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Abstract 

In this paper, we propose a simple dynamic mortality model to fit and forecast mortal-
ity rates for measuring longevity and mortality risks. This proposal is based on a meth-
odology for modelling interest rates, which assumes that changes in spot interest 
rates depend linearly on a small number of factors. These factors are identified as inter-
est rates with a given maturity. Similarly, we assume that changes in mortality rates 
depend linearly on changes in a specific mortality rate, which we call the key mortal-
ity rate. One of the main advantages of this model is that it allows the development 
of an easy to implement methodology to measure longevity and mortality risks using 
simulation techniques. Particularly, we employ the model to calculate the Value-at-Risk 
and Conditional-Value-at-Risk of an insurance product testing the accuracy and robust-
ness of our proposal using out-of-sample data from six different populations.
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Introduction
The development of mortality models to describe and forecast mortality rates1 is a cru-
cial element for the accurate pricing of life insurance products, for addressing macroeco-
nomic issues such as the sustainability of public pension systems or for valuing longevity 
derivatives. Furthermore, precise mortality forecasts are a fundamental tool for the 
insurance industry to address the challenges related to mortality and longevity risks. 
Since 2016, European insurance companies have been required to comply with the Sol-
vency II directive, which aims to model and assess all types of risks that insurance com-
panies are exposed to (Börger 2010). In fact, longevity risk, or the risk that the insured 
will survive on average longer or shorter than expected, is a significant risk facing the 
insurance industry.

In recent decades, several mortality models have been developed to describe the 
dynamics of mortality rates as accurately as possible, and some of them have been applied 
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1 We define the mortality rate qx ,t as the probability of an individual aged x in calendar year t dying within one year. For 
a given calendar year t, qx ,t , as a function of x, provides the “mortality curve” of calendar year t, that is, the set of prob-
abilities of individuals aged x (x = 0, 1, 2, . . . , 99) to survive to age x + 1 according to the mortality experience of year t. 
For a given age x, qx ,t , as a function of calendar year t, provides the evolution of mortality rates of individuals aged x over 
time. (See for instance, Pitacco et al. (2009)). We also refer to qx ,t as the “age-specific probabilities” of death in year t and 
at age x.
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to quantify longevity or mortality risks under Solvency II. For instance, Börger (2010) 
used the Lee and Carter (1992) model to analyse the adequacy of the longevity shock 
assumed by the standard model in Solvency II for computing capital requirements. Rich-
ards et al. (2014) presented various proposals for quantifying longevity risk over a one-
year horizon using standard mortality models such as those in Lee and Carter (1992) and 
Cairns et al. (2006). Hari et al. (2008) and Olivieri (2011) applied other sophisticated mor-
tality models to measure the impact of systematic (trend) and nonsystematic (random) 
risks. Börger et al. (2014) proposed a mortality model that specifically focuses on changes 
in the long-term mortality trend over time. Chulia et al. (2016) presented a methodology 
based on differences in mortality rates to estimate longevity and mortality risks.

Furthermore, there is a strand of literature that consists of adapting models that were 
initially developed for modelling the term structure of interest rates to address the 
dynamics of mortality rates. In fact, the term structure of interest rates and the mortal-
ity curve share some common features: just as unexpected changes in interest rates with 
close maturities behave in a similar way, the mortality rates of individuals with close ages 
tend to change together (Li and Luo 2012). This is due to the similarities between the 
force of mortality and the force of interest or between mortality rates and default occur-
rences (Olivieri 2011). Biffis (2005); Biffis and Millossovich (2006), Cairns (2007), Bauer 
et al. (2008) and Bauer et al. (2012), among others, presented stochastic mortality mod-
els that were initially developed for financial purposes. For instance, Bauer et al. (2008) 
presented a theoretical investigation of forwards mortality models driven by finite-
dimensional Brownian motion. Haldrup and Rosenskjold (2019) proposed using a Nel-
son-Siegel model to fit the mortality curve (using French and US data) and showed that 
this approach provides a better fit and out-of-sample accuracy compared to the model in 
Lee and Carter (1992). Xu et al. (2020) also presented a new continuous-time multico-
hort mortality model in an affine framework and demonstrated that their model has bet-
ter results for the Danish mortality data from ages 50–100 compared to other alternative 
models. These proposals were initially developed to solve pricing problems. However, to 
the best of our knowledge, these models have not been used for risk management in the 
context of Solvency II compliance.

Within this strand of literature, Atance et al. (2020a) developed a dynamic mortality 
model inspired by the term structure model suggested by Elton et al. (1990). According 
to Elton et al. (1990), it is assumed that changes in spot interest rates depend linearly on 
a reduced number of interest rates with a particular maturity term, the so called “key 
interest rates”.2 Similarly, Atance et  al. (2020a) assume that changes in mortality rates 
depend linearly on the changes in a particular mortality rate corresponding to a specific 
age. We will refer to this mortality rate as the “key mortality rate”, that is, the mortality 
rate that best explains the behaviour of the entire mortality curve (in our study, from 0 to 
99 years). Therefore, this model can be considered part of the group of mortality models 
inspired by the term structure of the interest rate literature.3

2 This is the spot interest rate (with a given maturity) with the greatest explanatory power with respect to unexpected 
changes in the entire spot interest rate curve.
3 Additionally, this model can be included in the so-called “improvement mortality rate model” group, in contrast to the 
“level mortality model” group, such as the models in Lee and Carter (1992); Renshaw and Haberman (2003); Cairns et al. 
(2009); Dowd et al. (2020) and Richman and Wüthrich (2021). The improved models seem to have a better forecasting 
ability and appear to be a better empirical strategy for fitting and forecasting mortality. See Continuos Mortality Investi-
gation (2009); Mitchell et al. (2013); Chulia et al. (2016) and Dodd et al. (2021).
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Now, the main objective of this work is to adapt and simplify the model to facilitate the 
development of a new methodology to measure the longevity risk for compliance with 
the Solvency II regulation.

To this end, one of the contributions of the paper is the use of a different methodol-
ogy to jointly estimate the key mortality rate and model parameters instead of using the 
two step procedure suggested by Elton et al. (1990) and Atance et al. (2020a). In these 
two previous papers, model parameters (two for each age) are estimated using Ordinary 
Least Squared (OLS). Then, two smooth functions are fitted to these parameter esti-
mates to avoid irregularities. In contrast, in this article, the parameters of these smooth 
functions are directly estimated in a single step while simultaneously selecting the key 
mortality rate.

Additionally, instead of using simple linear regression techniques for estimating the 
model parameters, we assume that the number of deaths of individuals aged x during a 
given period of time follows a binomial distribution. Then, we apply the maximum-like-
lihood to jointly estimate the model parameters and select the key mortality rate. This 
hypothesis and methodology is more in agreement with the assumptions about the dis-
tribution of the number of deaths in the actuarial literature4 and facilitates a comparison 
with alternative models. Moreover, this procedure reduces the number of model param-
eters from 200 to just six5 without decreasing the forecasting ability of the model.

In addition, the model is more robust in the identification of the key mortality rate. In 
fact, the resulting key mortality rates are always with in the range of 84–89 years for all 
populations analysed in this study.6 This result is interesting for several reasons. First, 
it coincides with a critical age in the ageing process identified by Lehallier et al. (2019). 
Second, this key mortality rate can be considered representative of a population group 
of particular interest to the life insurance industry, i.e., those aged 60–65 years and over.

The other main contribution of the paper is the employment of the model for develop-
ing and testing a methodology that uses simulation techniques for longevity risk meas-
urement. This methodology is illustrated with a very simple example to calculate the 
Value at Risk (VaR) and Conditional Value at Risk (CVaR) of life insurance products. We 
show that despite its simplicity, this procedure provides results that are in line with other 
popular and more sophisticated dynamic mortality models.

This paper is organized as follows. First, section “Factor mortality model” presents the 
adaptation of the Elton et al. (1990) model to describe the “mortality curve” behaviour 
and the parameter estimation methodology. In section “Model fitting”, we proceed to 
calibrate the model for the male and female populations of Spain, France and the US. In 
this section, we also implement the proposed methodology for projecting future mor-
tality rates. In section  “Comparison with other alternative dynamic mortality models”, 

4 Assuming that the number of deaths of individuals aged x during a given period of time follows a binomial distribution 
implies that the deaths of individuals are independent of the death or survival rate of other individuals within this popu-
lation. This is a standard assumption in the life insurance literature. See, for instance, Forfar et al. (1988); Pitacco et al. 
(2009); Macdonald et al. (2018); Dickson et al. (2019). Also, many well known mortality models assume this hypothesis 
(see for instance see Brouhns et al. (2002); Renshaw and Haberman (2006) and Cairns et al. (2009)).
5 It is worth noting that most dynamic mortality models require the estimation of more than 200 parameters. This 
reduction in the number of model parameters is a consequence of the new formulation of the model developed in com-
bination with the alternative estimation methodology employed in this paper.
6 In Atance et al. (2020a), the key mortality rates are within the range of 29 years (the lowest) to 91 years (the highest) 
depending on the population under study (male and female populations of France and Spain).
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we compare the goodness of fit and the forecasting ability of the model with some of 
the most popular mortality models. To do so, we use different measures of accuracy 
employing both in-sample and out-of-sample data. Section “Calculating the VaR for lon-
gevity risks” describes how to use this model for measuring longevity risk using simula-
tion techniques through the estimation of the VaR and CVaR of a very simple insurance 
product. Finally, section “Conclusion” presents the main results and conclusions of the 
paper.

Factor mortality model
Based on the Elton et al. (1990) model of the term structure of interest rate and Atance 
et al. (2020a), we restate the model as follows7:

Let qx,t be the probability of an individual aged x in calendar year t dying within one 
year. Then, the proposed model is:

or alternatively:

where,

• �log qx,t  is the change in the logarithm of the mortality rate from t − 1 to t of an 
individual aged x.

• �log
(
qy∗,t

)
 is the change in the logarithm of the key mortality rate8 from t − 1 to t.

• b(x) is a function that describes how mortality rates react to changes in the key mor-
tality rate, qy∗,t ; values of b(x) that are significantly different from zero indicate the 
section of the mortality curve influenced by the key mortality rate.

• α(x) is a function that captures constant yearly changes in log
(
qx,t

)
 for a given age 

x, in particular those changes that are uncorrelated with those in key mortality rate. 
The value of this function depends on age, although for close ages, it does not differ 
significantly since close aged people tend to behave in a similar way. Therefore, α(x) 
must be a sufficiently smooth function.

The line of reasoning behind this model is that the dynamics of the mortality curve are 
governed by two forces. One of them consists of a constant yearly relative change that 
is assumed to be independent of the behaviour of the key mortality rate. This constant 
change is different for each mortality rate, is selected by the function α(x) , and is differ-
ent for children, adults and elderly individuals (Li et al. 2013). The values of this func-
tion are generally expected to be negative as a consequence of the long-term reduction 

(1)�log
(
qx,t

)
= α(x)+ b(x)

[
�log

(
qy∗,t

)]
,

(2)qx,t = qx,t−1 · exp
{
α(x)+ b(x)

[
�log

(
qy∗,t

)]}
,

7 In Atance et al. (2020a), following Elton et al. (1990), the model used to describe mortality rates is:

where αx ,y∗ and bx ,y∗ are parameters that are estimated using OLS. Then, for each age x, we must estimate two param-
eters, which implies the estimation of 200 parameters. In contrast, in this paper, these parameters are substituted by two 
smooth functions α(x) and b(x) that are assumed to depend on a reduced number of parameters.

�log
(
qx ,t

)
= αx ,y∗ + bx ,y∗

[
�log

(
qy∗ ,t

)]

8 We will refer to y∗ as the “key age”, i.e., the age corresponding to the key mortality rate.
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in mortality rates due to nondisruptive improvements in medicine, nutrition, lifestyle, 
etc. (Vékás 2020). However, for some ages, this function can also take positive values 
above all if the decreasing trend of a particular mortality rate is mainly captured by the 
key mortality rate. The second force that governs the behaviour of the mortality curve is 
the changes in the key mortality rate. The corresponding age of this key mortality rate 
indicates the position of the section in the mortality curve where intense changes in its 
shape are taking place with a significant impact on the overall number of deaths. This 
key mortality rate will be chosen as the one with the highest explanatory power with 
respect to the entire set of mortality rates considered in this study.

In fact, we can distinguish three parts of the mortality curve. For those ages far enough 
from the key mortality rate, changes in mortality rates are described mainly by α(x) . In 
contrast, for those ages very close to the key mortality rate, the value of function α(x) 
is very close to zero since the behaviour of these mortality rates is mainly explained by 
changes in the key mortality rate. Moreover, for x = y∗ , α

(
y∗
)
 must be equal to zero. 

Finally, there is a third set of mortality rates with mixed behaviour: a combination of 
constant changes and reactions to changes in the key mortality rate. It should be noted 
that this function α(x) does not appear in the original paper of Elton et al. (1990) about 
the term structure of interest rates.

We assume that both functions, α(x) and b(x) , depend on a reduced number of param-
eters. Furthermore, these functions must be sufficiently smooth, since the values of these 
two functions for mortality rates corresponding to close ages cannot differ significantly. 
Additionally, these functions must satisfy that for x = y∗ , α

(
y∗
)
= 0 and b

(
y∗
)
= 1 . 

These constraints on α(x) and b(x) are necessary for the model internal consistency.9 The 
particular functional forms finally chosen for α(x) and b(x) are described in the next sec-
tion together with the methodology applied to estimate their parameters.

Functions α(x) and b(x)

Before determining the key age, y∗ , it is necessary to specify the functions α(x) and b(x) 
to be used for describing the behaviour of mortality rates. To do so, we eventually chose 
two very simple functions to reduce the number of model parameters. Therefore, for 
α(x) , we use a cubic function that satisfies the constraint, α

(
y∗
)
= 0,

We eventually decided to choose a cubic function because, despite its simplicity, it allows 
us to capture the constant changes in mortality rates that are assumed to be uncorre-
lated with changes in the key mortality rate.10

(3)α(x) = a1 ·
(
x − y∗

)
+ a2 ·

(
x − y∗

)2
+ a3 ·

(
x − y∗

)3
.

9 Recall that:

and for x = y∗ , we have:

Therefore α(x) and b(x) must satisfy α(y∗) = 0 and b(y∗) = 1 . These constraints are different from those placed on the 
parameters of many mortality models that are introduced to ensure unique parameter estimates since they are only 
identifiable up to a transformation (see Villegas et al. (2018)). This issue does not appear in our model.

�log
(
qx ,t

)
= α(x)+ b(x)

[
�log

(
qy∗ ,t

)]
,

�log
(
qy∗ ,t

)
= α

(
y∗
)
+ b

(
y∗
)[
�log

(
qy∗ ,t

)]
.

10 Other more complex functions for α(x) have been considered, for example spline functions, but the results did not 
significantly improve and this cubic function requires fewer parameter estimates.
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We also need a function, b(x) , to describe the sensitivities of mortality rates to changes 
in the key mortality rate. As mentioned earlier, this function must satisfy the constraint 
b
(
y∗
)
= 1 and must be smooth enough, as the sensitivities of mortality rates for indi-

viduals with very close ages must have close values. Finally, we choose a very simple bell-
shaped parametric function:

where β1 and β2 are parameters to be estimated. β1 and β2 represent the floor level and 
the width of the bell around the key age, respectively. Recall that b(x) captures the sen-
sitivity of mortality rates to changes in the key mortality rate. For instance, if b(x) = 0.5 , 
then a 1% yearly increase in the mortality rate of the key age y∗ would imply an expected 
yearly change of 0.5% in the mortality rate of an individual aged x plus the value of α(x) , 
which is independent of the behaviour of the key mortality rate.

Model calibration

A typical methodology for estimating mortality model parameters consists of applying 
the maximum likelihood criterion (Brouhns et al. 2002; Renshaw and Haberman 2006; 
Cairns et al. 2009; Villegas et al. 2018). However, this approach implies the need to make 
an assumption about the distribution of the number of deaths.11

Thus, let ϑ̃x;t be a random variable representing the number of deaths of individuals 
aged x (last birthday) during period t in a given population. In this paper, we assume that 
ϑ̃x;t follows a binomial distribution. Particularly, we assume the following:

where E0
x,t is the initial exposure to the risk of individuals aged x (last birthday) during 

period t, and q̂x,t−1 =
ϑx,t−1

E0
x,t−1

 , ϑx,t−1 is the actual number of deaths of individuals aged x 

during period t − 1.12

Therefore, the likelihood function is:

where θ is the set of parameters of the functions α(x) and b(x).

(4)b(x) = β1 · exp
{
−β2

(
x − y∗

)2}
+ (1− β1),

(5)ϑ̃x,t ∼ B
(
E0
x,t; qx,t

)
with qx,t = q̂x,t−1 · exp

{
α(x)+ b(x) ·�log

(
q̂y∗,t

)}
,

(6)
L
(
θ , y;ϑx,t

)
=

(
E0
x,t

ϑx,t

)
·
[
q̂x,t−1 · exp

{
α(x)+ b(x) ·�log

(
q̂y∗,t

)}]ϑx,t

·
[
1− q̂x,t · exp

{
α(x)+ b(x) ·�log

(
q̂y∗,t

)
+
}]E0

x,t−ϑx,t ,

11 The most usual assumptions about the distribution of the number of deaths of people aged x during a given period 
t are the binomial and Poisson distributions (Brouhns et al. 2002; Renshaw and Haberman 2006), although other func-
tions have also been employed, such as Gamma (Li et al. 2009) or Negative Binomial (Delwarde et al. 2007b; Dodd et al. 
2021) functions.
12 The estimate of qx ,t might be zero although this is very unlikely for large populations such as those analysed in this 
paper. It could only happen at ages around x = 10 , where mortality rates reach their minimum value. In this case, 
smoothing techniques could be applied to the data around these ages to avoid this problem. Additionally, for small pop-
ulations, qx ,t could be estimated using alternative methodologies (see, for instance, Navarro (1991)).
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Therefore, to determine the key mortality rate qy∗,t , we proceed as follows. Let y be any 
age that is considered a candidate for the key age. From Eq. (6), if the potential key age is 
y, the logarithm of the joint likelihood function13 is given by:

Then, for each age y that can potentially be considered a key age, we estimate the param-
eters θ that maximize the log-likelihood function. In this work, the candidate key age 
is always an integer age from 0 to 99. Finally, once the log-likelihood function has been 
optimized for each age from 0 to 99, the key age is chosen as the one that provides the 
maximum value for the log-likelihood function. That is, the key age, y∗ , is the age such 
that:

This methodology can also be applied using a different objective function, for instance, 
by estimating the model parameters using OLS. In fact, we can also analysed the latter 
alternative. In this case, the resulting optimal key mortality rates are very unstable (rang-
ing from 3 years to 89 depending on the population). However, the forecasting ability of 
the model using OLS to estimate model parameters is not very different except in the 
case of the population of Spain, where the maximum likelihood produces clearly better 
results.

In addition, the main differences and contributions of this paper compared to those of 
Atance et al. (2020a) can be described as follows:

• Instead of using OLS and linear regression techniques, we employ maximum likelihood 
techniques to estimate model parameters. This approach is more consistent with the 
actuarial literature, as demonstrated by Brouhns et al. (2002); Renshaw and Haberman 
(2006); Cairns et al. (2009); Villegas et al. (2018).

• Our methodology allows the simultaneous estimation of model parameters and the 
selection of the key mortality rate in a single step. This differs from Atance et al. (2020a), 
which requires two steps to obtain the key mortality and parameter estimates.

• We significantly reduce the number of model parameters from 200 to six. Notably, most 
dynamic mortality models require the estimation of more than 200 parameters.

• Our results are more robust in selecting the key mortality rate, which is consistently 
located in the age range between 84 and 89 years for all populations. This is an impor-
tant finding, as this model focused on the age group of most interest for the life insur-
ance industry.

• Finally, we propose a methodology that can be easily employed for longevity risk meas-
urement using simulation techniques. This is an issue not addressed in Atance et  al. 
(2020a).

(7)

�
(
θ; y;ϑx,t

)
=

∑

x,t

ϑx,t · log
[
q̂x,t−1 · exp

{
α(x)+ b(x) ·�log

(
q̂y,t

)}]

+

(
E0
x,t − ϑx,t

)
· log

[
1− q̂x,t−1 · exp

{
α(x)+ b(x) ·�log

(
q̂y,t

)
+
}]

+ C .

(8)max
y

max
θ

�
(
θ , y;ϑx,t

)
.

13 See, for instance, Forfar et al. (1988) or Pitacco et al. (2009).
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Model fitting
Data

To calibrate the model, we use data from three countries, Spain, France and the US. The 
last two countries have quite different population sizes and correspond to different geo-
graphical areas, so they are adequate for testing the robustness of the model. Figure 1 
shows the population pyramids of the three countries corresponding to the year 2006. 
We always distinguish between male and female populations.

The data cover the period 1975–2018 and ages from 0 to 99 years. We divide the sam-
ple into two subperiods. The first subset, from 1975 to 2006, will be used to fit the model, 
and the second subset (from 2007 to 2018) will be used to test its forecasting power and 
the accuracy of the longevity risk measures.

The mortality data are downloaded using the library HMDHFDplus14 (Riffe 2015) and 
are obtained from Human Mortality Database (2022). Human Mortality Database (2022) 
provides the number of deaths of individuals aged x (last birthday) during each year of 
the sample period 

(
ϑx,t

)
 and the central exposure to risk for individuals aged x during 

year t, Ec
x,t.

Therefore, the initial exposures to risk of individuals aged x during year t are obtained 
as follows:

where hx,t is defined as the average period of life at age x for those who die at age x (last 
birthday) during year t. If we assume, as usual,15 that individuals aged x die uniformly 
during year t, this value can be approximated by 0.5. However, this is not true for individ-
uals who die at age x = 0 (last birthday) since most of these individuals die a few hours 

(9)E0
x,t ≈ Ec

x,t + (1− hx,t) · ϑx,t for x = 0, 1, 2, . . . , 99,

Fig. 1 Population pyramids for the central exposure to risk of individuals during 2006 in groups of five ages 
of males and females in Spain, France and the US

14 The library demography (Hyndman et al. 2017) is also available for download data from Human Mortality Database 
(2022).
15 See, for instance, Forfar et al. (1988); Pitacco et al. (2009); Macdonald et al. (2018); Dickson et al. (2019).
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or days after birth. In this case, the value of h0,t is between 0.11 and 0.14 depending on 
the population and the year of observation. These data were obtained from Human Mor-
tality Database (2022), and they are available for all ages, years and countries.

Once, we obtain the data for E0
x,t , mortality rates can be estimated as q̂x,t = ϑx,t/E

0
x,t.

Figure 2 shows the mortality curves16 during some years of the sample period (1975, 
1985, 1995, 2005 and 2015). We have highlighted with black boxes the sections of the 
mortality curve that experience some of the most relevant changes during the sample 
period. One of these changes was a consequence of the significant decline in mortality 
rates that occurred during the sample period in the 60–80 age group, while during the 
same period, mortality rates remained almost constant for the oldest people (90 years 
and older). This fact caused a pronounced change in the slope of the right leg of the 
mortality curve. Additionally, during the 1990 s, mortality rates for the 20–45 age group 
experienced a large increase, followed by a sharp decline. This was a consequence of 
the outbreak of the AIDS pandemic and drug use that primarily affected male popula-
tions (Ho and Hendi 2018; Murphy et al. 2018; Shiels et al. 2019; Glei and Preston 2020). 
After the appearance of medical treatments for the disease, mortality rates experienced 
a strong drop during the early 2000 s. Therefore, the key mortality rate should be located 
in one of these two sections of the mortality curve where mortality rates experienced 
intense and highly correlated movements.

Model calibration

Figure 3 plots the optimal values of �
(
θ̂ , y;ϑx,t

)
 for each population (male and female 

populations of Spain, France and the US) for each potential key age y. This figure can be 
interpreted as the explanatory power of each mortality rate (from 0 to 99) with respect 
to the entire mortality curve. θ̂ represents the set of maximum likelihood parameter esti-
mates of functions α(x) and b(x) . The optimal key age of each population and the esti-
mates of the model parameters are shown in Table 1 together with the optimal value of 
the log-likelihood function.

It is worth noting some common features of function �
(
θ̂ , y;ϑx,t

)
 for the six popula-

tions under study (Fig. 3). As seen in Table 1, the key ages for all of them are concen-
trated in the age range of 84–89 years. These ages are in the middle of one of the two 
sections of the mortality curve where mortality rates experienced the intense and highly 
correlated movements described above.

Additionally, it should be noted that the key ages are concentrated in the range of ages 
most impacted by COVID-19, a phenomenon that took place after the sample period. 
Indeed, as reported by Centers for Disease Control and Prevention and Others (2020), 
approximately 80% of COVID-19 deaths occur in people older than 65 years. Thus, the 
key mortality rate may be considered a representative of the age group most affected by 
the pandemic, although this question requires further research.

In the case of the male populations of Spain and the US, we can observe another com-
mon feature. Function �

(
θ̂ , y;ϑx,t

)
 presents a double hump. One of them is located 

around the key age, and the other one is positioned at approximately 30 years old. This 

16 Mortality rates are expressed in logarithms for illustrative purposes.



Page 10 of 30Atance and Navarro  Financial Innovation           (2024) 10:61 

latter hump, where function �
(
θ̂ , y;ϑx,t

)
 has a local optimum, is probably linked to the 

impact of AIDS and drug consumption (or the combined effect of both) in the male pop-
ulations of Spain and the US during the 1980 s and 1990 s. According to Ho and Hendi 
(2018), Murphy et al. (2018), Shiels et al. (2019) and Glei and Preston (2020), the number 
of deaths related to drug consumption in the 1990 s was much higher for men than for 
women. In addition, AIDS affected the male population more severely, particularly in 
both Spain and the US. In the case of Spain, according to Felipe et al. (2002), Guillen and 
Vidiella-i Anguera (2005) and Debón et al. (2008), AIDS caused a dramatic increase in 
mortality rates followed by a very sharp decline when new therapies against the disease 
were discovered. These facts may explain why this local maximum appears only in the 
male populations of Spain and the US.

Figures 4 and 5 show the values of the functions b̂(x) and α̂(x) for the male and female 
populations of each country. We can see that the shape of the function b̂(x) is similar for 

Fig. 2 Evolution of mortality curves (in logarithms) from age 0 to 99 a Spain male, b France male, c US male, 
d Spain female, e France female and f US female, in 1975, 1985, 1995, 2005 and 2015

Fig. 3 Values of �
(
θ̂ , y;ϑx ,t

)
 as a function of each potential key age y covering the period 1975–2006
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all populations. It takes a constant value close to zero for ages between zero and approxi-
mately sixty, followed by a hump centred at the key age, y∗ , where it reaches a maximum 
value that is equal to one. This hump, which lies in the range of ages between 60 and 99 
years, indicates the age group in which mortality rates are influenced by the key mortal-
ity rate dynamics. Changes in mortality rates below age sixty are captured by the func-
tion α̂(x) . The only exception to this common feature is the US female population, where 
the key age influences, to some extent, the entire mortality curve, including the young 
ages. This result seems to reflect a behaviour of the US female population that differs 
from the other populations analysed in this paper.

As shown in Fig. 4, the function α̂(x) presents a saddle shape. The values of α̂(x) are 
negative from zero to the key age, y∗ , while the values are positive or close to zero for 
ages above y∗ . It is worth noting that when the values of b̂(x) are close to zero (from 0 
to 60 years), it is the value of α̂(x) that determines the relative yearly improvements in 
mortality rates. It can be observed that the values of α̂(x) between 20 and 60 years of 
age are more negative for women than for men in the Spanish population, revealing a 
more intense improvement in the mortality rates for the female population during the 
sample period in this section of the mortality curve. In the French population, mor-
tality improvements were similar for both the male and female populations in this age 
range. However, for US populations, the values of α̂(x) between 20 and 60 years old are 
higher for women than for men. It should be noted that this result is conditioned by the 

Table 1 Parameter estimates corresponding to optimal key age for the sample period 1975–2006

The values obtained by maximizing Eq. (16). â1 , â2 and â3 are presented and multiplied by 10E8, 10E10 and 10E12, 
respectively

Country Spain France US

Number of obs. = 100 Male Female Male Female Male Female

Key age y∗ 86 84 84 87 88 89

â1 13087.80 10843.09 10555.25 11900.70 15586.30 8171.63

â2 40401.92 18785.59 25172.04 26877.36 43259.22 22520.62

â3 37576.01 14765.81 21535.83 20741.47 33526.75 18785.48

β̂1 0.7500 0.7507 0.8865 0.8271 0.9269 0.6720

β̂2 0.0061 0.0055 0.0028 0.0044 0.0038 0.0092

Log-likelihood − 17894.68 − 16691.23 − 18228.02 − 17224.09 − 27026.39 − 24633.27

Fig. 4 Estimated values of function α̂(x) for Spain, France and the US, which measures the constant 
improvements in the mortality rate independent of the behaviour of the key age, 1975–2006
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estimated value of the parameter β1 for the US female population, which makes function 
b̂(x) take values close to 0.4 (see Fig. 5) for all ages below 60. This means that mortality 
improvements for ages under 60 for the female US population have two components: on 
the one hand, a decreasing trend determined by the value of α̂(x) and a second compo-
nent linked to changes in the key mortality rate that seems to influence the behaviour of 
the entire mortality curve.

Correlation structure of mortality rates

To check the model’s ability to measure longevity risk, it is important to analyse whether 
the actual correlation structure among mortality rates corresponding to different ages is 
consistent with the theoretical correlation derived from the model (1).

Once, the model parameters and the key age have been estimated, model (1) can be 
rewritten as:

where α̂(x) and b̂(x) are the estimated functions of the model, as described in section 
“Model calibration” and Table 1, and εx,t is an error term uncorrelated with the key age 
mortality rate. Then, the variance in the change in the logarithm of mortality rates is 
given by:

Thus, the correlation between changes in the logarithm of two mortality rates qx,t and 
qz,t is given by:

In particular, when age z is the key age y∗ , (12) becomes:

(10)�log
(
qx,t

)
= α̂(x)+ b̂(x)

[
�log

(
qy∗,t

)]
+ εx;t ,

(11)Var
(
�log

(
qx,t

))
= b̂(x)2Var

(
�log

(
qy∗,t

))
+ Var

(
εx,t

)
.

(12)

ρ
(
�log

(
qx,t

)
,�log

(
qz,t

))
=

b̂(x)b̂(z)Var
(
�log

(
qy∗t

))
(√

b̂(x)2Var
(
�log

(
qy∗ ,t

))
+ Var

(
εx,t

))(√
b̂(z)2Var

(
�log

(
qy∗ ,t

))
+ Var

(
εz,,t

))

(13)

ρ
(
�log

(
qx,t

)
,�log

(
qy∗,t

))
=

b̂(x)Var
(
�log

(
qy∗t

))
(√

b̂(x)2Var
(
�log

(
qy∗,t

))
+ Var

(
εx,t

))(√
Var

(
�log

(
qy∗,t

))) ,

Fig. 5 Estimated values of function b̂(x) for Spain, France and the US, which measures the sensitivity of 
mortality rates to changes in the key mortality rate, 1975–2006
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as b̂
(
y∗
)
= 1 and εy∗,t = 0 . Therefore, it is necessary to show whether the actual correla-

tion values conform at least qualitatively to the expected pattern of correlation (13). To 
do so, we estimate the variance of �log

(
qy∗,t

)
 and εx,t as follows:

where εx,t = �log
(
q̂x,t

)
−

[
α̂(x)+ b̂(x) ·�log

(
q̂y∗,t

)]
 and �log

(
q̂y∗,t

)
 is the sample 

mean of the changes in the logarithm of the key mortality rate.
Figures 6, 7 and 8 display the actual values of the correlations between changes in the 

logarithm of mortality rates and changes in the logarithm of the key mortality rate and 
the correlations derived from formula (13). As shown, the structure of the theoretical 
correlations derived from the model adequately captures the actual correlation among 
mortality rates. Figures  6, 7 and 8 are essential to understanding the applicability of 
the model for longevity management. What this analysis of the correlations reveals is 
that changes in the key mortality rate are strongly correlated with changes in rates of 
neighbouring ages. Indeed, the larger the set of mortality rates correlated with the key 
mortality rate and the higher the correlation are, the greater the explanatory power of 
the model and, likely, its forecasting ability. As shown, there are almost 30 mortality 
rates around the key age with a correlation of at least 40% with the key mortality rate. 
It is important to note that α(x) is close to zero for the age range of 60–90 years and 
it is mainly the value of b(x) ·�log

(
qy∗,t

)
 that explains the changes in this leg of the 

mortality curve. Function b(x) mirrors this structure of correlations and allows us to 
understand why the key mortality rate is effective in fitting and forecasting changes 
in mortality rates. However, when the age gap with respect to the key mortality rate 
becomes wide and the correlation decreases, function b(x) approaches values close to 
zero. In fact, for ages below 60, function α(x) is responsible for capturing the changes in 
mortality rates.

(14)Var
(
�log

(
q̂y∗,t

))
=

∑2006
t=1976

(
�log

(
q̂y∗,t

)
−�log

(
q̂y∗,t

))2

N − 1
;

(15)Var
(
εx,t

)
=

∑2006
t=1976 ε

2
x,t

N − 1
;

Fig. 6 Values of the actual and theoretical correlations between �log
(
q̂x ,t

)
 and �log

(
q̂y∗ ,t

)
 for x = 0 to 99. a 

Spain male and b Spain female, 1975–2006
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Mortality rate projection

Figure 9 shows the evolution of the key mortality rates during period 1975–2006 for the 
six populations (used for estimating model parameters) and period 2007–2018, which 
is used for out-of-sample testing. For Spain and France, it can be seen that log

(
q̂y∗,t

)
 

declined over the period 1975–2006, highlighting the mortality improvement expe-
rienced by the elderly in these two countries (see Glei and Horiuchi (2007), Rau et al. 
(2008) and Christensen et al. (2009)).17 This trend continued during the out-of-sample 
period (2007–2018) in the male and female populations of both Spain and France.

In contrast, the behaviour of the US populations exhibited a different pattern. The male 
population mortality rate experienced a very slight decline during the 1980 s, remained 
nearly constant during the 1990 s, and began to clearly fall after 2003. For the US female 
population, changes in mortality rates have been negligible since the mid-1980  s. In 
fact, during the 1990 s there was a rebound in mortality rates due to an increase in can-
cer deaths among the US population over 75 years of age that particularly affected the 
female population (Gorina et  al. 2005; Velez 2007). However, from 2003 onwards, the 
key mortality rates of both populations experienced a sharp decline. This erratic behav-
iour of the US elderly mortality rates over the in-sample period will have implications for 
the prediction of future mortality rates for the US male and female populations. Another 

Fig. 7 Values of the actual and theoretical correlations between �log
(
q̂x ,t

)
 and �log

(
q̂y∗ ,t

)
 for x = 0 to 99. a 

France male and b France female 1975–2006

Fig. 8 Values of the actual and theoretical correlations between �log
(
q̂x ,t

)
 and �log

(
q̂y∗ ,t

)
 for x = 0 to 99. a 

US male and b US female 1975–2006

17 The decline in mortality rates for people in the Spanish and French populations around the key mortality rate dur-
ing the period 1975–2006 were between 25.25% and 31.71%. The decrease in the age range 30–60 was between 7% and 
15.81% in the same period.
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issue of particular interest is that the erratic behaviour of the mortality of the elderly 
over the in-sample period will have implications for predicting future mortality rates in 
the United States.

To forecast future mortality rates, we consider (10). By rearranging the terms, we can 
obtain the following equation:

where εx,t is an error term with zero mean. Now, following most of the literature about 
dynamic life tables (see Debón et  al. (2008); Haberman and Renshaw (2011); Villegas 
et al. (2018)), to forecast future mortality rates, we assume that the logarithm of the key 
mortality rate follows an ARIMA process.

In this way, it is possible to obtain estimates of the expected future values of the key 
mortality rate and from Eq. (16), estimates of the expected future values of the remain-
ing mortality rates.

The auto.arima and forecast functions of the “forecast” library (Hyndman and Khanda-
kar 2008) are used to project future mortality rates. In particular, we apply the AIC18 to 
select a model from the ARIMA (p,d,q) family that best fits the time series of log

(
q̂y∗,t

)
 . 

The data from 1975 to 2006 were used to estimate the mortality model parameters ( a1 , 
a2 , a3 , β1 , β2 and y∗ ) and the ARIMA model parameters. Table 2 shows the ARIMA pro-
cess selected for each key mortality rate.

Figure 9 shows the actual values of the key mortality rates from 1975 to 2018, along 
with expected values of future mortality rates (from 2007 onwards) according to the 
ARIMA process selected to model each key mortality rate. The real data are plotted with 
a black line, and the red line represents the mortality rate forecasts.

(16)log
(
q̂x,t

)
= log

(
q̂x,t−1

)
+ α̂(x)+ b̂(x) ·

[
log

(
q̂y∗,t

)
− log

(
q̂y∗,t−1

)]
+ εx,t ,

Fig. 9 Forecast of the logarithms of the key age mortality rates log
(
q̂y∗ ,t

)

18 More precisely we apply the corrected AIC for small samples. See Yang (2019).
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In contrast to France and Spain, the US mortality rates projected by the ARIMA mod-
els do not appear to be adequately. Indeed, the flat projections of the ARIMA model are 
clearly unsatisfactory when we see the path followed by US mortality rates after the end 
of the in-sample period 2006. This result is a consequence of the erratic behaviour of 
the mortality of the elderly US population described above. One possible way to address 
with this problem is to enlarge (backwards) the size of the in-sample period. We have 
kept it unchanged (1975–2006) to maintain consistency across the populations.

To forecast the remaining mortality rates, we apply (16) for the expected values of the 
mortality rates for 2007 to 2018, which are given by:

The forecasting errors for our factor model (FM) are calculated according to the follow-
ing equations:

The factor model forecasting errors are plotted in Fig.  10 for the “Spanish male 
population”.19

We present the forecasting error in two different ways. The left panel (a) shows twelve 
forecast errors corresponding to each of the out-of-sample years (from 2007 to 2018) for 
each age (from 0 to 99 years). The right panel (b) presents the forecasting errors of all 
ages from 0 to 99 years for each out-of-sample year (from 2007 to 2018) covered in this 
study.

A common feature of all populations is that the error terms are wider for young and 
very old populations. This is a result in the variability of mortality rates when the num-
ber of deaths is small (in the case of the youngest populations) or when the exposed to 
risk is also small (such in the case of the most advanced ages). In fact, this effect is much 
smaller for the US populations due to the larger size of its population.

(17)
Et−1

[
log

(
qx,t+i

)]
= log

(
q̂x,t−1

)
+ (i + 1) · α̂(x)

+ b̂(x) · Et−1

[
log

(
q̂x,t+i

)
− log

(
q̂x,t−1

)]
,

i = 0, 1, 2, . . . , 11 and t = 2007.

(18)εx,t+i = log
(
q̂x,t+i

)
− Et−1

[
log

(
q̂x,t+i

)]
, i = 0, 1, . . . , 11.

Table 2 ARIMA (p,d,q) process selected to model the key mortality rate according to the corrected 
AIC 1975–2006

Population ARIMA model for log
(
q̂y∗ ,t

)

Spain male ARIMA (0, 1, 1) with drift

Spain female ARIMA (1, 1, 0) with drift

France male ARIMA (1, 1, 0) with drift

France female ARIMA (0, 1, 1) with drift

US male ARIMA (0, 1, 0)

US female ARIMA (0, 1, 0)

19 The forecasting errors of the other populations are available upon request to the authors.
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Comparison with other alternative dynamic mortality models
Benchmark models

In this section, we present the mortality models used as benchmarks and how to fit and 
forecast their age-specific mortality rates. These alternative models are the first version 
of Lee and Carter (1992) (LC) and the improved Lee–Carter (ILC) mortality model pro-
posed by Mitchell et al. (2013). LC is one of the most employed mortality models due to 
the simplicity of its parameter estimation, the easy interpretation of its parameters, its 
parsimony and its forecasting accuracy (Booth et al. 2002; Haberman and Renshaw 2011; 
Atance et al. 2020b). ILC is included to present another model based on level improve-
ments (in line with the factor model) and due to its predictive power (see Mitchell et al. 
(2013)). In Table 3, we indicate some of their main features.20

To estimate model parameters, we apply the StMoMo library developed by Villegas 
et al. (2018), which is a package for fitting stochastic mortality models in Core (2021). 
The package also provides mortality rate forecasts according to different models. To cali-
brate ILC, an improved mortality model, we employ the R package IMoMo developed 
by Hunt and Villegas (2021), which is an extension of the StMoMo library (Villegas et al. 
2018). Both the IMoMo and StMoMo packages employ a GLM to calibrate the models.21

Fig. 10 Forecasting errors in the male population of Spain. 2007–2018 a Errors for each age and b errors for 
each out-of-sample year

Table 3 Summary of alternative dynamic mortality models used as benchmarks

Mortality model Formula Constraints References Num. of 
parameters

Lee–Carter (LC) logit
(
qx ,t

)
= a+ b

(1)
x · k

(1)
t

∑
x b

(1)
x = 1;  Lee and Carter (1992) 232

∑
t k

(1)
t = 0.

Improvement Lee–Carter 
(ILC)

log
(

qx ,t
qx ,t−1

)
= a+ b

(1)
x · k

(1)
t

∑
x b

(i)
x = 1; Haberman and Renshaw 

(2012),Mitchell et al. 
(2013)

231

∑
t k

(i)
t = 0.

20 For the sake of brevity, in this paper, we only present two alternative models. Other more complex models have been 
analysed, such as Renshaw and Haberman (2003) and Plat (2009). The outcomes corresponding to these models are 
available upon request to the authors.
21 According to Debón et al. (2008) generalized linear models (GLMs) produce better in-sample fit outcomes compared 
with the use of Singular Value of Descomposition (SVD) and maximum likelihood criterion.
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Fitting accuracy of the model

To evaluate and compare the fitting quality of the models included in this study, we 
use different measures that are applied to the sample period, 1975–2006. First, we use 
nonpenalized measures, which do not take into account the number of parameters of 
the model. These measures are the Sum of Squared Errors (SSE); Mean Absolute Error 
(MAE) and Mean Absolute Percentage Error (MAPE), which are defined as follows:

where qsx,t are the fitted values of mortality rates using model s and N is the number of 
observations (in this case N = 100 · 31 = 3100).

Second, we apply penalized measures to consider the risk of overparametrization. 
These measures not only consider the fitting errors but also the number of parameters 
of each model and provide a balance between the goodness of fit and parsimony. In this 
case, we apply two well-known criteria: AIC and BIC22 (Akaike 1974; Schwarz 1978);

where l̂ is the optimal value of the likelihood function and np is the number of model 
parameters. To obtain the value of l̂ , we assume that the number of deaths follows a 
binomial distribution, as described in section “Model calibration”.

Table  4 summarizes the values of both penalized and nonpenalized measures using 
data from the period 1975–2006 for the three models distinguished by sex and coun-
try. The factor model only needs the estimation of six parameters (see Table 1), and the 
number of parameter estimates required by LC and ILC are shown in Table 3. According 
to the nonpenalized measures, the model with the best performance is ILC. The factor 
model is the second best with AIC and BIC values very close to those of ILC. When 
applying the penalized measures, the factor model is favoured due to its reduced num-
ber of parameters. In summary, the factor model provides fitting results that are in line 
with those of LC or ILC.
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∑
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log
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)
− log

(
qsx,t

)

log
(
q̂x,t

)
∣∣∣∣∣,

x =0, 1, 2, . . . , 99; t = 1975, 1976, . . . , 2006.

(22)AIC =− 2 · log
(
l̂
)
+ 2 · np,

(23)BIC =− np · log(N )− 2 · log
(
l̂
)
,

22 AIC and BIC have been used by several authors in the literature to compare the goodness of fit of mortality models. 
See for instance Delwarde et al. (2007a), Cairns et al. (2009), Plat (2009), Haberman and Renshaw (2011), Danesi et al. 
(2015), Neves et al. (2017), Enchev et al. (2017) and Chen and Millossovich (2018).
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Forecasting ability of the model

After analysing the goodness of fit, we proceed to evaluate the forecasting ability of the 
three models, including our approach. As before, we used different criteria to measure 
the results:

where qsx,t denotes the mortality rate forecasts using model s and n is the number of 
observations; in this case, n = 100 · 12 = 1200.

Table 5 shows the results of the forecasting ability of the dynamic mortality models. 
The most remarkable outcome is that the factor model yields the lowest values of SSE, 
MAE and MAPE for all six populations (see Table 5). This outcome contrasts with the 
results obtained when comparing the in-sample fitting accuracy. These results provide 
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x =0, 1, 2, . . . , 99; t = 2007, 2008, . . . , 2018.

Table 4 Goodness of fit of alternative dynamic mortality models

Spain, France and the US (males and females), 1976–2006

Sex Male Female

Measure/Model FM LC ILC FM LC ILC

Num. of parameters 6 232 231 6 232 231

Country Spain

 AIC 36046.63 46449.52 35022.78 33814.05 31863.87 32391.50

 BIC 36082.87 47838.52 36405.75 33850.29 33252.87 33774.47

 SSE 28.1986 46.9184 26.6321 44.6881 36.5730 42.1327

 MAE 0.0609 0.0739 0.0585 0.0741 0.0675 0.0706

 MAPE 0.0135 0.0146 0.0128 0.0129 0.0113 0.0119

Country France

 AIC 36468.05 41579.91 35518.20 34460.17 33370.97 33533.03

 BIC 36504.28 42968.91 36901.17 34496.41 34759.97 34916.00

 SSE 14.6821 16.9275 13.7486 25.0915 18.5650 23.4846

 MAE 0.0445 0.0500 0.0425 0.0552 0.0482 0.0532

 MAPE 0.0100 0.0104 0.0093 0.0095 0.0083 0.0089

Country US

 AIC 54064.78 85901.35 51822.85 49278.54 63384.20 47780.52

 BIC 54101.02 87290.36 53205.81 49314.77 64773.21 49163.49

 SSE 4.7715 10.1247 4.2984 5.6521 6.7899 5.3349

 MAE 0.0273 0.0400 0.0258 0.0286 0.0350 0.0276

 MAPE 0.0062 0.0086 0.0058 0.0053 0.0072 0.0051
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evidence evidence for the good forecasting ability of the factor model despite its reduced 
number of parameters.

Calculating the VaR for longevity risks
As mentioned in the introduction, the factor model is inspired by previous studies on 
the term structure of interest rates (Elton et al. 1990; Navarro and Nave 2001), and thus, 
some extensions of interest rate modelling can be easily applied to managing and meas-
uring longevity risks. In this section, we provide a methodology to illustrate how to use 
the factor model for estimating the longevity VaR and CVaR.

As it is well known, VaR is a traditional measure to quantify the financial risk of an 
investment. The VaR is defined as the worst expected loss23 over a given horizon under 
normal market conditions at a given level of confidence (Jorion 2001; Véhel 2018). It 
attempts to answer the question of which is the fall in the value of a financial asset or 
a portfolio of financial assets that can be exceeded with probability p during a given 
time horizon. In fact, the VaR indicates the most we can expect to lose under normal 
circumstances. Another measure is the Conditional Value at Risk (CVaR), which tries 
to quantify the tail risk of a portfolio of investments. It is equal to the average of some 
percentage of the worst-case loss scenarios (Rockafellar and Uryasev 2000; Sweeting 
et al. 2015). The main difference between the VaR and CVaR is that the latter takes into 
account the tail of the distribution, considers the diversification effect and provides less 
incentive than the VaR for risk concentration (see Yamai and Yoshiba (2002)).

In this section, we calculate the VaR and CVaR of a simple insurance product by apply-
ing the factor model using simulation techniques.

Table 5 Nonpenalized measures of the forecasting ability of dynamic mortality models using the 
out-sample period 2007–2018

Sex Male Female

Measure/
Model

FM LC ILC FM LC ILC

Country Spain

 SSE 73.1632 172.6706 77.6777 40.8842 76.0208 85.0717

 MAE 0.1720 0.2443 0.1808 0.1282 0.1818 0.2022

 MAPE 0.0305 0.0367 0.0310 0.0226 0.0265 0.0343

Country France

 SSE 16.4626 35.0526 45.7488 23.1350 30.8491 63.6855

 MAE 0.0822 0.1246 0.1477 0.0914 0.1225 0.1840

 MAPE 0.0165 0.0211 0.0301 0.0152 0.0200 0.0356

Country US

 SSE 16.6233 23.6517 29.6518 11.6076 20.8270 19.8352

 MAE 0.0871 0.1131 0.1276 0.0723 0.1051 0.0983

 MAPE 0.0255 0.0286 0.0299 0.0176 0.0227 0.0195

23 It should be mentioned that the VaR could also be defined as the corresponding percentile of the insurer’s loss distri-
bution, as noted by Börger (2010); Plat (2011). However, we choose to follow another line of the actuarial literature about 
these key measures, as noted by Tsai et al. (2010), who defined the CVaR as “the conditional expected loss that exceeds 
the threshold, under a specified probability α ’. More recently, Richards (2021) presented the VaR as a risk measurement 
value and defined it as “the proportion of the best-estimate needed to cover a proportion p of losses that might occur due 
to a change in the best estimate assumption caused by an additional n years of experience data after time y.”
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According to Eq. (16), there are two sources of uncertainty about the future behaviour 
of mortality rates. The first one comes from the ARIMA process assumed for the key 
rates, and the second one comes from the error term εx,t . The variance in this error term 
is assumed to depend on the difference between the key age y∗ and age x.

First, we simulate 1000 paths (i = 1, 2, . . . , 1000) for the twelve future values of the key 
mortality rates 

(
q
(i)
y∗,2006+h, h = 1, 2, . . . , 12

)
 , taking into account that its behaviour can 

be modelled according to a given ARIMA process (see Table 2). For each of these 1000 
paths, we simulate the corresponding 1000 paths for each of the other mortality rates 
according to the following equation:

where α(x) and b(x) are defined as in section “Functions α (x) and b (x)” and ε(i)x,k are sim-
ulated values from the independent normal random variables with zero mean and stand-
ard error σ x . The values of σ x are estimated by the standard deviation of a set of fitting 
errors and is defined as log

(
q̂x+j,t

)
− log

(
qsx+j,t

)
 , where qsx+j,t are the fitted values of the 

mortality rates according to the factor model and, t = 1975, 1976, . . . , 2006 and 
j = −2,−1, 0, 1, 2 . In this way, we have 5 · 31 fitting errors to estimate each σ x . We apply 
a five-age window for estimating σ x to increase the sample size and to capture the 
dependence of the variance of εx,k on the difference between the key age y∗ and age x.

Figure 11 shows the 97.5 and 99 percentiles of the 1000 simulations of log
(
q
(i)
x,2006+h

)
 for 

h = 1, 2, . . . , 12 together with the actual values of log
(
q̂x,2006+h

)
 in the Spanish popula-

tions.24 These percentiles of log
(
q
(i)
x,2006+h

)
 do not necessarily belong to the same simulation 

path; that is, the 99th percentile of log
(
qx,2006+h

)
 for h = 1 does not need to be a part of the 

same path as the 99th percentile of log
(
qx,2006+h

)
 for h = 2 . Once these 1000 mortality rate 

paths have been simulated, it is not difficult to estimate the reserves that would be needed 
today to cover the contingencies of a given life insurance product if mortality had evolved 
according to each path. Based on these calculations, we can estimate the longevity VaR with 
a significance level α as the difference between the reserves calculated according to the life 
table and the reserves needed to cover the contingencies corresponding to the mortality rate 
path located at the α percentile less favourable paths of the 1000 simulated paths.

Similarly, the CVaR can be obtained to determine the average of the reserves necessary 
to cover the contingencies derived from those paths that are less favourable than the 
path corresponding to the VaR. The lines used for estimating the VaR-99% and CVaR-
97.5% are, as expected, nearly overlapped, as seen in Fig. 1125.

(27)

log
(
q
(i)
x,2006+h

)
= log

(
qx,2006

)

+

h∑

k=1

[
α(x)+ b(x) ·

[
log

(
q
(i)
y∗,2006+k

)
− log

(
q
(i)
y∗,2006+k−1

)]
+ ε

(i)
x,k

]
,

h = 1, 2, . . . , 12; i = 1, 2, . . . , 1000,

24 For brevity, we only included the simulated paths of some mortality rates of the male Spanish population. The rest of 
the mortality rate paths are available upon request to the authors.
25 These are the risk levels established in Basel III for capital requirements and back testing, although other confidence 
levels could be employed, such as the 99.5% VaR required in Solvency II (European Insurance and Occupational Pen-
sions Authority 2014a, b. Under normality, both measures are similar. For instance, under normality, a 99.5% VaR would 
be equivalent to a 97.5% CVaR (see Málek and van Quang (2020)).



Page 22 of 30Atance and Navarro  Financial Innovation           (2024) 10:61 

Finally, we illustrate the impact of longevity risk by calculating the longevity VaR and 
longevity CVaR of a very simple insurance product: a pure endowment. In this contract, 
we assume that an individual aged x will receive a lump sum of 1000 euros at the end of 
a specified period of time (n years) if he or she is still alive or zero otherwise in exchange 
for a premium.

For an individual with exact age x at the beginning of 2007, the pure premium, P, is 
given by:

where vn = (1+ i)−n is the discount factor with i being the effective annual interest rate 
and npx,2007 the probability that an individual at the exact age of x at January 1st, 2007 
reaches age x + n.

For January 1st, 2007, we value two pure endowments that mature after 5 and 10 years 
for individuals at the exact ages of x = 65, 75 and 85. Assuming a fixed interest rate of 
4% and a payout benefit of 1000 euros, we generate 1000 mortality simulation paths 
using Eq. (27) with the factor model presented in this paper. With this set of 1000 dif-
ferent mortality paths, we estimate the Actuarial Present Value (APV) for the pure pre-
mium that will be collected on January 1, 2007. The values of the pure premium of an 
endowment with maturity in 5 and 10 years can be found in Tables  6 and 7. Column 

(28)P = vn ·n px,2007 = vn · px,2007 · px+1,2008 · . . . · px+n−1,2006+n−1,

Fig. 11 Expected mortality rates, actual mortality rates, mortality rates corresponding to the 97.5 and 99 
percentiles of 1000 simulated mortality paths, and averages of the most adverse 25 and 10 mortality paths for 
each out of sample period (2007, . . . , 2018) for different ages x = 65 and 85). Spanish population
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(a) presents the APV with the projected mortality rates using the factor model. Column 
(b) shows the APV applying the actual mortality rates over the periods 2007-2011 and 
2007-2016 for the 5 year and 10 year pure endowments, respectively. Columns (c) and 
(d) show the APVs calculated with the paths corresponding to the 97.5th and 99th per-
centiles of all simulated mortality trajectories. Finally, Columns (e) and (f ) present the 
average of the APVs of the pure-endowments calculated using the simulations of the fac-
tor model that exceed the threshold of the 97.5th and 99th percentiles, respectively.

As expected and according to Column (a) of Tables  6 and 7, the values of the pure 
premium are smaller the older the individual is since the probability of death before 
the maturity of the endowment is higher. For females the value of the pure premium is 
higher due to their lower probabilities of death26 and the differences for men increase 
with age. We can also observe differences across countries, capturing the differences in 
the mortality rates among Spain, France and the US. Columns (c), (d), (e), and (f ) corre-
spond to the current reserves that an insurance company would need to cover different 
scenarios. Columns (c) and (d) indicate the reserves required to meet the endowment 
benefit if the 976th and the 991th worst case mortality paths occur. Similarly, Columns 
(e) and (f ) show the pure premium necessary to meet the endowment if the average of 
the 25 and 10 worst mortality paths occur.

Finally, Column (b) shows the reserves necessary to cover the endowment benefit at 
actual mortality rates from 2007 onwards. The values in Column (b) are always lower 
than those in Columns (c), (d), (e) and (f ) with three exceptions. In the case of the 5 year 

Table 6 Actuarial present value of the benefits of a pure endowment with maturity in 5 years 
underwritten on January 1st 2007 for individuals aged 65, 75 and 85 ( i = 4%)

APV calculations are made using the (a) mortality rates forecasted according to the factor model, (b) actual mortality rates 
from 2007–2011, (c) mortality rates corresponding to the 976th least favourable simulated mortality paths, (d) mortality 
rates corresponding to the 991th least favourable simulated mortality paths, (e) mortality rates corresponding to the 
average of the 976–1000th least favourable mortality paths and (f ) mortality rates corresponding to the average of the 
991–1000th least favoruable mortality paths

Age (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)
Spain male Spain female

65 621.50 624.00 623.90 624.40 624.39 624.79 653.98 653.89 655.12 655.36 655.36 655.54

75 537.98 543.28 544.55 545.94 545.91 547.07 600.18 603.19 603.88 604.62 604.54 605.16

85 358.60 365.91 374.69 378.33 377.87 380.15 429.30 440.47 441.25 442.82 443.63 445.86

 Age (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)
France male France female

65 622.27 623.51 624.71 625.17 625.20 625.71 652.17 651.64 653.30 653.57 653.52 653.71

75 548.40 551.63 555.23 555.92 556.08 556.83 607.84 609.55 611.20 611.58 611.63 611.99

85 375.53 377.24 391.40 394.62 394.29 396.47 461.42 464.55 472.46 474.05 473.82 474.81

 Age (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)
US male US female

65 614.16 613.77 615.91 616.22 616.25 616.52 633.87 634.24 635.45 635.66 635.71 635.97

75 533.41 536.70 540.85 542.50 542.36 543.56 572.50 574.49 577.76 578.56 578.57 579.28

85 355.38 370.28 374.16 377.72 377.64 380.85 419.56 430.20 435.42 438.85 438.82 441.37

26 However, under current regulations, insurance companies cannot charge different premiums to men and women.
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endowment, the 65 years-old Spanish male population, (b) is larger than (c) but smaller 
than (d) (e) and (f ). In the case of the 10 year endowment, for 65 and 75 years old Span-
ish male individuals, again, (b) larger than (c) but smaller than (d), (e), and (f ). This is 
the result of a mortality improvement much greater than expected in the Spanish male 
population for individuals during years 2006–2010 for some of the ages involved in the 
calculations (65–69). Finally, for an 85 years old US male, (b) exceeds (c), (d), (e) and (f ), 
which can be considered the only case where the risk estimates clearly fail probably due 
to the change in the key mortality rate trend that took place after the in-sample period. 
This result is in accordance with the unsatisfactory forecast of the ARIMA (0,1,0) model 
used to project mortality rates in the US population.

Tables 8 and 9 display the VaR and CVaR at 97.5% and 99% for the 5 year and 10 year 
pure endowments, respectively. These risk measurements (VaR and CVaR) are com-
puted following the line of the literature of Tsai et al. (2010) and Richards (2021); that 
is, the losses that would be incurred if the pure premium charge are those of Column 
(a) of Tables 6 and 7, but mortality rates were those used to calculate columns (b) to (f ) 
of Tables 6 and 7, respectively. The cases where the actual losses do not exceed the risk 
measures are mentioned in bold. These results are illustrated in Fig. 12, where we rep-
resent a histogram with the reserves necessary to cover the endowment benefits of the 
1000 mortality rate simulated paths27 of a 75 year old Spanish male individual.

Table 7 Actuarial present value of the benefits of a pure endowment with maturity in 10 years 
underwritten on January 1st 2007 for individuals aged 65, 75 and 85 ( i = 4%)

APV calculations are made using the (a) mortality rates forecasted according to the factor model, (b) actual mortality 
rates from year 2007–2016, (c) mortality rates corresponding to the 976th least favourable simulated mortality paths, (d) 
mortality rates corresponding to the 991th least favourable simulated mortality paths, (e) mortality rates corresponding to 
the average of the 976–1000th least favourable mortality paths and (f ) mortality rates corresponding to the average of the 
991–1000th least favourable mortality paths

Age (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)
Spain male Spain female

65 550.12 556.63 555.82 556.88 556.90 557.54 620.33 621.44 622.57 623.15 623.06 623.36

75 370.58 385.09 384.86 387.10 387.28 389.27 481.13 487.45 491.32 493.31 493.16 494.76

85 95.74 107.92 113.93 117.30 117.60 120.58 156.16 171.69 172.47 176.28 175.79 178.21

 Age (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)
France male France female

65 555.29 558.49 561.77 562.97 563.02 564.01 619.13 617.27 621.52 621.89 621.88 622.17

75 391.78 400.44 407.46 409.96 410.75 41sss3.94 502.94 505.49 511.93 513.54 513.71 515.01

85 110.26 117.69 130.37 134.30 134.25 137.11 194.87 201.11 211.18 213.19 213.91 216.46

 Age (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)
US male US female

65 536.16 533.83 541.57 542.59 542.63 543.63 574.87 577.12 579.48 580.33 580.36 580.97

75 360.99 375.29 380.84 383.90 384.47 387.23 431.50 441.73 447.35 450.67 450.94 453.96

85 88.84 116.80 109.31 113.00 112.89 115.26 149.67 172.51 175.74 179.78 180.79 185.73

27 For brevity, we only include the histogram corresponding to the Spanish male population, but the histogram for all 
other populations are available upon request to the authors.
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Conclusion
In this paper, we develop a mortality model based on the idea that the dynamics of 
the mortality curve are governed by changes in a reduced number of factors that can 
be identified by mortality rates corresponding to some specific ages. This model is 
inspired by an earlier model for the term structure of interest rates (Elton et al. 1990), 
where it is assumed that changes in interest rates depend linearly on a small number 
of interest rates with a specific maturity. This model was already applied to describe 
the mortality curve dynamic in Atance et  al. (2020a), where regression techniques 

Table 9 VaR and CVaR estimated using the factor model for a 10 year pure endowment

Benefit 1000 euros and i = 4 %. (a) Difference between the pure premium according to the factor model and the 
endowment APV calculated with actual mortality rates (2007–2016), (b) 97.5% VaR, (c) 99% VaR, (d) 97.5% CVaR, (e) 99% 
CVaR. Bold indicates that actual losses do not exceed the VaR or CVaR

Age (a) (b) (c) (d) (e) (a) (b) (c) (d) (e)
Spain male Spain female

65 − 6.51 − 5.70 − 6.76 − 6.78 − 7.42 − 1.11 − 2.24 − 2.82 − 2.73 − 3.03
75 − 14.52 − 14.28 − 16.52 − 16.70 − 18.69 − 6.31 − 10.19 − 12.18 − 12.02 − 13.62
85 − 12.19 − 18.19 − 21.56 − 21.87 − 24.84 − 15.52 − 16.31 − 20.12 − 19.63 − 22.05

 Age (a) (b) (c) (d) (e) (a) (b) (c) (d) (e)
France male France female

65 − 3.20 − 6.48 − 7.69 − 7.74 − 8.73 1.86 − 2.40 − 2.76 − 2.75 − 3.04
75 − 8.66 − 15.68 − 18.19 − 18.97 − 22.16 − 2.55 − 8.99 − 10.60 − 10.77 − 12.07
85 − 7.43 − 20.11 − 24.04 − 23.99 − 26.85 − 6.24 − 16.30 − 18.32 − 19.04 − 21.58

 Age (a) (b) (c) (d) (e) (a) (b) (c) (d) (e)
US male US female

65 2.33 − 5.41 − 6.43 − 6.47 − 7.47 − 2.25 − 4.61 − 5.46 − 5.49 − 6.10
75 − 14.31 − 19.85 − 22.91 − 23.49 − 26.24 − 10.23 − 15.85 − 19.17 − 19.44 − 22.46
85 − 27.96 − 20.47 − 24.16 − 24.05 − 26.43 − 22.84 − 26.07 − 30.10 − 31.12 − 36.06

Fig. 12 Histogram with the reserves needed to cover a 1000 euro endowment benefit for a 75 years old 
Spanish male individual according to the 1000 simulated mortality rate paths. a 5 year endowment and b 
10 year endowment
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were used to estimate model parameters by applying a methodology similar to that 
suggested in Elton et al. (1990).

In this paper, we adapt the model by simplifying it and reducing the number of 
model parameters to six. Instead of applying regression techniques, we propose the 
use of the maximum likelihood criterion to estimate model parameters, which is 
more in accordance with the actuarial literature and provides more robust results in 
the selection of the key mortality rate (which is always in the age range of 84 and 89 
years).

Although using a single key mortality rate to model the behaviour of the entire mortal-
ity curve can be considered somewhat limited, it provides some important advantages. 
First, using a single key rate extraordinarily simplifies model calibration. Second, the fact 
that the key rate is located at the right end of the mortality curve makes the model focus 
on the behaviour of the population of particular interest to the life insurance industry, 
making the model of special interest for measuring longevity risks. Third, it subdivides 
the mortality curve into different sections. The first one is (0–60), whose dynamics are 
assumed to consist of a constant change in mortality rates. It should be noted that this 
constant change is different for each mortality rate. The second one is (71–99) and is the 
section of the mortality curve governed by the key rate. In addition, the third part (61–
70), which can be considered a mixture or combination of a constant mortality change 
and the influence of the changes in the key mortality rate28. These outcomes are consist-
ent with the literature about the ageing process (see Lehallier et al. (2019)). Moreover, 
the section of the mortality curve under the influence of the key mortality rate is espe-
cially sensitive to sudden changes in mortality, such as those caused by COVID-19, cold 
and heat waves, or seasonal diseases such as influenza (Kalkstein and Davis 1989; Díaz 
et al. 2002; Stafoggia et al. 2006; Anderson and Bell 2009), although this issue requires 
further research.

When the model is compared with other alternative dynamic mortality models, the 
results, despite the model’s simplicity, are at least similar in terms of forecasting power. 
This result may be a consequence of the model’s ability to adequately capture the corre-
lation structure among changes in mortality rates, and this result demonstrates that the 
model can be used for longevity risk measurement.

However, one of the weaknesses of the model is the dependence of its forecasting 
power on the amplitude of the sample period, as seen when analysing the US popula-
tions, where there were abrupt changes in mortality trends at the end of the in-sample 
period.

Finally, we develop a methodology to measure longevity risk using simulation tech-
niques. This methodology is illustrated and tested through an example where lon-
gevity risk is measured by calculating the longevity VaR and longevity CVaR of a 
very simple insurance product, although it could easily be applied to more complex 
products.

28 The official life tables for insurance life companies in Spain (PASEM, Dirección General de Seguros y Fondos de Pen-
siones, (DGSFYP) (2020)) can be considered as a non stochastic version of this factor model, where b(x) = 0 and α(x) is 
a piecewise constant function.
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