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Abstract 

Unlike the current extensive literature, which discusses which assets can avoid 
the risks caused by the COVID‑19 pandemic, this study examines whether the char‑
acteristics of different assets affect the extreme risk transmission of the COVID‑19 
crisis. This study explores the effects of COVID‑19 pandemic–related risk factors (i.e., 
pandemic severity, pandemic regulations and policies, and vaccination‑related vari‑
ables) on the risk of extreme volatility in asset returns across eight assets. These eight 
assets belong to the following classes: virtual, financial, energy, commodities, and real 
assets. To consider the different possible aspects of the COVID‑19 impact, this study 
adopts both empirical methods separately, considering variables related to the pan‑
demic as exogenous shocks and endogenous factors. Using these methods, this 
study enabled a systematic analysis of the relationship between the features of dif‑
ferent asset types and the effects of extreme risk transmission during the COVID‑19 
crisis. The results show that different types of asset markets are affected by different 
risk factors. Virtual and commodity assets do not exhibit extreme volatility induced 
by the COVID‑19 pandemic. The energy market, including crude oil, is most affected 
by the negative impact of the severity of the pandemic, which is unfavorable for invest‑
ment at the beginning of the pandemic. However, after vaccinations and pandemic 
regulations controlled the spread of infection, the recovery of the energy market 
made it more conducive to investment. In addition, this study explains the differences 
between the hedging characteristics of Bitcoin and gold. The findings of this study can 
help investors choose asset types systematically when faced with different shocks.

Keywords: Covid‑19 pandemic, COVID‑19 pandemic–related risk factors, Risks of 
extreme volatility, Risk transmission effect, Hedging characteristics

Introduction
The outbreak of the COVID-19 pandemic (hereafter referred to as “the pandemic”) had 
an enormous impact on the global economy and resulted in steep fluctuations in finan-
cial markets. For these reasons, the pandemic is frequently referred to as the COVID-
19 crisis (Fu et al. 2021; Al-Omoush et al. 2022) or the black swan event (Ahmad et al. 

*Correspondence:   
ictsai@mx.nthu.edu.tw

1 Department of Quantitative 
Finance, National Tsing Hua 
University, No. 101, Section 2, 
Kuang‑Fu Road, Hsinchu 30013, 
Taiwan
2 Anfu Institute for Financial 
Engineering, National Tsing 
Hua University, Hsinchu 30013, 
Taiwan

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40854-023-00510-5&domain=pdf
http://orcid.org/0000-0001-8277-2327


Page 2 of 42Tsai  Financial Innovation           (2024) 10:62 

2021; Aslam et al. 2022).1 A crisis or extreme event can occur for various reasons, induc-
ing a crash in different asset markets, and causing investors to incur substantial losses. 
Although a growing body of literature has empirically investigated the various events 
that cause market crashes, an analysis that “systematically” dissects the impact of black 
swan events is still required.

Asset markets differ in their properties, trade behavior, and market mechanisms. Con-
sequently, they differ in terms of market depth, width, and efficiency. Sudden market 
effects, including pandemic-related information pertaining to pandemic severity, pan-
demic regulations, and vaccination-related variables, can influence lifestyle behaviors 
and financial performance. However, the speed of transmission and the level of the mar-
ket effect on each asset market differ depending on market properties. Therefore, some 
markets may experience a crash while processing the initial pandemic shock, whereas 
others may not. Only by dismantling the structure of risk transmission can risk spread 
before the next abnormal event occurs.

First, to analyze the significant possible losses caused by the pandemic, this study 
focuses on the extreme risks associated with various types of assets. The following 
three methods are then used to disassemble the impact of the COVID-19 crisis on asset 
return fluctuations to systematically evaluate why this black swan event exerted different 
effects on different assets. (1) To explore the characteristics of assets, this study selects 
the market by asset type (i.e., virtual, financial, energy, commodity, and real assets). (2) 
To analyze the sources of risk, we selected three types of COVID-19 pandemic–related 
factors (pandemic severity, pandemic regulations and policies, and vaccination-related 
variables). (3) To distinguish different impacts, the study discusses both the short-term 
and long-term impacts caused by the COVID-19 crisis. The former estimates the exog-
enous effects of the crisis, whereas the latter analyzes the structural changes in the mar-
ket caused by the crisis. Using these methods, this study seeks to explain the relationship 
between asset characteristics and risk transmission by “systematically” dissecting the 
impact of the COVID-19 pandemic.

This study differs from previous studies on hedging practices that discuss whether indi-
vidual asset markets are vulnerable to the impact of the pandemic. It aims to methodi-
cally analyze which COVID-19 risk factors affect the extreme risk of different types of 
assets. Using this method, we can examine the relationship between the characteristics 
of assets and risk sources, which will, in turn, will help investors to “pre-hold” assets 
with low-risk transmission effects when faced with different types of risk surge events in 
the future. Accordingly, this study investigates how factors related to the pandemic (e.g., 
pandemic severity, pandemic regulations and policies, and vaccination-related variables) 
influence extreme risks in virtual, financial, energy, commodity, and real assets. Addi-
tionally, this study explores the sources of risk spread and observes whether the charac-
teristics of asset markets contribute to market risk or resilience.

The next section reviews the literature to justify the aim of this study: to systemati-
cally dissect the impact of this black swan event (the COVID-19 crisis) by exploring the 

1 Black swan events (Taleb 2007) describe those cases that are surprising given contemporary knowledge. Many studies 
use the concept to explore certain special performances in financial markets (Higgins 2014; Lin and Tsai 2019; Bhanja 
and Das 2021) and how to avoid risks when such events occur (Bekiros et al. 2017).
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extreme risks of different types of assets affected by various COVID-19-related risk fac-
tors. In doing so, this study aimed to provide more explicit evidence of the patterns of 
risk transmission. Section "Empirical Model" explains the research methodology used in 
this study and explores the short-(exogenous) and long-term (structural) impacts of the 
pandemic. Section "Empirical analysis" introduces the five asset types and samples used 
in this study. Finally, Sect. "Conclusion" draws conclusions, illustrates the study’s contri-
butions, and provides recommendations for further studies.

Literature review
Following the outbreak of the pandemic, numerous studies have explored its effects on 
lifestyle behaviors (Balanzá-Martínez et al. 2020; Bentlage et al. 2020; Pan and Yue 2022; 
Rafique et  al. 2022) and the world economy (Phan and Narayan 2020; Su et  al. 2022). 
Some scholars have analyzed whether the performance of asset markets was influenced 
by the pandemic (Bouri et al. 2021). Others have examined whether the pandemic has 
influenced return on assets (ROA) (Ji et al. 2020), asset risks (Baker et al. 2020a), trade 
behaviors (Huber et al. 2021), and market efficiency (Wang and Wang 2021).

Numerous studies have explored the effect of the pandemic from the perspective of 
different asset markets (e.g., van Hoang and Syed 2021; Monge and Lazcano 2022). Some 
studies provide evidence of increased asset risk during the pandemic (Devpura and 
Narayan 2020; Bourghelle et al. 2021) and the spillover or contagion of negative informa-
tion between assets under epidemic effects (Corbet et al. 2020; Huynh et al. 2020; Ade-
koya and Oliyide 2021; Farid et al. 2021). Although, there are studies showing that some 
assets are more resistant to the impact of the pandemic (López-Cabarcos et  al. 2020; 
Chen et  al. 2022; Khan et  al. 2022) or some characteristics can make certain types of 
companies resilient under epidemic conditions (Anzenbacher and Wagner 2020; Cavallo 
et  al. 2021; Al-Omoush et  al. 2022),2 studies comparing the effect of various COVID-
19 risk factors on the extreme risks in various types of assets (e.g., virtual and tangi-
ble assets) are rare. However, an analysis from this perspective is important. This article 
reviews the relevant literature to illustrate its importance.

The importance of discussing extreme risks

Many studies on the impact of the pandemic and the risk to asset markets use different 
methods to observe the risks associated with different asset characteristics. For example, 
Yarovaya et al. (2021) assert that the black swan effect of the pandemic did not aggravate 
financial panic in the Bitcoin market. Le et al. (2021) indicate that because the tail dis-
tribution of Bitcoin was less associated with that of other assets, Bitcoin can be viewed 
as a safe haven. Mariana et al. (2021) also point out the short-term safe haven property 
of Bitcoin. However, Yarovaya et al. (2022) also considered the outbreak of the pandemic 
as a black swan event and explored the effect of the pandemic on the extreme risks in 

2 For example, the Environmental, Social, and Governance (ESG) stocks of companies with a strong record on social 
capital, innovation, and sustainability, investors can avoid pandemic risk (Broadstock et al. 2021; Díaz et al. 2021). Here-
dia et al. (2022) find that those companies with digital transformation can accelerate technological innovation during 
the pandemic, benefiting firm performance. Al-Omoush et al. (2022) show that companies with high social capital can 
maintain a high degree of innovation and improve the sustainability of the company’s operations during the COVID-19 
crisis.
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stocks, bonds, gold, and cryptocurrencies, finding that in the long term, the pandemic 
had a greater effect on the extreme risks in Bitcoin than on other assets.

Most studies examine risks to the stock market during the pandemic. Specifically, 
scholars have explored the U.S. stock market crash in March 2020 (Dai et al. 2021; Hong 
et al. 2021; Mazur et al. 2021; Shu et al. 2021) and various major corrections in the Chi-
nese stock market (Liu et al. 2021; Singh et al. 2021). Numerous studies have explored 
the transmission effect of the financial crisis on stock markets worldwide (Contessi and 
De Pace 2021; Li 2021; Zehri 2021).

Nevertheless, owing to the lack of integration, it remains unclear what causes cer-
tain markets to collapse easily when encountering unexpected events. There are also 
inconsistencies among the findings of different studies. For example, some studies indi-
cate that market risk has reduced in specific asset markets during the pandemic. Diniz-
Maganini et al. (2021) report that during the pandemic, gold and Bitcoin served as safe 
havens for investors who held instruments related to the Morgan Stanley Capital Inter-
national (MSCI) World and U.S. dollar indices. However, Nedved and Kristoufek (2022) 
find that the volatility behaviors of stocks and Bitcoin are highly correlated, implying 
that a two-asset portfolio cannot be hedged.

To address these gaps in the literature, this study focuses on changes in extreme 
risk during the pandemic. “Extreme” risk refers to the risk exposure of assets in more 
extreme situations in probability allocation, that is, the tail (in the probability distribu-
tion) risk of asset returns. Some studies separately illustrate the high-extreme risk of dif-
ferent assets, that is, the existence of the fat tail phenomenon. Kwon (2020) reported the 
presence of the fat tail phenomenon in the Bitcoin, currency, gold, and stock indices. 
They discuss the correlation between the tail risks of various assets. Their results indi-
cate that extreme risks in these assets increase when markets are affected by external 
factors. Le et al. (2021) examine the tail risks of 51 financial assets and discuss the corre-
lations between the risks in these assets. Their results revealed that the COVID-19 pan-
demic considerably increased the left-tail correlation of ROA, thereby increasing the risk 
of a market crash.

Through the decomposition of the tail behaviors of assets, this study explores the 
influence of the pandemic on extreme volatility risks in various markets to identify asset 
markets that are more vulnerable to market crises. Due to the unprecedented severity 
and duration of the pandemic, studies have reported that it has induced public anxiety 
(Awijen et al. 2022; Wang and Liu 2022). This anxiety influences trade behavior, resulting 
in complex and irrational market fluctuations (Chang et al. 2020; Gao et al. 2022a, b) and 
unpredictable market effects. In turn, these may further exacerbate individual anxiety 
(Li et  al. 2022) and prompt excessive selling of assets, ultimately resulting in the pan-
demic crisis causing a market crash or market crisis. Therefore, this study focuses on 
how extreme risks have been affected by the pandemic.

The importance of distinguishing asset types to explore the relationship between risk 

transmission and asset characteristics

Asset markets are susceptible to various influencing factors and risk sources. This 
study selects five types of assets for comparison: virtual, financial, energy, commodities, 
and real assets. Specifically, it uses Bitcoin and the Crypto Currencies Index (CCI) to 
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represent virtual assets, the MSCI World Stock Price Index (WSPI) to represent finan-
cial assets, the West Texas Intermediate (WTI) and MSCI World Energy Price Index 
(WEPI) to represent energy assets, gold prices and the Standard & Poor’s (S&P) ‘Gold-
man Sachs Commodity Index’ (GSCI) commodity price index to represent commodity 
assets, and real estate (the FTSE NAREIT All REITs) to represent real assets. These five 
types of assets were included because studies have examined the impact of the pandemic 
on each asset type. For example, Albulescu (2020) and Dutta et al. (2020) discuss crude 
oil price crashes. Conlon and McGee (2020) explore the risks of a stock market crash 
caused by the pandemic and the risk of a decrease in Bitcoin prices. The literature also 
discusses whether gold (Akhtaruzzaman et  al. 2021) and real estate investment trusts 
(REITs) (Akinsomi 2021) are resistant to the pandemic.

In the aforementioned studies, various risk evaluation methods were employed to ana-
lyze the effect of the pandemic on extreme risks in asset markets; thus, the results of 
these studies may be inconsistent. Additionally, the properties of different asset markets 
and the concerns of each market regarding pandemic-related events further complicate 
the assessment of the pandemic’s effect. Therefore, understanding and constructing 
investment portfolios may become difficult for investors, and evaluating the possibility 
of market crashes may become difficult for market regulators. The present study pro-
poses the use of empirical evidence based on event and asset types to systematically 
determine the effect of the pandemic on extreme risks in various assets. To explore the 
effect of pandemic-related risk factors (i.e., pandemic severity, pandemic regulations, 
and vaccination-related variables), this study represents the properties of virtual, finan-
cial, energy, commodity, and real assets by analyzing the returns across eight assets.

The importance of exploring different sources of risk

The five types of assets studied herein range from virtual to real, and their characteristics 
and trading methods differ. It is necessary to systematically evaluate extreme risk behav-
iors in the face of external shocks; that is, to explore behaviors under different sources 
of risk. Information related to the development of the pandemic can be categorized into 
pandemic severity, pandemic regulations, and vaccination-related information.

The negative shock of the pandemic mainly comes from the severity of the pandemic 
and policies that restrict economic activity. Most studies have examined how the stock 
market has been affected by the rise in COVID-19 cases and lockdown policies. Baig 
et al. (2021) observed the effect of pandemic severity and lockdown implementation on 
the U.S. stock market and reported that an increase in the number of confirmed cases 
and deaths increased stock market volatility and that pandemic severity and lockdowns 
contributed to a reduction in market liquidity. Aggarwal et al. (2021) explored the factors 
that caused the global stock market crash during the pandemic and indicated that the 
fear of the pandemic and strict lockdown policies increased stock market risk, thereby 
increasing the risk premiums of assets. Gao et al. (2022a, b) compared changes in the 
volatility of the Chinese and U.S. stock markets and argued that different pandemic 
regulatory models result in different stock market reactions. The Chinese stock market 
was more readily influenced by pandemic-related factors and experienced an increase in 
volatility, whereas fluctuations in the U.S. stock market were effectively suppressed by 
monetary easing and low-interest policies introduced by the U.S. government. Based on 
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the above research, this study also explores the impact of the number of confirmed cases 
and deaths and the strictness of regulatory policies on the market.

Studies have also employed uncertain policies as indicators to evaluate policy risks 
during pandemics. Wang et al. (2020) compared the effectiveness of the CBOE Volatility 
Index and the Economic Policy Uncertainty (EPU) index in predicting the volatility of 
stock indicators. Their study revealed that the EPU index effectively predicted the vola-
tility of five of the 19 stock markets observed in their study. Jiang et al. (2021) explored 
the relationship between the EPU index proposed by Baker et al. (2020a) and the vola-
tility of cryptocurrencies, and they discovered that cryptocurrencies can serve as safe 
havens for investors who want to offset the risks caused by pandemic policy changes. 
This study uses the EPU index to assess policy risks.

Studies indicate that information pertaining to changes caused by the pandemic has an 
asymmetrical influence. Baek and Lee (2021) explored the transfer of risk from the pan-
demic to the U.S. stock market. They reported that the volatility of the U.S. stock market 
increased with the number of deaths (negative pandemic-related news). Conversely, an 
increase in the recovery rate from the disease (positive pandemic-related news) reduced 
market volatility. In the U.S. stock market, negative news has a considerably greater 
influence than positive news. The research, development, launch, and administration of 
a vaccine increased people’s hopes of ending the pandemic. Developments such as these 
are among the limited range of positive pandemic-related news reported during the pan-
demic. However, the effect of vaccines on asset market volatility requires further investi-
gation. Chan et al. (2022) revealed that when the clinical testing of a COVID-19 vaccine 
was initiated, the global stock market exhibited a positive response, indicating that the 
stock market reacted positively to vaccines developed by China and the United States. 
Rouatbi et al. (2021) explored the effect of COVID-19 vaccination on global stock mar-
ket volatility and reported that an increase in vaccination popularity reduced stock mar-
ket volatility. Furthermore, the stabilization effect of vaccination popularity was greater 
in stock markets in developed economies compared to emerging economies. Therefore, 
this study also evaluates vaccine-related variables to observe whether the markets were 
affected differently by positive and negative pandemic shocks.

In summary, the aforementioned literature findings indicate that the three pandemic-
related risk factors (pandemic severity, pandemic regulations, and vaccination-related 
variables) have different effects. Therefore, the objective of the present study is to esti-
mate the empirical outcomes caused by the effects of each risk factor.

The importance of simultaneously exploring exogenous shocks and structural changes

Both exogenous shocks and structural changes must be observed to fully describe the 
impact of an abnormal financial event on a given asset. The first observation is the 
immediate and exogenous impact of the event on the asset (Albuquerque et al. 2020), 
whereas the second analyzes the extent to which the behavior of the asset undergoes 
structural changes after the event (Kumar et al. 2022). This study uses two approaches 
to estimate the impact of pandemic-related risk variables on the extreme volatility 
risk of an asset: exogenous shocks and endogenous factors. The first involves a uni-
variate volatility estimation model to estimate the impact of risk factors as exogenous 
shocks by adding the shocks to the heterogeneous variance (volatility risk) models of 
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asset returns, and then to evaluate extreme risks in assets (i.e., the fat-tail distribution 
of asset returns). The second uses a bivariate volatility estimation model, taking risk 
factors as endogenous variables and estimating the risk transmission effect between 
asset returns and the pandemic-related variables. Through these two methods of anal-
ysis, the empirical results of the present study analyze the effect of the pandemic on 
extreme risks in various assets and explore the sources of risk transmission.

Two methods were applied to estimate how a pandemic-related risk variable can 
affect an asset’s extreme volatility risk. Both methods use a Generalized Autoregres-
sive Conditional Heteroskedasticity (GARCH)-type model, separately adding the 
pandemic-related variables to the model in the form of exogenous shocks (univariate 
GARCH-type model) and endogenous factors (multivariate GARCH-type model) to 
estimate the risk of assets. Based on the univariate and multivariate models intro-
duced, this study analyzes the effect of the pandemic on extreme risks in various mar-
kets. It also explores the sources of risk transmission and identifies markets through 
which the risk of each pandemic-related factor is transmitted.

GARCH-type models have been widely used to analyze the risk behavior of various 
assets such as virtual assets (Ardia et al. 2019; Tiwari et al. 2019), financial assets (Liu 
and Chen 2020; Kim 2022), energy assets (Bai and Lam 2019; Robiyanto et al. 2020), 
commodity assets (Nargunam et al. 2021; Wang et al. 2022), and real assets (Piao et al. 
2022). GARCH-type models are particularly appropriate for estimating the fat-tailed 
probability distributions of asset returns (Fakhfekh et al. 2021; Yong et al. 2021). From 
the estimation results produced by this type of model, we obtain a complete struc-
tural function of asset volatility behavior, which can be used to describe the overall 
return volatility risk. By further observing the tail structure in this function, we can 
gain insight into the return fluctuation behavior in extreme cases.

Although a substantial body of literature is using the GARCH empirical method to 
explore the impact of the outbreak of the COVID-19 pandemic on asset risk (Fakh-
fekh et al. 2021; Hung et al. 2022), most studies do not distinguish between different 
risk factors. By estimating the two types of models in this study, investors can obtain 
insight into which markets are more vulnerable to risks caused by the pandemic crisis 
(results of the exogenous model) and identify the markets to which pandemic-related 
events may transmit their risks (results of the endogenous model).

Differences in the characteristics of different types of assets and their possible impact 

on the shocks caused by the pandemic

To systematically analyze the effect of the pandemic on extreme risks in asset mar-
kets, we select specific assets that represent virtual, financial, energy, commodity, 
and real assets to explore the effects of pandemic severity, pandemic regulations and 
policies, and vaccination-related variables. We detail the differences in the proper-
ties of the five asset markets to determine how they influence market reactions to the 
pandemic.
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(1) Virtual assets

  This study uses Bitcoin and the Crypto Currencies Index (CCI) to represent virtual 
assets. Many studies state that Bitcoin is a new asset class. For example, Ram (2019) 
reported that Bitcoin is the most representative cryptocurrency and has the largest mar-
ket share in the cryptocurrency market. Although scholars have not yet reached a con-
sensus on the properties of Bitcoin, most consider it a new type of asset that is distinct 
from financial assets and general commodities. Al Mamun et al. (2020) pointed out that 
Bitcoin is particularly sensitive to geopolitical risk. Additionally, Kwon (2021) found that 
the extreme risk of Bitcoin is affected by the uncertainty of US economic policy. Notably, 
the total Bitcoin supply is limited (Zohar 2015). In a market climate that is quantitatively 
inflated by monetary easing policies, the rarity of Bitcoin is a frequently discussed topic 
that contributes to an increase in its value (Choi and Shin 2022).

At the beginning of the pandemic, several countries implemented monetary eas-
ing policies to induce quantitative inflation. In particular, the United States introduced 
unlimited monetary easing policies, which increased public concern over the price of 
fiat currency and increased the demand for Bitcoin. Marmora (2022) indicated that the 
promulgation of national currency policies increased Bitcoin demand and influenced 
the local trading of Bitcoin. In addition to Bitcoin, other cryptocurrencies may be con-
sidered safe haven assets. Yousaf and Ali (2020) used three cryptocurrencies–Bitcoin, 
Ethereum, and Litecoin–to show that they are more suited to hedging during the pan-
demic. Therefore, in addition to using Bitcoin, this study also discusses the CCI to ana-
lyze the risk characteristics of cryptocurrencies.

Given the uniqueness of cryptocurrency (Martínez et al. 2022), several studies show 
that it can be used to hedge the risks of other assets (Dyhrberg 2016; Fang et al. 2022). 
However, Özdemir (2022) investigated the risk transmission of eight major cryptocur-
rencies during the pandemic and found that Bitcoin, Ethereum, and Litecoin are covola-
tile, and almost all cryptocurrencies studied in the research had higher downside risks 
than stocks. Shahzad et al. (2021) studied 18 cryptocurrencies and found that their vola-
tility increased after the COVID-19 outbreak.

However, Bitcoin is not a national currency and can be traded pseudonymously and 
used in illegal transaction activities. Thus, the investment risks associated with this asset 
are higher than those of other assets (Wong 2019). Bitcoin prices are often volatile (Kat-
siampa 2017), and Koutmos (2020) finds that these fluctuations exhibit low correlations 
with macroeconomic fundamentals. Other studies posit that Bitcoin prices have price 
discovery functions (Brandvold et al. 2015 and Bouoiyour et al. 2016). On the basis of 
these properties, the response time of Bitcoin to information during the pandemic was 
faster than that of the market, particularly when the information pertained to currency 
policies aimed at inducing monetary easing and stimulating the market. However, the 
risks resulting from a pandemic-induced economic slump may not necessarily spread to 
the Bitcoin market.
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(2) Financial markets

 This study uses the stock market (MSCI WSPI) to represent financial assets. Stocks are 
the most typical risky financial assets. Since the outbreak of the pandemic, there has 
been much research on its impact on stock market risk, many of which are based on the 
MSCI WSPI as the research target (O’Donnell et al. 2021) or the use of the MSCI WSPI 
as a representative stock market classification to explore the relationship between the 
stock market and other assets (Bouri et al. 2021; Naeem et al. 2021).

The literature on market structure (Madhavan 2000; O’Hara 2015) reports that 
transaction regulations and limitations, transaction structure, trader structure, trader 
emotions, irrational trader behaviors, and trading timing and patterns of the stock 
market can influence market returns, volatility, and efficiency. Various market proper-
ties can increase the market’s vulnerability to crashes. Hong et al. (2021) provides evi-
dence indicating that the decrease in market efficiency during the pandemic caused 
the U.S. stock market crash. This created an asymmetric profit opportunity for traders 
with access to information on pandemic severity and policies (e.g., U.S. Senate Com-
mittee members) and for opportunists, owing to information asymmetry.

Liu et al. (2020) indicate that the pandemic has substantially influenced the global 
stock market. Ashraf (2020, 2021) proposed that the timing of stock market crashes 
is determined by the stage of the pandemic outbreak. Gil-Alana and Claudio-Qui-
roga (2020) reported that the pandemic’s negative effect on the stock market differs 
depending on market properties. In an empirical study, Huber et al. (2021) explored 
the March 2020 stock market crash caused by the pandemic and asserted that 
extreme events that occurred during the pandemic increased market risks. This find-
ing is consistent with that of Ashraf (2020, 2021), who reports that countries with 
a higher degree of risk aversion experience more severe market crashes. Fernandez-
Perez et al. (2021) explore how national culture influences stock traders’ responses to 
financial crises and reveal that countries where traders exhibit less individualism and 
greater fear of uncertainty are more likely to experience stock market crashes. Addi-
tionally, the literature indicates that fear of trading can explain the stock market crisis 
caused by the pandemic (Lyócsa et al. 2020; Lyócsa and Molnár, 2020; Vasileiou 2021).

Based on the aforementioned findings, this study infers that the level of public aver-
sion to risk and uncertainty and the spread of fear increase extreme risks in the stock 
market. During the pandemic, low stock market efficiency further increases the risk 
of market crashes. The uncertainty of pandemic-related information or policies trans-
mits risk to the stock market. However, several types of information, such as vaccina-
tion popularity, can stabilize the market and reduce the extreme risks generated by 
stock market volatility.

(3) Energy markets

  This study uses the price of crude oil and the World Energy Price Index to discuss 
energy assets’ risk. Salisu and Obiora (2021) examined the risk of crude oil investment 
during the pandemic. They found that when assets are distinguished by energy and non-
energy asset characteristics, assets that can act as a hedge against crude oil prices can be 
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identified (e.g., nonenergy exchange-traded funds). Therefore, we distinguish crude oil 
from the general commodity market. In recent years, in response to climate change, gov-
ernments in many countries have adopted energy-saving and carbon-reduction policies, 
which have attracted research interest regarding the characteristics of non-renewable 
energy (Marinakis and White 2022), as well as relationships between energy prices and 
other assets (Elsayed et al. 2020).

Sheth et  al. (2022) discussed the effect of the pandemic on commodity markets 
(including oil, energy, and agricultural products) and revealed that the sudden occur-
rence of the pandemic resulted in a considerable decrease in commodity demand. 
Their study also reported that different markets reacted differently. For example, dur-
ing the pandemic, the demand for gold reached a new high, whereas the demand for 
oil hit a new low. Furthermore, pandemic-related factors and lockdown restrictions 
may substantially reduce product demand, prompting price drops. This phenom-
enon affected oil prices the most during the start of the pandemic. Albulescu (2020) 
reported that pandemic-induced fear and uncertainty resulted in a 20% single-day 
decrease in crude oil prices and crashed the crude oil market.

(4) Commodity markets

 We use gold prices and a commodity price index (S&P GSCI) to represent commodity 
assets. Salisu et al. (2020) revealed that during the pandemic, a global fear index (GFI) 
could be used to predict commodity market returns. The GFI has a negative impact on 
the commodity market but is positively correlated with the stock market, thereby creat-
ing different hedging attributes between the stock and commodity markets.

The trading of ordinary goods is influenced by the supply and demand of these assets. 
In contrast to the trading prices and volumes of virtual and financial assets, those of the 
commodity market are determined by factors that influence the production and con-
sumption of commodities (e.g., climate, import and export tariffs, and consumer prefer-
ence). Domanski and Heath (2007) posit that the trading volume of derivative goods is 
growing rapidly, particularly that of precious metals. Between 2002 and 2005, the trad-
ing volume of precious metals increased by 30 times, resulting in increased investor 
engagement in the commodities market. Holmes (2006) asserts that the increase in com-
modity prices in 2006 was caused by an increase in the diversity of financial investors 
and the investment strategies applied in commodity markets. This trend resulted in the 
sudden emergence of exogenous impact factors and changes in the properties of stable 
commodity markets that financialized commodities.

Gold is regarded as a safe haven (Baur and Lucey 2010; Baur and McDermott 2010). 
Throughout history, when events detrimental to the market occur (e.g., wars or natu-
ral disasters), the demand for gold has increased. During the pandemic, the advantage 
of gold as a safe haven asset has increased. Dutta et al. (2020) explored the relation-
ship between the pandemic and crude oil market crash and proposed investing in 
gold instead of Bitcoin to offset the losses caused by the crude oil market crash. In 
addition to gold, this study uses an aggregated commodity price index (S&P GSCI) to 
explore the risk characteristics of other commodities, with reference to the literature 
(Kinateder et al. 2021). Some studies also indicate that the S&P GSCI has a fairly good 
hedging effect (Al-Yahyaee et al. 2019).
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(5)  Real asset

  Real assets are another asset category that has been less explored in the research on 
extreme risks. The most common real asset is real estate. However, because the data 
frequency of real estate is relatively low, daily data cannot be obtained, and its primary 
use is for consumption rather than investment hedging. Therefore, existing studies tend 
to use real estate investment trust funds as proxies for real estate assets for investment 
purposes. Most of these studies use REIT data provided by NAREIT (Case et al. 2012; 
Doran et al. 2012).3 Based on these studies, for this type of asset, this paper also uses the 
FTSE NAREIT All REITs.

Real estate is commonly viewed as an asset with low risk of price fluctuations. This is 
because the general housing market does not involve derivatives trading, which is com-
mon in other asset markets. Therefore, studies that explore the effect of the pandemic 
on the housing market have mostly focused on observing changes in housing behav-
iors, such as the increase in demand associated with the movement of people from city 
centers to the suburbs (Ramani and Bloom 2021). Given this trait, real estate may have 
been the least affected by the pandemic. However, the financialization of real estate has 
changed drastically (Sternik and Safronova 2021). Blakeley (2021) mentions that the 
impact of COVID-19 may accelerate the financialization of real estate. Meanwhile, van 
Loon and Aalbers (2017) proposed that real estate should be regarded as a special asset 
classification and that more research should be conducted to explore it.

Previous studies observed the effect of the pandemic on the real estate market by 
examining real estate–related financial assets (e.g., real estate investment trusts) as a 
substitute variable and analyzing their performance (Akinsomi 2021; Balemi et al. 2021; 
Periola-Fatunsin et al. 2021; Chong and Phillips 2022). Akinsomi (2021) reveals that the 
REITs related to accommodations and resorts, retail spaces, and office spaces were the 
most severely affected assets. This finding reflects how the pandemic changed traveling 
and work-from-home behaviors. Chong and Phillips (2022) estimated the effect of the 
pandemic on commercial real estate prices in the United States and found that gov-
ernment-imposed lockdowns and regulatory measures accelerated the decrease in real 
estate prices caused by the pandemic.

The aforementioned literature findings indicate that the basic influencing factors of the 
market determine whether the effect of the pandemic on different assets results in a mar-
ket crash. If an asset is highly connected to the real economy, the risk of the correspond-
ing market, which reflects the pandemic’s economic effects, increases. The connectivity 
between financial assets can also influence changes in risk caused by the pandemic. For 
example, gold is generally regarded as a safe haven asset relative to other financial assets. 
During a stock market crash, an increase in the demand for safe haven assets benefits the 
gold market and helps stabilize it. Contrastingly, because REITs have the properties of a 
security, they are subject to high risks when the stock market is volatile.

3 NAREIT is an organization that promotes the development of the REITs market in the United States.
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Empirical model
This study explores how pandemic-related risk factors affect different types of assets and 
the changes that occur in terms of extreme volatility risk. We use two methods to esti-
mate the impact of a pandemic-related risk variable on the extreme volatility risk of an 
asset.

The first approach is to use the GARCH model, with the inclusion of a pandemic 
risk factor of exogenous shocks, to estimate the volatility risk of asset returns (general 
fluctuations). We then perform Value at Risk (VaR) analysis to observe the returns’ tail 
behaviors and evaluate the extreme risks in assets. The second approach involves a Vec-
tor Autoregressive (VAR)-Multivariate GARCH (MGARCH) model, taking risk factors 
as endogenous variables, and then estimating the risk transmission effect between asset 
returns and the pandemic-related variables. The detailed descriptions of the two meth-
ods are as follows across the two subsections.

Impact of the pandemic risk: The GARCH‑X model estimation and VaR analysis

Numerous studies have proposed that when a black swan event such as the pandemic 
occurs, asset returns exhibit a fat-tail distribution. In other words, the possibility of 
extreme asset returns is higher when a black swan event occurs. These studies primarily 
use the GARCH model to estimate the volatility of asset returns (Fakhfekh et al. 2021; 
Yong et al. 2021). Ekinci (2021) reports that the daily growth rate of newly confirmed 
cases conforms to the properties of the GARCH model.

To analyze the effect of the pandemic on the volatility of asset returns, pandemic-
related risk factors are considered exogenous events and their effects on changes in vola-
tility are estimated using the GARCH-X model (Han 2015).4 The GARCH X model is a 
univariate GARCH-type model. In the model, �yt is the return on asset price for the t th 
order, and the error term is εt ∼ N 0, σ 2

t  . σ 2
t  is the conditional volatility. We express the 

GARCH(p , q ) model as:

This study adopts the Schwarz information criterion to determine the lag order. Subse-
quently, the pandemic-related risk variables were input into Eq. (2), and the GARCH-X 
model is employed for estimations:

�xt represents the rate of change of risk factors, which includes proxy variables related 
to pandemic severity (total infected cases [ TC ] and total deaths [ TD]); proxy variables 
related to pandemic regulations and policy risks (stringency index [ SI ] and EPU ); and 
vaccination-related variables (total number of vaccines [ TV  ] and population vaccinated 

(1)�yt = µ+ εt

(2)σ 2
t = c +

p∑

i

aiε
2
t−i +

q∑

i

βiσ
2
t−i

(3)σ 2
t = c +

p∑

i

aiε
2
t−i +

q∑

i

βiσ
2
t−i + γ�xt−1

4 X represents exogenous variables.
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[ PV ]). On the basis of the estimation results for coefficient γ , the role of the aforemen-
tioned risk factors in increasing the volatility of asset returns can be clarified.

After estimating the impact of risk factors on the volatility of returns, the volatil-
ity obtained by the GARCH-X model is used to calculate VaR. VaR is commonly used 
to evaluate extreme risks in a market. For example, Emenogu et  al. (2020) used nine 
GARCH model estimates to verify the superiority of such models in estimating tail risk 
and to illustrate the importance of assessing VaR to represent extreme risk.

The VaR method evaluates the maximum loss in asset returns for a given confi-
dence level and a given time period. Statistically, VaR quantifies the left tail of a return 
distribution:

where xT+k represents the asset return at time point T + k and �T represents the infor-
mation set at time point T  , for the confidence level of 1−m , VaRT+k represents the 
maximum loss for the asset during the k th order.

According to Eq. (3), we can obtain the volatility of asset returns ( ̂σ 2
t  ) estimated by the 

GARCH-X model, including pandemic-related factors. From this, VaR can be computed:

Pandemic risk factors endogenously affect asset return volatility risk: The VAR‑MGARCH 

model

In the second method, a VAR-MGARCH model is used to evaluate the relationships 
between pandemic-related risk factors with mean asset returns and volatility. The VAR-
MGARCH model is a multivariate GARCH-type model. The model employs pandemic-
related risk factors as endogenous variables. We estimate their relationship with asset 
returns and volatility. This model is suitable for estimating the transmission of volatility, 
and can perform a rigorous assessment to determine whether the relationship between 
two variables is a result of mean values or volatility (Lucheroni et al. 2019; Okorie and 
Lin 2020).

The VAR-MGARCH model employs two equations to obtain estimations. The first 
equation used to calculate the conditional mean, is as follows:

and Ht is the conditional volatility, that is:

(4)Prob
(
�yT+k > VaRT+k |�T

)
= 1−m

(5)V̂aRT+k = µ̂T − z1−pσ̂T

(6)
[
�yt
�xt

]
=

[
φy,t
φx,t

]
+

[∑n
i=1 ψ11,i�yt−i∑n
i=1 ψ12,i�yt−i

]
+

[∑n
i=1 ψ21,i�xt−i∑n
i=1 ψ22,i�xt−i

]
+

[
εy,t
εx,t

]

(7)

Ht =

[
c11 0

c21 c22

]
+

[
a11 a12
a21 a22

]′

et−1et−1
′

[
a11 a12
a21 a22

]
+

[
b11 b12
b21 b22

]′

Ht−1

[
b11 b12
b21 b22

]

(8)εt

∣∣∣∣�t−1 =

[
εy,t
εx,t

]∣∣∣∣�t−1 ∼ N (0, Ht)
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Equation  (6) determines how the risk factors influence asset returns. Equation  (7) 
determines how risk factors influence asset volatility. An advantage of this model is that 
it can simultaneously estimate the return and volatility of multiple variables, thereby 
facilitating a rigorous analysis of the transmission effect of pandemic risk. Hence, this 
study uses the VAR-MGARCH model to explore the transmission of return and risk 
(Balcilar et al. 2018; Funke et al. 2022). Specifically, we examine the effects of volatility 
to assess and quantify the influence of each risk factor on asset volatility. Based on these 
estimations, this study depicts how each pandemic-related risk factor transmits risk to 
asset volatility.

Empirical analysis
Data

Data on the eight assets used in this study include the prices of Bitcoin, the CCI , the 
MSCI WSPI , the WTI , the MSCI WEPI , gold prices, the S&P GSCI , and the NAREIT 
REITs . This study uses data from the earliest point at which the daily data of all assets 
can be obtained for analysis of longer-term asset return behavior. The sample period 
spans from January 1, 2015, to October 31, 2022. Returns are calculated based on the 
price or index of the assets. All asset prices and index data were sourced from the Data-
stream database.

Six pandemic-related factors are examined as risk factors. The selection of variables 
is based on studies that examine pandemic-related events, which use variables of three 
primary types: pandemic severity (Al-Awadhi et al. 2020; Ashraf 2020), pandemic pol-
icy–related factors (e.g., lockdowns and policy changes; Baker et al. 2020b; Scherf et al. 
2022), and information related to the development, launch, and administration of vac-
cines (Awijen et  al. al., 2022; Chan et  al. 2022). Hence, the risk factors include total 
infected cases ( TC ) and total deaths ( TD ), both of which are proxy variables for pan-
demic severity, and the total number of vaccines ( TV  ) and the population vaccinated 
( PV  ), both of which are vaccination-related variables. These data were obtained from 
the WHO Coronavirus (COVID-19) Dashboard.5 Finally, the variables representing pan-
demic regulations and policies comprise the SI and the EPU index proposed by Baker 
et al. (2016). Data pertaining to the SI are obtained from the Oxford COVID-19 Gov-
ernment Response Tracker: Stringency Index provided by the Blavatnik School of Gov-
ernment.6 Data pertaining to the EPU index were obtained from the website.7 Variables 
related to the pandemic are only available since the first confirmed COVID-19 case (Jan-
uary 22, 2020). Hence, for each risk factor, this study examined data for the period of 
January 22, 2020, to October 31, 2022.

Panels A and B of Table 1 separately list the basic statistics and data characteristics of 
the return rates for the eight assets and the rate of change of the influencing factors. Fig-
ure 1 depicts the time series of asset prices and indices. Figure 2 plots the rate of change 
of the influencing factors. Table 1 reveals that among the various examined assets, the 
two assets with the lowest returns are energy prices and the REITs . Cryptocurrencies, 

5 https:// covid 19. who. int/.
6 For measuring the government policies of strict response, The Oxford Coronavirus Government Response Tracker 
(OxCGRT) project develops a Stringency Index, which is the average of nine criteria with values ranging from 0 to 100. 
A higher score suggests a more rigid reaction.
7 https:// www. polic yunce rtain ty. com/ us_ month ly. html.

https://covid19.who.int/
https://www.policyuncertainty.com/us_monthly.html


Page 15 of 42Tsai  Financial Innovation           (2024) 10:62  

Table 1 Basic statistics and data characteristics of variables

Panel A �CCI �BTC �WSPI �WTI

Mean 0.0021 0.0020 0.0002 0.0004

Std. Dev 0.0501 0.0459 0.0099 0.0302

Skewness − 1.1747 − 0.8621 0.8892 − 1.6540

Kurtosis 8.6066 10.9357 17.9096 52.3753

J‑B 6772.0240 10,428.0278 27,784.3584 234,329.0509
(0.0000) (0.0000) (0.0000) (0.0000)

Q (10) 23.6639 12.1512 152.1985 53.7822
(0.0085) (0.2751) (0.0000) (0.0000)

Q (20) 52.3488 23.1405 188.6810 92.7014
(0.0001) (0.2819) (0.0000) (0.0000)

Q2 (10) 88.3041 69.7991 2067.8906 278.1154
(0.0000) (0.0000) (0.0000) (0.0000)

Q2 (20) 99.5996 76.9885 2398.2340 325.8721
(0.0000) (0.0000) (0.0000) (0.0000)

ADF test − 45.9506 − 45.9945 − 13.7079 − 38.4509
(0.0000) (0.0000) (0.0000) (0.0000)

�WEPI �Gold �GSCI �REITs

Mean 0.00001 0.0002 0.0004 0.00002

Std. Dev 0.0173 0.0086 0.0143 0.0132

Skewness − 1.2254 − 0.3059 − 0.8246 − 2.1165

Kurtosis 22.4935 3.4374 8.9553 32.7819

J‑B 43,559.5416 1037.1526 7054.8323 92,959.3348
(0.0000) (0.0000) (0.0000) (0.0000)

Q (10) 63.9861 17.2184 12.2415 121.3499
(0.0000) (0.0697) (0.2692) (0.0000)

Q (20) 91.6591 26.3366 32.2669 161.9908
(0.0000) (0.1550) (0.0405) (0.0000)

Q2 (10) 977.2221 143.5666 454.1760 1387.6544
(0.0000) (0.0000) (0.0000) (0.0000)

Q2 (20) 1246.2855 203.8627 590.4677 1677.4876
(0.0000) (0.0000) (0.0000) (0.0000)

ADF test − 15.1916 − 44.1859 − 42.9641 − 23.4343
(0.0000) (0.0000) (0.0000) (0.0000)

Panel B �TC �TD �SI

Mean 0.0090 0.0059 0.0008

Std. Dev 0.0591 0.0398 0.0291

Skewness 12.1704 11.4631 14.1001

Kurtosis 176.6471 156.4033 330.5337

J‑B 2,705,367.1937 2,126,028.3888 9,363,230.6341
(0.0000) (0.0000) (0.0000)

Q (10) 5151.3550 10,406.3250 657.3298
(0.0000) (0.0000) (0.0000)

Q (20) 6697.3017 13,780.3230 672.1648
(0.0000) (0.0000) (0.0000)

Q2 (10) 1284.5730 3789.1230 684.3104
(0.0000) (0.0000) (0.0000)

Q2 (20) 1524.7820 4311.9470 687.0451
(0.0000) (0.0000) (0.0000)
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including Bitcoin and the CCI , exhibit the highest mean return. Figure 1 uses a vertical 
line to represent the timeline of the pandemic, and it reveals that the prices of cryp-
tocurrency and gold did not decrease considerably during the pandemic but increased 
exponentially in 2020. In comparison, the prices of other assets decreased significantly 
during the pandemic. Although they underwent varying degrees of correction and 
exhibited varying market recovery speeds, the prices of almost all five assets exceeded 
their pre-pandemic prices in 2021. Overall, the recovery in the energy market was 
slower. The price trends of the eight assets differ in terms of pattern. Relative to their 
pre-pandemic price trends, the price trends of the eight assets from 2020 to 2022 exhib-
ited high volatility.

Empirical result

The unit root test results in Table  1 indicate that all asset returns and changes in the 
influencing factors are stationary and can be used to perform empirical model estima-
tions. The data properties presented in Table 1 reveal that asset returns do not follow a 
normal distribution but instead exhibit self-correlation. Based on the estimation results 

Panel A: This table shows the statistics, independence tests, and unit root tests of the variables. �CCI , �BTC , �WSPI , �WTI , 
�WEPI , �Gold , �GSCI , and �REITs respectively denote the return of cryptocurrency index, Bitcoin price, MSCI World Stock 
Price Index, WTI crude oil spot price, MSCI World Energy Price Index, gold spot price, S&P Goldman Sachs Commodity Index, 
and FTSE NAREIT All REITs index. The normality test statistics J-B stands for Jarque–Bera with null hypothesis. Q (n) is the 
Ljung-Box Q statistic for testing autocorrelation with null hypothesis.  Q2 (n) is the McLeod-Li  Q2 statistic for testing non-
linearity with null hypothesis. Number in parentheses is p-value. Number in bold stands for significance at 5%

Panel B: This table shows the statistics, independence tests, and unit root tests of the risk variables. �TC , �TD , �SI , �EPU , 
�TV  , and �PV  respectively denote the return of total infected cases, total deaths, stringency index, Economic Policy 
Uncertainty, total number of vaccines, and population vaccinated. The normality test statistics J-B stands for Jarque–
Bera with null hypothesis. Q (n) is the Ljung-Box Q statistic for testing autocorrelation with null hypothesis.  Q2 (n) is the 
McLeod-Li  Q2 statistic for testing non-linearity with null hypothesis. Number in parentheses is p-value. Number in bold 
stands for significance at 5%

Table 1 (continued)

Panel B �TC �TD �SI

ADF test − 4.4774 − 13.6300 − 10.7406
(0.0002) (0.0000) (0.0000)

�EPU �TV �PV

Mean 0.0001 0.0047 0.0043

Std. Dev 0.4924 0.0394 0.0407

Skewness 0.2176 17.3263 18.1483

Kurtosis 1.5258 350.2036 377.4784

J‑B 214.1810 10,537,003.9131 12,235,608.7513
(0.0000) (0.0000) (0.0000)

Q (10) 372.4214 4046.8167 3741.1373
(0.0000) (0.0000) (0.0000)

Q (20) 400.9224 4816.8866 4251.5144
(0.0000) (0.0000) (0.0000)

Q2 (10) 128.9736 1894.7896 1817.6908
(0.0000) (0.0000) (0.0000)

Q2 (20) 133.2240 1903.0918 1821.2716
(0.0000) (0.0000) (0.0000)

ADF test − 23.2077 − 7.8875 − 6.5698
(0.0000) (0.0000) (0.0000)
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of the Jarque–Bera test, the hypothesis of normal distribution is rejected. Similarly, based 
on the Q and Q-squared statistics obtained using the Ljung–Box test and the McLeod–
Li test, respectively, the hypothesis of self-correlation is rejected. Given the aforemen-
tioned properties of the asset returns data, the GARCH model is the most suitable for 
estimating the fat -tail phenomenon in these data. Therefore, this study employs the 
GARCH model for estimations. In Table 2, the estimation results for each asset reveal 
that the residual sum of squares and the conditional variables of the preceding order sig-
nificantly influence the volatility of the present order. Therefore, the GARCH(1,1) model 
exhibits favorable fitness.

To predict the performance of asset returns under extreme conditions, numerous 
large-scale financial institutions use historical simulation-based methods (HSBMs) 

Fig. 1 Time series of eight assets
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(Boudoukh et al. 1998) to compute VaR. For a given confidence level, HSBM can esti-
mate the maximum loss in asset investments caused by market volatility during a given 
time period. However, Pritsker (2006) indicated that HSBMs are unsuitable for estimat-
ing long-term and high-variance data. Figures 3 and 4 depict the VaRs8 of the eight assets 
estimated using an HSBM and the GARCH(1,1) model, respectively. A comparison of 
Figs. 3 and 4 reveals that the GARCH model is advantageous for estimating long-term 
data; relative to the employed HSBM, this model can more accurately evaluate changes 
in VaR during periods with high market volatility. By contrast, the estimation results of 
the employed HSBM did not reflect changes in extreme risks during the pandemic.

As a black swan event, the pandemic has increased the severity of multiple risk fac-
tors that may influence the economy. To evaluate the effect of these factors on extreme 
asset risk, we employ the GARCH-X model (Eq. 3) We estimate the exogenous effect of 
three risk factors (pandemic severity, pandemic regulations and policies, and vaccina-
tion-related variables) based on six indices, thereby clarifying the influence of these risk 
factors on the volatility of asset returns. The estimation results are listed in Tables 3, 4 

Fig. 2 The rate of change of the six influencing factors

8 Because HSBM is inferred using historic data and not computed through the application of a distribution model 
hypothesis, a rolling window is required for estimations. The present study sets the window length as 100 trading days.
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and 5. Table 3 lists the estimation outcomes obtained using TC and TD as proxy vari-
ables. In Table 3, the outcome of the coefficient γ indicates that only the stock market 
and crude oil are not significantly affected by the number of confirmed cases or deaths. 
For other assets, when the pandemic becomes more serious, the volatility of the returns 
increases correspondingly. However, the volatility of some assets has increased due to 
price increases. As shown  in Fig.  1, after the pandemic, the cryptocurrency and gold 
markets experienced considerable growth, while the volatility of energy markets might 
rise due to market crashes.

Table 4 presents the estimated outcomes obtained using the SI and EPU index as risk 
factors. With the exception of the stock market and crude oil, the return volatilities of 
the other six types of assets are significantly influenced by lockdown policies. Stringent 
pandemic regulations have increased the volatility risks of these six assets. Table 4 also 
indicates that the asset returns of the cryptocurrency, gold, and real estate markets are 
positively associated with the regulations. The volatilities of these three markets are 
also affected by the risk of policy uncertainty. Table 5 depicts the effect of TV  and PV  
on the volatility of asset returns. The table indicates that positive vaccination-related 
news influences the Cryptocurrency, stock, and crude oil markets respectively. Notably, 
increases in both TV  and PV  result in lower volatility risks in the CCI , stock, and crude 
oil markets. An increase in PV  results in lower volatility risks in the Bitcoin market.

Tables 3 and 4 show the estimated effects of negative pandemic-related news on the 
markets examined in this study. Table 5 estimates the effect of positive pandemic-related 
news on these markets. A comparison of the results in Tables  3–5 indicates that the 

Table 2 The estimations of GARCH (1,1) model �yt = µ+ εt , εt ∼ N
(
0, σ 2

t

)
 , σ 2

t = c + aε2t−1 + βσ 2
t−1 , y 

denotes asset return

This table shows the conditional volatility estimations of the assets. �CCI , �BTC , �WSPI , �WTI , �WEPI , �Gold , �GSCI , 
and �REITs respectively denote the return of cryptocurrency index, Bitcoin price, MSCI World Stock Price Index, WTI crude 
oil spot price, MSCI World Energy Price Index, gold spot price, S&P Goldman Sachs Commodity Index, and FTSE NAREIT All 
REITs index. Number in brackets is t-statistic. The symbols ** and *** denote significance at 5% and 1% level, respectively

Variables �CCI �BTC �WSPI �WTI

µ 0.0019** 0.0022** 0.0007*** 0.0011**

[2.0683] [2.5416] [5.0407] [2.5435]

c 0.0001*** 0.0001***  < 0.0000***  < 0.0000***

[3.9218] [4.7462] [5.4204] [4.6547]

a 0.1271*** 0.1392*** 0.2099*** 0.2112***

[7.3980] [6.9799] [8.3564] [9.2657]

β 0.8547*** 0.8204*** 0.7742*** 0.7819***

[46.0244] [35.5481] [33.6462] [36.4525]

�WEPI �Gold �GSCI �REITs

µ 0.0003  < 0.0000 0.0006** 0.0004

[0.9920] [0.2220] [2.3977] [1.9591]

c  < 0.0000***  < 0.0000  < 0.0000***  < 0.0000***

[2.8475] [1.4894] [3.9869] [4.0186]

a 0.1119*** 0.0307*** 0.0790*** 0.1538***

[8.3060] [3.3156] [7.9166] [7.1199]

β 0.8874*** 0.9612*** 0.8967*** 0.8130***

[70.5536] [69.0150] [67.9285] [31.5292]
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effects of good and bad news are asymmetric during the pandemic. The assets influ-
enced by positive news were mostly distinct from those influenced by negative news. 
Pandemic severity was found to mainly influence the Bitcoin, gold, and commodity mar-
kets, whereas vaccination-related variables exerted a largely positive impact on stock and 
crude oil assets. Since the onset of the pandemic can be seen as a bad news event, and 
vaccine-related news developed once the pandemic had expanded, the results indicate 
that investors should change their target market as new developments arise. In addition, 
across all risk factors, policy uncertainty is the least influential exogenous factor, which 
only increases the volatility of the three markets. Although several studies illustrate the 
impact of the EPU index on the asset market (Choi 2020), this study finds that its imme-
diate and exogenous influences are relatively weak.

Figures 5, 6 and 7 depict the VaR estimations obtained using the models in Table 3, 
4 and 5. These estimations are used to observe, examine, and infer the effect of various 
risk factors on the extreme risks in asset returns. Table 5 presents the estimations of the 
effect of positive pandemic-related factors. The distribution in Fig.  7 (i.e., the estima-
tion outcomes of Table 5) exhibits a right-tail distribution for extreme risk performance. 

Fig. 3 The VaRs of the eight assets that are estimated using the HSBM method
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Figures  5, 6 and 7 reveal that the Bitcoin and crude oil markets exhibit the highest 
extreme risk variances. Furthermore, among the examined risk factors, positive vacci-
nation-related news results in the highest volatility and the highest degree of change in 
the crude oil market. The above results show that although the oil market crashed at the 
beginning of the pandemic, this does not mean that crude oil was not a good investment 
opportunity during the pandemic. Indeed investment in the crude oil market became 
significantly more attractive when the good news about vaccines began to emerge.

Subsequently, we employed the VAR-MGARCH model to examine the relationship 
between asset returns and pandemic-related risk factors. As Table 5 indicates, positive 
vaccination-related news stabilizes volatility in several markets. The following tests dis-
cuss the long-term influence of negative information to determine if they produce struc-
tural changes in the market. The present study used the TC and SI results to estimate the 
effects of pandemic severity and pandemic regulations and policies, respectively. Table 6 
indicates that pandemic severity has varying degrees of influence on the changes in asset 

Fig. 4 The VaRs of the eight assets that are estimated using the GARCH(1,1) model
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returns and risks. Table 7 presents the changes in each asset’s returns and risks caused 
by the stringency of lockdowns.

Table 6 indicates that the transmission effect of the negative asset returns of TC only 
exists for crude oil, because the significance of ψ21 is –0.04. On the contrary, ψ21 is sig-
nificantly positive for gold, commodity ( GSCI ), and REIT markets. This shows that in 
terms of returns, the assets that avoid are least affected by the pandemic are those in the 
commodity and real asset markets. The risk transmission effect is insignificant only in 
the CCI , and the transmission effects of the pandemic on both returns and risk are also 
insignificant in the CCI . However, Bitcoin is significantly affected by the pandemic ( a21 ), 
which results in higher volatility. This may be because the CCI includes other types of 

Table 3 The effect of the factors of pandemic severity on the extreme risks in 
assets: AR(1)‑GARCH(1,1)‑X model �yt = θ0 + θ1�yt−1 + θ2�xt−1 + εt , εt ∼ N

(
0, σ 2

t

)
 , 

σ 2
t = c + aε2t−1 + βσ 2

t−1 + γ�xt−1 , y denotes asset price, x denotes risk factor

This table shows the influence of risk factors on the volatilities of assets. �CCI , �BTC , �WSPI , �WTI , �WEPI , �Gold , 
�GSCI , and �REITs respectively denote the return of cryptocurrency index, Bitcoin price, MSCI World Stock Price Index, 
WTI crude oil spot price, MSCI World Energy Price Index, gold spot price, S&P Goldman Sachs Commodity Index, and FTSE 
NAREIT All REITs index. �TC and �TD denote the rate of change of total infected cases and total deaths, respectively. 
Number in brackets is t-statistic. The symbols ** and *** denote significance at 5% and 1% level, respectively

Risk factor:�TC

Variables �CCI �BTC �WSPI �WTI �WEPI �Gold �GSCI �REITs

θ0 0.0024 0.0014 0.0006 0.0027*** 0.0009 − 0.0001*** 0.0013** 0.0007

[1.2724] [0.8122] [1.6875] [2.7367] [1.3047] [− 97.8743] [2.2876] [1.5079]

θ1 0.0139 − 0.0212 0.0338 − 0.0639 0.0592 − 0.0112*** 0.0250 − 0.0305

[0.3160] [− 0.5319] [0.8073] [− 1.3953] [1.4601] [− 3.0975] [0.5858] [− 0.6969]

θ2 − 0.0312 − 0.0154 0.0070 − 0.0017 0.0120 − 0.0067*** 0.0034 − 0.0098

[− 0.5735] [− 0.3472] [0.5041] [− 0.0573] [0.3856] [− 31.0628] [0.1994] [− 0.4729]

c 0.0001 0.0002  < 0.0000*** 0.0002***  < 0.0000*** 0.0001***  < 0.0000***  < 0.0000***

[1.9436] [1.7864] [2.9899] [3.5583] [2.7908] [55.811] [2.7366] [2.9691]

a 0.1099*** 0.0443** 0.1719*** 0.7114*** 0.0597*** 0.0083*** 0.1018*** 0.1653***

[4.0417] [2.3538] [4.4991] [6.8166] [2.6894] [103.6327] [3.6657] [4.3255]

β 0.8435*** 0.8302*** 0.7820*** 0.3861*** 0.7914*** − 0.2953*** 0.8435*** 0.7628***

[22.0483] [12.3274] [19.1468] [5.2647] [14.8168] [− 1689.9098] [21.8262] [16.3102]

γ 0.0023** 0.0030** 0.0002 0.0018 0.0020*** 0.0018*** 0.0003** 0.0005**

[2.5021] [2.3286] [1.7478] [1.4287] [2.6451] [71.2663] [2.1613] [2.2087]

Risk factor:�TD

Variables �CCI �BTC �WSPI �WTI �WEPI �Gold �GSCI �REITs

θ0 0.0021 0.0011 0.0005 0.0025*** 0.0010 − 0.0001 0.0013** 0.0006

[1.0747] [0.6289] [1.3801] [2.6583] [1.2871] [− 0.3484] [2.3142] [1.2569]

θ1 0.0141 − 0.0278 0.0311 − 0.0642 0.0589 0.0372 0.0218 − 0.0285

[0.3011] [− 0.6833] [0.7449] [− 1.5212] [1.3693] [0.9102] [0.4803] [− 0.6782]

θ2 0.0188 0.0261 0.0259 0.0232 0.0222 0.0053 − 0.0047 0.0053

[0.2942] [0.4919] [1.377] [0.4175] [0.5336] [0.4989] [− 0.1722] [0.1519]

c 0.0002 0.0004**  < 0.0000*** 0.0002***  < 0.0000***  < 0.0000***  < 0.0000***  < 0.0000***

[1.8128] [2.0338] [2.8450] [3.3421] [2.6379] [2.8227] [2.8650] [2.9743]

a 0.1277*** 0.0415 0.1858*** 0.6823*** 0.0698*** 0.0688** 0.1087*** 0.1733***

[3.6876] [1.6825] [4.6423] [6.1911] [2.8918] [2.5658] [3.9968] [4.6216]

β 0.8137*** 0.7211*** 0.7703*** 0.3902*** 0.7607*** 0.7338*** 0.8232*** 0.7472***

[15.2335] [6.7015] [17.9557] [4.7155] [12.5501] [9.4051] [20.7982] [15.6587]

γ 0.0038** 0.0087** 0.0003 0.0038 0.0032*** 0.0002 0.0006** 0.0009**

[2.0393] [2.1886] [1.4849] [1.3772] [2.6896] [1.7899] [2.3685] [2.1232]
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virtual currencies, and the price changes of some virtual currencies are affected by mar-
ket risk factors. Thus, the source of volatility (risk) of the CCI is not affected by the pan-
demic. However, this is not the case for Bitcoin. Bitcoin is significantly affected by the 
risk transmission effect of the pandemic’s severity, which results in higher returns during 
the pandemic owing to increased risk.

In addition, the a21 of gold and crude oil are both significantly positive. However, the 
b21 of gold is significantly negative, indicating that the risk of transmission of the pan-
demic to gold can be divided into two effects. One is the shock of the pandemic, which 
increases the risk posed to gold, and the other is the risk of the pandemic itself, which 
reduces the risk posed to gold. The commodity market, as viewed by GSCI exhibits two 

Table 4 The effect of the factors of pandemic regulations and policies on the extreme 
risks in assets: AR(1)‑GARCH(1,1)‑X Model �yt = θ0 + θ1�yt−1 + θ2�xt−1 + εt , εt ∼ N

(
0, σ 2

t

)
 , 

σ 2
t = c + aε2t−1 + βσ 2

t−1 + γ�xt−1 , y denotes asset price, x denotes risk factor

This table shows the influence of risk factors on the volatilities of assets. �CCI , �BTC , �WSPI , �WTI , �WEPI , �Gold , 
�GSCI , and �REITs respectively denote the return of cryptocurrency index, Bitcoin price, MSCI World Stock Price Index, 
WTI crude oil spot price, MSCI World Energy Price Index, gold spot price, S&P Goldman Sachs Commodity Index, and FTSE 
NAREIT All REITs index. �SI and �EPU denote the rate of change of stringency index and daily economic policy uncertainty 
index, respectively. Number in brackets is t-statistic. The symbols ** and *** denote significance at 5% and 1% level, 
respectively

Risk factor:�SI

Variables �CCI �BTC �WSPI �WTI �WEPI �Gold �GSCI �REITs

θ0 0.0013 0.0016*** 0.0007 0.0028*** 0.0011 − 0.0002*** 0.0014*** 0.0003***

[0.3620] [19.7103] [1.8461] [3.0947] [1.4468] [− 112.3294] [2.6150] [82.6677]

θ1 − 0.0496 − 0.0738*** 0.0358 − 0.0612 0.0575 0.0661*** 0.0210 0.0301***

[− 0.7446] [− 33.4822] [0.7898] [− 1.4709] [1.4039] [13.5543] [0.4751] [855.1747]

θ2 0.0824*** 0.0306*** 0.0075 − 0.0343 − 0.0235 0.0031*** − 0.0503*** 0.0236***

[5.9802] [55.5470] [0.6722] [− 1.7155] [− 1.073] [32.0924] [− 19.0469] [62.9887]

c 0.0024*** 0.0019***  < 0.0000*** 0.0002***  < 0.0000***  < 0.0000***  < 0.0000*** 0.0001***

[22.3893] [100.9414] [3.3143] [4.1188] [4.2876] [156.2189] [327.8977] [116.3445]

a 0.0190*** 0.0041*** 0.1802*** 0.7641*** 0.0460*** 0.1217*** 0.1532*** 0.2948***

[680.516] [229.3772] [4.7773] [7.2732] [2.8815] [64.8860] [757.3872] [1744.7736]

β 0.1854*** 0.1755*** 0.7896*** 0.3779*** 0.8981*** 0.6619*** 0.7905*** 0.3716***

[110.8882] [2498.4900] [21.1602] [5.9501] [39.9693] [1099.3975] [151.4857] [169.9104]

γ 0.0100*** 0.0077***  < 0.0000 0.0008 0.0009*** 0.0003*** 0.0005*** 0.0005***

[23.2134] [101.0555] [0.7124] [0.9799] [5.8619] [170.6974] [35.9492] [128.8896]

Risk factor:�EPU

Variables �CCI �BTC �WSPI �WTI �WEPI �Gold �GSCI �REITs

θ0 0.0022 0.0014 0.0006 0.0029*** 0.0012 − 0.0001 0.0013** 0.0013***

[1.1996] [0.7246] [1.8383] [3.0278] [1.5802] [− 0.2973] [2.4098] [24.7283]

θ1 0.0104 − 0.0263 0.0379 − 0.0561 0.0626 0.0326 0.0287 0.0246

[0.2365] [− 0.6084] [0.8379] [− 1.2659] [1.4515] [0.7337] [0.6432] [0.8271]

θ2 − 0.0012 − 0.0008 0.0000 0.0007 − 0.0002 0.0001 − 0.0009 − 0.0003

[− 0.2398] [− 0.1917] [0.0192] [0.3507] [− 0.0994] [0.1618] [− 0.811] [− 0.8502]

c 0.0001** 0.0001  < 0.0000*** 0.0002***  < 0.0000**  < 0.0000**  < 0.0000***  < 0.0000***

[2.2012] [1.8336] [2.9289] [3.6934] [2.3922] [2.2715] [2.6257] [339.1972]

a 0.1203*** 0.0572 0.1834*** 0.7525*** 0.1019*** 0.0763*** 0.1024*** 0.3551***

[4.1281] [1.8964] [4.9730] [6.5599] [3.1199] [2.6447] [3.4057] [160.8725]

β 0.8481*** 0.8862*** 0.7935*** 0.3821*** 0.8569*** 0.8402*** 0.8616*** 0.6369***

[24.4995] [17.3119] [21.7960] [4.9297] [21.4657] [14.9133] [23.4618] [3608.1487]

γ 0.0007** 0.0004  < − 0.0000  < 0.0000 0.0001  < 0.0000**  < 0.0000 0.0001***

[2.0261] [1.1692] [− 1.1043] [0.3394] [1.5658] [2.1606] [1.1471] [450.9683]
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types of risk transmission. The severity of the pandemic does not necessarily increase the 
degree of risk in commodity markets, including gold. However, the pandemic positively 
affects the transmission of risk for crude oil. Therefore, under pandemic conditions, 
investment in crude oil is unfavorable. This increases the risk of crude-oil consumption, 
resulting in negative returns. The results indicate that commodity and real assets mar-
kets should be chosen instead of the energy market by investors who wish to avoid risk 
due to negative pandemic factors.

Although Fig. 1 shows that, in addition to gold, Bitcoin is also an asset that performs 
better when the pandemic is severe, Table 6 shows that gold benefits from pandemic 
severity without considering risk factors, while the high returns of Bitcoin are due 

Table 5 The effect of the factors of vaccination‑related variables on the extreme risks 
in assets: AR(1)‑GARCH(1,1)‑X model �yt = θ0 + θ1�yt−1 + θ2�xt−1 + εt , εt ∼ N

(
0, σ 2

t

)
 , 

σ 2
t = c + aε2t−1 + βσ 2

t−1 + γ�xt−1 , y denotes asset price, x denotes risk factor

This table shows the influence of risk factors on the volatilities of assets. �CCI , �BTC , �WSPI , �WTI , �WEPI , �Gold , 
�GSCI , and �REITs respectively denote the return of cryptocurrency index, Bitcoin price, MSCI World Stock Price Index, 
WTI crude oil spot price, MSCI World Energy Price Index, gold spot price, S&P Goldman Sachs Commodity Index, and FTSE 
NAREIT All REITs index. �TV  and �PV  denote the rate of change of number of total vaccinations and people vaccinated, 
respectively. Number in brackets is t-statistic. The symbols ** and *** denote significance at 5% and 1% level, respectively

Risk factor:�TV

Variables �CCI �BTC �WSPI �WTI �WEPI �Gold �GSCI �REITs

θ0 0.0016*** 0.0011 0.0006** 0.0026*** 0.0015 − 0.0001 0.0013** 0.0006

[27.4399] [0.6593] [1.9631] [62.0257] [1.8582] [− 0.3211] [2.4152] [1.3733]

θ1 − 0.0288 − 0.0997*** 0.0458 − 0.0569*** 0.0575 0.0378 0.0276 − 0.0212

[− 1.7839] [− 2.9274] [1.0603] [− 188.3148] [1.2824] [0.8988] [0.6172] [− 0.4672]

θ2 0.0206*** 0.0716*** − 0.0005 0.0088*** − 0.0078 0.0018 0.0048 − 0.0023

[289.5012] [3.0278] [− 0.1906] [48.7046] [− 0.7662] [0.3805] [0.8878] [− 0.4984]

c 0.0017***  < 0.0000  < 0.0000*** 0.0003***  < 0.0000**  < 0.0000**  < 0.0000***  < 0.0000***

[392.6338] [0.3723] [3.5323] [170.0061] [2.4139] [2.4675] [2.7889] [2.8470]

a 0.0937*** − 0.0026*** 0.1794*** 0.9490*** 0.1062*** 0.0893*** 0.1104*** 0.1799***

[271.5141] [− 3.7399] [4.6287] [15.6035] [3.1134] [3.1950] [3.8058] [4.5671]

β 0.3623*** 0.9997*** 0.7885*** 0.1596*** 0.8490*** 0.8103*** 0.8546*** 0.7784***

[4968.7864] [510.338] [21.3027] [52.0864] [19.8301] [14.2861] [25.1078] [17.8896]

γ − 0.0024*** 0.0003***  < − 0.0000** − 0.0004*** 0.0000  < − 0.0000  < − 0.0000  < 0.0000

[− 425.8199] [4.4472] [− 1.9813] [− 203.1139] [− 0.8311] [− 0.2314] [− 0.3346] [0.0230]

Risk factor:�PV

Variables �CCI �BTC �WSPI �WTI �WEPI �Gold �GSCI �REITs

θ0 0.0006*** − 0.0004*** 0.0003 0.0022*** 0.0015 − 0.0001 0.0013** 0.0006

[236.0007] [− 322.7389] [0.3474] [65.0494] [1.933] [− 0.3533] [2.4296] [1.4152]

θ1 − 0.0316*** − 0.0772*** − 0.0067 − 0.0650*** 0.0571 0.0374 0.0278 − 0.0213

[− 58.7025] [− 30.2465] [− 0.0931] [− 16.7246] [1.3278] [0.8794] [0.6601] [− 0.5002]

θ2 0.0259*** 0.0710*** 0.0069*** 0.0088*** − 0.0086 0.0022 0.0041 − 0.0021

[257.9519] [418.9184] [13.9560] [23470.0241] [− 0.8689] [0.4918] [0.7507] [− 0.3356]

c 0.0030*** 0.0018*** 0.0003*** 0.0005***  < 0.0000**  < 0.0000**  < 0.0000***  < 0.0000***

[8384.6107] [183.2014] [182.3012] [203.9397] [2.3964] [2.4720] [2.6302] [3.0773]

a 0.0770*** 0.0035*** 0.0500*** 0.9600*** 0.1067*** 0.0899*** 0.1107*** 0.1796***

[579.2403] [400.1458] [174.0538] [35.5704] [3.0892] [3.4103] [3.9439] [4.8998]

β 0.1133*** 0.2333*** 0.3327*** 0.0448*** 0.8485*** 0.8086*** 0.8544*** 0.7789***

[196.2190] [15545.2828] [1923.5196] [55.5196] [19.9778] [14.6755] [24.5872] [19.5374]

γ − 0.0032*** − 0.0019*** − 0.0003*** − 0.0005***  < − 0.0000  < − 0.0000  < − 0.0000  < 0.0000

[− 10873.5210] [− 184.1849] [− 204.0440] [− 213.3385] [− 0.8282] [− 0.3083] [− 0.2748] [0.1190]
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to this asset bearing high risks under the influence of the pandemic. Therefore, from 
Table 6, we obtained more detailed results than those in the past literature. Previous 
studies have found that both gold and Bitcoin can be used as haven assets to avoid 
extreme risks, and this study further distinguishes these two types of assets by their 
haven characteristics. As a safe haven, gold’s risk-hedge features are relatively stable. 
This may be due to fear of the pandemic, which incentivized the holding of gold as 
the pandemic worsened. Although the excellent performance of Bitcoin during the 
pandemic suggests that it is a safe haven asset, this is because the risk premium is 
affected by the increase in volatility resulting from the pandemic’s impact.

In addition to gold, the REIT market also exhibits the characteristics of safe haven 
assets during the pandemic. It benefits from people holding real assets during the 
pandemic; investors enjoy higher returns, while the pandemic’s impact reduces the 
risk ( a21 <0). Although the risk of stocks also decreases in the face of pandemic shocks 
( a21<0), there is no positive return impact on the stock market during the pandemic.

Fig. 5 The effect of pandemic severity on the extreme risks in asset returns
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Table 7 indicates that the returns from the energy markets increase significantly when 
the stringency of lockdowns increases ( ψ21>0). In contrast, the severity of lockdowns 
had a negative effect on commodity markets. However, this control increases the volatil-
ity risk of gold and virtual currencies, and brings positive returns.

Additionally, besides the stock market and REITs, all markets have a a21 or b21 that 
is significant and non-zero, indicating that new information on the stringency of 
lockdowns or the volatility of lockdown regulations influences the volatility of asset 
returns in these markets. Therefore, the stringency of lockdowns has a risk trans-
mission effect on these markets. Table  7 shows that stock markets and REITs are 
not influenced by the risk transmission effect associated with the stringency of lock-
downs. However, Table 4 reveals that as an exogenous shock, pandemic regulations 
increased the volatility of the real estate market. This may be because the stringency 
of lockdowns did not affect the real estate market. Otherwise, we would expect an 
increase in real estate volatility risk. As far as stocks are concerned, the stringency 
of lockdowns had no significant effect on risk transmission, whether exogenous or 

Fig. 6 The effect of pandemic regulations and policies on the extreme risks in asset returns
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endogenous. This may be because the study used global stock market data for its anal-
ysis. The control period of each country is different; therefore, each country’s stock 
market is affected differently, such that the stock price index constructed with the 
global stock market can avoid the transmission of risks.

Figure 8 depicts the estimation outcomes for the risk factors presented in Table 7 and 
the coefficients of asset returns. Figure 9 compares the average correlation coefficients 
between different assets and risk factors. Figure 8 indicates that with the development 
of the pandemic, the correlation between each asset and the severity of the pandemic 
was constantly changing. On average, crude oil exhibited the highest positive correla-
tion. During most of the period, gold returns were negatively correlated with the strin-
gency of the lockdowns. Except for a few periods, the correlation between Bitcoin and 
the stringency of lockdowns was close to 0. Figure 9 shows that, on average, gold and 
Bitcoin are less correlated with both risk factors, indicating that an increase in pandemic 
risk results in less risk transmission to gold and Bitcoin. These outcomes highlight the 
safe-haven properties of gold and Bitcoin.

Fig. 7 The effect of vaccination‑related variables on the extreme risks in asset returns
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Discussion of empirical results

The empirical results show a relationship between asset type and extreme risk trans-
mission. This study finds that gold and virtual assets perform best in terms of hedging 
risks associated with the COVID-19 pandemic. Among them, the return volatility of the 
virtual assets’ portfolio (the CCI ), which is observed in multiple virtual currencies, is 
mainly affected by its own market factors and has no significant correlation with the 
severity of the pandemic and the strictness of regulation.

Both Bitcoin and gold performed well after the outbreak of the pandemic. While other 
assets fell sharply during the early stage of the pandemic and then slowly rebounded, 
both virtual currencies and gold rose sharply during this time. Such good performance 
shows that from the perspective of the black swan event triggered by COVID-19, Bit-
coin and gold can indeed be used as safe havens during periods of turbulence. In the 
past, the literature has pointed out the advantages of Bitcoin and gold in hedging (Selmi 
et al. 2018; Będowska-Sójka and Kliber 2021), and some studies have pointed out that 
these two assets can also be used during the COVID-19 pandemic to hedge against the 
risk of the crisis. For example, Salisu et  al. (2021) found that gold is an excellent safe 
haven during the COVID-19 pandemic. However, Akhtaruzzaman et al. (2021) pointed 
out that the hedging effects of gold are not constant across different periods. However, 
whether gold or Bitcoin is a good hedging option has been widely debated. Chemkha 
et al. (2021) proposed that in the face of the COVID-19 pandemic, the hedging result 
of gold was better than that of Bitcoin. Bouri et al. (2020) suggested that Bitcoin has a 
greater hedging advantage than gold and other commodity assets based on the low cor-
relation between Bitcoin and stocks.

The results of the present study provide valuable insights. The results showed that Bit-
coin and gold differ in their safe haven characteristics during the pandemic. Gold is suit-
able for investors looking for a safe haven because its benefits are stable, and investors 
can obtain a positive premium effect brought about by the spread of the epidemic with-
out taking additional high risks.

However, the safe-haven characteristics brought about by Bitcoin vary significantly at 
different points in time because its good performance during the pandemic is attributed 
to a substantial increase in risk. Therefore, Bitcoin is more suitable for investors willing 
to bear high risks, but wish to pursue high returns. By dismantling the risk sources of 
assets, this study not only compares hedging performance but also explains differences 
in hedging effects.

In contrast, the performance of crude oil was not favorable during the pandemic. It 
was directly affected by the pandemic and delivered negative returns. This asset also suf-
fered from higher volatility (risk) caused by the pandemic. However, the impact of vac-
cines and regulations was marked by an improvement in crude oil market performance. 
Hence, although the energy market, including crude oil, is an extremely risky asset pro-
ducing negative returns during the pandemic, signs of improvement and subsequent 
rebound and recovery offered a good investment opportunity for investors.

The performance of REITs is relatively close to that of commodity markets, including 
gold; thus, they can also be used as safe haven assets. This may be because these are tan-
gible assets. In addition to financial factors and market panic, there are also additional 
impacts related to physical consumption.



Page 33 of 42Tsai  Financial Innovation           (2024) 10:62  

The stock market’s performance is sometimes similar to that of the crude oil market, 
although it is sometimes more consistent with REITs. When observing the impact of the 
pandemic’s risk on the volatility of asset returns utilizing exogenous factors, the stock 
and crude oil markets are similar. When jointly estimating the relationship between the 
return on assets and the risk factors of the pandemic, we found that the stock market’s 
performance is more consistent with that of REITs and is also unaffected by the risk 
transmission of the pandemic.

Because this study uses an index of the global stock market to measure its perfor-
mance, the risk of a pandemic is dispersed across many countries. Therefore, the results 
were less affected by the transmission of pandemic risk. Other studies find that the stock 

Fig. 8 Correlation coefficients between asset returns and risk factors
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market is susceptible to the impact of pandemic risk transmission (Rakshit and Neog 
2022) and the contagion effect of COVID-19 (Fu et al. 2021; Jebabli et al. 2022).

The results obtained in this study differ from those of other studies because most of 
them use the stock market of a single country. This study finds that by focusing on the 
risk of asset classes in terms of the global stock market, it is possible to analyze more dif-
ferentiated assets. Stocks were not hit as hard as energy, but did not perform the same 
safe haven role as virtual currencies, commodities, and tangible assets. This compart-
mentalization allows investors to hold stocks as separate asset classes. When a storm 
occurs at different stages of a crisis, investors can change their holding assets, for exam-
ple, by increasing their holdings of virtual and tangible assets. After the risk factors of 

Fig. 8 continued
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the crisis diminish, investors can switch to holding energy and stock to obtain the ben-
efits of an asset price rebound.

Conclusion
The goal and findings of this study

The COVID-19 pandemic imposes different effects on different asset markets, with each 
effect comprising multiple dimensions. To fulfill various investment demands, inves-
tors observe the dimensions and degree of influence of the real estate market. Given the 
diversity of investment demands, investors should first reference the dimensions of a 
market and the degree to which it is influenced to develop an optimal asset distribution 
plan. Furthermore, investors should distinguish between the various effects of each risk 
factor on asset returns to effectively understand how they can mitigate the losses caused 
by extreme risks in the market.

This study explores how six pandemic-related risk factors across three dimen-
sions (pandemic severity, pandemic regulations, policy risks, and vaccination-related 

Fig. 9 Comparison of average correlation coefficients



Page 36 of 42Tsai  Financial Innovation           (2024) 10:62 

variables) influence extreme risk in asset markets. To this end, the present study exam-
ines eight assets to identify the differences in how the pandemic has influenced virtual, 
financial, energy, commodity, and real assets. This study focuses primarily on whether 
pandemic-related risk factors influence the asset market and cause changes in extreme 
risks. Moreover, we discuss whether the pandemic has a risk-transmission effect on the 
asset market.

Contributions and suggestions

Although many previous studies have explored the extent to which individual assets are 
susceptible to the pandemic, they have not distinguished between asset characteristics 
to illustrate their relationship with risk transmission. This study attempts to systemati-
cally analyze the COVID-19 risk factors that affect the extreme risk of different types 
of assets. The goal of this study differs from studies on hedging practices that evaluate 
whether individual asset markets are vulnerable to the impact of the pandemic. The 
intended contribution of this study is to provide a novel analysis that can “systemati-
cally” dissect the impact of a black swan event. Instead of including other macro- and 
micro-factors, this study explores the effects of COVID-19 pandemic–related risk fac-
tors (i.e., pandemic severity, pandemic regulations and policies, and vaccination-related 
variables) on the risk of extreme volatility in asset returns across eight assets belonging 
to different asset categories (virtual, financial, energy, commodity, and real assets).

Using this method, we can examine the relationship between asset characteristics and 
risk sources, which can in turn help investors prehold assets with low-risk transmission 
effects when faced with different types of risk surge events in the future. To develop our 
understanding of the avoidance of extreme risk, this study analyzes different asset cat-
egories. Future empirical studies should include additional asset types. There is a need 
for more theoretical research on this issue that can allow for the development of further 
models to explain the common factors in assets that influence the risk characteristics 
and hedging functions of various asset classes.
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