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Abstract 

With the high-speed development of decentralized applications, account-based 
blockchain platforms have become a hotbed of various financial scams and hacks 
due to their anonymity and high financial value. Financial security has become a top 
priority with the sustainable development of blockchain-based platforms because of 
an increasing number of cyber attacks, which have resulted in a huge loss of crypto 
assets in recent years. Therefore, it is imperative to study the real-time detection of 
cyber attacks to facilitate effective supervision and regulation. To this end, this paper 
proposes the weighted and extended isolation forest algorithms and designs a novel 
framework for the real-time detection of cyber-attack transactions by thoroughly 
studying and summarizing real-world examples. Furthermore, this study develops a 
new detection approach for locating the compromised address of a cyber attack to 
resolve the data scarcity of hack addresses and reduce time consumption. Moreover, 
three experiments are carried out not only to apply on different types of cyber attacks 
but also to compare the proposed approach with the widely used existing methods. 
The results demonstrate the high efficiency and generality of the proposed approach. 
Finally, the lower time consumption and robustness of our method were validated 
through additional experiments. In conclusion, the proposed blockchain-oriented 
approach in this study can handle real-time detection of cyber attacks and has 
significant scope for applications.

Keywords:  Blockchain, Cyber-attack detection, Extended isolation forest, 
Decentralized application, Financial security, Fintech

Introduction
As a new decentralized infrastructure and disruptive core technology, the public 
blockchain technology has piqued the interest of researchers,1 and the number of 
academic studies on blockchain is growing rapidly (Xu et  al. 2019). According to 
Fang et  al. (2022), Ethereum has become the mainstream blockchain platform for 
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1  In order to facilitate readers understanding the concepts of blockchain, “Appendix 1” lists and explains the common 
concepts such as account, transaction, block, cryptocurrency, flash loan and decentralized exchange (DEX).
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public blockchains, accounting for most of the total market capitalization. Currently, 
Ethereum is the largest decentralized open-source blockchain system that provides 
Turing-complete programming language to develop smart contracts. In consequence, 
several decentralized applications (dapps) based on smart contracts, such as Uniswap,2 
Aave,3 and PanacakeSwap,4 have emerged, and they have been applied to many areas, 
especially finance, arts, and collectibles. However, with the proliferation of dapps on 
the public blockchain, the account-based blockchain platforms have become a breeding 
ground for various financial scams and hacks due to their anonymity and enormous 
financial values. Cyber attacks and illegal activities are increasing on the account-based 
blockchain platforms (e.g., Ethereum,5 Binance Smart Chain6 (BSC), and SOLANA7). 
Furthermore, according to the Rekt database,8 over $1.9 billion have been lost in 161 
attacks on the decentralized application in 2021, indicating that cyber attacks have 
been a critical issue for the public blockchain. As the anonymity of blockchain provides 
convenience for hackers, an increasing number of financial regulators are attempting to 
strengthen blockchain supervision in various countries (Sebastião and Godinho 2021). 
Facing this issue, this paper aims to propose a general and real-time approach to detect 
cyber attacks to facilitate effective supervision and regulation in the field of the public 
blockchain.

In particular, focusing on the top 30 cyber attacks (ranked by the funds lost) appearing 
in recent years, as shown in Table 1, the account-based blockchain platforms have been 
targeted by three types of cyber attacks: Smart contract exploits, Flash loan attacks, and 
Identity theft. We will briefly introduce the three types of cyber attacks (Table 1), because 
they are the targets that the proposed new approach must detect. Smart contract exploit 
is the most frequent cyber attack in recent years since the decentralized applications are 
run on an open-source smart contract, which are written in programming languages 
and solely controlled by its own code. Hence, hackers have the opportunity to review 
code and probe the networks to look for code vulnerabilities of smart contracts, such 
as the vulnerabilities of re-entrancy, integer overflow, and multisig (Aspris et al. 2021; 
Efanov and Roschin 2018; Harvey et al. 2021). Note that the vulnerabilities mainly exist 
in smart contracts on account-based blockchain; therefore, the compromised addresses 
of Smart contract exploits belong to smart contracts. A real-world example related to 
the Smart contract exploit is described in “Appendix 2”. Regarding Flash loan attack; 
hackers exploit economic vulnerabilities in the interaction between the decentralized 
applications of flash loans and other smart contracts. This enables hackers to borrow, 
arbitrage, and liquidate assets in an extremely short period, resulting in illegal profits 
(Qin et al. 2021), the most common method being arbitrage trading, in which the price 
of a crypto asset is manipulated on one decentralized exchange and quickly resold 
on another. In general, the compromised address of arbitrage trading based on flash 

2  https://​docs.​unisw​ap.​org/.
3  https://​aave.​com/.
4  https://​panca​keswap.​finan​ce/.
5  https://​ether​eum.​org/​en/.
6  https://​www.​bnbch​ain.​org/​en.
7  https://​solan​aminer.​com/.
8  https://​defiy​ield.​app/​rekt-​datab​ase.
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loans is always the address of decentralized applications, which also belongs to smart 
contract. “Appendix 2” also provides detailed information about the arbitrage trading. 
Aside from the two types mentioned, Identity theft is a common type of cyber attacks 
(Fang et al. 2022; Xu 2016). It refers to a scenario in which a hacker gains unauthorized 
access to an individual or organization’s private key through phishing attacks, malware, 
or social engineering tactics, allowing them to access the associated blockchain account 
and transfer funds to the hacker’s account. According to the transaction definition (see 
“Appendix 1”), all transactions need to be signed using corresponding private keys 
before the transactions are submitted to the account-based blockchain. Therefore, 
losing authority of private keys is equal to losing funds on blockchain. The externally 
owned account (EOA), explained in “Appendix 1”, is thus a compromised address of 
Identity theft, since the private key on blockchain controls only an EOA. Based on the 
introduction of different cyber attacks, the compromised addresses of Smart contract 
exploit and Flash loan attacks belong to smart contracts, whereas those of Identity theft 

Table 1  Top 30 Cyber-attacks on the account-based platforms in recent years

Platform represents the name of blockchain

Project name Platform Type of cyber-attack Funds lost Date

Ronin RONIN Smart contract exploit $615,500,000 Mar 29, 2022

Poly Network ETH Smart contract exploit $602,189,570 Aug 10, 2021

Wormhole SOLANA Smart contract exploit $326,000,000 Feb 02, 2022

Beanstalk ETH Flash loan attack $181,000,000 Apr 18, 2022

Parity ETH Smart contract exploit $155,000,000 Nov 08, 2017

Vulcan Forged ETH Identity theft $140,000,000 Dec 12, 2021

Boy X Highspeed BSC Smart contract exploit $139,895,140 Oct 30, 2021

Cream Finance ETH Flash loan attack $130,000,000 Oct 27, 2021

BadgerDAO ETH Smart contract exploit $120,285,547 Dec 02, 2021

Horizon by Harmony ETH Identity theft $100,000,000 Jun 23, 2022

Compound Labs ETH Smart contract exploit $89,000,000 Nov 26, 2020

Qubit Finance BSC Smart contract exploit $80,000,000 Jan 27, 2022

Fei Rari ETH Smart contract exploit $79,749,026 Jan 05, 2021

Venus BSC Smart contract exploit $77,000,000 May 18, 2021

Compound Labs ETH Smart contract exploit $71,101,556 Sep 30, 2021

EasyFi ETH Smart contract exploit $59,000,000 Apr 19, 2021

Uranium Finance BSC Smart contract exploit $57,200,000 Apr 28, 2021

TheDAO ETH Smart contract exploit $50,000,000 Jun 17, 2016

Cashio SOLANA Smart contract exploit $48,000,000 Mar 23, 2022

bZx BSC Identity theft $47,600,000 Nov 05, 2021

PancakeBunny BSC Flash loan attack $45,000,000 May 19, 2021

Alpha Finance Lab ETH Flash loan attack $37,500,000 Deb 13, 2021

Vee Finance AVAX Smart contract exploit $36,000,000 Sep 21, 2021

Parity ETH Smart contract exploit $34,000,000 Jul 19, 2017

MonoX ETH Smart contract exploit $31,400,000 Dec 01, 2021

Spartan Protocol BSC Flash loan attack $30,500,000 May 02, 2021

Paid Network ETH Smart contract exploit $27,418,034 Mar 05, 2021

Lendf.Me ETH Smart contract exploit $25,236,849 Apr 19, 2020

xToken ETH Flash loan attack $24,000,000 May 12, 2021

Harvest Finance ETH Flash loan attack $24,000,000 Oct 26, 2020
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belong to EOAs. Meanwhile, both Smart contract exploit and Flash loan attack refer to 
exploiting code and economic vulnerabilities, respectively. In fact, the various types of 
cyber attacks imply that the key clues that must be detected differ. Accordingly, the first 
motivation for our work is to propose a general approach framework capable of dealing 
with multiple types of cyber attacks rather than just one or two types, especially since we 
believe that new types will emerge in the near future.

Although supervised machine learning methods (SML) have succeeded in numerous 
fields, they also suffer from several challenges when dealing with this paper’s problem of 
detecting cyber-attack transactions in blockchain. The first difficulty stems from insuf-
ficient data. The adopted SML is part of the postmortem analysis technology, which 
means that the existing public transaction information is required to carry out the iden-
tity inference of the illegal addresses, such as the behavior analysis of the addresses and 
account identification. However, a dynamic and ever-changing cyber attack is hard to 
keep up. Only the historical types rather than the latest ones of cyber attacks can be 
learned, because not all labels can be available immediately (Carcillo et al. 2018; Dal Poz-
zolo et al. 2014). The second difficulty stems from the data’s imbalance. In fact, the anno-
tated information of blockchain addresses published on third-party sites is relatively 
scarce, resulting in data imbalance. As a consequence of the data imbalance issue, SML 
will be biased toward the majority class, resulting in poor classification performance of 
minority classes, because only the majority class of cyber attacks can be fully learned 
(Thabtah et al. 2020). The third challenge lies in time consumption. Real-time detection 
of cyber attacks is crucial for victims and managers to take corresponding measures to 
prevent potential losses. According to Etherscan8 and Bscscan,9 the average block time 
on the BSC and Ethereum is approximately 2.5 and 12  s, respectively. However, SML 
consumes far more time than average block times (Chen and Guestrin 2016). Therefore, 
completing the analysis of the real-time transactions within a short period is one of the 
most immense challenges for detecting cyber-attack transactions. Facing these chal-
lenges that SML is hard to cope with, the second motivation for this paper is to develop 
a new real-time method (i.e., with very low time consumption) that does not require 
adequate and balanced data.

Compared with the aforementioned SML, unsupervised machine learning (UML) 
methods can compensate for the deficiency of the aforementioned SML to some 
extent. Many existing studies demonstrate this point: (i) UML has been applied for 
credit card fraud detection by dealing with fraudsters’ ability to invent novel fraud 
behaviors and changes in customer behaviors (Carcillo et al. 2021); (ii) for telecom-
munications fraud detection by correcting the misclassification of behavior types 
and recognizing the dynamic appearance of new fraud types (Hilas and Mastoro-
costas 2008); and (iii) for bot recognition in a web store by identifying more cam-
ouflaged agents (Rovetta et al. 2020), among others. Accordingly, UML can handle 
many types of cyber attacks, whether it has known them before or not, because many 
examples have illustrated that UML can discover patterns and information that may 
seem strange or suspicious. Fortunately, as a typical UML, the isolation forest (Liu 

9  https://​bscsc​an.​com/.

https://bscscan.com/
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et al. 2012) has been demonstrated to be an effective method for anomaly detection 
with low time consumption and high efficiency in several fields, such as biostatis-
tics and semiconductor manufacturing (Liu et al. 2012; Puggini and McLoone 2018), 
where the detection of cyber attacks falls under the category of anomaly detection. 
Furthermore, recent years’ work has improved the traditional isolation forest into 
an extended isolation forest (EIF) by adjusting the way branch cuts are made (Hariri 
et  al. 2019). However, in our experiment, the EIF also performs poorly. The third 
motivation of this paper is to develop a classic isolation forest and EIF for achieving 
satisfactory results in detecting cyber attacks on the account-based blockchain.

Facing the three listed motivations, the main work is introduced as follows. First, 
we propose a novel method for extracting real-time account-based blockchain trans-
actions from open-source websites, such as Etherscan and Bscscan, and identifying 
the addresses with the highest expenditure as the target addresses based on the accu-
mulated expenditures of various crypto assets. Because most target addresses have 
a long usage history, the data deficiency of the hack addresses can be solved in this 
manner, responding to the first motivation. Second, the target addresses will be fil-
tered by the funds expenditure threshold, and only a few data points will be fed into 
the next stage of the detection system, resulting in a reduction in time consumption, 
which responds to the second motivation. Third, we extract historical transaction 
data of the target addresses using open-source websites and use various data pre-
processing methods to process the original data feature, allowing more useful infor-
mation to be extracted. Then, in response to the third motivation, we propose an 
improved algorithm that assigns an anomaly score to the depth of the isolation tree 
based on the traditional EIF, dubbed weighted and extended isolation forest (WEIF).

To summarize, the main contributions are listed. The first contribution is that this 
work is one of the first to conduct an in-depth study into the real-time detection of 
cyber attacks on account-based blockchains. This work not only considers various 
types of cyber-attack transactions by developing real-world cyber-attack examples, 
but it also develops a new general UML-based framework with low data request 
and computation costs. The second contribution is to propose an effective strategy 
for identifying suspected compromised addresses and filtering them using a fund 
expenditure threshold, which will significantly reduce the number of analyzed tar-
gets. The third contribution is the designed dynamic modeling technology, which 
refers to the development of an evolving model for mining behavioral differences 
between suspected compromised targets. As a result, the designed dynamic model 
can detect real-time and constantly changing cyber-attack transactions. Last but 
not least, by adding weight to the depth of EIF, a new algorithm called WEIF is cre-
ated. When the weight is introduced, the gap between the average depth of the nor-
mal transaction and the average depth of the cyber-attack transaction grows larger 
than in the famous EIF. In fact, the larger the gap, the easier it will be to distinguish 
cyber-attack transactions. The results of three types of cyber attacks show its high 
efficiency and generality.

The remainder of this paper is organized as follows to present our work and con-
tributions logically. “Related work” section examines SML and UML related works, 
and the detailed information on the traditional isolation forest and its extension. 
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“Methodology” section presents the overall framework for detecting cyber attacks, 
as well as our proposed algorithm and its validation results based on simulation 
data. “Experimental evaluation” section shows the detailed information about the 
training dataset and the analysis of experimental results. Finally, “Conclusion and 
future work” section concludes and discusses future work.

Related work
In essence, detecting cyber-attack transactions can be considered as identifying rare 
transactions that deviate significantly from most of the transactions. Because block-
chain’s openness makes it easier for researchers to access transaction data, an increasing 
number of researchers are working on developing new technologies to detect various 
types of cyber attacks on the blockchain. The majority of related studies focused on the 
use of SML, with only a few studies focusing on UML. Therefore, we introduce related 
studies of SML and UML. As aforementioned, our proposed algorithm is developed 
based on the traditional isolation forest and its extension. Thus, the theories of the 
standard isolation forest and its extension are also elaborated in this section. These men-
tioned methods reviewed in this section will be compared with our proposed algorithm 
in “Experimental evaluation” section.

SML

SML is a type of machine learning in which an algorithm is trained on a labeled data-
set to recognize patterns and make predictions. The labeled dataset for SML consists of 
input data and corresponding output labels. SML evaluates its accuracy using the loss 
function and learns from training data until the error is decreased sufficiently. As an 
increasing number of cyber attacks of blockchain are provided on open-source websites, 
such as Etherscan, Bscscan, and Rekt database, most researchers attempt to collect mali-
cious addresses via these open-source websites and focus on the use of SML to detect 
malicious transactions by learning the transaction behaviors of malicious addresses.

According to Farrugia et  al. (2020), the XGBoost classifier was used on a balanced 
dataset (4,699 accounts) to detect malicious accounts on the Ethereum blockchain. 
Despite its 96% accuracy, the execution time of this model is more than 62 s, which is 
much longer than the average block times of Ethereum and BSC. Accordingly, it indi-
cates that the XGBoost classifier is incapable of detecting cyber-attack transactions on 
account-based blockchains in real time. According to Aziz et  al. (2022), various SML 
methods, including random forest, XGBoost, and the light gradient boosting machine 
(LGBM), have recently been used to detect fraud transactions by learning the transac-
tion behavior of labeled accounts, and all of these models achieve more than 93% on the 
F1 score. All three mentioned models belong to ensemble learning techniques, which is 
introduced in Table 2.

Furthermore, some researchers have applied graph convolutional network (GCN) 
techniques (Shen et al. 2021; Yu et al. 2021) to the identity inference of phishing scams 
and Ponzi scheme based on the balanced dataset, and these techniques have also 
achieved good performance with around 90% on F1 score. A brief description of GCN is 
also provided in Table 2.



Page 7 of 38Feng et al. Financial Innovation            (2023) 9:81 	

According to the existing SML-related studies, SML methods are effective for the 
identification of malicious addresses based on balanced datasets. However, the datasets 
for anomaly detection of cyber attacks on account-based blockchain are extremely 
imbalanced, which may result in poor performance and the generality of SML methods. 
In recent years, various types of UML have been used to deal with the imbalanced 
datasets, and the detailed information of UML is introduced as follows.

UML

As mentioned above, the methods of SML are much more resource intensive because of 
the need for labeled data, but the methods of UML discover the hidden patterns or the 
data cluster without the human intervention. Currently, UML is the primary technology 
for detecting anomalies in many fields, including finance, telecommunications, and 
network administration (Carcillo et  al. 2021; Hilas and Mastorocostas 2008; Rovetta 
et al. 2020). However, UML methods for detecting cyber attacks on the blockchain have 
received little attention. Only kernel-based techniques are used to detect abnormal 
addresses in the historical transaction network (Patel et  al. 2020), and the kernel-
based technique achieves a F1 score of approximately 80%. This section introduces the 
techniques of distance-based, clustering-based, histogram-based, kernel-based, neural 
network-based, and ensemble-based to fully understand how UML techniques work and 

Table 2  A brief introduction of SML methods

Type Description Related methods

Techniques of ensem-
ble learning

These techniques combine the predictions of 
two or more base models built with a given 
algorithm in order to improve overall accuracy 
and robustness of model

Random Forest (RF). It fits a number 
of decision trees classifiers on various 
sub-samples of training data and 
combines all prediction of classifiers 
to improve accuracy of model and 
solve the over-fitting problem (Brei-
man 2001)
XGBoost. It is an optimized distributed 
gradient boosting library designed 
to be highly efficient, flexible and 
portable, which implements machine 
learning methods under the frame-
work of Gradient Boosting (Chen and 
Guestrin 2016)
LightGBM (LGBM). It is a gradient 
boosting framework that used deci-
sion tree-based learning algorithms. 
It adopts a leaf-wise tree growth strat-
egy and introduce novel techniques 
including gradient-based one-side 
sampling and exclusive feature bun-
dling (Ke et al. 2017)

Techniques of graph 
neural network

The aim of these techniques is to learn an 
embedding model that contains information of 
its neighborhood, which can be used to tackle 
a variety of issues, such as node and graph 
classification

Graph Convolutional Networks (GCN). 
the main idea of the GCN is to learn 
hidden layer representations that 
encode both local graph structure 
and features of nodes, and then the 
hidden layer representations will be 
passed through a neural network for 
node classification or graph classifica-
tion (Kipf and Welling 2016)
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Table 3  A brief introduction of UML methods

Type Description Related methods

Distance-based techniques These techniques apply the distance 
of an observation to its kth nearest 
neighbor and compute an anomaly 
score based on the density of each 
observation

KNN/AvgKNN. It assigns an anomaly 
score to an observation based on the 
distance to the kth nearest neighbor 
and the average distance to k nearest 
neighbors respectively, according 
to Angiulli and Pizzuti (2002). The 
higher the anomaly score, the more 
abnormal it is
Local Outliers Factors (LOF). It is similar 
with KNN. It assigns an anomaly 
score to a given instance based on 
computing its local density relative to 
the density of its neighbors (Breunig 
et al. 2000)

Clustering-based techniques It assumes that the normal observa-
tions belong to large or dense 
clusters, whereas the abnormal 
observations belong to sparse or 
small clusters. It operates on the 
output of clustering methods

Cluster-Based Local Outlier Factor 
(CBLOF). It classifies a given observa-
tion as an outlier if the size or the den-
sity of its cluster is below a threshold 
(He et al. 2003)

Histogram-based techniques The first step is the construction of 
a histogram based on the value of 
feature, and the second step is to 
compute an anomaly score for a 
given observation according to the 
height of bin in which it falls

Histogram-based Outlier Score 
(HBOS). It assigns an anomaly score by 
building a histogram with a fixed or a 
dynamic bin width for each attribute, 
and computes the outlier score based 
on the height of bin where the data 
point locates (Goldstein and Dengel 
2012)

Kernel-based techniques These algorithms apply a linear clas-
sifier to solve a non-linear problem, 
which is conducted by transform-
ing a linearly inseparable data to a 
linearly separable one

One-class SVM (OCSVM): It is an unsu-
pervised algorithm that learns a deci-
sion function for novelty detection by 
learning a distinct boundary around 
all normal observations (Schölkopf 
et al. 2001). By this way, any observa-
tion that does not fall inside the 
learned boundary is detected as 
outliers

Neural network-based techniques It assumes that normal observa-
tions fall in high probability regions 
of the model, while the abnormal 
data points lie in the low-probability 
regions

Variational Autoencoder (VAE). Its 
architecture consists of both an 
encoder and a decoder with the 
optimization goal of reducing the 
reconstruction error between the 
encoded–decoded data and the initial 
data (Kingma and Welling 2013)
Deep Support Vector Data Description 
(DeepSVDD). It is inspired by one-class 
SVM. Ruff et al. (2018) introduced a 
novel approach of anomaly detection 
by training a neural network and mini-
mizing the volume of a hypersphere 
that encloses the network representa-
tions of normal samples

Ensemble-based techniques These techniques combine multiple 
estimators in an anomaly detection 
via reducing the variance of model 
accuracy and making the algorithm 
to be more robust

Feature Bagging (FB). It combines the 
results from multiple individual outlier 
detection models trained by a small 
subset of features that are randomly 
selected from the original feature set 
(Lazarevic and Kumar 2005)
Isolation Forest (IF). This technique iso-
lates anomalies fast instead of normal 
points, which builds trees by splitting 
the randomly chosen features based 
on the random value from the range 
of the features (Liu et al. 2012)
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apply these techniques to the detection of cyber-attack transactions on account-based 
blockchains, as shown in Table 3.

Among the UML methods shown in Table 3, the existing experiments on public data-
sets have shown that the isolation forest algorithm outperforms the other common UML 
techniques in terms of efficiency and accuracy while consuming significantly less mem-
ory (Falcão et al. 2019; Liu et al. 2012). However, the random isolation forest cuts are 
always horizontal or vertical, resulting in bias and artifacts in the anomaly score map 
(Hariri et al. 2019). Hariri et al. (2019) proposed the EIF to mitigate bias by using a ran-
dom slope and a random intercept for branch cuts. Therefore, we use the traditional iso-
lation forest and EIF as the base of our proposed model in this paper, and the detailed 
information on the isolation forest and EIF is further introduced as follows.

Isolation forest and its extensions

Isolation forest

An isolation forest, like a random forest, is built with decision trees, which belongs to 
UML methods because there are no predefined labels. The central idea behind isola-
tion forest is to isolate anomalies by constructing a series of isolation trees with ran-
dom attributes (Liu et  al. 2012). The isolation tree is constructed using the algorithm 
shown in Table 12 (“Appendix 3”) by splitting the subsample observations over a split 
value of a randomly selected attribute. In this manner, observations with corresponding 
attribute values less than the split value go left, whereas others go right, and the pro-
cess is repeated recursively until the tree is fully constructed. The split value is randomly 
selected between the selected attribute’s minimum and maximum values. Although the 
isolation forest is a typical method of UML, its random cuts are always straight lines, 
making the random cuts to be either horizontal or vertical. Therefore, several extensions 
of the isolation forest have been developed in recent years (Hariri et al. 2019).

EIF

Among the isolation forest algorithms developed, the EIF performs better (Hariri 
et al. 2019), which eliminates the disadvantage of isolation forest by adjusting the way 
of branch cuts. In contrast to the isolation forest, the EIF determines the information 
of random slope and intercept for the branch cut on a multidimensional dataset. The 
methods for generating the random slope and intercept for the branch cut will be briefly 
introduced here. In terms of the random slope for the EIF, it is a normal vector denoted 
as n by drawing a random number for each coordinate of n from the standard normal 
distribution N(0,1). As a result, the branch cut is a hyperplane for the high-dimensional 
dataset rather than a straight line. In terms of the intercept denoted as p , it is chosen 
from the value range of the training data. For a given point x , the branching criteria for 
the data splitting are shown as follows:

if the condition is not satisfied, the data point x moves down to the right branch, oth-
erwise it will be passed to the left branch. By this way, the value of intercept will be 
restricted to available data at each branch point when we construct trees with larger 

(1)(x − p) · n ≤ 0,
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depths. The criteria for choosing intercept results in more possible branching options for 
areas of data concentration and less possible branching for areas of fewer observations.

Except for the construction of isolation trees, there are few differences between the 
isolation forest algorithm and the architecture of EIF, which includes four procedures: 
isolation tree construction, depth computation, EIF construction, and anomaly score 
computation (Hariri et al. 2019). First, the isolation trees for the EIF are built using the 
Eq. (1) as described in Table 13 (“Appendix 3”). Secondly, how to compute the depth of 
an observation on a given extended isolation tree is elaborated in Table 14 (“Appendix 
3”). Finally, Table 15 (“Appendix 3”) shows the construction of an EIF and the computa-
tion of anomaly scores based on the isolation tree and depth computation.

Methodology
First of all, we propose a general framework for detecting cyber attacks in the context 
of the account-based blockchain. As shown in Fig.  1, this framework comprises four 
stages: the data source, data clean, feature process, model training and prediction. In the 
stage of data source, hundreds of real-time transactions in a block, referring to about 
200 transactions every 12 s on Ethereum or about 150 transactions every 3 s on BSC, are 
extracted through open-source websites. For the stage of data clean, it is separated into 
the identification of compromised addresses, data extraction of historical transactions, 
and feature generation based on transaction behaviors, which will be executed in 
sequence. When it comes to the stage of the feature process, all the continuous features 
will be processed by data normalization and three sigma processes, and then all of the 
discrete features and the processed continuous features will be merged and fed into 
correlation analysis. During the final stage of model training and prediction, all the 
training data will be trained on our proposed new algorithm, WEIF, one of our main 
contributions in this work. The detailed information of each procedure in our proposed 
framework will be stated in the following subsections. Meanwhile, the evaluation metric 
is also introduced.

Data source

For the data source stage, all transactions are obtained from Etherscan and Bscscan, 
which are the leading platforms for Ethereum and BSC, respectively. A complex 
transaction on Etherscan is used as an example to demonstrate all of the detailed 
transaction information used in this paper (Fig.  2). The entire transaction details are 
divided into six parts, as shown in Fig.  2. In detail, the block number in Part 1 is the 
location where transactions are stored and encrypted, and it is generated every 2.5 s on 

Fig. 1  The framework of anomaly detection proposed in this work
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the BSC and every 12 s on Ethereum, respectively. This section contains all of the smart 
contract function calls for Part 2. Part 3 includes the transaction initiator, which refers 
to the EOA mentioned in “Appendix 1”. For Part 4, all the transfers of the native crypto 
assets, referring to the ETH and BNB, are shown in this Part. For Part 5, all the token 
transfers, known as the nonnative crypto assets transfers, are contained. Apart from 
the parts mentioned above, the transaction value and transaction fee are included in 
Part 6, where the transaction fee is equal to the product of gas price and quantity of gas 
consumed in a transaction.

According to the definition of transaction on the blockchain, the transaction details can 
also be divided into four categories (i.e., external transaction, internal transfer, token trans-
fer and transaction action). With regard to the external transaction, the transaction details 
of Part 1, Part 3, and Part 6 in Fig. 2 make up the basic information of external transactions. 
Regarding the internal transfer, the information in Part 4 contains all the internal transfer 
information. With regards to the token transfer, Part 5 represents the token transfer of the 
transaction. Apart from the three categories introduced above, Part 2 is named as the trans-
action action for transaction on the blockchain.

In particular, not all the transactions contain all six parts of the transaction details in 
Fig. 2. In fact, the more complicated transactions contains more parts of transaction details 

Fig. 2  The transaction details of account-based blockchains as an example
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on the account-based blockchain. For instance, the cyber-attack transactions of Identity 
theft are mainly composed of external transactions and token transfers, while cyber-attack 
transactions of Flash loan attack and Smart contract exploit usually involve all parts in 
Fig. 2.

Data clean

Three different procedures will be executed in sequence during the data clean stage, 
which are the identification of compromised addresses, data extraction, and feature 
generation.

Identification of compromised address

The compromised address is the target of hackers owing to a large quantity of crypto 
assets in the compromised address. Meanwhile, the majority of the compromised 
addresses exhibit long-term usage behavior. However, because the majority of hacker 
addresses are newly created for the cyber attacks, only a few transaction records are 
available for behavior analysis. As a result of more historical transactions than the hacker 
address, the behavior analysis of the compromised address for the cyber attack is easier 
to conduct.

As a result, a specific strategy is proposed in this paper to find the address with the 
highest spend volume as the suspected compromised address, despite the fact that the 
compromised addresses for real-time transactions are unknown. Based on the transac-
tion details shown in Fig. 2, the suspected compromised addresses are located by com-
puting the cumulative total expenditure of various crypto assets. The data deficiency of 
hacker addresses can thus be addressed to some extent.

Furthermore, over one million transactions are generated every day on the blockchain 
according to the statistics of Etherscan. In consequence, analyzing all the transactions 
in real-time is not feasible. To make our proposed framework to be suitable for the real-
time analysis, we propose a novel approach by filtering the transactions according to the 
expenditures of the suspected compromised addresses. Obviously, with this transaction 
filtering approach, not too many transactions will be fed into the following analysis of 
the proposed framework. Thus, the time cost of the proposed framework can be signifi-
cantly reduced in this way.

Data extraction

In fact, the real-time detection of cyber attacks only depends on the behavior of 
recent transactions due to the ever-changing behavior of transactions. Meanwhile, the 

Fig. 3  Using dynamic window to construct the dataset from the historical transactions of compromised 
address. The cyber-attack transaction is marked as red, and the transactions marked with blue are recent 
transactions within the window size
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suspected compromised address’s numerous transactions make data extraction time 
consuming. Consequently, as shown in Fig.  3, we set a limit of transaction records, 
referring to the dynamic window, to construct the dataset of machine learning methods. 
For the compromised address of cyber-attack transaction, the window size is set as s, 
and Tk represents the cyber-attack transaction marked as red, where k is the transaction 
number of compromised address. Then, if the number of historical transactions before 
the cyber-attack transaction is larger than s, the transactions [Tk−s,Tk−s+1, . . . ,Tk ] , 
marked as blue, will be extracted. Otherwise, the window size is equal to the number 
of historical transactions before the cyber attack and the transactions [T1,T2, . . . ,Tk ] 
will be extracted. This way, the time cost can be further reduced by the data extraction 
method. In particular, the different window sizes will be chosen to verify the stability 
and efficiency of our proposed algorithm.

Feature generation

According to the introduction of the transaction details, we establish a general feature 
set for all types of cyber attacks based on the transaction details of external transactions, 
internal transfer, token transfer, and transaction action. Therefore, all the features are 
separated into four categories (Table  4). Regarding the external transaction features, 
seven features are generated from the basic information of the external transactions, 
in which an EOA sends native crypto assets directly to another EOA or smart contract 
(see “Appendix 1”). Regarding the internal transfer features, these features, referring to 
transfer volume and transfer count, are computed from the internal transfer carried out 
through a smart contract as an intermediary. The token transfer features are extracted 
from the transactions with token transfers that refer to the transfers of ERC-2010 or 
BEP-2011 tokens in the transaction details. Apart from the three categories of features 
mentioned above, the transaction action features are generated based on the specific 
function call of the smart contract, as shown in the transaction action in Fig. 2.

Feature process

We process feature data using three methods (data normalization, three sigma process, 
and correlation matrix) to extract more useful information and speed up model training 
for anomaly detection.

Data normalization

Variables measured at different scales do not contribute equally to model fitting and may 
result in bias. To address this potential problem, Standard Scaler, also known as z score, 
is used for data normalization to speed up the model training and improve the model 
performance (Ioffe and Szegedy 2015). All feature values are rescaled to the new dis-
tribution so that the mean of observed values is 0 and the standard deviation is 1. The 
specification is expressed as

10  The ERC-20 introduces a standard for Fungible Tokens on Ethereum, in other words, they have a property that makes 
each token be exactly the same (in type and value) as another token.
11  The BEP-20 token standard serves pretty much the same function as the ERC-20 token standard, but it applies to 
tokens built on the Binance Smart Chain (BSC).
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Table 4  Brief feature descriptions

Category Feature name Feature explanation

External transaction features gas-fee Transaction fee

ex-tx-volume Total volume of the native crypto asset within the external 
transaction

action-type Action type of the compromised address in the transaction

spend-volume Total volume of the native crypto asset spent by compro-
mised address

receive-volume Total volume of the native crypto asset received by com-
promised address

spend-anomaly Anomaly index of the native crypto asset (spend volume)

receive-anomaly Anomaly index of the native crypto asset (receive volume)

Internal transfer features inter-tx-volume Total volume of the native crypto asset for the internal 
transfers

inter-ts-volume-50% Median volume of the native crypto asset for the internal 
transfers

inter-ts-volume-max The max volume of the native crypto asset for the internal 
transfers

inter-ts-count Number of the internal transfers within a transaction

inter-ts-volume-min Min volume of the native crypto asset for the internal 
transfers

inter-spend-volume Total volume of the native crypto asset spent by compro-
mised address through internal transfer

inter-spend-count Number of the spend transfer operated by compromised 
address through the internal transfer

inter-receive-volume Total volume of the native crypto asset received by the 
compromised address through the internal transfer

inter-receive-count Number of the receive transfer operated by the compro-
mised address through the internal transfer

Token transfer features to-tx-degree Degree of the token transfer within the transaction

to-ts-count Number of the token transfer within the transaction

to-ts-count-anomaly Anomaly index (the count of token transfer within the 
transaction)

to-tx-outdegree Out degree of the token transfer within the transaction

spend-to-ts-count Number of the spend transfer operated by compromised 
address through the token transfer

to-tx-indegree In degree of the token transfer within the transaction

receive-to-ts-count Number of the receive transfer operated by compromised 
address through the token transfer

to-spend-anomaly Anomaly index of the spend (spend volume of token 
transfer)

to-receive-anomaly Anomaly index of the receive (receive volume of token 
transfer)

Transaction action features flash-currency-count Number of the tokens related to flash loan within a trans-
action

flash-action-count Number of the flash loan action within the transaction

swap-currency-count Number of the tokens related to swap within a transaction

swap-flash-count Number of the flash loan action by means of swap

swap-action-count Number of the swap action within the transaction



Page 15 of 38Feng et al. Financial Innovation            (2023) 9:81 	

where µ is the mean and σ is the standard deviation of the original data.

Three sigma process

In fact, the probability of occurrence decreases as the value deviates from the mean. 
Consequently, we apply the probabilistic rules of normal distribution to process 
transaction features. According to the normal distribution, the standard deviation, 
that is, sigma (σ), defines how far the normal distribution is spread around the mean. 
For an approximately normal distributed dataset, it follows a set of probabilistic rules 
described as follows: 68% of all values fall in [mean − σ, mean + σ], 95% of all values 
fall in [mean − 2σ, mean + 2σ], and 99.7% of all values fall in [mean − 3σ, mean + 3σ]. 
According to the rules, there are only 0.3% values falling outside three times the 
sigma range (3σ), and thus we can judge these values that fall outside [mean − 3σ, 
mean + 3σ] to be anomalous.

Correlation analysis

In fact, some features, while highly relevant to the specific type of cyber attacks, may be 
redundant. Meanwhile, if two independent features are highly correlated, they are con-
sidered redundant. Therefore, although eliminating redundant variables may not result 
in a significant loss of accuracy, it does result in a very efficient model under many con-
straints. In our proposed framework, the correlation analysis is used for feature selec-
tion by removing redundant features. The correlation coefficient of correlation analysis, 
denoted r, ranges from − 1 to + 1 and quantifies the direction and strength of the linear 
association between two features. Furthermore, the correlation coefficient is denoted as

where n is the size of feature data, pi and qi are the individual features index with i, p and 
q are the mean value of two individual features.

WEIF

Proposed algorithm

According to the definition of EIF, the random slope and intercept for branch cuts should 
be determined before each branch cut during EIF construction, with a lower average 
depth indicating a more abnormal observation. The normal observation on a few trees 
may be close to the root due to the random selection of slope and intercept, whereas 
the abnormal observation on a few trees may be far away from the root based on EIF. 
As a result, an observation’s anomaly score, calculated based on the average depth of 
the extended isolation trees, may deviate from its true depth range on the isolation tree, 
resulting in a bias. To mitigate the bias, we propose a novel algorithm, named as WEIF, 
by weighting the original depths of given observations in EIF, where the anomaly score 

(2)z =
x − µ

σ
,

(3)r =
n
i=1 (pi − p)(qi − q)

n
i=1 (pi − p)2 n

i=1 (qi − q)2
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of given observation is computed based on the average of weighted depths processed by 
the algorithm in Table 5.

In general, when the random trees of a forest produce shorter path lengths for some 
specific points, they are highly likely to be anomalies. Depths less than the first quartile 
of the original depths will be increased if the median of the original depths is greater 
than its mean, according to our proposed algorithm in Table 5. Depths greater than the 
third quartile of the original depths, on the other hand, will be decreased if the median 
of the original depths is less than its mean. Furthermore, if the median of the original 
depths is equal to its mean, the depths will not change. By this way, the depth difference 
between the normal observation and abnormal observations is becoming larger. The 
complexity of our proposed algorithm for training and prediction are O

(

tψ log(ψ)
)

 and 
O
(

ntlog(ψ)
)

 , respectively, where t is the number of trees, ψ is the subsample size of data 
and n is the number of observations in the dataset.

Table 5  Algorithm of weighted depth
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According to EIF, the architecture of WEIF contains four steps (Fig. 4): generating sub-
datasets, constructing isolation trees, weighting the depths, and computing anomaly 
score. Compared with the architecture of the traditional isolation forest and its exten-
sion, there are few changes except for weighting the depths based on the algorithm 
shown in Table 5. Specifically, the definition of the anomaly score for an observation y is 
described as

where E
(

h
(

y
))

 is the mean value of weighted depths for a given observation in all trees, 
c(n) is used to normalize the average path length E

(

h
(

y
))

 that is defined as the average 
path length of unsuccessful search in Binary Search Tree (Liu et al. 2012), i.e.,

(4)S
(

y, n
)

= 2
−

E(h(y))
c(n) ,

(5)c(n) = 2H(n− 1)−

(

2(n− 1)

n

)

,

Fig. 4  Architecture of weighted and extended isolation forest. Firstly, several sub-datasets are generated by 
randomly sampling from the training dataset. Secondly, all the sub-datasets are passed into the construction 
of the isolation trees, and the original depths of the observations in the sub-datasets are computed for each 
isolation tree. Thirdly, all the original depths are weighted based on the algorithm in Table 5. Finally, the 
anomaly score is calculated on the average depth of the weighted depths
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where H(i) can be calculated by ln(i) + 0.5772156649 (Euler’s constant) and n is the 
number of observations in a given dataset (Liu et al. 2012).

Recalling Eq. (4), a smaller E
(

h
(

y
))

 means a higher anomaly score. By this way, all 
of the observations will be passed into the isolation trees and assigned an anomaly 
score. And the observation with a higher anomaly score is more anomalous based on 
Eq.  (4). Specially, the threshold of the anomaly score shown in Fig. 4 is decided by 
the expected proportion of anomalies in the whole dataset, named as contamination 
in this paper.

Fig. 5  Scatter plot and anomaly score map in this example. a The data of scatter plot are sampling from 
two-dimensional distribution with zero mean vector and identity covariance matrix. b The anomaly score 
map is plotted based on the weight depths processed by WEIF. A darker color means to be more anomalous

Fig. 6  Structure of a single Tree and depths of WEIF. The results of normal observation are marked with blue, 
while the results of abnormal observation are marked with red. a The paths for a normal observation and 
an abnormal observation are plotted in a single isolation tree. b The depths of an observation in the whole 
forest are displayed as the radial line and the length of line represents the value of depth
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Illustrative examples

To understand how WEIF works, we provide two illustrative examples of a two-dimen-
sional dataset sampling from two-dimensional distribution with zero mean vector and 
an identity covariance matrix. The first example focuses on the comparison of normal 
and abnormal observations processed by our proposed algorithm, while the second 
example demonstrates the differences in the outputs of our proposed algorithm (WEIF) 
and EIF.

For the first example, the depth comparison of the normal and abnormal 
observations are presented with different forms. First, all the observations of the two-
dimensional dataset are plotted in the scatter plot in Fig. 5a, where few samples exist 
further away from the center of the two-dimensional dataset. Second, a contour plot 
in Fig. 5b is achieved based on the average depths of all the observations computed 
by our proposed algorithm. Here, the color of the observation far away from the 
data center is darker than the observation close to the data center, indicating that 
the abnormal observation can be effectively identified by our proposed algorithm. 
Furthermore, the results of comparing the depths of the normal and abnormal 
observations with the depths computed by our proposed algorithm are shown in 
Fig. 6. As shown in Fig. 6a, the abnormal observation is quickly isolated, whereas the 
normal observation continues all the way to the bottom of the tree. All of the depths 
of the observations on the isolation trees are shown as straight lines in Fig. 6b, and it 
is obvious that the majority of the depths of the abnormal observations are shorter 
than the normal observations.

For the second example, the depths of a normal and abnormal observations are 
computed by WEIF and EIF, respectively. For comparing the results of WEIF and EIF, 
the depths of a normal observation for WEIF and EIF are plotted in Fig. 7a, while the 
depths of an abnormal for WEIF and EIF are plotted in Fig. 7b. The blue and red lines 

Fig. 7  Comparison of the depths processed by WEIF and EIF. The red and blue lines represent the depths 
computed by WEIF and EIF, respectively
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represent the depth of each tree processed by EIF and WEIF, respectively. Compared 
with EIF, the depths of a normal observation are increased by our proposed 
algorithm, as shown in Fig. 7a, whereas our proposed algorithm decreases the depths 
of an abnormal observation in Fig. 7b. In consequence, the difference in the average 
depth for the normal and abnormal observations is becoming larger for our proposed 
algorithm in contrast to EIF.

Evaluation metric

The F1 score is chosen to be the main metric of the models, which is the Harmonic 
Mean between precision and recall. The range for the F1 score is [0, 1]. It tells us how 
precise our classifier is and how robust it is. The greater F1 score indicates the better 
performance of our model. The precision, recall, and F1 score are formulated as follows:

True positive represents the number of real cyber attacks correctly detected, false 
positive represents the number of normal transactions wrongly detected as the cyber 
attacks, and false negative represents the number of real cyber attacks detected as the 
normal transactions.

Experimental evaluation
Several experiments on various types of cyber attacks are carried out to assess the effi-
ciency and robustness of our proposed algorithm against all of the methods mentioned 
in “Related work” section.

(6)Precision =
True Positive

True Positive + False Positive

(7)Recall =
True Positive

True Positive + False Negative

(8)F1 score = 2 ∗
Precision ∗ Recall

Precision+ Recal
.

Table 6  Descriptive statistics of transaction numbers for the compromised addresses

Q1 and Q3 represent the first quartile and the third quartile of the historical transaction number, respectively

Statistics Smart contract 
exploit

Flash loan attack Identity theft Normal transaction

Mean 1067.76 816.98 1493.38 126.89

Std 762.77 478.35 793.57 63.84

Min 22.00 19.00 11.00 13.00

Q1 384.50 503.75 522.25 102.00

Median 987.00 775.00 2000.00 112.50

Q3 1652.00 1019.50 2000.00 135.00

Max 2000.00 1876.00 2000.00 2000.00
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Dataset and experimental setup

Dataset

All the detailed information on cyber-attack transactions is extracted from the open-
source websites, referring to Etherscan, Bscscan, and Rekt Dataset. First, all the labeled 
cyber-attack transactions are extracted from the Rekt Dataset and classified into Smart 
contract exploit, Flash loan attack, and Identity theft. Second, 66, 62, and 58 compro-
mised addresses of cyber-attack transactions are extracted for the Smart contract 
exploit, Flash loan attack, and the Identity theft based on the identification strategy of 
compromised address. Specially, 200 addresses that hackers have not attacked are also 
randomly extracted from Etherscan and Bscscan for verifying the effectiveness of the 
model, which are made up of smart contracts and EOAs and are similar to the com-
promised addresses of all cyber-attack transactions. Finally, the historical transactions 
of each compromised address are extracted from Etherscan and Bscscan using the data 
extraction strategy shown in Fig. 3, with the window size set to 2000.

Table 7  Summary statistics of features

Full name and explanations of the listed features are shown in Table 4, hereafter

Category Feature name Mean Std Min Max

External transaction features gas-fee 0.015 0.106 0.000 20.372

ex-tx-volume 3393.605 25,488.039 0.000 342,000.000

action-type  − 0.087 0.657  − 1.000 1.000

spend-volume 15,393.631 56,557.212 0.000 523,208.005

receive-volume 11,025.974 50,635.498 0.000 518,102.159

spend-anomaly 0.273 0.447 0.000 1.000

receive-anomaly 0.087 0.283 0.000 1.000

Internal transfer features inter-tx-volume 109,507.400 315,690.942 0.000 2,088,140.768

inter-ts-volume-50% 15,679.662 66,993.523 0.000 518,102.159

inter-ts-volume-max 21,317.075 68,613.462 0.000 523,208.005

inter-ts-count 4.623 11.677 0.000 67.000

inter-ts-volume-min 1832.880 10,450.912 0.000 100,000.000

inter-spend-volume 12,000.054 51,292.998 0.000 523,208.005

inter-spend-count 0.530 2.612 0.000 32.000

inter-receive-volume 11,025.974 50,635.498 0.000 518,102.159

inter-receive-count 0.262 0.970 0.000 10.000

Token transfer features to-tx-degree 3.322 4.639 0.000 28.000

to-ts-count 78.984 185.409 0.000 700.000

to-ts-count-anomaly 17.115 59.519 0.000 424.000

to-tx-outdegree 0.634 1.178 0.000 8.000

spend-to-ts-count 5.016 24.374 0.000 216.000

to-tx-indegree 1.093 1.321 0.000 8.000

receive-to-ts-count 30.721 92.054 0.000 350.000

to-spend-anomaly 7.104 29.498 0.000 212.000

to-receive-anomaly 1.317 5.466 0.000 58.000

Transaction action features flash-currency-count 0.109 0.313 0.000 2.000

flash-action-count 0.191 0.712 0.000 6.000

swap-currency-count 0.858 2.207 0.000 15.000

swap-flash-count 0.383 0.561 0.000 2.000

swap-action-count 0.344 0.476 0.000 1.000
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To display the distribution of datasets for the compromised addresses and the differ-
ences between the three types of cyber attacks, this study computes the descriptive sta-
tistics of transaction quantity for the compromised addresses, as shown in Table 6. The 
descriptive statistics in Table 6 yield three findings. First, more than 50% compromised 
addresses of Identity theft have more than 2000 historical transactions, whereas more 
than 75% compromised addresses of other cyber attacks have less than 2000 historical 
transactions. The statistical results indicate that most of the Flash loan attacks and Smart 
contract exploits have been launched at the beginning of the decentralized applications, 
and that the compromised addresses of Identity theft have always been used for a long 
time or high-frequency trading. Second, the number of historical transactions on Iden-
tity theft, Smart contract exploit, and Flash loan attacks gradually decreases based on 
the values of median, third quartile, and max (see Table 6), demonstrating that the three 
types of cyber attacks are different from each other. Finally, as all values of the first quar-
tile for all types of transactions are larger than 100, this indicates that the data deficiency 
of hack addresses is solved by extracting the historical transactions of the compromised 
addresses.

After the data extraction, several features (mentioned in “Methodology” section) are 
generated from external transactions, internal transfers, token transfers, transaction 
actions. To take full advantage of the transaction features, the descriptive statistics and 
correlation analyzes are carried out in this paper, whose result are shown in Table 7 and 
Fig. 8. As shown in Table 7, most of the min values of the features are equal to 0, since 
most of the normal transactions are simple transactions compared to the cyber-attack 
transactions.

Fig. 8  Results of correlation analysis
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According to the result of the correlation analysis in Fig. 8, the type of cyber attack is 
heavily related to the external features and token transfer features (i.e., gas fee, spend 
volume, spend-anomaly, to–ts-count and to-ts–count-anomaly). Meanwhile, the 
redundant features exist in the feature data as a result of the correlation analysis. For 
example, the correlation coefficients between internal transfer features (i.e., inter-tx-
volume, inter-ts-volume-50%, and inter-ts-volume-max) are extremely high, resulting 
in a lower model efficiency. To improve the detection model’s efficiency, we remove 
redundant features prior to model training.

Experimental setup

To provide sound results, the dataset of the compromised address is split into a train 
dataset and a test dataset according to the ratios of 70% and 30%. Furthermore, the 
expected proportion of anomalies in the entire dataset is set at 5% for all UML methods, 
as mentioned in “Methodology” section. For our proposed algorithm, many parameters 
should be decided before model training, such as the multiplier in Table  5, extension 
level, and the number of isolation trees in Table 15 (“Appendix 3”). The grid search tech-
nique is used to estimate the parameters of WEIF in order to find the optimal param-
eters, as it has always been used to find the optimal parameters for several algorithms 
such as SVM and neural network algorithm (Pontes et al. 2016; Syarif et al. 2016). Based 
on parameter estimation using sklearn’s GridSearchCV,12 the multiplier, the extension 
level, and the number of isolation trees of WEIF are equal to 2, 4, and 100, respectively.

Table 8  Result on Smart contract exploit

Each metric is formed with its mean value and corresponding range. The corresponding range of each metric is the max 
difference between the mean value and its real value of the metric, hereafter

Category Algorithm Train Test

Precision Recall F1 score Precision Recall F1 score

SML XGB 0.924 ± 0.039 0.572 ± 0.047 0.707 ± 0.047 0.653 ± 0.097 0.308 ± 0.045 0.419 ± 0.061

RF 1.000 ± 0.000 0.924 ± 0.043 0.960 ± 0.023 0.633 ± 0.033 0.393 ± 0.077 0.483 ± 0.069

LGBM 0.987 ± 0.013 0.813 ± 0.068 0.890 ± 0.035 0.619 ± 0.048 0.341 ± 0.130 0.430 ± 0.122

UML CBLOF 0.830 ± 0.010 0.902 ± 0.011 0.865 ± 0.010 0.795 ± 0.023 0.875 ± 0.025 0.833 ± 0.024

HBOS 0.882 ± 0.013 0.728 ± 0.011 0.798 ± 0.012 0.861 ± 0.028 0.775 ± 0.025 0.816 ± 0.026

KNN 0.862 ± 0.011 0.880 ± 0.011 0.871 ± 0.011 0.833 ± 0.024 0.875 ± 0.025 0.854 ± 0.024

Avg KNN 0.886 ± 0.032 0.848 ± 0.000 0.862 ± 0.015 0.871 ± 0.071 0.800 ± 0.000 0.832 ± 0.032

LOF 0.846 ± 0.000 0.717 ± 0.000 0.776 ± 0.000 0.813 ± 0.000 0.650 ± 0.000 0.722 ± 0.000

OCSVM 0.847 ± 0.007 0.902 ± 0.011 0.874 ± 0.001 0.834 ± 0.016 0.875 ± 0.025 0.854 ± 0.004

FB 0.683 ± 0.017 0.750 ± 0.011 0.715 ± 0.014 0.582 ± 0.058 0.675 ± 0.125 0.624 ± 0.087

DeepSVDD 0.866 ± 0.043 0.891 ± 0.022 0.877 ± 0.011 0.828 ± 0.120 0.875 ± 0.025 0.848 ± 0.075

VAE 0.837 ± 0.000 0.891 ± 0.000 0.863 ± 0.000 0.850 ± 0.000 0.850 ± 0.000 0.850 ± 0.000

IF 0.868 ± 0.021 0.859 ± 0.011 0.863 ± 0.016 0.884 ± 0.067 0.859 ± 0.011 0.869 ± 0.027

EIF 0.837 ± 0.033 0.880 ± 0.011 0.857 ± 0.012 0.830 ± 0.037 0.880 ± 0.033 0.853 ± 0.004

WEIF 0.875 ± 0.071 0.880 ± 0.022 0.876 ± 0.032 0.861 ± 0.089 0.900 ± 0.050 0.880 ± 0.070

12  https://​scikit-​learn.​org/​stable/​modul​es/​g0.​013en​erated/​sklea​rn.​model_​selec​tion.​GridS​earch​CV.​html

https://scikit-learn.org/stable/modules/g0.013enerated/sklearn.model_selection.GridSearchCV.html


Page 24 of 38Feng et al. Financial Innovation            (2023) 9:81 

Results

Based on the experimental setup, this section aims to provide two types of results: one 
is about the efficiency and generality of our proposed algorithm (WEIF) and the other is 
about the importance of the generated features in detecting cyber-attack transactions on 
blockchain.

The performance of WEIF

Our proposed algorithm, as well as the comparative algorithms mentioned in “Related 
work” section, are used in three different types of cyber attacks. The results of the Smart 
contract exploit, the Flash loan attack, and the Identity theft are shown in Tables 8, 9 and 

Table 9  Result on Flash loan attack

Category Algorithm Train Test

Precision Recall F1 score Precision Recall F1 score

SML XGB 0.934 ± 0.007 0.803 ± 0.086 0.861 ± 0.053 0.677 ± 0.010 0.557 ± 0.079 0.608 ± 0.044

RF 0.991 ± 0.009 0.991 ± 0.009 0.991 ± 0.000 0.767 ± 0.045 0.578 ± 0.013 0.658 ± 0.008

LGBM 0.981 ± 0.000 0.944 ± 0.018 0.962 ± 0.010 0.719 ± 0.031 0.512 ± 0.034 0.598 ± 0.034

UML CBLOF 0.825 ± 0.009 0.909 ± 0.000 0.865 ± 0.005 0.809 ± 0.017 0.974. ± 0.027 0.894 ± 0.021

HBOS 0.893 ± 0.012 0.852 ± 0.011 0.872 ± 0.016 0.881 ± 0.024 0.928 ± 0.019 0.904 ± 0.022

KNN 0.857 ± 0.009 0.886 ± 0.000 0.872 ± 0.019 0.838 ± 0.019 0.947 ± 0.000 0.889 ± 0.011

Avg KNN 0.919 ± 0.032 0.886 ± 0.000 0.902 ± 0.005 0.900 ± 0.005 0.909 ± 0.000 0.904 ± 0.009

LOF 0.785 ± 0.008 0.500 ± 0.023 0.611 ± 0.019 0.833 ± 0.009 0.789 ± 0.053 0.810 ± 0.032

OCSVM 0.842 ± 0.009 0.909 ± 0.000 0.874 ± 0.005 0.845 ± 0.019 0.928 ± 0.019 0.884 ± 0.019

FB 0.628 ± 0.006 0.614 ± 0.023 0.620 ± 0.009 0.612 ± 0.053 0.789 ± 0.053 0.689 ± 0.022

DeepSVDD 0.860 ± 0.047 0.886 ± 0.000 0.872 ± 0.024 0.839 ± 0.108 0.974 ± 0.026 0.896 ± 0.051

VAE 0.833 ± 0.000 0.898 ± 0.012 0.864 ± 0.005 0.864 ± 0.000 0.947 ± 0.000 0.903 ± 0.000

IF 0.870 ± 0.019 0.909 ± 0.000 0.889 ± 0.010 0.884 ± 0.068 0.909 ± 0.000 0.895 ± 0.035

EIF 0.835 ± 0.035 0.909 ± 0.000 0.870 ± 0.019 0.827 ± 0.043 0.909 ± 0.000 0.865 ± 0.023

WEIF 0.880 ± 0.055 0.909 ± 0.000 0.894 ± 0.029 0.888 ± 0.063 0.928 ± 0.019 0.906 ± 0.045

Table 10  Result on Identity theft

Category Algorithm Train Test

Precision Recall F1 score Precision Recall F1 score

SML XGB 0.962 ± 0.038 0.571 ± 0.000 0.717 ± 0.011 0.829 ± 0.060 0.529 ± 0.059 0.641 ± 0.026

RF 1.000 ± 0.000 0.893 ± 0.012 0.943 ± 0.007 0.867 ± 0.049 0.588 ± 0.059 0.701 ± 0.058

LGBM 1.000 ± 0.000 0.798 ± 0.036 0.887 ± 0.022 0.787 ± 0.059 0.559 ± 0.088 0.652 ± 0.081

UML CBLOF 0.672 ± 0.032 0.427 ± 0.037 0.522 ± 0.037 0.583 ± 0.083 0.382 ± 0.088 0.461 ± 0.091

HBOS 0.809 ± 0.017 0.463 ± 0.000 0.589 ± 0.005 0.739 ± 0.039 0.412 ± 0.088 0.528 ± 0.010

KNN 0.790 ± 0.016 0.598 ± 0.012 0.681 ± 0.014 0.767 ± 0.033 0.676 ± 0.000 0.719 ± 0.031

Avg KNN 0.877 ± 0.049 0.598 ± 0.012 0.711 ± 0.025 0.828 ± 0.095 0.676 ± 0.029 0.744 ± 0.056

LOF 0.477 ± 0.023 0.134 ± 0.012 0.209 ± 0.017 0.325 ± 0.075 0.088 ± 0.029 0.139 ± 0.043

OCSVM 0.732 ± 0.008 0.500 ± 0.012 0.594 ± 0.006 0.683 ± 0.017 0.441 ± 0.029 0.535 ± 0.017

FB 0.407 ± 0.037 0.268 ± 0.024 0.324 ± 0.029 0.391 ± 0.083 0.382 ± 0.029 0.383 ± 0.117

DeepSVDD 0.642 ± 0.051 0.268 ± 0.049 0.373 ± 0.040 0.647 ± 0.186 0.324 ± 0.147 0.417 ± 0.017

VAE 0.719 ± 0.005 0.500 ± 0.012 0.590 ± 0.010 0.714 ± 0.014 0.441 ± 0.029 0.545 ± 0.026

IF 0.794 ± 0.027 0.561 ± 0.000 0.657 ± 0.009 0.829 ± 0.094 0.598 ± 0.029 0.692 ± 0.025

EIF 0.763 ± 0.049 0.622 ± 0.012 0.685 ± 0.027 0.764 ± 0.054 0.659 ± 0.000 0.707 ± 0.023

WEIF 0.819 ± 0.063 0.744 ± 0.012 0.778 ± 0.022 0.814 ± 0.109 0.706 ± 0.029 0.753 ± 0.047
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10, where all the recalls of GCN are equal to zero because of the heavily data imbalance 
and hence, its result is not included. According to the experimental results, we have the 
following finds.

According to the results of the Smart contract exploit in Table 8, WEIF has the highest 
F1 score on the test dataset. In Table 8, the difference in F1 score between the two results 
of datasets is small, and the average F1 score of UML is around 0.83 for the test dataset. 
In Table 8, all SML methods perform well on the train dataset when compared to UML 
methods, but the average F1 score of SML on the test dataset is less than 0.5. As for the 
result of the Flash loan attack in Table 9, WEIF outperforms all comparative models with 
0.906 on the F1 score for the test dataset, and the average F1 score of UML is about 0.87 
on the test dataset. However, although the methods of SML have a good performance 
on the train dataset, these methods work poorly on the test dataset, as shown in Table 9. 
As for the results of Identity theft in Table 10, WEIF achieved the best performance with 
0.753 on F1 score. Most of the methods belonging to UML have a poor performance on 
cyber-attack detection of Identity theft except for the Avg k-nearest neighbors (KNN), 
KNN, EIF, and WEIF, and its average differences in F1 score for both types of datasets 
are about 0.05. Be similar to the results of SML in Tables 8 and 9, the SML has a good 
performance on the train dataset, but poor performance on the test dataset, as shown in 
Table 10.

To summarize, three types of cyber attacks can be detected based on the machine 
learning methods. First, for all three types of cyber attacks, the proposed algorithm 
achieves the highest F1 score on the test datasets, demonstrating the efficiency and gen-
erality of WEIF on different types of cyber attacks. Second, all of the F1 scores of SML 
on train datasets are significantly higher than those on test datasets, whereas the dif-
ferences in F1 scores of UML for the two types of data sets are negligible. As a result, 
SML performs less effectively than UML in detecting cyber attacks on account-based 

Fig. 9  Feature importance of Smart contract exploit
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blockchains. Last but not least, when compared to EIF, our proposed WEIF achieves F1 
score improvements of about 0.03, 0.04 and 0.05, respectively, indicating that computing 
the anomaly score based on the weighted depths of the EIF makes our proposed model 
more efficient.

Feature importance

Generally speaking, a higher feature importance score means that the specific feature 
will have a larger effect on the model. In order to determine out which feature is 
significant for the cyber-attack detection, random forest is applied in the analysis of 
feature importance owning to its best performance of cyber-attack classification among 
all methods of SML, as shown in Tables 8, 9 and 10. Figures 9, 10 and 11 show the results 
of feature importance for three types of cyber attacks. As shown in Figs. 9, 10 and 11, 

Fig. 10  Feature importance of Flash loan attack

Fig. 11  Feature importance of Identity theft
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there are some differences and similarities in the analysis of feature importance for three 
types of cyber attacks.

In terms of the differences between the three types of cyber attacks, the number 
of significant features differs based on the results of feature importance. In particu-
lar, the top five features account for more than 70% of the impact in detecting Smart 
contract exploits, as shown in Fig. 9, whereas the cumulative importance score of the 
top ten features is about 60% for the detection of Flash loan attack in Fig. 10 and the 
top three features account for about 90% of impact for the detection of Identity theft 
in Fig. 11. In terms of similarity between three types of cyber attacks, some features 
are shared by all types of cyber attacks, as illustrated in Figs. 9, 10 and 11. For exam-
ple, the feature of gas fee is included in the top ten significant features for all types 
of cyber attacks, demonstrating that more complicated operations within the cyber-
attack transaction result in more gas consumed when compared to normal transac-
tions. To sum up, although the cyber-attack transactions are different, the features 
designed in this paper are general for all types of cyber-attack detection based on the 
high F1 scores achieved by WEIF, shown in Tables 8, 9 and 10. Furthermore, the sig-
nificant features for the three types of cyber attacks are almost the same as the results 
of feature importance for LGBM, as shown in Figs. 16, 17, 18 (see “Appendix 4”). This 
demonstrates that the result of feature importance does not significantly depend on 
the selection of SML methods.

Table 11  Robustness test of WEIF

Type of cyber-attack Precision Recall F1 score

Smart contract exploit 0.881 0.894 0.887

Flash loan attack 0.868 0.937 0.901

Identity theft 0.843 0.741 0.789

Fig. 12  Results of F1 score with different window sizes of training data
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Additional validations

Two additional validations are carried out to evaluate our proposed algorithm’s efficiency 
and robustness. The first validation is to conduct a robustness test of WEIF based on a 
new dataset. The second validation is to conduct experiments on different window sizes 
of training data, mentioned in the data extraction, to determine whether our proposed 
approach is robust and suitable for the real-time detection of cyber-attack transactions.

The first validation is performed on the new dataset, which contains all of the compro-
mised addresses from cyber attacks as well as an alternate set of 100 random addresses 
that were not attacked by hackers. The robustness tests on WEIF for all three types of 
cyber attacks follow the same process as the previous section, and the results are listed 
in Table 11. Compared to the results shown in Tables 8, 9 and 10, the performances for 
all three types do not decrease, which indicates the robustness of WEIF.

Six experiments are designed in the second validation to test the robustness 
and execution time of WEIF by using different sizes of training data mentioned in 
“Methodology” section, i.e., different window size of historical transactions of the 
compromised address for model training. Figures  12 and 13 show both results. As 
shown in Fig. 12, although the training data window size decreases from 2000 to 300, 
the F1 score of WEIF decreases by only 0.05, with the lowest F1 score being 0.815, 
indicating the robustness of WEIF again that is not sensitive to the size of the training 
data. According to Fig. 13, the average execution time of EIF and WEIF, referring to the 
average time consumption of model training and prediction for a single transaction, are 
almost the same, and the gap in the average execution time between WEIF and EIF is 
also narrowing as the size decrease. This finding implies that, when compared to EIF, 
WEIF does not significantly increase time consumption. Furthermore, WEIF’s lowest 
execution time is about 0.6  s, which is significantly less than the average block time 
mentioned above. As a result of the stability and robustness of our proposed algorithm, 
the window size can be set to a lower value for the blockchain with lower block time. 
Otherwise, it can be increased for the blockchain with longer block time.

Fig. 13  Results of execution time on different window sizes of training data. The blue and red bars represent 
the execution time of EIF and WEIF, respectively
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Discussion

Based on the results of the experiments above, our study provides important theoreti-
cal values and high practical application values for the researchers and industry prac-
titioners, respectively. For the theoretical values, we propose a general framework for 
cyber-attack detection that incorporates the compromised address recognizer, real-
time transaction filter system, general feature generator, and detection model. Our 
proposed framework addresses the issue of data imbalance and data scarcity of hack-
ers’ addresses. Furthermore, within our proposed framework of cyber-attack detection, 
we propose a novel algorithm named WEIF that is based on the isolation forest and its 
extension as the detection model and outperforms all methods on three types of cyber 
attacks based on experimental results. Based on its strong performance against various 
types of cyber attacks, our proposed framework and algorithm can serve as a theoreti-
cal foundation for improving the supervision and regulation of public blockchains. For 
the practical application values, the generality, robustness, and low time consumption 
of our proposed algorithm on different types of cyber attacks have been proved by the 
experimental results above. First, our proposed algorithm’s generality and robustness to 
various types of cyber attacks makes it perfectly capable of detecting dynamic and ever-
changing cyber attacks on account-based blockchains. Second, because of its low time 
consumption, our proposed algorithm can detect all real-time transactions in a short 
period of time. Meanwhile, to reduce the number of real-time transactions analyzed 
by our proposed algorithm, a novel approach of filtering real-time transactions based 
on the expenditures of compromised addresses is proposed. Finally, the technology of 
multiprocesses or multithreads can be used to accelerate the process of detecting cyber 
attacks. All of these evidences show that our proposed algorithm can be directly applied 
to the detection of cyber attacks in the blockchain industry in real time.

Conclusion and future work
The dynamic and ever-changing cyber attacks frequently happen on account-based 
blockchain in recent years. However, only a few technologies of machine learning have 
been applied for the real-time detection of cyber attacks. To this end, we propose a 
systematic and comprehensive anomaly detection method for coping with this problem. 
First, a novel algorithm namely, WEIF, is developed for anomaly detection based on 
the standard isolation forest and its extended model. Then, we propose a general 
framework on the basis of our proposed algorithm through a comprehensive study of 
real-world examples of cyber attacks. Within this general framework, a novel approach 
of identifying the compromised address is created to solve the hack addresses’ data 
deficiency and reduce the time consumption of our proposed framework. Next, several 
experiments are carried out on different types of cyber attacks to verify our proposed 
algorithm’s efficiency and generality. As expected, the experimental results demonstrate 
the advantage of our proposed method in contrast to many widely used state-of-the-art 
techniques. Besides, the result also indicates that the techniques of SML are not suitable 
for real-time detection of cyber attacks, owing to data imbalance and data deficiency. 
Finally, the results of additional experiments provide more evidence for supporting the 
lower time consumption and the robustness of our proposed approach, illustrating that 
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our proposed approach is capable of real-time detection of cyber attacks on the account-
based blockchain.

In the future, we plan to extend our work from three aspects. First, we will try to apply 
the multivariate time-series analysis algorithms to the anomaly detections in the con-
text of the account-based blockchain, since the historical transactions belong to the 
dataset with a time-series format. Second, crypto exchanges are the main gateway for 
connecting real-world user information to pseudonymous addresses on account-based 
blockchain, but few studies related to crypto exchanges have been conducted. Therefore, 
we plan to thoroughly study different types of crypto exchanges. Finally, we will develop 
applications to analyze the fund flows of illegal activities and automatically extract the 
funds’ path from the large transaction networks.

Appendix 1: Common concepts on account‑based blockchain
In this appendix, the common concepts on account-based blockchain, related to the 
analysis of cyber-attack, are shown as follow.

Account. There are two types of accounts: externally owned account (EOA) controlled 
by private key, and smart contract account controlled by their codes, described in white-
paper of Ethereum and BSC. For the EOA, it is made up of a cryptographic pair of keys: 
public and private. The public key and private key are similar to an online bank account 
and the corresponding password, and losing the private key is equivalent to losing the 
funds of the corresponding account. For the smart contract account, it is written in pro-
gramming languages such as Solidity, and all of the smart contracts are executed on the 
blockchain. Applications can call the smart contract functions, change their state, and 
initiate transactions. Both account types have the ability to receive, hold and send the 
crypto assets, and interact with the deployed smart contracts.

Transaction. The transaction on the account-based blockchain refers to an action 
initiated by an externally owned account. In other words, an account is managed by a 
human, not a contract. A transaction is a signed data message sent from an externally 
owned account to another account on blockchain, e.g., so the recipient of a transaction 
has more crypto asset and the sender has less. It contains the information of the transac-
tion sender and recipient, which are the amount of cryptocurrency to be transferred and 
the transaction fee the sender is willing to pay. Generally, an internal transfer is the con-
sequence of smart contract logic that is triggered by an external transaction, where the 
transaction is transmitted from the EOA to the smart contract. Meanwhile, the execu-
tion of transaction with a smart contract may result in more transactions depending on 
the code of smart contract.

Transaction Fee. Transaction fee is also known as gas fee, and it is the fee paid to the 
nodes (miner) for executing transaction. When we transfer money on the account-based 
blockchain, the miner must pack our transaction and put it on the blockchain to com-
plete the transaction. In this process, the nodes will consume computing resources, and 
the miner should be compensated. The gas fee only depends on the complexity of the 
transaction. Overall, the higher gas fee is consumed in the more complicated transac-
tion. Meanwhile, the price of gas can be set by users, and the set price will affect the 
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transaction speed. As miners give priority to transactions with high gas prices. If the 
transaction party sets the gas price too low, the speed of the transaction will slow down.

Block. A block is mined when added to the account-based network, once the consen-
sus is reached. A transaction is said to be mined when it is included to the blockchain 
in a new block. Therefore, each block has several transactions. In order to preserve the 
historical transaction records, every new block contains a unique identifier of its par-
ent block, this is how all of the blocks are linked in the blockchain. As a result, all of the 
blocks on the account-based blockchain are strictly ordered as well as the transactions 
within the blocks. According the Etherscan and BscScan, the average block times, refer-
ring to the times it takes to mine a new block of BSC and Ethereum, are 2.5 and 12 s 
respectively.

Cryptocurrency. The Ether (ETH) and BNB are the digital fuel for Ethereum and BSC, 
respectively, which is similar to the gasoline for our cars. For instance, transaction fee is 
an amount of computer power required in order to execution of the transaction, which 
is paid by ETH or BNB. Compared with the ETH and BNB, ERC-20 and BEP-20 Tokens 
are the most commonly used tokens on the Ethereum and BSC network, which are sup-
ported by the smart contract. According to the report of Etherscan and BscScan, there 
are more than 500,000 types of ERC20 Tokens on Ethereum and 2,568,483 types of BEP-
20 Tokens on BSC, with over 100 billion dollars market capitalization.

Flash loan. Flash loan is one of the decentralized applications based on smart con-
tracts. Because of the state reverting feature of Ethereum and BSC, the tools of flash loan 
are developed to enable the uncollateralized lending service. This type of loan service 
provides users an unsecured loan from lenders without intermediaries. The rule of flash 
loan is that the borrower must pay back the loan before the transaction ends. Otherwise, 
the transaction will be rejected and the smart contract reverses the transaction, and it’s 
like the loan never happened in the first place on Ethereum and BSC.

Decentralized exchange (DEX). DEXs are blockchain-based applications that pro-
vide users the trading of crypto assets without intermediaries. It works entirely 

Fig. 14  An illustration of the re-entrancy attack
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through automated algorithms based on a set of smart contracts. Unlike the central-
ized exchanges, DEXs do not allow for the exchange between crypto assets and fiat. 
Meanwhile, DEXs do not hold users’ crypto assets. Instead, users hold all their assets 
directly in their wallets all the time.

Appendix 2: Real‑world examples of cyber‑attack transaction
In this section, two real-world examples of cyber-attack transaction, referring to Flash 
loan attack and re-entrancy attack, are elaborated below.

Real-world example of Smart contract exploit. Taking the re-entrancy as an exam-
ple, its brief process is shown in Fig. 14, DAO is the victim contract which is marked 
with blue, and the malicious proxy contract is marked with gray. The detail process of 
re-entrancy attack contains several steps:

Step 1. Malicious contract calls the withdrawBalance function of DAO attempt-
ing to withdraw a certain amount A of ETH from an account containing a large 
amount B of ETH;
Step 2. The withdrawBalance function of DAO check that the withdrawal is valid if 
B > A.
Step 3. The withdrawBalance function of DAO transfers the requested A ETH to 
the malicious contract.
Step 4. This transfer triggers Fallback function of the malicious contract, which calls 
the withdrawBalance function of DAO again requesting a withdrawal of A ETH.
Step 5. The withdrawBalance function of DAO checks that the withdrawal is valid, 
since account balance of Malicious contract is still B and B > A.
Step 6. The withdrawBalance function of DAO transfers the requested A ETH to 
the malicious contract.
Step 7. The Fallback function of malicious contract returns without performing 
any action.

Fig. 15  Flowchart of bZx Flash loan attack scheme
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Step 8. The withdrawBalance function of DAO updates its state to reflect the with-
drawal in step 6, reducing account balance of malicious contract to (B–A) ETH.

Real-world example of Flash loan attack. For example, the Flash loan attack 
happened on 18 February 2020 which is shown in Fig. 15. First, the hacker obtained a 
flash loan of 7500 ETH from the bZx protocol and split the total amount of ETH into 
three parts (3518, 900 and 3082). Second, the hacker converted 3518 ETH to sUSD 
on Synthetix, the synthetic USD token (sUSD) is enabled by the Syntetix protocol and 
the sUSD were bought at the price of $1. Third, the hacker swapped 900 ETH in two 
batches for sUSD through Kyber. The first batch was sold for 540 ETH in KyberSwap 
and the second batch was sold 18 times for 20 ETH each in Kyber, effectively inflating 
the price of sUSD up to $2 in Kyber (By this way, the supply of sUSD will be decreased, 
and the total supply of ETH is increasing in Kyber. The ratio of the supply of ETH and 
the supply of sUSD in Kyber will rise, which makes the price of sUSD go up). After 
this operation, the hacker has finished all the preparatory work, such as accumulation 
of sUSD and inflating the price to the certain price in Kyber. Fourth, since bZx relies 
on Kyber for the real-time price feed, with the spiked sUSD/ETH price (This price is 
higher than the actual prices), the hacker started to attack the bZx by borrowing 6796 
ETH with all the collection of sUSD. Finally, the hacker repaid the 7500 ETH flash 
loan back to bZx with a profit of 2378 ETH.

Appendix 3: Algorithms of the standard isolation forest and its extension
In this section, the algorithms of the standard isolation forest and its extension are 
introduced as follow (See Tables 12, 13, 14, 15).
 
 
Table 12  Algorithm of isolation tree (IF)



Page 34 of 38Feng et al. Financial Innovation            (2023) 9:81 

 

Table 13  Algorithm of constructing isolation tree (EIF)

Table 14  Algorithm of depth computation (EIF)

Table 15  Algorithm of constructing isolation forest (EIF)
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Appendix 4: Analysis of feature importance based on LGBM
In this section, LGBM is also selected to carry out the analysis of feature importance for 
verifying the whether or not the result of feature importance depends the selection of 
SML methods. And the results of feature importance for LGBM are show in Figs. 
16, 17 and 18.

Fig. 16  Feature importance of Smart contract exploit based on LGBM

Fig. 17  Feature importance of Flash loan attack based on LGBM
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