000494 0.033476 0.067071 0.034737 0.012181 0.015269

GA‑PSNN 0.001426 0.039378 0.073071 0.040651 0.012325 0.015269

BPNN 0.032749 0.104120 0.138071 0.105651 0.013124 0.015543



Page 26 of 43Nayak et al. Financial Innovation            (2024) 10:5 

Analysis of results from exchange rate series

The next type of FTS data we considered for the evaluation of EOAEFA + HONN-
based forecasts are four exchange rate FTS: BTC, EURO, GBP, and JPY versus US dol-
lars. The input data preparation and normalization were the same as those in the case 
of closing the price series. Figure 15 visualizes the convergence rates of all forecasts. 
Here, the EOAEFA-FLN and EOAEFA-PSNN converged faster than the other fore-
casts. Table 7 summarizes the MAPE statistics. Values less than 10−5 are considered 
to be zero. The proposed forecasts achieved lower error statistics than the others; 

Fig. 10 Prediction plots of seven models from DJIA series

Fig. 11 Prediction plots of seven models from NASDAQ series
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in particular, the EOAEFA-FLN generated the lowest average errors of 0.005833, 
0.006013, and 0.006599 from the BTC/USD, EUR/USD, and GBP/USD series, respec-
tively, followed by the EOAEFA-PSNN. However, for the JPY/USD series, the AEFA-
PSNN is the best performer with an error of 0.004579. Overall, the EOAEFA-FLN 
obtained the lowest minimum, mean, median, maximum, standard deviation, and 

Fig. 12 Prediction plots of seven models from S&P 500 series

Fig. 13 Prediction plots of seven models from Russell 2000 series
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interquartile range values, which is evidence of its superior performance in captur-
ing the underlying nonlinearity coupled with the exchange rate FTS. Among the 
forecasts, the BPNN obtained poor prediction accuracies on the four FTS owing to 
backpropagation-based learning. The enhanced learning capability of the EOAEFA 
was established by these numerical outcomes. Figure  16, 17, 18, 19 depict the pre-
dicted versus actual exchange rates from all models for BTC/USD, EUR/USD, GBP/
USD, and JPY/USD, respectively. Evidently, the EOAEFA-FLN and EOAEFA-PSNN 
can follow the original FTS patterns more accurately than the others. Although the 
GA- and basic AEFA-based forecasting seems to follow the original pattern, their pre-
diction values are much larger than those of the proposed models. Similar conclu-
sions can be drawn from the box–whisker plots shown in Fig. 20.

Fig. 14 Box‑Whisker plots of MAPE values with seven forecasts and four closing price FTS



Page 29 of 43Nayak et al. Financial Innovation            (2024) 10:5  

5.5 Analysis of results from the energy prices series.

The proficiency of the proposed forecasts was then exploited to forecast three energy price 
FTS. The input selection, preprocessing, and model training were conducted in a similar 
fashion to the previous FTS forecasting. Figure 21 depicts the error convergence rate of 
all forecasts from the three FTS. Here, the EOAEFA-FLN converged faster than the oth-
ers again. Table 8 lists the average error values from 30 independent runs. Values less than 
10−5 are considered to be zero. For the crude oil and natural gas price series, the EOAEFA-
FLN first again, followed by the EOAEFA-PSNN. It achieved average errors of 0.003688 
and 0.004725 for the crude oil and natural gas price series, respectively. For the weekly 
coal price series, the EOAEFA-FLN and EOAEFA-PSNN obtained the same average error, 
followed by the AEFA-PSNN-based forecasts. The AEFA- and GA-based predictions were 
moderate, whereas those of the BPNN were inferior. The prices predicted by the proposed 
approach were closer to the actual prices, as shown in Figs. 22, 23, 24 for the crude oil, 
natural gas, and coal price series. Forecasted prices appear to deviate slightly from actual 
prices in the case of the weekly coal price data. Premature training resulting from insuf-
ficient training data (only 50 data points were available) may be the reason for this. How-
ever, the direction of movement of all FTS was well retained by the proposed forecasts. 
The box-whisker plot in Fig. 25 further supports the superiority of the proposed forecasts.

Fig. 15 MAPE convergence rate of seven forecast from four exchange rate FTS
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Statistical testing and further analysis
To further confirm the benefits of the EOAEFA + HONN-based forecasting, we con-
ducted statistical tests, such as the Wilcoxon signed-rank and Deibold Mariano (DM) 
tests. In addition, runtime, relative worth, and MAPE reduction percentage analyses 
were conducted when adopting the proposed model. This section summarizes the out-
comes of these tests and analyses.

The forecast performances were compared in terms of computation time. The 
experiments in this study were conducted using a system with an Intel(R) Core (TM) 
i7-10750H CPU @ 2.60 GHz, 2.59 GHz, and 16.0 GB of memory in a MATLAB-2016 
programming environment. Table 9 summarizes the execution times of all the models 
s. For input size N  and functional expansion unit size FE , an FLN-based model must 
adjust the ( N × FE ) number of weights and one bias value. Similarly, for hidden layer 
width NH , a PSNN-based model must adjust ( N × NH ) weights and NH biases. With M 
hidden neurons and one output neuron, the BPNN model must fine-tune M × (N + 1) 
weights and ( M + 1 ) biases. Evidently, the BPNN required the highest running time 
because of a greater number of adjustable parameters and backpropagation learning. 

Table 7 MAPE statistics from four exchange rate series

FTS Forecast Minimum Average Maximum Median Standard 
deviation

Inter‑quartile 
range

BTC/USD EOAEFA‑FLN 0.000000 0.005833 0.033781 0.004161 0.005761 0.006172

EOAEFA‑PSNN 0.000000 0.006705 0.032934 0.005256 0.005814 0.006739

AEFA‑FLN 0.000000 0.007222 0.033934 0.005872 0.005873 0.006689

AEFA‑PSNN 0.000360 0.010731 0.038934 0.009965 0.006399 0.007718

GA‑FLN 0.000000 0.011320 0.043781 0.010485 0.007090 0.007860

GA‑PSNN 0.006219 0.039443 0.068934 0.039680 0.008185 0.008172

BPNN 0.071219 0.104443 0.133934 0.104680 0.008185 0.008172

EUR/USD EOAEFA‑FLN 0.000000 0.006013 0.031235 0.004345 0.005498 0.006500

EOAEFA‑PSNN 0.000000 0.009508 0.038235 0.008532 0.006559 0.007828

AEFA‑FLN 0.000000 0.006870 0.028212 0.005484 0.005598 0.006666

AEFA‑PSNN 0.000000 0.006214 0.032235 0.004505 0.005599 0.006021

GA‑FLN 0.000830 0.021858 0.046212 0.021617 0.007654 0.009112

GA‑PSNN 0.000385 0.027732 0.052212 0.027617 0.007994 0.009112

BPNN 0.062765 0.092715 0.117212 0.092617 0.008054 0.009112

GBP/USD EOAEFA‑FLN 0.000000 0.006599 0.032546 0.005009 0.005915 0.006984

EOAEFA‑PSNN 0.000000 0.007158 0.028546 0.005805 0.005752 0.007659

AEFA‑FLN 0.000000 0.007594 0.027546 0.006106 0.005753 0.008092

AEFA‑PSNN 0.000000 0.010590 0.032435 0.009866 0.006396 0.008724

GA‑FLN 0.000000 0.011828 0.042546 0.011144 0.008015 0.009834

GA‑PSNN 0.007454 0.038725 0.062435 0.039009 0.008779 0.010261

BPNN 0.072454 0.103725 0.127435 0.104009 0.008779 0.010261

JPY/USD EOAEFA‑FLN 0.000000 0.004710 0.019530 0.003627 0.004230 0.004846

EOAEFA‑PSNN 0.000000 0.006805 0.026204 0.006250 0.004590 0.006059

AEFA‑FLN 0.000000 0.007428 0.024530 0.006704 0.005044 0.006124

AEFA‑PSNN 0.000000 0.004579 0.020204 0.003501 0.004125 0.004532

GA‑FLN 0.003796 0.024551 0.042530 0.024368 0.006145 0.006653

GA‑PSNN 0.009796 0.030551 0.048530 0.030368 0.006145 0.006653

BPNN 0.074796 0.095551 0.113530 0.095368 0.006145 0.006653
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Fig. 16 Prediction plots of seven models from BTC/USD FTS

Fig. 17 Prediction plots of seven models from EUR/USD FTS
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Fig. 18 Prediction plots of seven models from GBP/USD FTS

Fig. 19 Prediction plots of seven models from JPY/USD FTS
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The run times of the EOAEFA-FLN and EOAEFA-PSNN were nearer and slightly greater 
than those of the basic AEFA-based models because of the inclusion of OBL. However, 
this can be tolerated as compensation for a higher forecasting accuracy.

The Wilcoxon signed-rank test, which is a paired two-sided test, was conducted 
as a significance check. The null hypothesis indicated that the variance in the pro-
posed and comparative models originated from a distribution with zero medians. 
Rejection is indicated by the logical value h = 1. The DM test was a twosome com-
parison of forecasts. This test is used to determine whether the forecasts under con-
sideration are equally acceptable. The null hypothesis states that the two forecasts 
have an equivalent accuracy, and the alternate hypothesis states that they have dif-
ferent levels of accuracy. If the computed DM statistics lie beyond the critical values, 
i.e., −1.965 < DM < 1.965 , the null hypothesis of no variance is rejected. Table  10 

Fig. 20 Box‑Whisker plots of MAPE values with seven forecasts and four exchange rate FTS
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presents the Wilcoxon signed-rank test (with a 5% significance level) and DM test 
results from the closing price series. These statistics indicate that the predictions of 
the proposed forecast significantly differ from those of the other forecasts.

The efficiency of the proposed forecasting approach was observed in the above 
discussion. In most cases, the proposed forecast achieved the lowest error statistics 
compared with the other forecasts. To determine the precision of the comparative 
performance of the EOAEFA-FLN, another measure, called the relative worth (RW), 
of the model was considered. This is the average reduction ratio of the prediction 
error of a particular model using the proposed method over all the FTS. We used the 
MAPE values to obtain the RWs. The relative worth RW j of a model over the worst-
performing model is defined in Eq. (25). For our calculations, we considered BPNN to 
be the worst-performing model;

where MAPEij is the forecasting error of the jth model on the ith FTS, MAPEi is the error of 
the worst-performing forecast for the same FTS, and N is the number of datasets. Table 11 

(25)RWj =
1

N

N∑

i=1

(
MAPEi −MAPEij

MAPEi

)
× 100%, ∀j = 1, 2, 3, · · · , n,

Fig. 21 MAPE convergence rate of seven forecast from three energy price FTS
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Table 8 MAPE statistics from three energy price series

FTS Forecast Minimum Average Maximum Median Standard 
deviation

Inter‑quartile 
range

Crude oil 
prices

EOAEFA‑FLN 0.000000 0.003688 0.044976 0.002342 0.004777 0.003355

EOAEFA‑PSNN 0.000000 0.003853 0.046976 0.002407 0.004996 0.003720

AEFA‑FLN 0.000000 0.006461 0.047155 0.005936 0.004607 0.003972

AEFA‑PSNN 0.000101 0.005710 0.046155 0.005138 0.004589 0.003730

GA‑FLN 0.000000 0.010191 0.054976 0.00934 0.005428 0.004427

GA‑PSNN 0.000871 0.044159 0.086155 0.044712 0.006013 0.004418

BPNN 0.039024 0.084156 0.126155 0.084712 0.006035 0.004418

Natural gas 
prices

EOAEFA‑FLN 0.000000 0.004725 0.065124 0.002572 0.006203 0.004331

EOAEFA‑PSNN 0.000000 0.005063 0.063124 0.003224 0.006111 0.004232

AEFA‑FLN 0.000000 0.007178 0.070124 0.005692 0.006219 0.005276

AEFA‑PSNN 0.000000 0.006433 0.069124 0.004875 0.006240 0.005346

GA‑FLN 0.003545 0.048444 0.113124 0.048201 0.007784 0.005545

GA‑PSNN 0.000455 0.044446 0.109124 0.044201 0.007776 0.005545

BPNN 0.074545 0.119444 0.184124 0.119201 0.007784 0.005545

Coal prices EOAEFA‑FLN 0.001084 0.039972 0.197986 0.029520 0.041234 0.035597

EOAEFA‑PSNN 0.000151 0.039996 0.199986 0.030145 0.041718 0.034200

AEFA‑FLN 0.000921 0.040375 0.192986 0.028972 0.039968 0.038383

AEFA‑PSNN 0.000000 0.040254 0.193986 0.028706 0.040216 0.037691

GA‑FLN 0.000000 0.058543 0.149986 0.055251 0.035653 0.054641

GA‑PSNN 0.004082 0.056043 0.153986 0.052871 0.035553 0.053740

BPNN 0.006337 0.085733 0.173161 0.085697 0.037852 0.055759

Fig. 22 Prediction plots of seven models from crude oil price series
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Fig. 23 Prediction plots of seven models from natural gas price series

Fig. 24 Prediction plots of seven models from weekly coal price series
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lists the computed RW values. Based on these statistics, the EOAEFA-based HONN fore-
casting has high RW values compared with those of the others.

The model predictions were compared in terms of the percentage reduction in the MAPE 
(MR) values when adopting the proposed prediction model. This is computed as in Eq. (26). 
Figure 26 shows the computed MR values from all FTS. Figure 26 presents a good reduc-
tion in the MAPE values upon adopting the EOAEFA-FLN over other forecasts.

(26)MR =
(MAPEofexistingforecast −MAPEofproposedforecast)

MAPEofexistingmodel
× 100%

Fig. 25 Box‑Whisker plots of MAPE from seven forecast and three FTS

Table 9 Run‑time (s) from seven forecasts and eleven FTS

FTS EOAEFA‑FLN EOAEFA‑PSNN AEFA‑FLN AEFA‑PSNN GA‑FLN GA‑PSNN BPNN

NASDAQ 107.25 100.55 98.53 93.48 113.27 107.88 167.35

DJIA 105.00 110.02 91.80 92.00 115.24 110.55 177.27

S&P500 99.79 101.00 92.49 92.18 108.50 108.00 171.02

RUSSELL 2000 102.66 101.34 97.80 101.05 109.73 110.00 175.15

BTC/USD 105.55 100.39 90.76 97.15 107.28 105.00 205.22

EUR/USD 107.00 104.72 99.07 96.15 112.88 109.83 189.32

GBP/USD 101.47 99.89 91.75 94.55 111.26 108.55 176.72

JPY/USD 105.74 102.77 97.26 98.20 104.73 104.89 170.47

Crude oil prices 122.45 127.00 110.84 112.93 137.48 133.27 228.33

Natural gas prices 125.05 125.66 113.85 115.02 130.65 131.55 220.85

Coal prices 51.96 53.04 51.33 52.07 62.35 60.96 81.55
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Table 10 Significance test results of the proposed forecast

Methods 
and FTS

EOAEFA‑
PSNN

AEFA‑FLN AEFA‑PSNN GA‑FLN GA‑PSNN BPNN

EOAEFA‑
FLN

p and h‑values from Wilcoxon signed rank test

NASDAQ p = 1.7522e‑1, 
h = 1

p = 3.12432e‑
4, h = 1

p = 2.0402e‑3
h = 1

p = 3.203e‑5, 
h = 1

p = 4.216e‑4, 
h = 1

p = 4.250e‑5, 
h = 1

DJIA p = 1.1344e‑2, 
h = 1

p = 3.0028e‑5, 
h = 1

p = 23074e‑3, 
h = 1

p = 3.257e‑3, 
h = 1

p = 3.523e‑2, 
h = 1

p = 3.134e‑3, 
h = 1

S&P500 p = 2.3430e‑4, 
h = 1

p = 0.0035e‑3, 
h = 0

p = 2.243e‑2, 
h = 1

p = 2.82017, 
h = 1

p = 2.752e‑1, 
h = 1

p = 2.343e‑4, 
h = 1

RUSSELL 
2000

p = 0.5226e‑3, 
h = 1

p = 0.003502,
h = 0

p = 3.785e‑2, 
h = 1

p = 2.266e‑2, 
h = 1

p = 3.205e‑3, 
h = 1

p = 3.522e‑2, 
h = 1

p and h-values from DM pairwise test

NASDAQ p = 1.98582, 
h = 1

p = 2.14206, 
h = 1

p = 2.07284, 
h = 1

p = 2.50135, 
h = 1

p =  − 3.00427, 
h = 1

p = 3.87091, 
h = 1

DJIA p = 2.60553, 
h = 1

p =  − 2.97426, 
h = 1

p = 1.96033, 
h = 0

p = 1.9946, 
h = 1

p = 2.03294, 
h = 1

p =  − 2.72885, 
h = 1

S&P500 p = 1.96273, 
h = 0

p = 1.98282, 
h = 1

p = 2.10053, 
h = 1

p =  − 2.31042, 
h = 1

p = 1.99652, 
h = 1

p = 2.83952, 
h = 1

RUSSELL 
2000

p =  − 3.30322, 
h = 1

p = 2.13216, 
h = 0

p =  − 2.39820, 
h = 1

p = 2.40537, 
h = 1

p = − 2.18215, 
h = 1

p = 3.20555, 
h = 1

Table 11 RW of forecasting models

Model RW value

EOAEFA‑FLN 87.85

EOAEFA‑PSNN 83.85

AEFA‑FLN 80.02

AEFA‑PSNN 78.47

GA‑FLN 64.26

GA‑PSNN 59.72
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Fig. 26 MAPE reduction on adopting EOAEFA‑FLN over other forecasts
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Conclusions and future work
The AEFA is a newly developed physics-inspired metaheuristic with a robust develop-
ment ability, simpler computations, and attainment of global optima with fewer con-
trol parameters. Avoiding poor convergences, awhile improving the performance of 
the basic AEFA and solving real engineering problems remains an open challenge. To 
address these issues, this study proposes an elitism oppositional learning-based AEFA, 
called EOAEFA, to intensify the exploration and exploitation abilities of the AEFA. The 
EOAEFA was used to determine the weights and thresholds of the FLANN and PSNN, 
forming two hybrid models: EOAEFA-FLN and EOAEFA-PSNN. The proposed meth-
ods were evaluated for predicting future patterns of the closing price series of four fast-
growing stocks, four exchange rate series from developed economies, and three energy 
price FTS. The combined effects of the enhanced exploration ability of the EOAEFA, 
higher fault tolerance capability, and powerful mapping of single-layer trainable weights 
of the HONNs made the FTS predictions effective and accurate.

To verify the competitiveness of the proposed approach, its predictions were com-
pared with those of AEFA-FLN, AEFA-PSNN, GA-FLN, GA-PSNN, and BPNN-based 
forecasting. The results show that the EOAEFA + HONNs, particularly the EOAEFA-
FLN, obtained accurate predictions for most FTS compared with the others. For 
the four closing prices FTS, the EOAEFA-FLN generated the lowest MAPE values 
of 0.010285, 0.010895, 0.012230, and 0.009959. For three of the four exchange rate 
FTS, it obtained MAPE values of 0.005833, 0.006013, and 0.006599 which are lower 
than those of the others. Similarly, it generated the lowest MAPE values of 0.003688, 
0.004725, and 0.039972 for the three energy prices FTS. The EOAEFA-FLN provided 
the best forecast, followed by EOAEFA-PSNN. In addition, the EOAEFA-FLN and 
EOAEFA-PSNN are found 87.85% and 83.85% relative worth compared to the worst 
performing model respectively. The stronger performance of the EOAEFA-FLN was 
further established through statistical test results. Further improvements in the 
EOAEFA performance and its hybridization with other ANNs, such as RNNs and DL 
methods, are possible extensions of the current study. Moreover, the predictability of 
the proposed forecast can be further explored in the healthcare and material science 
engineering domains.
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