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Abstract 

The cryptocurrency market is a complex and rapidly evolving financial landscape 
in which understanding the inter- and intra-asset dependencies among key financial 
variables, such as return and liquidity, is crucial. In this study, we analyze daily return 
and liquidity data for six major cryptocurrencies, namely Bitcoin, Ethereum, Rip-
ple, Binance Coin, Litecoin, and Dogecoin, spanning the period from June 3, 2020, 
to November 30, 2022. Liquidity is estimated using three low-frequency proxies: 
the Amihud ratio and the Abdi and Ranaldo (AR) and Corwin and Schultz (CS) estima-
tors. To account for autoregressive and persistent effects, we apply the autoregressive 
integrated moving average-generalized autoregressive conditional heteroscedastic-
ity (ARIMA-GARCH) model and subsequently utilize the copula method to examine 
the interdependent relationships between the return on and liquidity of the six cryp-
tocurrencies. Our analysis reveals strong cross-asset lower-tail dependence in return 
and significant cross-asset upper-tail dependence in illiquidity measures, with more 
pronounced dependence observed in specific cryptocurrency pairs, primarily involv-
ing Bitcoin, Ethereum, and Litecoin. We also observe that returns tend to be higher 
when liquidity is lower in the cryptocurrency market. Our findings have significant 
implications for portfolio diversification, asset allocation, risk management, and trad-
ing strategy development for investors and traders, as well as regulatory policy-making 
for regulators. This study contributes to a deeper understanding of the cryptocurrency 
marketplace and can help inform investment decision making and regulatory policies 
in this emerging financial domain.

Keywords: Cryptocurrency, Liquidity, Dependence structure, Stationary, ARIMA-
GARCH model, Copula model

Introduction
The study of cross-asset dependence structure among financial variables has been a topic 
of considerable interest in the modern financial industry and academic circles, with a 
rich research history owing to its critical implications in portfolio-risk management 
(Markowitz 1952), technical and fundamental asset-trading strategies (Vidyamurthy 
2004), regulatory policies for handling systemic financial risks (Hartmann et al. 2004), 
and various other applications (So et al. 2022). While limiting dependence to the linear 
regime is a common practice and is adequate in many situations, a general non-linear 
dependence structure offers deeper insights into the complex and interconnected nature 
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of financial markets (Righi and Ceretta 2013; Mokni and Mansouri 2017), as linear 
methods may fail to capture the complete range of relationships between financial vari-
ables (Hartman and Hlinka 2018; Zhang 2021). Among the many methods for analyzing 
non-linear dependence structure, copula models are frequently used to estimate general 
correlations among financial variables, offering the notable advantage of separating the 
dependence structure from marginal distributions (Fermanian 2017). Therefore, in this 
study, we focus on utilizing copula models to investigate the interdependence structure 
among financial variables in the newly established cryptocurrency market.

Cryptocurrencies, which are virtual assets that use blockchain technology (Xu et  al. 
2019), are rapidly gaining popularity among investors, traders, and traditional financial 
institutions such as banks as the demand for cryptocurrency-based services continues 
to rise (Auer et al. 1013). As of December 2022, the total value of the cryptocurrency 
market is estimated to be approximately 0.85 trillion, with over 20,000 cryptocurren-
cies listed on the CoinMarketCap website.1 Moreover, financial derivatives such as 
options and futures are designed and traded on crypto exchanges (Geman and Price 
2021; Zulfiqar and Gulzar 2021). Despite the increasing popularity of cryptocurrencies, 
this rapidly evolving market remains highly volatile and lacks effective regulatory meas-
ures (Pace and Rao 2023; Zetzsche et al. 2018; Cumming et al. 2019; Chokor and Alfieri 
2021). This high volatility is evident in the numerous liquidity crises faced by cryptocur-
rency institutions, leading to the decline of multiple cryptocurrencies (Gudgeon et  al. 
2020). Given the young and complex nature of the cryptocurrency market, revealing 
dependence structures among major cryptocurrencies is crucial. In this study, we focus 
on understanding the inter- and intra-asset dependence of two critical financial varia-
bles in the cryptocurrency market: return and liquidity. Our study aims to shed light on 
the underlying complexities and interconnectedness of the cryptocurrency market, and 
to offer valuable insights for market participants and regulators in managing risks and 
developing effective investment and regulatory strategies.

The study of cross-asset tail dependence in return has been a topic of extensive 
research in the cryptocurrency market. For instance, Tiwari et al. (2020) found strong 
upper- and lower-tail dependence in each asset pair formed by Bitcoin (BTC), Litecoin 
(LTC), and Ripple (XRP) for the period from 08–04–2013 to 06–17–2018. Similarly, 
Boako et al. (2019) established strong dependence among the returns on BTC and those 
on five other altcoins [Dash, Ethereum (ETH), LTC, XRP, and Stellar] for a similar period 
from September 2015 to June 2018. Moreover, the knowledge of tail dependence has 
been applied by Syuhada and Hakim (2020), Pradhan et  al. (2021), and Tenkam et  al. 
(2022) in constructing cryptocurrency portfolios covering the data period from Sep-
tember 2016 to April 2022. Additionally, several studies have investigated the correla-
tions between returns on BTC and those on traditional stock, forex, and gold markets 
to diversify and hedge risks (Garcia-Jorcano and Benito 2020; Hussain et al. 2019; Kim 
et al. 2020; Chen and So 2020; Owais and Gulzar 2020; Qarni and Gulzar 2021), using 
return data before September 2020. Further literature on cross-asset return dependence 
in the cryptocurrency market will be reviewed later in this study.

1 https:// coinm arket cap. com.

https://coinmarketcap.com
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Market liquidity, defined as the ease, speed, and affordability with which an asset can 
be traded in the market, significantly impacts the determination of systemic liquidity 
risk in a financial system through its link to funding liquidity (Brunnermeier and Ped-
ersen 2009), particularly since the 2008 financial crisis (Brunnermeier and Pedersen 
2009). Adequate liquidity results in a stable market with minimal price fluctuations, 
whereas inadequate liquidity can lead to substantial market volatility and price spikes. 
The liquidity levels of different cryptocurrencies can vary significantly and are strongly 
interconnected, such that a liquidity shortage in one digital asset may lead to consider-
able increases or decreases in demand for other digital assets, as evidenced by several 
empirical studies (Gama Silva et  al. 2019; Manahov 2021; Anciaux et  al. 2021; Hasan 
et al. 2022; Tripathi et al. 2022). Consequently, a comprehensive understanding of the 
general dependence structure among them is crucial for investors to optimize portfo-
lios, traders to devise optimal trading strategies, and authorized regulators and finan-
cial institutions to manage systemic liquidity risk (End and Tabbae 2012). However, only 
a few studies have examined the cross-asset liquidity dependence of cryptocurrencies 
in the context of liquidity commonality and connectedness (Anciaux et al. 2021; Hasan 
et  al. 2022; Tripathi et  al. 2022; Ahmed 2022), which are limited to the linear regime. 
This study seeks to provide a more in-depth analysis of the interdependencies among 
cryptocurrencies’ liquidity and their implications for investment strategies and regula-
tory policies by utilizing advanced non-linear methods, such as the copula approach, to 
analyze the dependence structure.

Moreover, an asset’s liquidity and return are strongly interconnected, as liquidity fluc-
tuations can affect price discovery and overall market stability (Hasbrouck and Seppi 
2001). Illiquid assets typically exhibit higher returns due to the liquidity-risk premium 
associated with the difficulties in buying or selling them in a timely manner (Amihud 
2002). Furthermore, periods of low liquidity can exacerbate price volatility, leading to 
significant fluctuations in asset returns. In the context of cryptocurrencies, understand-
ing the relationship between liquidity and return is particularly crucial given the mar-
ket’s inherent volatility, inefficiencies, and unique investor sentiments (Fang et al. 2022). 
Previous studies on return-volume relationships (Naeem et al. 2020a, 2020b; Chan et al. 
2022; Leirvik 2022) and cryptocurrency liquidity during periods of extreme price move-
ments (Manahov 2021; Zhang et al. 2020) also fall into this category. In this study, we 
aim to directly investigate the general return-liquidity relationships and compare the 
resulting economic implications with those from previous research.

The current literature on cross-asset tail dependence in cryptocurrency returns (Tiwari 
et al. 2020; Boako et al. 2019; Syuhada and Hakim 2020; Pradhan et al. 2021; Tenkam 
et al. 2022; Garcia-Jorcano and Benito 2020; Hussain et al. 2019; Kim et al. 2020; Chen 
and So 2020) is mostly outdated, while studies on liquidity levels (Anciaux et al. 2021; 
Hasan et  al. 2022; Tripathi et  al. 2022; Ahmed 2022) are limited to the linear regime. 
Furthermore, studies on return-volume relationships (Naeem et al. 2020a, 2020b; Chan 
et  al. 2022) only serve as indirect indicators for general return-liquidity correlations. 
In this study, we complement these studies by employing widely used copula mod-
els to investigate the inter-asset dependency structure of liquidity proxies and returns, 
as well as intra-asset liquidity-return correlations among six major cryptocurrencies 
[BTC, ETH, XRP, Binance coin (BNB), LTC, and Dogecoin (DOGE)] for the period from 
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03–06–2020 to 11–30–2022. To better quantify liquidity levels, we use three different 
illiquidity proxies derived from low-frequency transaction data: the Amihud ratio (Ami-
hud 2002), characterizing the price impact, and two estimators for the bid-ask spread 
(BAS), representing transaction costs, i.e., the Abdi and Ranaldo (AR) (2017) and Cor-
win and Schultz (CS) estimators (Corwin and Schultz 2012). We employ the method of 
vine copulas (Czado 2019) to provide a robust way of analyzing the general dependence 
structure among these liquidity variables and returns beyond the limitations of linear 
correlation analyses. Our study contributes to the literature by providing updated and 
more comprehensive analyses of the inter- and intra-asset dependence of liquidity and 
returns in the cryptocurrency market, which can be valuable to market participants and 
regulators in portfolio optimization, risk management, and regulatory policy making.

Our study makes several contributions to the literature on the dependence structure of 
the cryptocurrency market. First, by employing copula models, we enable a more com-
prehensive analysis of the general dependence structure among liquidity proxies and 
returns on major cryptocurrencies, transcending linear correlation analyses. Second, we 
provide up-to-date and robust evidence on cross-asset lower-tail dependence in returns 
and cross-asset upper-tail dependence in illiquidity proxies for six major cryptocur-
rencies, revealing stronger correlations in select cryptocurrency pairs, predominantly 
involving BTC, ETH, and LTC. Third, our analysis reveals that return-liquidity corre-
lations in the cryptocurrency market are similar to those in traditional markets, with 
lower liquidity levels being associated with higher returns.

The identified cross-asset dependence structure in the returns on and liquidity of 
cryptocurrencies has valuable implications for portfolio-risk management, trading-strat-
egy optimization (Fang et al. 2022; Sebastião and Godinho 2021), and regulatory policy 
enhancement (Zetzsche et al. 2018; Cumming et al. 2019; Chokor and Alfieri 2021). By 
incorporating liquidity as a factor, investors can make more informed decisions regard-
ing market entry and exit, while traders can optimize their multi-asset trading strategies. 
Moreover, regulators can better assess market stability during liquidity crises and evalu-
ate the effectiveness of current policies in managing systemic risks. Furthermore, the 
discovered liquidity-dependence structure can assist financial institutions in determin-
ing liquidity requirements for crypto collateral and derivatives. This study offers valuable 
insights to a wide range of stakeholders, including researchers, practitioners, investors, 
traders, and regulators, contributing to the growing body of research on cryptocurren-
cies and their complex interconnectedness. The findings can help foster a more efficient 
and transparent digital market, thereby mitigating hidden downside risks and prevent-
ing the occurrence of systemic crashes.

The remainder of the paper is organized as follows: Section "Literature review" intro-
duces some previous related research, Section  “Data and variables” describes the data 
and financial variables for the selected cryptocurrencies, while the methodologies 
are presented in Section  “Methodologies”. Autoregressive integrated moving average 
(ARIMA) and generalized autoregressive conditional heteroscedasticity (GARCH) mod-
eling are discussed in Sections “ARIMA modeling” and “GARCH modeling”, respectively. 
The final results of the examination of asset and return-liquidity relationships using cop-
ulae are analyzed in Section “Copula Modeling”. Finally, the paper concludes in the last 
section.
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Literature review
The extensive body of literature on blockchain technology and the cryptocurrency 
market offers comprehensive insights into the evolution and application of these tech-
nologies. For a more in-depth understanding, readers are encouraged to explore com-
prehensive reviews such as those provided by Xu et al. (2019) and Fang et al. (2022). The 
genesis of blockchain technology is largely attributed to Nakamoto’s seminal whitepa-
per, published in 2008 (Nakamoto 2008). This seminal work introduced Bitcoin as the 
first application of this revolutionary technology. Originally envisaged as a decentral-
ized, peer-to-peer system facilitating digital transactions, the scope of blockchain tech-
nology has substantially expanded beyond its initial financial function. The range of its 
applications now spans numerous sectors including, but not limited to, smart contracts 
(Hewa et  al. 2021), supply-chain management (Queiroz et  al. 2020), smart cities (Sun 
et al. 2016), healthcare (Engelhardt 2017), and the Internet of Things (Dai et al. 2019). 
A systematic analysis of 756 blockchain-related scholarly articles conducted by Xu et al. 
(2019), found that the field of business and economics was among the most frequently 
discussed topics. Within this domain, the research theme of “initial coin offerings” 
associated with cryptocurrencies was identified as one of the top five areas of interest 
(Adhami et al. 2018; Ante et al. 2018; Fisch 2019). This underscores the pervasive impact 
of blockchain technology and cryptocurrencies on contemporary business and eco-
nomic practices.

Cryptocurrencies, digital assets utilizing cryptography for security, are primarily 
based on blockchain technology. Given the sector’s rapid expansion and inherent dyna-
mism, research on the cryptocurrency market is continually evolving. The literature 
highlights key themes such as market efficiency and price discovery (Al-Yahyaee et al. 
2020; Makarov and Schoar 2019; Brauneis and Mestel 2018; Wei 2018; Lengyel-Almos 
and Demmler 2021), volatility and correlations (Koutmos 2018; Yi et al. 2018; Katsiampa 
2019a, 2019b; Charfeddine et al. 2022; Xu et al. 2021), market microstructure (Dimpfl 
2017), regulatory impacts (Zetzsche et al. 2018; Cumming et al. 2019; Chokor and Alfieri 
2021; Leitch, et  al. 2021), and cryptocurrency trading (Fang et  al. 2022; Sebastião and 
Godinho 2021). In subsequent discussions on cross-asset dependency within cryptocur-
rencies, these references will be more thoroughly examined.

Over the past decade, there has been a growing interest in the academic community 
regarding the study of dependence structures among various random variables in the 
cryptocurrency market, as well as their connections to traditional markets. Recent stud-
ies have extensively documented the hedge and diversification properties of crypto-
currencies against traditional assets such as stocks, gold, fiat currencies, equities, and 
commodities, as investigated by Almeida and Gonçalves (2023). The authors concluded 
that cryptocurrencies exhibited time-varying and market-dependent diversification and 
safe-haven properties.

The literature on cross-asset dependence within the cryptocurrency market has pre-
dominantly focused on the analysis of returns and volatility. Numerous studies have 
examined the interdependence between the prices of Bitcoin and other cryptocurren-
cies utilizing autoregressive distributed lag (Ciaian and Rajcaniova 2018) and dynami-
cal conditional correlation models (Corbet et al. 2018). Researchers have also identified 
timely rising return and volatility spillovers among major cryptocurrencies (Koutmos 
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2018; Ji et al. 2019) as well as high and periodically fluctuating volatility connectedness 
in the cryptocurrency market (Yi et al. 2018). Furthermore, studies have emphasized the 
leading role played by large-capitalization coins in transmitting volatility shocks (Ciaian 
and Rajcaniova 2018; Balli et al. 2020). Additionally, researchers have reported volatility 
co-movement in leading cryptocurrencies (Katsiampa 2019a, 2019b) and strong posi-
tive correlations among the volatilities of popular cryptocurrencies (Canh et al. 2019). 
Recent work has examined the volatility connectedness in the cryptocurrency market 
by grouping various cryptocurrencies into different categories and identifying high lev-
els of connectedness (Charfeddine et al. 2022). Some studies have also investigated tail 
dependence among cryptocurrencies using methods such as the TENET approach (Xu 
et al. 2021) and found evidence of risk spillover effects and timely rising connectedness. 
Notably, all of these studies are limited to linear dependence.

Many studies have explored liquidity and risk management in the cryptocurrency mar-
ket, employing liquidity measures based on either full orderbook data focusing on BTC 
(Makarov and Schoar 2019; Brauneis et al. 2018, 2022; Dyhrberg et al. 2018; Marshall 
et al. 2019; Ma et al. 2022; Scharnowski 2021) or practical estimators (Manahov 2021; 
Leirvik 2022; Zhang et al. 2020; Al-Yahyaee et al. 2020; Brauneis and Mestel 2018; Wei 
2018; Dimpfl 2017; Brauneis et al. 2021; Theiri et al. 2022; Ghabri et al. 2021; Loi 2017; 
Koenraadt and Leung 2022; Saleemi 2021; Shi 2017; Dong et al. 2022; Tang and Wang 
2022; Fink and Johann 2014; Moreno et al. 2022). However, the dependence structure in 
cryptocurrency liquidity remains less explored.

Liquidity commonality or co-movement, which refers to the linkage between a sin-
gle asset’s liquidity level and market liquidity, has been extensively studied in traditional 
markets due to its significant impact on market systemic risk; see examples by Chordia 
et al. (2000a); Chordia et al. (2000b); Brockman et al. (2009); Karolyi et al. (2012); Cespa 
and Foucault (2014). In the context of the cryptocurrency market, liquidity commonality 
has been examined in only a few studies. Tripathi et al. (2022) investigated liquidity com-
monality across a sample of 53 cryptocurrencies and concluded that the cryptocurrency 
market exhibited relatively high levels of liquidity commonality. Ahmed (2022) discov-
ered that Bitcoin’s liquidity was driven by various factors, including Ethereum liquid-
ity. Anciaux et al. (2021) found strong co-movements in cryptocurrency liquidity during 
highly volatile regimes based on order-book data. Liquidity connectedness, which can 
capture both cross-asset liquidity linkages and liquidity commonality, has been investi-
gated by Hasan et al. (2022) among six major cryptocurrencies, revealing that BTC and 
LTC play a significant role in determining the magnitude of connectedness.

The literature often discusses the intra-asset relationship between return and liquidity 
in the context of market efficiency, maturity, and price formation. Several studies have 
demonstrated the importance of liquidity in the cryptocurrency market. For instance, 
Manahov (2021) revealed that traders could drive demand liquidity even during signifi-
cant price fluctuations. Dong et al. (2022) found that decreased liquidity led to higher 
abnormal returns but hindered market efficiency. In their evaluation of the cost of liquid-
ity preference for portfolios combining traditional assets and cryptocurrencies, Moreno 
et  al. (2022) demonstrated that considering liquidity made portfolios with the highest 
expected returns unavailable, which was similarly concluded by Ma et al. (2022). Moreo-
ver, Wei (2018) discovered that liquidity played a significant role in market efficiency, 
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while Brauneis et  al. (2022) reported that as liquidity levels increased, the cryptocur-
rency market became less inefficient.

Furthermore, several studies have employed copula models to examine the depend-
ence between return and volume, a common liquidity indicator, such as Naeem et  al. 
(2020a), Naeem et al. (2020b), Chan et al. (2022) and Yarovaya and Zięba (2022), identi-
fying asymmetric tail dependence under different situations. Additionally, the linkages 
between cryptocurrency liquidity and fiat currencies have been examined by Brauneis 
et al. (2018, 2022), traditional financial assets by Zulfiqar and Gulzar (2021), Qarni and 
Gulzar (2021), Scharnowski (2021), Ghabri et al. (2021) and Loi (2017), and social events 
by Brauneis et al. (2021), Koenraadt and Leung (2022) and Saleemi (2021).

Data and variables
The six major cryptocurrencies of BTC, ETH, XRP, BNB, LTC, and DOGE are selected 
in this study, considering their high market capitalization, data availability, and diverse 
use cases. BTC,2 the first and largest cryptocurrency, is the most studied cryptocur-
rency; see recent reviews by Lengyel-Almos and Demmler (2021), Manimuthu et  al. 
(2019), and Kayal and Rohilla (2021). ETH3 is the second largest cryptocurrency; its plat-
form supports smart contracts and decentralized applications, making it an integral and 
central part of the blockchain ecosystem (Tripathi et al. 2022). XRP,4 developed by Rip-
ple Labs, aims to enable efficient cross-border transactions. BNB,5 the native coin of the 
world’s biggest centralized cryptocurrency exchange, has gained prominence due to its 
utility within the trading platform. LTC,6 an early alternative to Bitcoin, is known as "the 
silver to Bitcoin’s gold" because of its faster transaction time and lower gas fees. It is also 
among the most accepted digital assets by merchants globally. DOGE,7 initially created 
as a joke, has become popular due to its strong community support and internet meme 
culture.

All the data used in this study were collected from the Coinmarketcap website in US 
dollar units and covered a 1000-day period from March 06, 2020, to November 30, 2022. 
This time frame was selected to capture the market dynamics during a period marked by 
significant fluctuations, including the COVID-19 pandemic’s impact on the global econ-
omy and growing mainstream adoption of cryptocurrencies. By selecting the six major 
cryptocurrencies with substantial market capitalization, this study addresses a signifi-
cant portion of the overall cryptocurrency market and is of interest to investors, traders, 
and regulators.

The daily log returns of each cryptocurrency are computed as follows:

(1)rt = ln (Ct/Ct−1),

2 https:// bitco in. org
3 https:// ether eum. org
4 https:// xrpl. org
5 https:// bnbch ain. org
6 https:// litec oin. org
7 https:// dogec oin. com

https://bitcoin.org
https://ethereum.org
https://xrpl.org
https://bnbchain.org
https://litecoin.org
https://dogecoin.com
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where Ct and Ct−1 represent the closing prices of each asset on days t and t − 1, respec-
tively. The first row in Fig. 1 displays the log returns for the selected six cryptocurren-
cies, while Table 1a lists the statistical descriptions of these log returns. The data exhibit 
negative skewness (except for DOGE) and significant excess kurtosis, while the Jarque–
Bera (JB) test statistic (Mantalos 2011) indicates that none of the series is uncondition-
ally normal.

The three liquidity proxies are calculated from the daily open, high, low, and close 
(OHLC) data in the following.

The Amihud ratio is defined as follows:

where Ot and Vt are the open prince and trading volume on day t, respectively. This ratio 
is widely used in the literature as a proxy for liquidity. However, Brauneis et al. (2021) 
discovered that the Amihud ratio did not capture the time variation of the BAS well, 
where the latter represented the costs of immediately trading an asset. Tables 1b shows 
the statistical descriptions of the Amihud ratio data for the selected six cryptocurren-
cies. We note that the Amihud ratios have very small absolute values spreading several 
orders of magnitude (on the order of  10−16–10−11) due to the large and rapidly increasing 

(2)Amihudt =
|Ct/Ot−1|

Vt
,

Fig. 1 This figure shows the calculated daily log returns and three liquidity proxies for six cryptocurrencies: 
BTC, ETH, XRP, BNB, LTC and DOGE
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trading volume in the crypto market (see Eq. (2)). This causes numerical instabilities in 
subsequent modeling; thus, the logarithmic value,  log10  Amihudt, will be used for further 
analyses instead of the original one.

The AR estimator is derived from the natural logarithms of high (Ht), low (Lt), and closing 
(Ct) prices, i.e., ht = ln (Ht), lt = ln (Lt), and ct = ln (Ct). It is defined as follows:

with pt = (ht + lt)/2. The descriptive statistics for the AR estimator for the six cryptocur-
rencies are shown in Table 1d.

The CS estimator is computed from the high and low prices of two adjacent days as 
follows:

(3)ARt = max {4(ct − pt)(ct − pt+1), 0},

(4)CSt,t+1 =
2[exp (α)− 1]

1+ exp (α)
,

Table 1 Statistical description of log return, Amihud ratio, AR estimator and CS estimator

Mean Median Min Max SD Skewness Kurtosis JB test

(a) The log return

BTC 0.000637 0.001259 − 0.464730 0.171821 0.039969 − 1.645013 22.786427 16,763.623431

ETH 0.001732 0.003318 − 0.550732 0.230695 0.052864 − 1.391422 17.247584 8780.744581

XRP 0.000534 0.001493 − 0.550504 0.444758 0.064547 − 0.158011 16.861647 8010.213652

BNB 0.002671 0.001669 − 0.543084 0.529218 0.057645 − 0.277035 22.385579 15,671.153220

LTC 0.000245 0.001895 − 0.449062 0.248434 0.054952 − 1.229674 12.929899 4360.470073

DOGE 0.003753 − 0.000359 − 0.515112 1.516382 0.091526 5.321991 85.325980 287,119.222238

Mean Median Min Max SD Skewness Kurtosis JB test

×10−14 ×10−14 ×10−14 ×10−14 ×10−14

(b) The Amihud ratio

BTC 7.0477 3.4448 0.0104 409.5265 16.8718 15.2011 334.6116 4,620,439.6960

ETH 47.3920 15.0680 0.8997 3421.3469 145.0457 14.7263 307.5153 3,899,877.2974

XRP 194.0525 109.7708 0.2210 5382.6278 322.1349 7.3743 90.9527 331,382.8811

BNB 415.1032 76.7865 0.0528 28,067.5024 1216.0208 13.5735 278.8789 3,201,921.4240

LTC 653.8813 387.6598 0.2240 18,186.5536 950.3002 8.0781 125.7045 638,225.6223

DOGE 2920.2905 317.8923 0.7279 155,645.8491 8893.1952 8.5539 111.6264 503,849.0474

Mean Median Min Max SD Skewness Kurtosis JB test

(c) The AR estimator

BTC 0.039367 0.026833 0.000132 0.632451 0.041421 4.326497 47.587180 85,953.787349

ETH 0.052990 0.037975 0.000607 0.767455 0.052553 3.891073 39.590937 58,310.769351

XRP 0.055270 0.035045 0.000085 0.677113 0.069309 3.843089 24.082264 20,980.800416

BNB 0.051938 0.034234 0.000206 0.783236 0.061424 4.925506 45.417644 79,012.456082

LTC 0.05399 0.036392 0.000368 0.628165 0.053793 3.081637 21.741254 16,217.523303

DOGE 0.061771 0.033178 0.000251 2.128672 0.107747 9.136417 147.063547 878,675.086570

(d) The CS estimator

BTC 0.021672 0.015686 0.000055 0.152749 0.020790 2.113003 9.105954 2297.575119

ETH 0.029825 0.022333 0.000072 0.269521 0.026741 2.318779 13.577177 5557.650956

XRP 0.032057 0.021080 0.000010 0.315072 0.035755 3.126842 17.179436 10,006.873453

BNB 0.030626 0.021413 0.000097 0.346494 0.034948 4.310991 31.257624 36,367.994240

LTC 0.030836 0.023615 0.000018 0.207891 0.028535 2.325228 10.664263 3348.652811

DOGE 0.037843 0.021958 0.0 1.225102 0.062157 9.445584 151.245104 930,561.967656
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where α =
√
2b−

√
b

3−2
√
2

−
√

c

3−2
√
2
, with b =

[

ln (Ht/Lt)
2
+ ln (Ht+1/Lt+1)

]2 and c = [ln(Ht,t+1/Lt,t+1)]
2 . 

Here, Ht(Lt) is the daily high (low) price and Ht,t+1 (Lt,t+1) is the highest (lowest) price 
within two adjacent days. The descriptive statistics for the CS estimator for the six cryp-
tocurrencies are presented in Table 1c.

It is important to note that all three of these indicators are measures of illiquidity, 
rather than direct measures of liquidity. The Amihud ratio measures the price impact of 
asset sales, while both the CS and AR estimators are commonly used as proxies for the 
effective BAS. A higher BAS indicates higher costs associated with selling assets in the 
market. According to Gao et al. (2019), the AR estimator outperforms the CS estima-
tor when the ratio of return volatility to BAS is small, and vice versa. The daily liquidity 
measures calculated using these indicators are shown in Fig. 1, with corresponding sta-
tistics presented in Table 3. All three liquidity indicators exhibit significant skewness and 
excess kurtosis, and the JB tests indicate non-normality in all the sample data.

Methodologies
To examine the cross-asset dependency structure in return and liquidity among the 
cryptocurrencies as well as the intra-asset return-liquidity relationship, copula-based 
models are used. It should be noted that copulae are primarily applicable to station-
ary time series (Sadegh et  al. 2017). Autocorrelated time series can produce spurious 
dependencies between sets of variables, leading to inaccurate copula-dependency struc-
tures (Tootoonchi et  al. 2020). Therefore, a pre-processing step is necessary to ensure 
both mean and variance stationarity within the time series. To address mean stationar-
ity, the ARIMA model (Shumway and Stoffer 2017) can be used to eliminate nonsta-
tionarity in the mean (i.e., the trend). Additionally, the GARCH model can be applied 
to remove variance autocorrelations present in the residuals obtained from the ARIMA 
model. Thus, the resulting time series of standardized residuals can meet the stationarity 
requirements of copula models.

Stationary test

The fundamental concept of stationarity in a time series implies that the data distribu-
tion remains independent of time t, indicating that knowledge of time alone does not 
provide any information about the distribution. To assess the stationarity of both return 
and liquidity data, as well as to detect any potential ARCH effects, several well-estab-
lished statistical tests have been employed. These include the Ljung–Box (LB) Q-test 
(Ljung and Box 1978) for autocorrelations, Engle LM test (Engle 1982) for ARCH effects, 
and augmented Dickey–Fuller (ADF) (Dickey and Fuller 1981) and Kwiatkowski–Phil-
lips–Schmidt–Shin (KPSS) tests (Kwiatkowski et  al. 1992) for unit roots. These tests 
ensure a comprehensive assessment of the stationarity characteristics within the time 
series data under investigation.
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ARIMA models

The ARIMA (p, g, q) model addresses the presence of mean non-stationarity in a time 
series by representing the series data, dt, by the following equation:

where µ is a constant, dt
(g) represents the differencing transformation of dt of order g, ai 

denotes the parameters of the autoregressive (AR) component, bi signifies the param-
eters of the moving average (MA) component, and ϵt corresponds to the residuals. The 
orders, p and q, can be determined by examining the Akaike information criterion (AIC), 
which is associated with the likelihood, L, of the data as follows:

where k = p + q + 1 represents the number of parameters. The model exhibiting the 
smallest AIC value is typically selected to describe the data’s mean stationarity, ensuring 
an appropriate balance between model complexity and goodness of fit.

GARCH‑type models

Bollerslev (1986) introduced the standard GARCH (SGARCH) model as a more parsi-
monious alternative to the original ARCH volatility model developed by Engle (1982). 
Consequently, the SGARCH approach utilizes fewer parameters, reducing the computa-
tional burden. Since its inception, various GARCH-type models (Zivot 2009) have been 
developed to estimate and forecast the volatility of a time series, effectively capturing 
phenomena such as volatility clustering and heteroscedasticity. In this study, we consider 
four distinct variations of GARCH models: SGARCH, exponential GARCH (EGARCH), 
asymmetric power ARCH (APARCH), and Glosten-Jagannathan-Runkle GARCH (GJR-
GARCH). Each of these models employs unique dynamical equations to describe volatil-
ity, accounting for specific characteristics present within time series data.

Standard GARCH

Assuming the residual of a time series ϵt in Eq. (5) follows a specific probability density 
function with a zero mean and a conditional variance σ2, a SGARCH (p, q) model can be 
expressed as follows:

In this equation, ω represents a constant term, while αi and βi denote the ARCH and 
GARCH parameters, respectively. The pair (q, p) indicates the number of auto- cor-
relation terms, and in this study, we focus on (q, p) = (1, 1), defining α1 ≡ α and β1 ≡ 
β. To ensure a stationary process and the positivity of the conditional variance, the 
SGARCH model imposes the conditions ω, α, β ≥ 0 and α + β < 1. However, if α + β = 1, 
the SGARCH model converges to the integrated GARCH (IGARCH) model.

(5)d
(g)
t =∈t +µ+

p
∑

i=1

αid
(g)
t−i +

q
∑

j=1

bj ∈t−j ,

(6)AIC = 2k − ln (L),

(7)σ 2
t = ω +

q
∑

i=1

αi ∈2
t−i +

p
∑

i=1

βiσ
2
t−i.
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EGARCH

The EGARCH model accounts for the asymmetric impacts of positive and negative 
shocks on volatility. The dynamics of the conditional variance in an EGARCH (1, 1) 
model are represented as follows:

In this equation, the parameter, β, denotes the persistent effect, while α and γ capture 
the size and sign effects of return shocks on volatility. Unlike the SGARCH and IGARCH 
models, the EGARCH model does not impose restrictions on these parameters.

APARCH

The APARCH model introduces an additional power parameter, δ, to account for the 
observation that sample autocorrelations of returns are typically larger than those of 
squared returns. The dynamics of volatility in the APARCH model are expressed as 
follows:

The APARCH model requires ω, α, β, δ ≥ 0 and −1 ≤ γ ≤ 1 . When δ = 1, the APARCH 
model reduces to the threshold ARCH (TARCH) model.

GJR‑GARCH

The GJR-GARCH model captures the leverage effect through the following volatility 
dynamics:

where It−1 = 1 if ϵt−1 < 0 and It−1 = 0 if ϵt−1 ≥ 0. The parameter restrictions for the GJR-
GARCH model are similar to those of the SGARCH model.

Copula‑based Model

Copula functions enable the separation of marginal distributions from the dependence 
structure of a given multivariate distribution. Let F represent a d-variate continuous dis-
tribution function with marginal distribution functions, Fp, for p ∈ 1, …, d. According to 
Sklar’s theorem (Sklar 1959), F can be decomposed as follows:

where C is the unique copula associated with F. The copula density and density of the 
multivariate distribution are given by

(8)ln
(

σ 2
t

)

= ω + α

(

|∈t −1|
σt−1

−
√

2

π

)

+ β ln
(

σ 2
t−1

)

+ γ
∈t−1

σt−1
.

(9)σ δ
t = ω + α(|∈t −1| − γ ∈t−1)

δ + βσδ
t−1.

(10)σ 2
t = ω + (α + γ It−1) ∈2

t−1 +βσ 2
t−1,

(11)F(χ) = C(F1(x1), . . . , Fd(xd)), χ = (x1, . . . , xd) ∈ Rd ,
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A key advantage of this approach is that the marginal distributions need not be simi-
lar in any way, and the choice of copula is not constrained by the selection of marginal 
distributions. By definition, C is a d-variate distribution function on the unit cube [0, 
 1]d, with univariate marginals being standard uniform distributions on the interval [0, 
1]. In practice, a bivariate copula typically models a pair of random variables reasonably 
well. However, when dealing with higher dimensions, copula models become increas-
ingly rigid and often fail to provide valuable information. To address this issue, regular 
vine (R-vine) copulae have been developed to decompose the high-dimensional copula 
density into combinations of bivariate copulae using conditional probabilities (Joe 1996; 
Bedford and Cooke 2002). The mathematical form of the copula density in an R-vine is 
as follows:

where u = (uj, uk) are edges in the R-vine with j ≠ k ∈ {1, 2,..., d}, Du represents conditional 
constraints depending on variables other than uj and uk, Fuj(k)|Du denotes the conditional 
probabilities, and cu|Du corresponds to bivariate copula densities.

In this study, we apply R-vine copula models to investigate the dependencies among 
liquidity measures of cryptocurrencies, as well as the dependence between liquidity and 
returns. To achieve this objective, we utilize empirical cumulative distribution functions 
derived from standardized residuals of GARCH-type models, which are subsequently 
fitted to R-vine models using parametric bivariate copulae, as described in reference 
Dissmann et al. (2013). The R-vine trees are constructed employing a maximum-span-
ning tree algorithm based on the empirical Kendall’s τ measure. Moreover, the selection 
of the bivariate copula characterizing the dependency between connected tree nodes is 
conducted using the AIC in Eq. (6).

We consider two types of dependency measures in this study. One measure is the 
tail dependence, which describes the probability that a random variable, u1, exceeds a 
certain threshold given that another random variable has already exceeded the same 
threshold. The tail dependence can be both lower- and upper-tail dependence, which are 
defined using the copula as follows (Joe et al. 2010):

Another dependence measure is Kendall’s τ coefficient, employed to quantify the order 
correlation between two random variables, u1 and u2. As defined by Schweizer and Wolff 
(1981), this dependence measure is expressed as follows:

(12)

c(u1, . . . ,ud) =
∂dC(u1, . . . ,ud)

∂u1, . . . , ∂ud
,u1, . . . ,ud ∈ [0, 1],

f (x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))

d
∏

i=1

fi(xi).

(13)c(u1, . . . ,ud) =
∏

u∈E(V )

cu|Du

(

Fuj |Du , Fuk |Du

)

,

(14)
�L =lim

v→0

C(v, v)

v
,

�U =lim
v→1

1− 2v + C(v, v)

1− v
.
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which depends solely on copula functions, and thus on the parameters defining the func-
tional form of C

(

u1,u2
)

.
The selection set for bivariate copula functions in this study includes Elliptical copulae 

(Gaussian copula, Student’s T copula), Archimedean copulae (Independence, Clayton, 
Gumbel, Frank, Joe, and BB family copulae), and their modified versions with rota-
tion angles of 90°, 180°, or 270° (Czado 2019). Elliptical copulae differ from Archime-
dean copulae in that they possess only implicit analytical expressions, and they generally 
exhibit a greater ability to express more complex dependency structures. Archimedean 
copulae can capture a wide range of dependencies and can be represented by a generator 
function, ψ, satisfying the following expression (McNeil and Nešlehová 2009):

A summary of the Elliptical and Archimedean copulae, along with their corresponding 
Kendall’s τ and tail dependence coefficients, is presented in Table 2. It can be observed 
that the Clayton copula is suitable for describing lower-tail dependence, while upper-tail 
dependence may be captured by the Gumbel, Joe, and BB6 copulae. Furthermore, the 
Student’s T copula exhibits symmetrical dependence, while the BB1 and BB7 copulae 
display asymmetrical lower-tail and upper-tail dependence. Last, the Frank, BB8, and 
Gaussian copulae possess symmetrical lower- and upper-tail independence.

Results and discussions
Data pre‑processing

Statistical tests

Table 3 presents the results of various statistical tests conducted on the data. To improve 
the stability of numerical calculations, we have rescaled the data by a factor of 1 for the 
log Amihud ratio and  103 for the rest. This factor will be employed for all calculations 
throughout the remainder of the study.

For the log returns in Table 3a, the LB Q-tests, Q(10), with an order of 10 reject the 
null hypothesis for all six cryptocurrencies except for the log-return series of XRP. 
This finding suggests significant serial correlations in the log returns of the other five 
cryptocurrencies. The same tests on the squared log returns [Q2(10)] indicate a neces-
sity for volatility modeling, considering the existing autocorrelations in the squared-
return series. This is further substantiated by the Engle LM test statistics [ARCH(10) 
in Table 3a], which demonstrate the presence of the ARCH effect in all the log return 
data. The stationarity of the log-return series is examined using the ADF and KPSS 
tests. While the ADF results strongly suggest that the return data for all six crypto-
currencies are stationary, the KPSS test indicates non-stationarity for BTC and ETH. 
This situation implies the existence of some trends in the log-return series of BTC and 
ETH, although the log of returns is utilized.

The same types of statistical tests were applied to the time series of the log Amihud 
ratio, AR, and CS estimators, with the results presented in Table 3b–d, respectively. 
The LB Q-test indicates that serial correlations are present in the time series of all 

(15)τ = 4

∫∫

C
(

u1,u2
)

dC
(

u1,u2
)

− 1 = 4E
[

C
(

u1,u2
)]

− 1,

(16)C
(

u1,u2
)

= �−1(�(u1)+�(u2)).
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three liquidity measures and their squared series. The Engle LM test reveals that the 
ARCH effect is also significant in all the data. The combination of the ADF and KPSS 
test statistics demonstrates that trends are present in all the log-Amihud-ratio series, 
but only in some of the AR and CS estimator series, as indicated by both the rejected 
ADF and KPSS null hypotheses. Stationarity is confirmed for the remaining data, as 
the ADF null hypothesis is rejected and the KPSS null hypothesis is accepted.

ARIMA modeling

The presence of potential trends in the time-series data of both return and liquidity 
measures (refer to Table 3) necessitates the utilization of ARIMA models prior to imple-
menting GARCH-type models. We fit both the return and liquidity data to the model 
in Eq. (5) using the maximum likelihood estimation (MLE) method, selecting the order 
parameters (p, d, q) based on the AIC in Eq. (6) with the constraints of 0 ≤ p, q ≤ 15 and 
0 ≤ d ≤ 2. The results are presented in Table 4, accompanied by the LB Q-test (Q(10)), 

Table 3 Various test statistics for all the data

*Indicate rejection of the respective null hypotheses at the 10% significance level

**Indicate rejection of the respective null hypotheses at the 5% significance level

***Indicate rejection of the respective null hypotheses at the 1% significance level

Q(10) Q2(10) ARCH(10) ADF KPSS

(a) The log return series

BTC 21.66** 18.65** 87.90*** − 33.65*** 0.53**

ETH 30.60*** 31.90*** 65.74*** − 9.70*** 0.43*

XRP 7.74 64.89*** 56.58*** − 32.77*** 0.12

BNB 46.07*** 114.55*** 142.58*** − 8.59*** 0.31

LTC 22.87** 67.81*** 69.30*** − 33.82*** 0.15

DOGE 39.57*** 25.19*** 21.91** − 16.69*** 0.28

(b) The log Amihud ratio series

BTC 259.51*** 232.88*** 99.2*** − 3.73*** 2.33***

ETH 1902.32*** 1777.51*** 361.87*** − 3.41** 3.74***

XRP 385.37*** 357.92*** 130.78*** − 5.59*** 1.92***

BNB 3144.45*** 2924.21*** 486.86*** − 2.57* 4.28***

LTC 209.73*** 186.08*** 81.56*** − 4.43*** 0.93***

DOGE 3961.36*** 3754.68*** 568.39*** − 38.19*** 3.59***

(c) The AR estimator series

BTC 107.82*** 27.52*** 69.25*** − 5.12*** 0.23

ETH 99.52*** 30.35*** 62.78*** − 10.12*** 0.17

XRP 278.77*** 88.78*** 76.46*** − 6.20*** 0.41*

BNB 287.98*** 81.41*** 85.97*** − 4.77*** 0.51**

LTC 100.12 *** 40.01*** 54.17*** − 5.71*** 0.31

DOGE 348.06*** 20.81** 18.63** − 6.57*** 0.32

(d) The CS estimator series

BTC 277.21*** 184.83*** 132.77*** − 9.09*** 0.30

ETH 289.48*** 212.17*** 195.18*** − 9.09*** 0.24

XRP 624.73*** 354.91*** 192.88*** − 5.35*** 0.65**

BNB 462.59*** 342.7*** 348.61*** − 6.90*** 0.61**

LTC 208.89*** 73.35*** 51.49*** − 9.32*** 0.43*

DOGE 511.85*** 25.56*** 22.12** − 6.74*** 0.28
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squared LB Q-test (Q2(10)), Engle LM test (ARCH(10)), ADF, and KPSS test statistics on 
the residuals obtained from ARIMA.

Regarding the log returns in Table  4a, no differencing (d = 0) is required for all six 
cryptocurrencies. Higher orders are necessary for the AR and MA terms to describe 
the BNB log returns, indicating stronger serial correlations. Residuals from the ARIMA 
model exhibit considerably smaller LB Q-test statistics than the original data (see 
Table 3a) for all cryptocurrencies except XRP. The optimal ARIMA model for XRP has 
(p, d, q) = (0, 0, 0), suggesting negligible AR and MA effects in XRP log returns. The sta-
tistics of the remaining tests [LB Q-test on squared log returns Q2(10), Engle LM test 
ARCH(10), ADF, and KPSS tests] for other cryptocurrencies closely resemble those of 
the original data in Table  3a. Considering these, we use the residuals of the ARIMA 
model for BTC, ETH, BNB, LTC, and DOGE in the GARCH modeling, while the original 
log returns will be used for XRP.

Table 4 Fitting results of the ARIMA model and statistics of residual tests

*Indicate rejection of the respective null hypotheses at the 10% significance level

**Indicate rejection of the respective null hypotheses at the 5% significance level

***Indicate rejection of the respective null hypotheses at the 1% significance level

(p, d, q) AIC Q(10) Q2(10) ARCH(10) ADF KPSS

(a) Log return

BTC (0, 0, 4) 10,211.5 8.73 14.94 76.30*** − 31.59*** 0.49*

ETH (2, 0, 6) 10,767.2 6.85 20.93** 43.80*** − 31.77*** 0.36*

XRP (0, 0, 0) 11,173.7 7.74 64.89*** 56.58*** − 32.77*** 0.12

BNB (2, 0, 2) 10,933.0 15.67 98.08*** 123.77*** − 8.98*** 0.28

LTC (1, 0, 4) 10,845.8 4.35 45.76*** 49.56*** − 31.60*** 0.15

DOGE (3, 0, 3) 11,857.4 2.92 13.17 11.99 − 31.60*** 0.25

(b) Log Amihud ratio

BTC (4, 1, 5) 1648.2 12.41 0.78 7.77 − 40.68*** 0.43*

ETH (0, 1, 1) 1446.4 5.12 0.35 5.36 − 38.72*** 0.58**

XRP (2, 1, 5) 1533.3 3.60 0.16 8.54 − 39.03*** 0.35*

BNB (0, 1, 1) 1632.7 3.32 0.16 4.46 − 37.32*** 0.32

LTC (0, 1, 1) 1597.2 5.96 0.21 6.25 − 23.70*** 0.93***

DOGE (2, 1, 1) 1668.6 9.15 0.37 10.52 − 38.19*** 0.36*

(c) AR estimator

BTC (5, 1, 7) 10,207.8 4.07 4.15 12.46 − 31.34*** 0.08

ETH (2, 1, 3) 10,705.7 3.18 12.17 33.00*** − 15.37*** 0.12

XRP (3, 1, 9) 11,175.8 2.47 27.28*** 32.05*** − 31.40*** 0.09

BNB (3, 1, 3) 10,928.4 7.32 37.72*** 60.25*** − 30.89*** 0.04

LTC (6, 1, 3) 10,745.7 2.15 26.98*** 34.71*** − 31.55*** 0.09

DOGE (7, 1, 8) 12,023.8 3.07 0.74 0.72 − 31.87*** 0.04

(d) CS estimator

BTC (1, 1, 1) 8765.0 6.50 63.36*** 62.72*** − 31.61*** 0.05

ETH (0, 1, 2) 9239.1 6.85 143.15*** 145.29*** − 31.43*** 0.04

XRP (0, 1, 9) 9724.8 1.37 146.89*** 97.22*** − 31.38*** 0.08

BNB (6, 1, 4) 9705.3 6.75 310.38*** 299.31*** − 31.68*** 0.07

LTC (1, 1, 1) 9424.4 7.75 15.63 11.68 − 31.61*** 0.06

DOGE (7, 1, 8) 10,848.8 4.58 0.97 0.94 − 31.43*** 0.05
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With respect to the three liquidity proxies, a first-order differencing (d = 1) is necessary 
in all cases based on the obtained ARIMA models, as observed in Table 4b–d for the log 
Amihud ratio, AR estimator, and CS estimator, respectively. The modeling performance 
is generally satisfactory, as evidenced by comparing the results of the statistical tests on 
the ARIMA residuals to those on the original data in Table 3b–d. The null hypothesis of 
the LB Q-test is accepted for all the obtained residuals from the ARIMA modeling, indi-
cating negligible serial correlations. The Q2(10) and ARCH(10) tests are also passed for 
all residuals of the log Amihud ratio, suggesting variance stationarity. This is consistent 
with the results of the ADF tests; however, some KPSS tests still indicate the contrary, 
particularly for the LTC coin. The Q2(10) and ARCH(10) statistics for the residuals of 
the AR and CS estimators imply a smaller time-dependent variance effect in DOGE than 
in the other five cryptocurrencies. Both ADF and KPSS tests indicate stationarity in the 
residuals of the AR and CS proxies across the six cryptocurrencies.

GARCH modeling

The Q2(10) and ARCH(10) statistics on the ARIMA residuals in Table  4 signify the 
necessity for variance modeling for the residuals of the log returns, AR, and CS esti-
mators from the ARIMA models, but not the log Amihud ratio. Nonetheless, variance 
modeling will be conducted for all the ARIMA residuals in this section, employing the 
GARCH-type models introduced in Section “GARCH-type models”. The model param-
eters are obtained by fitting either the original data (log returns of XRP) or the residuals 
of the optimal ARIMA model (the rest) to a specific GARCH-type model, along with an 
error distribution using the MLE method. The optimal volatility model, selected from 
the set of SGARCH, EGARCH, TARCH, APARCH, and GJR-GARCH, combined with 
the error distribution from the Gaussian, Student’s T, Skewed T, and generalized error 
distributions (Feng and Shi 2017), is chosen based on the fitted AIC [see Eq.  (6)]. The 
resulting standardized residuals from the GARCH-type models are then tested using 
various statistical tests (see Section “Stationary test”).

The final results are presented in Table  5 for both the log returns and log Amihud 
ratio, and in Table 6 for the AR and CS estimators, respectively. The numbers in brackets 
indicate the standard errors of the fitted parameters. Table  5a shows that the optimal 
models for the log returns are either symmetric, or asymmetric with very small lever-
age parameters, γ. The autoregressive (α) and persistent (β) effects are significant in the 
return variance. The error distributions show that only the BNB log-return residuals 
exhibit a slightly asymmetric distribution (λ  = 0 in Table 5a), while other return residuals 
are symmetrically distributed. The fitted degree of freedom, η, ranges from 3 to 5, indi-
cating a notable fat-tail effect.

The obtained standardized residuals from the GARCH modeling of log return data 
pass all the Q(10), Q2(10), and ARCH(10) tests, implying that both mean and variance 
nonstationarity are now absent. The ADF test rejects the null hypothesis of non-sta-
tionarity for all the cryptocurrency log returns, suggesting stationarity. However, the 
KPSS statistics in Table 3a are comparable to those of the original data, as well as to the 
ARIMA residuals in Table 4a.

In the case of the log Amihud ratio, the optimal models are nearly symmetric for all 
the cryptocurrencies except for the BNB coin. For BNB, a significant negative leverage 
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parameter, γ, is obtained with an optimal APARCH model of power δ = 4 ± 1.6 [see 
Eq. (9)]. This suggests that negative liquidity shocks exert smaller effects than positive 
ones on the liquidity variance in the Amihud ratio measure for the BNB cryptocur-
rency. The same observation is made with the CS estimator for the XRP, LTC, and 
DOGE coins in Table  6b. The fitted α values are small, while the β values are large 
(approaching 1), indicating a significant persistent effect but weak autoregressive one.

Table 5 Fitting results of GARCH models for the log returns and log Amihud ratio and statistics of 
residual tests

*Indicate rejection of the respective null hypotheses at the 10% significance level

**Indicate rejection of the respective null hypotheses at the 5% significance level

***Indicate rejection of the respective null hypotheses at the 1% significance level

BTC ETH XRP BNB LTC DOGE

Opt. vol. model TARCH EGARCH EGARCH SGARCH GJR‑GARCH SGARCH

Res. dist Student’s T Student’s T Student’s T Student’s T Student’s T Student’s T

(a) Log return

AIC 9894.1 10,504.7 10,530.3 10,383.3 10,557.2 10,663.5

µ 1.41 (0.86) 2.40 (1.28) 0.03 (1.02) 2.44 (1.08) 1.80 (1.22) − 1.15 (0.91)

ω 0.87 (0.80) 0.78 (0.32) 0.45 (0.14) 157 (58) 89 (61) 427 (293)

α 0.07 (0.02) 0.22 (0.05) 0.38 (0.07) 0.16 (0.04) 0.16 (0.04) 0.39 (0.11)

β 0.93 (0.03) 0.90 (0.04) 0.95 (0.02) 0.80 (0.05) 0.88 (0.04) 0.61 (0.16)

γ − 0.0007 (0.03) − 0.08 (0.06) 0.004 (0.03) – − 0.10 (0.04) –

δ – – – – – –

η 3.3 (0.3) 4.3 (0.6) 2.8 (0.3) 3.7 (0.5) 3.7 (0.4) 2.8 (0.2)

λ – – – – – –

Q(10) 10.33 11.28 7.34 12.01 9.84 6.38

Q2(10) 3.94 3.35 3.76 3.28 8.03 0.34

ARCH(10) 12.37 4.23 4.37 3.27 8.72 0.33

ADF − 30.22*** − 16.15*** − 31.24*** − 17.74*** − 16.14*** − 32.15***

KPSS 0.62** 0.45* 0.24 0.39 0.21 0.23

BTC ETH XRP BNB LTC DOGE

Opt. vol. model GJR‑GARCH SGARCH SGARCH APARCH GJR‑GARCH SGARCH

Res. dist Skew T Skew T Skew T Skew T Skew T Skew T

(b) Log Amihud ratio

AIC 1504.3 1332.3 1444.9 1460.5 1432.7 1598.2

µ − 0.02 (0.02) − 0.02 (0.02) − 0.01 (0.05) − 0.01 (0.02) − 0.03 (0.04) − 0.03 (0.02)

ω 0.06 (0.01) 0.07 (0.01) 0.10 (0.15) 0.04 (0.04) 0.09 (0.03) 0.11 (0.05)

α 0.09 (0.04) 0.05 (0.03) 0.00 (0.24) 0.05 (0.04) 0.09 (0.06) 0.04 (0.05)

β 0.76 (0.04) 0.65 (0.06) 0.64 (0.75) 0.44 (0.11) 0.63 (0.10) 0.60 (0.20)

γ − 0.09 (0.04) – – − 0.39 (0.10) − 0.07 (0.06) –

δ – – – 4.0 (1.6) – –

η 8.1 (1.7) 8.9 (2.3) 9.0 (5.7) 5.8 (0.9) 6.2(1.1) 7.3(1.6)

λ − 0.41 (0.04) − 0.42 (0.04) − 0.37 (0.05) − 0.51 (0.04) − 0.43 (0.04) − 0.30 (0.04)

Q(10) 2.78 4.09 2.05 2.15 6.81 6.23

Q2(10) 6.39 3.77 8.22 3.38 4.09 11.05

ARCH(10) 7.06 3.93 8.35 4.16 4.37 14.39

ADF − 32.00*** − 31.89*** − 31.97*** − 31.41*** − 21.37*** − 32.07***

KPSS 0.31 0.47** 0.22 0.23 0.26 0.30
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The optimal residual distributions for all the six cryptocurrencies are positively 
skewed T distributions, with a skewness parameter, λ, approximately 4–5 and a scale 
parameter, η, approximately 3–6. This indicates that the residuals are distributed in an 
asymmetric and fat-tailed manner. Similar to the log returns, the mean and variance 
stationarity of the standardized residuals from GARCH for the log Amihud ratios is 
confirmed by the Q(10), Q2(10), and ARCH(10) statistical tests. This finding is further 
supported by the ADF and KPSS tests, except for the KPSS statistics for the ETH coin.

The results of the AR and CS estimators in Table  6 reveal that asymmetric impacts 
of negative and positive liquidity shocks on liquidity variance generally exist (nonzero 

Table 6 Fitting results of GARCH models for the AR and CS estimators, and statistics of residual tests

*Indicate rejection of the respective null hypotheses at the 10% significance level

**Indicate rejection of the respective null hypotheses at the 5% significance level

***Indicate rejection of the respective null hypotheses at the 1% significance level

BTC ETH XRP BNB LTC DOGE

Opt. vol. 
model

EGARCH EGARCH EGARCH EGARCH EGARCH APARCH

Res. dist Skew T Skew T Skew T Skew T Skew T Skew T

(a) AR estimator

AIC 9451.6 9948.2 10,083.4 9928.0 10,052.9 10,382.4

µ 3.32 (0.08) 4.36 (0.06) 1.67 (0.04) 7.78 (0.14) 4.06 (0.03) − 1.53 (4.35)

ω 0.05 (1E−4) 0.04 (1E−4) 0.015 (4E−5) 0.12 (3E−5) 0.04 (5E−5) 0.96 (5.39)

α − 0.02 (6E−4) − 0.01 (5E−4) − 0.0183 
(0.0002)

− 0.02 (6E−4) − 0.02 (6E−4) 0.05 (0.02)

β 0.99 (3E−6) 1.00 (1E−6) 0.998 (6E−8) 0.99 (9E−7) 0.99 (1E−7) 0.95 (0.06)

γ 0.21 (6E−3) 0.17 (1E−3) 0.136 (0.005) 0.27 (4E−3) 0.15 (2E−3) − 1.00 (0.01)

δ – – – – – 1.2 (1.0)

η 2.44 (0.06) 2.59 (0.03) 2.35 (0.03) 2.41 (0.02) 3.45 (0.05) 3.1 (0.5)

λ 0.77 (0.07) 0.78 (0.02) 0.68 (0.03) 0.75 (0.02) 0.68 (0.02) 0.59 (0.10)

Q(10) 6.63 6.62 9.99 9.27 7.39 6.94

Q2(10) 3.06 5.87 45.83*** 4.49 13.93 0.24

ARCH(10) 4.68 10.11 51.09*** 5.50 17.40* 0.24

ADF − 31.18*** − 15.59*** − 20.52*** − 17.46*** − 21.08*** − 31.02***

KPSS 0.06 0.07 0.10 0.06 0.09 0.05

(b) CS estimator

AIC 8237.2 8849.5 8905.1 8815.3 8811.5 9229.1

µ − 0.07 (0.50) 0.74 (0.40) − 0.64 (0.003) − 0.56 (0.85) − 0.12 (0.78) − 0.63 (0.95)

ω 0.22 (0.08) 0.12 (0.13) 0.26 (0.14) 0.12 (0.32) 0.15(0.57) 0.47(0.69)

α 0.09 (0.01) 0.05 (0.02) 0.27 (0.09) 0.11 (0.26) 0.03(0.02) 0.05(0.01)

β 0.95 (0.01) 0.95 (0.06) 0.97 (0.02) 0.98 (0.04) 0.97(0.01) 0.95(0.02)

γ − 0.09(0.01) − 0.98(0.18) 0.07 (0.03) 0.09 (0.02) − 1.00 (4E−4) − 1.00 (5E−3)

δ – 0.51(0.57) – – 1.20 (0.74) 1.1 (0.25)

η 4.6 (0.5) 5.51 (0.96) 3.4 (0.4) 3.6 (0.4) 4.3 (0.50) 3.5 (0.39)

λ 0.61 (0.03) 0.55 (0.04) 0.51 (0.03) 0.49 (0.12) 0.64 (0.07) 0.51 (0.05)

Q(10) 4.03 5.34 6.80 6.50 6.00 4.97

Q2(10) 9.89 15.62 6.69 14.89 2.19 0.57

ARCH(10) 10.23 15.39 6.97 15.14 2.09 0.55

ADF − 31.03*** − 31.68*** − 32.80*** − 21.25*** − 21.07*** − 29.75***

KPSS 0.05 0.07 0.05 0.10 0.08 0.05
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γ). Two types of asymmetric GARCH models are identified: APARCH and EGARCH. 
When the APARCH model is selected, γ values close to -1 are observed, with the excep-
tion of the TARCH model (an APARCH model with δ = 1) for the BTC CS estimator. 
Mild positive γ values are seen in the EGARCH model. Both situations suggest that neg-
ative liquidity shocks exert weaker effects on liquidity variance than positive ones in the 
crypto market. This observation may be linked to the fact that traders are more actively 
entering and exiting markets during less stressful periods, leading to larger liquidity 
variances. Conversely, during stressful market conditions, trading activities are gener-
ally suppressed. The standardized residuals from the GARCH modeling of all AR and 
CS data are now stationary based on the Q(10), Q2(10), ARCH(10), ADF, and KPSS tests. 
This finding implies that the variance non-stationarity in the AR and CS data has been 
effectively removed by the GARCH modeling.

Copula modeling

Following the data pre-processing steps described above, the standardized residuals 
obtained from the GARCH modeling have become stationary and are now suitable for 
copula modeling. To investigate the cross-asset dependence structure of log returns and 
liquidity for the six cryptocurrencies, we employ the copula method outlined in Section 
“Copula-based model”, utilizing R-vine copulae and the sequential method described 
by Dissmann et  al. (2013). The model parameters are obtained by fitting the GARCH 
residual data to the copula model, and the optimal bivariate copula functions describing 
dependencies between adjacent nodes in the R-vine tree are chosen from the Elliptical 
and Archimedean families listed in Table 2 based on the smallest AIC.

Fig. 2 The fitted R-vine copula trees of the log return and three liquidity proxies
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Correlations among assets using R‑vine copulae

In this subsection, we discuss the dependency structures of the six cryptocurrencies as 
revealed by our analysis of log returns and liquidity estimators using the R-vine copula 
method. Figure 2a–d present the obtained R-vine copula trees for the log returns, log 
Amihud ratio, and AR and CS estimators, respectively, where the numbers 1–6 label 
the BTC, ETH, XRP, BNB, LTC, and DOGE coins respectively. The R-vine structures 
are built by treating edges from the i-th tree as the nodes of the (i + 1)-th tree. Nodes 
in the (i + 1)-th tree are joined if the corresponding edges in the i-th tree share a node. 
Each edge in the i-th tree of an R-vine is labeled by u1, u2|v1, v2, …, vi−1, representing the 
conditional dependency between u1 and u2 conditioned on conditioning variables, v1, v2, 
… , vi−1, i.e., the copula densities in Eq. (13). In each R-vine structure, five trees are con-
structed, with a total of 15 edges representing the dependencies of the 15 crypto pairs 
formed by the selected six cryptocurrencies. The fitted optimal copulae, as well as the 
corresponding Kendall’s τ and tail- dependence coefficients, are listed in Table 7.

An interesting observation can be made from the dependency vine-copula tree struc-
ture of log returns displayed in Fig. 2a. ETH appears as a central node with a node degree 
of 3 in Tree 1 and exhibits high correlations with BTC, BNB, and LTC. This observation 
is further substantiated by the Kendall’s τ values in Table 7. The obtained optimal bivari-
ate copulae for the five strongly correlated crypto pairs in Tree 1 are four Gumbel (A3) 
and one BB6 (A7) copulae, all with a  180◦ rotation, which exhibit lower-tail dependence. 
In fact, the 180°-rotated Gumbel copula is selected as the optimal one for 8 out of the 
total 15 pairs. This suggests that when the market declines, these pairs are likely to fall 
together, whereas during bullish markets, no such correlation exists.

Weak symmetric correlations are found in other crypto pairs, where symmetric Stu-
dent’s T (E2) or BB8 (A9) copulae are observed in the BTC-XRP, ETH-DOGE, XRP-
BNB, XRP-DOGE, BNB-LTC, and BNB-DOGE pairs. From the Kendall’s τ coefficients 
listed in Table  7, the ETH coin has the largest mean of τ with the other five cryptos, 
while the DOGE coin has the smallest mean of τ. Among the selected six cryptos, ETH is 
the most correlated to the market, while DOGE is the least correlated.

Contrary to the vine-copula tree structure of log returns, the center node for the 
log-Amihud-ratio series in the first tree is LTC, as illustrated in Fig. 2b. From Table 7, 
it can be observed that the two most frequently selected bivariate copulae for mode-
ling the cross-asset dependence of the log Amihud ratio in the 15 crypto pairs are the 
(180°-rotated) BB8 (A9) and Frank (A4) copulae. Intriguingly, both of them are used to 
describe nonlinear dependence in the center of the distribution with zero tail-depend-
ence coefficients.

Strong upper-tail dependence is identified in the XRP-LTC [the Gumbel copula (A3)] 
and ETH-BNB [the BB6 copula (A7)] pairs, while weak symmetric tail- dependence 
[the Student’s T copula (E2)] is observed in the BTC-XRP and XRP- BNB pairs. Note-
worthily, some similarities are observed between the log-return and log-Amihud-ratio 
R-vine structures presented in Fig.  2a and b. For instance, strong correlations of the 
crypto pairs, BTC-ETH, ETH-BNB, and XRP-LTC, are found in both cases, and both 
R-vine structures are very close to a D-vine structure (Dissmann et al. 2013).

The R-vine-copula tree structure of the AR estimator selects ETH as the center node 
in Tree 1, as shown in Fig. 2c. Similar to the case of the log-Amihud-ratio, the dominant 
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bivariate copulae in most of the 15 fitted pairs are Frank (A4) and BB8 (A9), showing 
weak tail dependency and strong nonlinear dependence in the center of the distribution 
(see Table 7). Strong upper-tail dependence [the Gumbel copula (A3)] is found in the 
ETH-BNB and ETH-LTC pairs, while weak symmetric tail-dependence [the Student’s T 
copula (E2)] is observed in the ETH-XRP and BNB-LTC pairs. Once again, strong corre-
lations in the BTC-ETH, ETH-BNB, and XRP-LTC pairs are identified, as discovered in 
the cases of the log return and log Amihud ratio.

The fitted R-vine structure of the CS estimator is a D-vine copula, as shown in Fig. 2d, 
where every node has a degree of either one or two, while the maximum node degree in 
the above three quantities is three. From Table 7, we observe stronger upper-tail depend-
encies in the majority of the most strongly correlated pairs in Tree 1, except for the 
XRP-DOGE pair, which gets a Student’s T copula (E2) with weak symmetric tail depend-
ence. This differs from the other two liquidity measures, where the non-tail-dependent 
copulae, Frank (A4) and BB8 (A9), are dominant. Among the 15 fitted copulae, the 
most frequently selected are Gumbel (A3) and BB7 (A8), which exhibit asymmetric tail 
dependence. From the lower- and upper-tail coefficient values in Table 7, strong upper-
tail dependence is observed in most of the crypto pairs, while their lower-tail depend-
ence coefficients are either zero or relatively small.

In summary, lower-tail dependencies are more common in the case of the log return, 
while the opposite holds true for the CS liquidity estimator. This observation aligns with 
the notion that during bearish markets, all crypto prices tend to simultaneously drop, 
and their liquidity also dries up. For the other two liquidity measures, only weak or no 
tail-dependencies are mostly observed. Based on these observations, we may conclude 
that the CS estimator captures the behavior of the crypto market better than the AR esti-
mator during extreme market conditions, suggesting extreme volatility in difficult times 
(Gao et al. 2019).

BTC and ETH, as the two largest cryptocurrencies, exhibit strong interdependence in 
both log returns and all liquidity proxies. In addition to ETH, LTC and DOGE demon-
strate a strong correlation with BTC in terms of liquidity measures and log returns. ETH 
displays fairly strong correlations with BNB and LTC, but generally not with XRP and 
DOGE. XRP exhibits very strong correlations with LTC and only weak correlations with 
the other coins. Although BNB is less connected to the other cryptos except for ETH, 
LTC is deeply linked to all the other coins. DOGE also reveals weaker connections to the 
other cryptos, with the exception of the CS liquidity estimator. From the R-vine-copula 
tree structure in Tree 1, it is evident that the BTC-ETH, XRP-LTC, and ETH-BNB pairs 
are consistently directly connected to one another. These three pairs are strongly corre-
lated in all aspects.

Copula between log return and liquidity proxies

In this subsection, we analyze the intra-asset dependence structures between the log 
returns and liquidity proxies of the six cryptocurrencies. The fitting results using bivari-
ate copulae are presented in Table 8. We find that each crypto’s returns are correlated 
with its own liquidity, with most cryptocurrencies having optimal copulae that are Stu-
dent’s T (E2) with a symmetric tail dependence and small Kendall’s τ. This is consistent 
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with the well-known relationship between return and liquidity proposed by Amihud and 
Mendelson (1986), where illiquidity leads to an increase in return and vice versa.

This effect is more prominent for the most demanded crypto, ETH, for which the 
optimal copula between log return and the three liquidity proxies is the Joe copula 
(A5) function exhibiting more significant Kendall’s τ coefficients and stronger upper-
tail dependence. This finding indicates that excess return is not correlated with liquid-
ity when the latter is high but is more likely to increase during illiquidity. The least tail 
dependence is observed for XRP and DOGE, which are less demanded than the other 
four cryptocurrencies.

Conclusions and outlook
To conclude, our study significantly contributes to the current body of literature 
on the interrelationships between return and liquidity for individual cryptocurren-
cies in the marketplace. We conducted a comprehensive quantitative analysis of time-
series data for six major cryptocurrencies (BTC, ETH, XRP, BNB, LTC, and DOGE) to 
eliminate autoregressive and persistent effects through the application of ARIMA and 
GARCH modeling. By employing the R-vine copula model, we could investigate both 
the cross-asset dependence in return and liquidity and the intra-asset return-liquidity 
relationships.

Significant general inter-asset dependencies in return and liquidity were observed 
among the six examined cryptocurrencies. Among the 15 cryptocurrency pairs, eight 
pairs displayed an optimal bivariate copula function corresponding to the 180°-rotated 
Gumbel distribution in terms of return, suggesting a tendency for concurrent price 
declines rather than rises. The remaining pairs showed weak symmetric tail- depend-
ence in their returns. In terms of the Amihud ratio, an indicator of market-price impact, 

Table 8 Fitted bivariate Copula and the corresponding Kendall’s τ between the log return and the 
three liquidity proxies: the log Amihud ratio, the AR estimator, and the CS estimator

Crypto Log return & Log Amihud Ratio AR Estimator CS Estimator

BTC Copula E2 E2 E2

τ 0.030 0.096 0.034

(Lower, upper) (0.173, 0.173) (0.233, 0.233) (0.117, 0.117)

ETH Copula A5 A5 A5

τ 0.152 0.227 0.101

(Lower, upper) (0, 0.306) (0, 0.424) (0, 0.215)

XRP Copula A7 (90°) E2 E2

τ − 0.186 0.016 0.021

(Lower, upper) (0, 0) (0.190, 0.190) (0.101, 0.101)

BNB Copula E2 E2 E2

τ 0.052 0.100 0.034

(Lower, upper) (0.185, 0.185) (0.236, 0.236) (0.105, 0.105)

LTC Copula E2 E2 E2

τ 0.016 0.099 − 0.008

(Lower, upper) (0.186, 0.186) (0.235, 0.235) (0.104, 0.104)

DOGE Copula E2 E2 E2

τ − 0.007 0.004 − 0.010

(Lower, upper) (0.154, 0.154) (0.184, 0.184) (0.043, 0.043)
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the optimally fitted correlations are largely central, suggesting that the liquidation of a 
significant position of one asset does not noticeably influence the liquidation conditions 
of other assets. Similar conclusions were drawn for the AR estimator of the BAS. How-
ever, the CS estimator displayed stronger correlations during market difficulties, a find-
ing more consistent with conventional understanding and indicating a need for further 
empirical evidence.

The intra-asset tail dependence between return and liquidity was predominantly sym-
metric and displayed similar values, an observation consistent with findings from tradi-
tional markets. This phenomenon can be partially attributed to the demand pressures of 
corresponding cryptocurrencies.

Our findings provide valuable insights into the underlying dependence structure of 
cryptocurrency returns and liquidity, which can inform investment strategies and risk-
management decisions in this emerging asset class. Our methodology is readily adapt-
able to encompass all other cryptocurrencies and incorporate dynamic effects. Future 
research will expand on utilizing these established dependence structures to assist 
investors and traders in portfolio diversification, asset allocation, risk management, and 
trading-strategy development. Leveraging our findings, market participants can make 
informed decisions about their cryptocurrency investments and mitigate their expo-
sure to undue risk. Our study thus represents an important step toward enhancing the 
overall understanding of the cryptocurrency marketplace and its associated risks and 
opportunities.

We are confident that the insights gained from our study can facilitate the identifica-
tion of systemic risks in the cryptocurrency marketplace, thereby enabling the develop-
ment of effective regulatory policies that ensure market transparency, protect investor 
interests, and promote global collaboration among regulatory authorities. Consistent 
with this objective, our future research will delve deeper into the vast, intricate, inter-
connected, and dynamic cryptocurrency market. For instance, we plan to employ agent-
based simulations (Leitch, et al. 2021) to evaluate the effectiveness of various regulatory 
policies and rules. Our ultimate goal is to create a stable, innovative, and secure financial 
environment in the digital realm.

Abbreviations
BTC  Bitcoin
ETH  Ethereum
XRP  Ripple
BNB  Binance coin
LTC  Litecoin
DOGE  Dogecoin
ARIMA  Autoregressive integrated moving average
GARCH  Generalized autoregressive conditional heteroskedasticity
OHLC  Open, high, low, and close
BAS  Bid-ask spread
AR  Abdi and Ranaldo
CS  Corwin and Schultz
MLE  Maximum likelihood estimation
JB  Jarque–Bera
LB  Ljung–Box
ADF  Augmented Dickey–Fuller
KPSS  Kwiatkowski–Philips–Schmidt–Shin
R-vine  Regular vine
AIC  Akaike information criterion



Page 27 of 30Zhang et al. Financial Innovation            (2024) 10:3  

Acknowledgements
We acknowledge useful discussions with colleagues at HSBC Lab.

Disclaimer
This document is not intended as investment research or investment advice, or a recommendation, offer or solicitation 
for the purchase or sale of any security, financial instrument, financial product or service, or to be used in any way for 
evaluating the merits of participating in any transaction.

Author contributions
MZ, BZ and ZL contribute equally to this work. YX: Initiated and supervised the project, proof read the manuscript and 
contributed to the discussion. MZ: Responsible for the preliminary research of the topic and complete the main code of 
the analysis work. SJ: Editing of the manuscripts and contributed to the discussion of the results. BZ and ZL: Co-super-
vised the project, led the modeling and discussion, wrote the main part of the manuscript.

Funding
Y.X. is partly supported by the award of “Pioneering Innovator” from Guangzhou Tianhe Distinct government.

Availability of data and materials
The dataset on which the conclusions of the manuscript rely is a secondary data and it will be made available upon 
request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 20 December 2022   Accepted: 10 July 2023

References
Abdi F, Ranaldo A (2017) A simple estimation of bid-ask spreads from daily close, high, and low prices. Rev Financ Stud 

30(12):4437–4480. https:// doi. org/ 10. 1093/ rfs/ hhx084
Adhami S, Giudici G, Martinazzi S (2018) Why do businesses go crypto? An empirical analysis of initial coin offerings. J 

Econ Bus 100:64–75
Ahmed WM (2022) What Determines Bitcoin Liquidity? A Penalized Regression Approach. Appl Econ Lett. https:// doi. org/ 

10. 1080/ 13504 851. 2022. 20997 93
Almeida J, Gonçalves TC (2023) Portfolio diversification, hedge and safe-haven properties in cryptocurrency investments 

and financial economics: a systematic literature review. J Risk Financ Manag 16(1):3. https:// doi. org/ 10. 3390/ jrfm1 
60100 03

Al-Yahyaee KH, Mensi W, Ko H-U et al (2020) Why cryptocurrency markets are inefficient: the impact of liquidity and 
volatility. North Am J Econ Finance 52:101168. https:// doi. org/ 10. 1016/j. najef. 2020. 101168

Amihud Y (2002) Illiquidity and stock returns: cross-section and time-series effects. J Financ Mark 5:31–56
Amihud Y, Mendelson H (1986) Liquidity and stock returns. Financ Anal J 42(3):43–48. https:// doi. org/ 10. 2469/ faj. v42. n3. 

43
Anciaux H, Desagre C, Nicaise N, et al (2021) Liquidity co-movements and volatility regimes in cryptocurrencies. In: SSRN 

scholarly paper. Rochester, NY, https:// doi. org/ 10. 2139/ ssrn. 37693 09
Ante L, Sandner P, Fiedler I (2018) Blockchain-based ICOs: Pure hype or the dawn of a new era of startup financing? J Risk 

Financ Manag 11(4):80
Auer R, Farag M, Lewrick U et al (2022) Banking in the shadow of bitcoin? The institutional adoption of cryptocurrencies. 

In: BIS working paper no. 1013. pp 1–25
Balli F, de Bruin A, Chowdhury MIH et al (2020) Connectedness of cryptocurrencies and prevailing uncertainties. Appl 

Econ Lett 27(16):1316–1322
Bedford T, Cooke RM (2002) Vines—a new graphical model for dependent random variables. Ann Stat 30(4):1031–1068. 

https:// doi. org/ 10. 1214/ aos/ 10316 89016
Boako G, Tiwari AK, Roubaud D (2019) Vine copula-based dependence and portfolio value-at-risk analysis of the crypto-

currency market. Int Econ 158:77–90. https:// doi. org/ 10. 1016/j. inteco. 2019. 03. 002
Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econom 31(3):307–327. https:// doi. org/ 10. 

1016/ 0304- 4076(86) 90063-1
Brauneis A, Mestel R (2018) Price discovery of cryptocurrencies: bitcoin and beyond. Econ Lett 165:58–61. https:// doi. org/ 

10. 1016/j. econl et. 2018. 02. 001
Brauneis A, Mestel R, Riordan R et al (2018) Bitcoin exchange rates: How integrated are markets? SSRN Sch Pap. https:// 

doi. org/ 10. 2139/ ssrn. 32494 77
Brauneis A, Mestel R, Riordan R et al (2021) How to measure the liquidity of cryptocurrency markets? J Bank Finance 

124:106041. https:// doi. org/ 10. 1016/j. jbank fin. 2020. 106041
Brauneis A, Mestel R, Riordan R et al (2022) Bitcoin unchained: determinants of cryptocurrency exchange liquidity. J 

Empir Finance 69:106–122. https:// doi. org/ 10. 1016/j. jempfi n. 2022. 08. 004
Brockman P, Chung DY, Pérignon C (2009) Commonality in liquidity: a global perspective. J Financ Quant Anal 44(4):851–

882. https:// doi. org/ 10. 1017/ S0022 10900 99901 23

https://doi.org/10.1093/rfs/hhx084
https://doi.org/10.1080/13504851.2022.2099793
https://doi.org/10.1080/13504851.2022.2099793
https://doi.org/10.3390/jrfm16010003
https://doi.org/10.3390/jrfm16010003
https://doi.org/10.1016/j.najef.2020.101168
https://doi.org/10.2469/faj.v42.n3.43
https://doi.org/10.2469/faj.v42.n3.43
https://doi.org/10.2139/ssrn.3769309
https://doi.org/10.1214/aos/1031689016
https://doi.org/10.1016/j.inteco.2019.03.002
https://doi.org/10.1016/0304-4076(86)90063-1
https://doi.org/10.1016/0304-4076(86)90063-1
https://doi.org/10.1016/j.econlet.2018.02.001
https://doi.org/10.1016/j.econlet.2018.02.001
https://doi.org/10.2139/ssrn.3249477
https://doi.org/10.2139/ssrn.3249477
https://doi.org/10.1016/j.jbankfin.2020.106041
https://doi.org/10.1016/j.jempfin.2022.08.004
https://doi.org/10.1017/S0022109009990123


Page 28 of 30Zhang et al. Financial Innovation            (2024) 10:3 

Brunnermeier MK, Pedersen LH (2009) Market liquidity and funding liquidity. Rev Financ Stud 22(6):2201–2238. https:// 
doi. org/ 10. 1093/ rfs/ hhn098

Canh NP, Wongchoti U, Thanh SD et al (2019) Systematic risk in cryptocurrency market: evidence from DCC-MGARCH 
model. Finance Res Lett 29:90–100

Cespa G, Foucault T (2014) Illiquidity contagion and liquidity crashes. Rev Financ Stud 27(6):1615–1660. https:// doi. org/ 
10. 1093/ rfs/ hhu016

Chan S, Chu J, Zhang Y et al (2022) An extreme value analysis of the tail relationships between returns and volumes for 
high frequency cryptocurrencies. Res Int Bus Finance 59:101541. https:// doi. org/ 10. 1016/j. ribaf. 2021. 101541

Charfeddine L, Benlagha N, Khediri KB (2022) An intra-cryptocurrency analysis of volatility connectedness and its deter-
minants: evidence from min- ing coins, non-mining coins and tokens. Res Int Bus Finance 62:101699

Chen T-Y, So L-C (2020) Discussion on the effectiveness of the copula-GARCH method to detect risk of a portfolio con-
taining bitcoin. J Math Finance 10(04):499–512. https:// doi. org/ 10. 4236/ jmf. 2020. 104030

Chokor A, Alfieri E (2021) Long and short-term impacts of regulation in the cryptocurrency market. Q Rev Econ Finance 
81:157–173. https:// doi. org/ 10. 1016/j. qref. 2021. 05. 005

Chordia T, Roll R, Subrahmanyam A (2000a) Commonality in liquidity. J Financ Econ 56(1):3–28. https:// doi. org/ 10. 1016/ 
S0304- 405X(99) 00057-4

Chordia T, Roll R, Subrahmanyam A (2000b) Co-Movements in bid-ask spreads and market depth. Financ Anal J 56(5):23–
27. https:// doi. org/ 10. 2469/ faj. v56. n5. 2386

Ciaian P, Rajcaniova M et al (2018) Virtual relationships: short-and long-run evidence from BitCoin and altcoin markets. J 
Int Financ Mark Inst Money 52:173–195

Corbet S, Lucey B, Yarovaya L (2018) Datestamping the Bitcoin and ethereum bubbles. Finance Res Lett 26:81–88
Corwin SA, Schultz P (2012) A simple way to estimate bid-ask spreads from daily high and low prices. J Financ 67(2):719–

760. https:// doi. org/ 10. 1111/j. 1540- 6261. 2012. 01729.x
Cumming DJ, Johan S, Pant A (2019) Regulation of the crypto-economy: managing risks, challenges, and regulatory 

uncertainty. J Risk Financ Manag 12(3):126. https:// doi. org/ 10. 3390/ jrfm1 20301 26
Czado C (2019) Analyzing dependent data with vine copulas: a practical guide with R. In: Lecture notes in statistics, vol 

222. Springer International Publishing, Cham. https:// doi. org/ 10. 1007/ 978-3- 030- 13785-4
da Gama Silva PVJ, Klotzle MC, Pinto ACF et al (2019) Herding behavior and contagion in the cryptocurrency market. J 

Behav Exp Finance 22:41–50. https:// doi. org/ 10. 1016/j. jbef. 2019. 01. 006
Dai H-N, Zheng Z, Zhang Y (2019) Blockchain for internet of things: a survey. IEEE Internet Things J 6(5):8076–8094
De Pace P, Rao J (2023) Comovement and Instability in cryptocurrency markets. Int Rev Econ Finance 83:173–200. https:// 

doi. org/ 10. 1016/j. iref. 2022. 08. 010
Dickey DA, Fuller WA (1981) Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 

49(4):1057. https:// doi. org/ 10. 2307/ 19125 17
Dimpfl T (2017) Bitcoin market microstructure. SSRN Electron J. https:// doi. org/ 10. 2139/ ssrn. 29498 07
Dissmann J, Brechmann EC, Czado C et al (2013) Selecting and estimating regular vine copulae and application to finan-

cial returns. Comput Stat Data Anal 59:52–69
Dong B, Jiang L, Liu J et al (2022) Liquidity in the cryptocurrency market and commonalities across anomalies. Int Rev 

Financ Anal 81:102097. https:// doi. org/ 10. 1016/j. irfa. 2022. 102097
Dyhrberg AH, Foley S, Svec J (2018) How investible is Bitcoin? Analyzing the liquidity and transaction costs of Bitcoin 

markets. Econ Lett 171:140–143. https:// doi. org/ 10. 1016/j. econl et. 2018. 07. 032
Engelhardt MA (2017) Hitching healthcare to the chain: an introduction to blockchain technology in the healthcare sec-

tor. Technol Innov Manag Rev 7(10):22–34
Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom infla-

tion. Econometrica 50(4):987. https:// doi. org/ 10. 2307/ 19127 73
Fang F, Ventre C, Basios M et al (2022) Cryptocurrency trading: a compre- hensive survey. Financ Innov 8(1):13. https:// doi. 

org/ 10. 1186/ s40854- 021- 00321-6
Feng L, Shi Y (2017) A simulation study on the distributions of disturbances in the GARCH model. Cogent Econ Finance 

5(1). Copyright the Author(s) 2017. Version archived for private and non-commercial use with the permission 
of the author/s and according to publisher conditions. For further rights please contact the publisher, pp 1–19. 
https:// doi. org/ 10. 1080/ 23322 039. 2017. 13555 03

Fermanian J-D (2017) Recent developments in copula models. Econometrics 5(3):34. https:// doi. org/ 10. 3390/ econo metri 
cs503 0034

Fink C, Johann T (2014) Bitcoin markets. SSRN Electron J. https:// doi. org/ 10. 2139/ ssrn. 24083 96
Fisch C (2019) Initial coin offerings (ICOs) to finance new ventures. J Bus Ventur 34(1):1–22
Gao Y, Li Y, Wang Y et al (2019) Asymptotic comparison of three spread estimators based on roll’s model. Physica A 

525:420–432. https:// doi. org/ 10. 1016/j. physa. 2019. 03. 044
Garcia-Jorcano L, Benito S (2020) Studying the properties of the bitcoin as a diversifying and hedging asset through a 

copula analysis: constant and time-varying. Res Int Bus Finance 54:101300. https:// doi. org/ 10. 1016/j. ribaf. 2020. 
101300

Geman H, Price H (2021) Bitcoin spot and derivatives markets: searching for completeness. Risk Decis Anal 
8(3–4):113–125

Ghabri Y, Guesmi K, Zantour A (2021) Bitcoin and liquidity risk diversification. Finance Res Lett 40:101679. https:// doi. org/ 
10. 1016/j. frl. 2020. 101679

Gudgeon L, Perez D, Harz D et al (2020) The decentralized financial crisis. In: pp 1–15
Hartman D, Hlinka J (2018) Nonlinearity in stock networks. Chaos Interdiscip J Nonlinear Sci 28(8):083127
Hartmann P, Straetmans S, Vries CD (2004) Asset market linkages in crisis periods. Rev Econ Stat 86(1):313–326
Hasan M, Naeem MA, Arif M et al (2022) Liquidity connectedness in cryp- tocurrency market. Financ Innov 8(1):3. https:// 

doi. org/ 10. 1186/ s40854- 021- 00308-3
Hasbrouck J, Seppi DJ (2001) Common factors in prices, order flows, and liquidity. J Financ Econ 59(3):383–411. https:// 

doi. org/ 10. 1016/ S0304- 405X(00) 00091-X

https://doi.org/10.1093/rfs/hhn098
https://doi.org/10.1093/rfs/hhn098
https://doi.org/10.1093/rfs/hhu016
https://doi.org/10.1093/rfs/hhu016
https://doi.org/10.1016/j.ribaf.2021.101541
https://doi.org/10.4236/jmf.2020.104030
https://doi.org/10.1016/j.qref.2021.05.005
https://doi.org/10.1016/S0304-405X(99)00057-4
https://doi.org/10.1016/S0304-405X(99)00057-4
https://doi.org/10.2469/faj.v56.n5.2386
https://doi.org/10.1111/j.1540-6261.2012.01729.x
https://doi.org/10.3390/jrfm12030126
https://doi.org/10.1007/978-3-030-13785-4
https://doi.org/10.1016/j.jbef.2019.01.006
https://doi.org/10.1016/j.iref.2022.08.010
https://doi.org/10.1016/j.iref.2022.08.010
https://doi.org/10.2307/1912517
https://doi.org/10.2139/ssrn.2949807
https://doi.org/10.1016/j.irfa.2022.102097
https://doi.org/10.1016/j.econlet.2018.07.032
https://doi.org/10.2307/1912773
https://doi.org/10.1186/s40854-021-00321-6
https://doi.org/10.1186/s40854-021-00321-6
https://doi.org/10.1080/23322039.2017.1355503
https://doi.org/10.3390/econometrics5030034
https://doi.org/10.3390/econometrics5030034
https://doi.org/10.2139/ssrn.2408396
https://doi.org/10.1016/j.physa.2019.03.044
https://doi.org/10.1016/j.ribaf.2020.101300
https://doi.org/10.1016/j.ribaf.2020.101300
https://doi.org/10.1016/j.frl.2020.101679
https://doi.org/10.1016/j.frl.2020.101679
https://doi.org/10.1186/s40854-021-00308-3
https://doi.org/10.1186/s40854-021-00308-3
https://doi.org/10.1016/S0304-405X(00)00091-X
https://doi.org/10.1016/S0304-405X(00)00091-X


Page 29 of 30Zhang et al. Financial Innovation            (2024) 10:3  

Hewa T, Ylianttila M, Liyanage M (2021) Survey on blockchain based smart contracts: applications, opportunities and 
challenges. J Netw Comput Appl 177:102857. https:// doi. org/ 10. 1016/j. jnca. 2020. 102857

SI Hussain, Ruza N, Masseran N et al (2020) Dependence structure between index stock market and bitcoin using time-
varying copula and extreme value theory. In: Proceedings of international conference on advances in materials 
research (ICAMR-2019). Bangalore, India, p 030002. https:// doi. org/ 10. 1063/5. 00180 79

Ji Q, Bouri E, Lau CKM et al (2019) Dynamic connectedness and integration in cryptocurrency markets. Int Rev Financ 
Anal 63:257–272

Joe H (1996) Families of m-variate distributions with given margins and m(m − 1)/2 bivariate dependence parameters. In: 
Rüschendorf L, Schweizer B, Taylor MD (eds) Distributions with fixed marginals and related topics, vol 28. Institute 
of Mathematical Statistics, Hayward, pp 120–141. https:// doi. org/ 10. 1214/ lnms/ 12154 52614

Joe H, Li H, Nikoloulopoulos AK (2010) Tail dependence functions and vine copulas. J Multivar Anal 101(1):252–270
Karolyi GA, Lee K-H, van Dijk MA (2012) Understanding commonality in liquidity around the world. J Financ Econ 

105(1):82–112. https:// doi. org/ 10. 1016/j. jfine co. 2011. 12. 008
Katsiampa P (2019a) An empirical investigation of volatility dynamics in the cryp- tocurrency market. Res Int Bus Financ 

50:322–335
Katsiampa P (2019b) Volatility co-movement between Bitcoin and Ether. Finance Res Lett 30:221–227. https:// doi. org/ 10. 

1016/j. frl. 2018. 10. 005
Kayal P, Rohilla P (2021) Bitcoin in the economics and finance literature: a survey. SN Bus Econ 1(7):88
Kim J-M, Kim S-T, Kim S (2020) On the relationship of cryptocurrency price with US stock and gold price using copula 

models. Mathematics 8(11):1859. https:// doi. org/ 10. 3390/ math8 111859
Koenraadt J, Leung E (2022) Investor reactions to crypto token regulation. Eur Account Rev. https:// doi. org/ 10. 1080/ 

09638 180. 2022. 20903 99
Koutmos D (2018) Return and volatility spillovers among cryptocurrencies. Econ Lett 173:122–127
Kwiatkowski D, Phillips PC, Schmidt P et al (1992) Testing the null hypothesis of stationarity against the alternative of a 

unit root. J Econom 54(1–3):159–178. https:// doi. org/ 10. 1016/ 0304- 4076(92) 90104-Y
Leirvik T (2022) Cryptocurrency returns and the volatility of liquidity. Finance Res Lett 44:102031. https:// doi. org/ 10. 

1016/j. frl. 2021. 102031
Leitch M, Mainelli M et al (2021) Eternal coins? Control and regulation of alternative digital currencies
Lengyel-Almos KE, Demmler M (2021) Is the Bitcoin market efficient? A literature review. Anál Econ 36(93):167–187
Ljung GM, Box GEP (1978) On a measure of lack offitin time series models. Biometrika 65(2):297–303. https:// doi. org/ 10. 

1093/ biomet/ 65.2. 297
Loi H (2017) The liquidity of Bitcoin. Int J Econ Financ 10(1):13. https:// doi. org/ 10. 5539/ ijef. v10n1 p13
Ma R, Marshall BR, Nguyen NH et al (2022) Does Bitcoin liquidity resemble the liquidity of other financial assets? Aust J 

Manag 47(4):729–748. https:// doi. org/ 10. 1177/ 03128 96221 10696 15
Makarov I, Schoar A (2019) Price discovery in cryptocurrency markets. AEA Pap Proc 109:97–99. https:// doi. org/ 10. 1257/ 

pandp. 20191 020
Manahov V (2021) Cryptocurrency liquidity during extreme price movements: is there a problem with virtual money? 

Quant Finance 21(2):341–360
Manimuthu A, Rejikumar G, Marwaha D et al (2019) A literature review on Bitcoin: transformation of crypto currency into 

a global phenomenon. IEEE Eng Manage Rev 47(1):28–35
Mantalos P (2011) Three different measures of sample skewness and kurtosis and their effects on the jarque bera test for 

normality. Int J Comput Econ Econom 2(1):47. https:// doi. org/ 10. 1504/ IJCEE. 2011. 040576
Markowitz H (1952) Portfolio selection. J Finance 7(1):77–91
Marshall BR, Nguyen NH, Visaltanachoti N (2019) Bitcoin liquidity. In: SSRN scholarly paper. Rochester, NY, https:// doi. org/ 

10. 2139/ ssrn. 31948 69
McNeil AJ, Nešlehová J (2009) Multivariate archimedean copulas, d-monotone functions and L1-norm symmetric distri-

butions. Ann Stat 37(5B):3059–3097. https:// doi. org/ 10. 1214/ 07- AOS556
Mokni K, Mansouri F (2017) Conditional dependence between international stock markets: a long memory GARCH-

copula model approach. J Multinatl Financ Manag 42:116–131
Moreno D, Antoli M, Quintana D (2022) Benefits of investing in cryptocurrencies when liquidity is a factor. Res Int Bus 

Finance 63:101751. https:// doi. org/ 10. 1016/j. ribaf. 2022. 101751
Naeem M, Saleem K, Ahmed S et al (2020) Extreme return-volume relationship in cryptocurrencies: tail dependence 

analysis. Cogent Econ Finance 8(1):1834175. https:// doi. org/ 10. 1080/ 23322 039. 2020. 18341 75
Naeem M, Bouri E, Boako G et al (2020) Tail dependence in the return- volume of leading cryptocurrencies. Finance Res 

Lett 36:101326. https:// doi. org/ 10. 1016/j. frl. 2019. 101326
Nakamoto S (2008) Bitcoin: a peer-to-peer electronic cash system. In: Decentralized business review, p 21260
Owais M, Gulzar S et al (2020) Return spillover across Bitcoin markets and foreign exchange pairs dominated in major 

trading currencies. Bus Econ Rev 12(3):123–160
Pradhan AK, Mittal I, Tiwari AK (2021) Optimizing the market-risk of major cryptocurrencies using CVaR measure and 

copula simulation. Macroecon Finance Emerg Mark Econ 14(3):291–307. https:// doi. org/ 10. 1080/ 17520 843. 2021. 
19098 28

Qarni MO, Gulzar S (2021) Portfolio diversification benefits of alternative currency investment in Bitcoin and foreign 
exchange markets. Financ Innov 7(1):1–37

Queiroz MM, Telles R, Bonilla SH (2020) Blockchain and supply chain management integration: a systematic review of the 
literature. Supply Chain Manag Int J 25(2):241–254

Righi MB, Ceretta PS (2013) Estimating non-linear serial and cross-interdependence between financial assets. J Bank 
Finance 37(3):837–846

Sadegh M, Ragno E, AghaKouchak A (2017) Multivariate copula analysis toolbox (MvCAT): describing dependence and 
underlying uncertainty using a Bayesian framework. Water Resour Res 53(6):5166–5183. https:// doi. org/ 10. 1002/ 
2016W R0202 42

https://doi.org/10.1016/j.jnca.2020.102857
https://doi.org/10.1063/5.0018079
https://doi.org/10.1214/lnms/1215452614
https://doi.org/10.1016/j.jfineco.2011.12.008
https://doi.org/10.1016/j.frl.2018.10.005
https://doi.org/10.1016/j.frl.2018.10.005
https://doi.org/10.3390/math8111859
https://doi.org/10.1080/09638180.2022.2090399
https://doi.org/10.1080/09638180.2022.2090399
https://doi.org/10.1016/0304-4076(92)90104-Y
https://doi.org/10.1016/j.frl.2021.102031
https://doi.org/10.1016/j.frl.2021.102031
https://doi.org/10.1093/biomet/65.2.297
https://doi.org/10.1093/biomet/65.2.297
https://doi.org/10.5539/ijef.v10n1p13
https://doi.org/10.1177/03128962211069615
https://doi.org/10.1257/pandp.20191020
https://doi.org/10.1257/pandp.20191020
https://doi.org/10.1504/IJCEE.2011.040576
https://doi.org/10.2139/ssrn.3194869
https://doi.org/10.2139/ssrn.3194869
https://doi.org/10.1214/07-AOS556
https://doi.org/10.1016/j.ribaf.2022.101751
https://doi.org/10.1080/23322039.2020.1834175
https://doi.org/10.1016/j.frl.2019.101326
https://doi.org/10.1080/17520843.2021.1909828
https://doi.org/10.1080/17520843.2021.1909828
https://doi.org/10.1002/2016WR020242
https://doi.org/10.1002/2016WR020242


Page 30 of 30Zhang et al. Financial Innovation            (2024) 10:3 

Saleemi J (2021) COVID-19 uncertainty and Bitcoin market, linking the liquidity cost to the cryptocurrency yields. Finance 
Mark Valuat 7(1):1–11. https:// doi. org/ 10. 46503/ BJWT6 248

Scharnowski S (2021) Understanding Bitcoin Liquidity. Finance Res Lett 38:101477. https:// doi. org/ 10. 1016/j. frl. 2020. 
101477

Schweizer B, Wolff EF (1981) On nonparametric measures of dependence for random variables. Ann Stat 9(4):879–885. 
https:// doi. org/ 10. 1214/ aos/ 11763 45528

Sebastião H, Godinho P (2021) Forecasting and trading cryptocurrencies with machine learning under changing market 
conditions. Financ Innov 7(1):3. https:// doi. org/ 10. 1186/ s40854- 020- 00217-x

Shi S (2017) The impact of futures trading on intraday spot volatility and liquidity: evidence from Bitcoin market. SSRN 
Electron J. https:// doi. org/ 10. 2139/ ssrn. 30946 47

Shumway RH, Stoffer DS (2017) ARIMA models. In: Time series analysis and its applications. Springer Texts in Statistics. 
Springer International Publishing, Cham, pp 75–163. https:// doi. org/ 10. 1007/ 978-3- 319- 52452-8_3

Sklar M (1959) Fonctions de repartition an dimensions et leurs marges. Publ Inst Statist Univ Paris 8:229–231
So MKP, Chu AMY, Lo CCY et al (2022) Volatility and dynamic dependence modeling: Review, applications, and financial 

risk management. WIREs Comput Stat 14(5):e1567. https:// doi. org/ 10. 1002/ wics. 1567
Sun J, Yan J, Zhang KZ (2016) Blockchain-based sharing services: what blockchain technology can contribute to smart 

cities. Financ Innov 2(1):1–9
Syuhada K, Hakim A (2020) Modeling risk dependence and portfolio VaR forecast through vine copula for cryptocurren-

cies. PLOS ONE 15(12):1–34. https:// doi. org/ 10. 1371/ journ al. pone. 02421 02
Tang T, Wang Y (2022) Liquidity shocks, price volatilities, and riskmanaged strategy: evidence from Bitcoin and beyond. J 

Multinatl Financ Manag 64:100729. https:// doi. org/ 10. 1016/j. mulfin. 2022. 100729
Tenkam HM, Mba JC, Mwambi SM (2022) Optimization and diversification of cryptocurrency portfolios: a composite 

copula-based approach. Appl Sci 12(13):6408. https:// doi. org/ 10. 3390/ app12 136408
Theiri S, Nekhili R, Sultan J (2022) Cryptocurrency liquidity during the russia-ukraine war: the case of bitcoin and 

ethereum. J Risk Finance. https:// doi. org/ 10. 1108/ JRF- 05- 2022- 0103
Tiwari AK, Adewuyi AO, Albulescu CT et al (2020) Empirical evidence of extreme dependence and contagion risk 

between main cryptocurrencies. North Am J Econ Finance 51:101083. https:// doi. org/ 10. 1016/j. najef. 2019. 101083
Tootoonchi F, Haerter JO, Räty O et al (2020) Copulas for hydroclimatic applications: a practical note on common miscon-

ceptions and pitfalls. Hydrol Earth Syst Sci Discuss 2020:1–31. https:// doi. org/ 10. 5194/ hess- 2020- 306
Tripathi A, Dixit A, Vipul (2022) Liquidity commonality in the cryptocurrency market. Appl Econ 54(15):1727–1741. https:// 

doi. org/ 10. 1080/ 00036 846. 2021. 19821 28
van den End JW, Tabbae M (2012) When liquidity risk becomes a systemic issue: empirical evidence of bank behaviour. J 

Financ Stab 8(2):107–120. https:// doi. org/ 10. 1016/j. jfs. 2011. 05. 003
Vidyamurthy G (2004) Pairs trading: quantitative methods and analysis, vol 217. Wiley, Hoboken
Wei WC (2018) Liquidity and market efficiency in cryptocurrencies. Econ Lett 168:21–24. https:// doi. org/ 10. 1016/j. econl 

et. 2018. 04. 003
Xu M, Chen X, Kou G (2019) A systematic review of blockchain. Financ Innov 5(1):27. https:// doi. org/ 10. 1186/ 

s40854- 019- 0147-z
Xu Q, Zhang Y, Zhang Z (2021) Tail-risk spillovers in cryptocurrency markets. Financ Res Lett 38:101453
Yarovaya L, Zięba D (2022) Intraday volume-return nexus in cryptocurrency markets: novel evidence from cryptocurrency 

classification. Res Int Bus Finance 60:101592. https:// doi. org/ 10. 1016/j. ribaf. 2021. 101592
Yi S, Xu Z, Wang G-J (2018) Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency? 

Int Rev Financ Anal 60:98–114
Zetzsche DA, Buckley RP, Arner DW et al (2018) The ICO gold rush: it’s a scam, it’s a bubble, it’s a super challenge for 

regulators. In: SSRN scholarly paper. Rochester, NY, https:// doi. org/ 10. 2139/ ssrn. 30722 98
Zhang Z (2021) On studying extreme values and systematic risks with nonlinear time series models and tail dependence 

measures. Stat Theory Relat Fields 5(1):1–25. https:// doi. org/ 10. 1080/ 24754 269. 2020. 18565 90
Zhang Y, Chan S, Chu J et al (2020) On the market efficiency and liquidity of high-frequency cryptocurrencies in a bull 

and bear market. J Risk Financ Manag 13(1):8. https:// doi. org/ 10. 3390/ jrfm1 30100 08
Zivot E (2009) Practical issues in the analysis of univariate GARCH models. In: Mikosch T, Kreiß J-P, Davis RA et al (eds) 

Handbook of financial time series. Springer, Berlin, pp 113– 155. https:// doi. org/ 10. 1007/ 978-3- 540- 71297-8_5
Zulfiqar N, Gulzar S (2021) Implied volatility estimation of bitcoin options and the stylized facts of option pricing. Financ. 

Innov. 7:1–30

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.46503/BJWT6248
https://doi.org/10.1016/j.frl.2020.101477
https://doi.org/10.1016/j.frl.2020.101477
https://doi.org/10.1214/aos/1176345528
https://doi.org/10.1186/s40854-020-00217-x
https://doi.org/10.2139/ssrn.3094647
https://doi.org/10.1007/978-3-319-52452-8_3
https://doi.org/10.1002/wics.1567
https://doi.org/10.1371/journal.pone.0242102
https://doi.org/10.1016/j.mulfin.2022.100729
https://doi.org/10.3390/app12136408
https://doi.org/10.1108/JRF-05-2022-0103
https://doi.org/10.1016/j.najef.2019.101083
https://doi.org/10.5194/hess-2020-306
https://doi.org/10.1080/00036846.2021.1982128
https://doi.org/10.1080/00036846.2021.1982128
https://doi.org/10.1016/j.jfs.2011.05.003
https://doi.org/10.1016/j.econlet.2018.04.003
https://doi.org/10.1016/j.econlet.2018.04.003
https://doi.org/10.1186/s40854-019-0147-z
https://doi.org/10.1186/s40854-019-0147-z
https://doi.org/10.1016/j.ribaf.2021.101592
https://doi.org/10.2139/ssrn.3072298
https://doi.org/10.1080/24754269.2020.1856590
https://doi.org/10.3390/jrfm13010008
https://doi.org/10.1007/978-3-540-71297-8_5

	Relationships among return and liquidity of cryptocurrencies
	Abstract 
	Introduction
	Literature review
	Data and variables
	Methodologies
	Stationary test
	ARIMA models
	GARCH-type models
	Standard GARCH
	EGARCH
	APARCH
	GJR-GARCH

	Copula-based Model

	Results and discussions
	Data pre-processing
	Statistical tests

	ARIMA modeling
	GARCH modeling
	Copula modeling
	Correlations among assets using R-vine copulae
	Copula between log return and liquidity proxies


	Conclusions and outlook
	Acknowledgements
	References


