
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Xu and Ma  Financial Innovation            (2023) 9:79  
https://doi.org/10.1186/s40854-023-00488-0

Financial Innovation

Intelligent option portfolio model 
with perspective of shadow price and risk-free 
profit
Fengmin Xu1* and Jieao Ma1 

Abstract 

Since Markowitz proposed modern portfolio theory, portfolio optimization has been 
being a classic topic in financial engineering. Although it is generally accepted that 
options help to improve the market, there is still an improvement for the portrayal 
of their unique properties in portfolio problems. In this paper, an intelligent option 
portfolio model is developed that allows selling options contracts to earn option fees 
and considers the high leverage of options in the market. Deep learning methods are 
used to predict the forward price of the underlying asset, making the model smarter. 
It can find an optimal option portfolio that maximizes the final wealth among the call 
and put options with multiple strike prices. We use the duality theory to analyze the 
marginal contribution of initial assets, risk tolerance limit, and portfolio leverage limit 
for the final wealth. The leverage limit of the option portfolio has a significant impact 
on the return. To satisfy the investors with different risk preferences, we also give the 
conditions for the option portfolio to gain a risk-free return and replace the Conditional 
Value-at-Risk. Numerical experiments demonstrate that the intelligent option portfo-
lio model obtains a satisfactory out-of-sample return, which is significantly positively 
correlated with the volatility of the underlying asset and negatively correlated with the 
forecast error of the forward price. The risk- free option model is effective in achieving 
the goal of no drawdown and gaining satisfactory returns. Investors can adjust the bal-
ance point between returns and risks according to their risk preference.

Keywords: Option portfolio, Linear programming, Deep learning, Risk appetite

Introduction
As of November 2021, China’s index options market has maintained a substantial 
growth this year. The total trading volume of the domestic stock index options market 
has reached more than 13 billion pieces in 2020 with an annual increase of about 153% 
(see Fig. 1). Furthermore, the CSRC1 has put forward six major work priorities for the 
construction of the financial market, including “improving the field and path of futures 
and options”. The application of index options in the financial market has attracted more 
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and more attention for financial institutions. How to use this financial tool still has broad 
research prospects.

Portfolio optimization has been being a classic topic in financial engineering since 
Markowitz (Markowitz 1952) proposed the modern portfolio theory. Under different 
objectives and constraints, the optimal capital allocation of financial assets (such as 
stocks and bonds) has been discussed in the portfolio among a large amount of litera-
ture. While it is generally accepted that options are helpful to improve the vitality of 
financial market, research on how to highlight the characteristics of options and how 
to use them effectively in the market remains promising. Due to the highly leveraged 
nature of the options contracts, option portfolios may generate unexpected returns that 
may outperform the benchmark index. It is difficult to find a stochastic process that 
accurately reflects the behavior of option return. As a result, the option portfolio has 
received less attention than the portfolio of stocks or bonds.

The problem of option portfolio originated at the end of the last century. Several 
scholars studied how to build an effective option portfolio from different perspectives 
(Korn and Trautmann 1999). Liu and Pan (2003) modelled stochastic volatility and 
jump processes and derived the optimal portfolio policy of a CRRA investor. Con-
stantinides et al. (2012) studied portfolios made up of either call or put options with a 
targeted moneyness. In consideration of the non-normal distribution of returns and 
the short sample of option returns available, Faias and Santa-Clara (2017) proposed a 
method to optimize a portfolio of European options, held to maturity, with a myopic 
objective function that overcomes these limitations. Guasoni and Mayerhofer (2020) 
identified the combination of asset specific option payoffs that maximized the Sharpe 
ratio of the overall portfolio, which mainly analyzed the optimal solution of the port-
folio from the perspective of optimization. Some scholars considered the hedging 
attributes of options and regarded the options with small or zero risk premium as an 
important hedging tool to reduce the total portfolio risk (e.g. Han et al. 2015; Wang 
and Huang 2019; Khodamoradi et al. 2020). Most of the recent studies were consid-
ered from the perspective of mispricing to obtain arbitrage (Constantinides et  al. 
2017) or investment diversity (Yuan and Rieger 2020). In light of the current research 
progress, the existing studies still lack the description of leverage in the option port-
folio. On the other hand, the strategy about the combination of options contracts is 
not rich enough. For example, some institutions often earn option fees from selling 

Fig. 1 Monthly trading volume of index options in China
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options contracts, which is also a common and simple strategy. Research on the 
strategy of selling options contracts still needs to be deepened in the model analy-
sis. With the development of options, both call options and put options are applica-
ble to almost all asset classes, including stocks, bonds, commodities, currencies, and 
relative indexes (e.g.Topaloglou et al. 2011; Yuan and Rieger 2020). For a specific call 
or put options contract, different execution prices in at-the-money (ATM), in-the-
money and out-the-money (OTM) options. Several studies claimed on overpricing in 
both OTM puts and ATM straddles (Jackwerth 2000). Based on mispricing, Constan-
tinides et  al. (2012) built a portfolio that mainly includes short call options, which 
was particularly profitable in the case of short-term and high volatility. With so many 
investment opportunities available, capturing the balance between the option income 
and option fees through a broad and diversified portfolio might bring the possibil-
ity of low risk and high return. Therefore, it is necessary to study how to fully utilize 
options through further research (Merton 1977).

This paper develops a model to find option portfolio that maximizes the terminal 
wealth in a market where call and put options are available with many strike prices while 
selling option contract to obtain the option fee. The model is a single-period problem, 
which reflects the monthly update of a portfolio among the most-active contracts. At 
the beginning of the period, the data-driven method is used to forecast forward price of 
the underlying asset, which rely on the historical data of underlying assets. Meanwhile, 
investors construct the portfolio according to the value of each contract (the balance 
between the expected return and the option fee). At the end of the contract, the investor 
collects the option payoffs, then, makes the next round of investment decisions. In addi-
tion, this paper proposes a new option portfolio model, which can be adjusted to pursue 
higher expected returns or arbitrage through different risk constraints.

The main performance of the model is to maximize the final wealth of the portfolio, 
and the return depends greatly on the judgment of the price of an underlying asset. 
Since Fama put forward the efficient market hypothesis in 1970, many scholars have 
extensively demonstrated the efficient market hypothesis from theoretical and empiri-
cal perspectives. Its birth and development have been greatly supported in the market, 
including weak efficient market, semi-strong efficient market, and strong efficient mar-
kets. Three types of efficient markets have been verified by different scholars (Fama 1970; 
Jensen and Benington 1970). However, as the statistical models of empirical studies have 
gradually matured, some anomalies have emerged in the capital market that are incon-
sistent with the theoretical studies of the efficient market hypothesis and even difficult to 
be explained by the classical financial theory. If the anomalies behind abnormal returns 
can be well explained, the market will become effective or appear arbitrage and specula-
tion. For fore- casting the price of financial assets (especially for stocks and stock market 
indexes), a large number of scholars have proved the effectiveness of machine learning 
and applied it to the portfolio (e.g., Wang et al. 2020; Yu and Chang 2020). Therefore, 
this paper uses the deep learning approach to forecast the forward price of the underly-
ing asset, which is applied as a key parameter to the portfolio model. It is worth men-
tioning that this paper also provides a risk-free option portfolio model for risk-averse 
investors to reduce the loss caused by parameter sensitivity. In general, there are three 
main contributions of our option portfolio model as follows
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• This paper analyzes the statistical characteristics of index options contracts in China, 
and finds that there is a peak and tail phenomenon in option return. It is not only 
a prerequisite for an option portfolio to be effectively profitable but also makes the 
portfolio potentially implicitly risky. In analyzing the return of index options with 
one-month maturity, it is found that there is a leftward bias in that return and a sig-
nificant overpricing of options.

• The model is more realistic, incorporating both call and put options at multiple strike 
prices, and the model allows for the sale of signed contracts for the option fee. The 
final return of the option portfolio is the balance between the expected return of 
options and the option fee. Therefore, the model is a general high-dimensional port-
folio problem. We use the deep learning method to determine the future price of the 
underlying index to obtain the expected return of the options contract, and demon-
strate that it is a guarantee to obtain the return of our intelligent option portfolio.

• L1 norm is introduced to control the leverage of the portfolio, which also ensures 
that the model is bounded. The treatment transforms the L1 norm into a continuous 
linear form to analyze the shadow prices of the initial assets, the upper limit of risk 
tolerance, and the upper limit of portfolio leverage. It is found that the leverage ratio 
plays an important role in improving the return of the portfolio.

The contents of this paper are structured as follows. Section Model construction intro-
duces the project motivation, supported by a statistical analysis of the option market. 
In the traditional CVaR model, we put forward an intelligent option portfolio model. 
Section  Model analysis analyzes the shadow prices of the input factors in the model 
and gives a risk-free condition to satisfy investors with different risk preferences. Sec-
tion Empirical results conducts an experimental study on the proposed models. Some 
conclusions are drawn in Section Conclusions.

Model construction
Characteristics of options in China

To start with, we make a statistical analysis of the returns of index options in China to 
explore some possible profit motives of the market. Table 1 displays the confidence inter-
vals for return of two types options in the time series of 2020, each of which contains 
nearly thirty-six thousand data points. The selected data are options contracts expiring 
within one month, which are also the contracts we will use in the model.

From Fig.  2, it can be seen there are obvious fat tail characteristics in the distribu-
tion of China’s index options yields, which is both an opportunity and a challenge for 

Table 1 Characteristics of index options daily return

This table displays confidence intervals for the time series of realized option returns with the confidence interval in 99%, 
95% and 90%

Conf Int 99% 95% 90%

Option Mean LB UB LB UB LB UB

50ETF option 0.0022 − 0.0034 0.0079 − 0.0021 0.0065 − 0.0014 0.0058

300ETF option − 0.0017 − 0.0069 0.0036 − 0.0057 0.0024 − 0.0050 0.0017
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building an effective option portfolio. It also reflects the failure effectiveness of China 
option market.

On the other hand, we select one-month maturity index options as the analysis sample 
(50ETF options issued from 2015 and 300ETF options issued from 2020). The hold-to- 
maturity yields of options contracts are shown in Table 2 and Fig. 3. The yield to matu-
rity is the difference between the contract income and the option fee. A positive value 
indicates that the buyer of the contract will make a profit, and conversely the seller of the 
contract will make a gain with a negative value. It can be seen that the average return of 
the contract during in one month is negative and the distribution of the maturity yields 
clearly presents a left-skewed pattern. This also amply demonstrates the existence of 
mispricing of index options and that it is profitable to sell short options contracts.

Since options are one of the few financial assets that can be shorted in China, the model 
constructs a portfolio in the risk-free asset and options contracts according to the returns 
of the Chinese market (but the portfolio assumes that borrowing is not allowed). A major 

Fig. 2 The probability density distribution of daily return of 50ETF and 300ETF option

Table 2 Return characteristics of option with one-month hold to maturity

This table displays confidence intervals for the time series of realized option returns with the confidence interval in 99%, 
95%, and 90%

Conf Int 99% 95% 90%

Option Mean LB UB LB UB LB UB

50ETF option − 0.0021 − 0.0090 0.0048 − 0.0073 0.0032 − 0.0065 0.0023

300ETF option − 0.0100 − 0.0283 0.0083 − 0.0239 0.0039 − 0.0217 0.0016

Fig. 3 The probability density distribution of 50ETF and 300ETF option with one month hold to maturity
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contribution of the proposed model is that the model includes both call options and put 
options, and options can be bought or sold. These settings make it possible for the model 
to have extremely high tail returns, but also potentially significant risk. Therefore, based on 
the return distribution of China’s options market, we adopt CVaR to measure the portfolio 
risk, which is more appropriate for our requirements to prevent extreme risks.

Option portfolio based on CVaR constraint

A single-period portfolio strategy is implemented for a risk-free asset with fixed return rf  , 
and the number of call options and put options of the index respectively is C and P at dif-
ferent exercise prices. To represent the real market in the largest extent, we allow options to 
be bought or sold to hedge market risk. A key point of an option portfolio is how to deter-
mine the future price of the underlying asset St+1, as we will discuss in detail in the next 
subsection.

In addition, for buying options, the exposure to loss is limited, but the risk is infinite 
for selling options. Some scholars (e.g.Alexander et al. 2006; Xue et al. 2015) have utilized 
CVaRβ(x) constraint to minimize the expectation of tail losses in top 100(1− β)% , which 
control the loss of uncertainty risk on sold contracts.

Suppose that r is a discrete random variable with G possible scenarios {rg }Gg=1 , where the 
probability of each scenario is qg satisfying G

g=1qg = 1 . Thus, we can calculate CVaRβ(x) 
by minimizing an auxiliary function Fβ(x,α) . (Rockafellar and Uryasev, 2002), where

here, I[·] denotes the indicator function of an event. By introducing slack variables 
dg
(

g = 1, 2, . . . ,G
)

 , the formula (1) is equivalent to

where X :=
(

x, dg ,α
)

∈ R
N × R

G × R : dg ≥ −rTg x − α, dg ≥ 0, g = 1, 2, . . . ,G

In sum, xf ∈ R+ is the share invested in risk-free assets. xc, xp ∈ RN+ represent the 
amount of buying or selling call or put options, which are calculated through maximization 
of the investor’s expected utility at each period as follows:

(1)Fβ(x,α) = α +
1

1− β

G
∑

g=1

{

qg (−rT x − α)I[−rT x≥α]

}

,

(2)Fβ(x,α) = α + 1
1−β

G
∑

g=1

qgdg ,x, dg ,α ∈ X ,

(3)

max E[U(W1 − OF)]

s.t.W1 = xf rf +

C
∑

c=1

xcC1 +

P
∑

p=1

xpP1

OF =

C
∑

c=1

xcOFc +

P
∑

p=1

xpOFp,

xf +

C
∑

c=1

xcOFc +

P
∑

p=1

xpOFp ≤ W0,

Fβ([xc, xp],α) ≤ ρ,

[xc, xp], dg ,α ∈ X
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where W1 is the total wealth next time, which consists of risk-free return and option 
returns. OF represents the option fee, greater than 0 meaning the net expenditure of the 
option fee of the portfolio, and less than 0 meaning the earned option fee. OFc and OFp 
are the premium of call option and put option, respectively. Therefore, the meaning of 
objective function is to maximize the utility of terminal wealth. C1 = max (S1−Kc, 0),  P1 
= max (Kp– S1, 0) represent the benefits of different options contracts with striking price 
K separately. ρ is the upper limit of risk tolerance.

Intelligent option portfolio with short position and leverage constraint

Compared with stock and futures, the option is a more complex but flexible quantitative 
investment tool. In China’s stock market, investors can only gain income in the upward 
market by their market timing ability. However, whether it is a trending market or a fluc-
tuating market, there are corresponding strategies for the investor to use options con-
tracts wisely to capture profits and control risk in almost all market expectations. For 
institutional investors, a common trading method is used to earn option fees by selling 
options contracts. In this paper, we consider the trading behavior of selling options, i.e., 
we emphasize that the weight vector of the portfolio invested in options is the set of 
real numbers. This makes our model more flexible and changeable. In such a high vector 
space composed of multiple options and different execution prices, we will find the bal-
ance point between the expected return of options and the cost of options.

On the other hand, since the expected return of selling options contracts may be 
higher than the return of risk-free assets, this will lead to selling infinite number of con-
tracts to obtain the option fee in exchange for a risk-free return. The solution of the 
model (3) will also tend to infinity. If the forward price forecast is completely accurate, 
such a portfolio will certainly be welcomed by investors. But in a more effective financial 
market, 100% accurate forecast is a near-impossible task. If there is no restriction on 
the number of purchase and sale contracts, investors will face unlimited risk exposure. 
Based on this consideration, another contribution of the proposed model is to control 
the leverage of the option portfolio. Introducing L1-norm to meet the requirements of 
investors with different types of risk preference for portfolio leverage, we convert model 
(3) into vector form as follows

Here, substitute constraint 1 and constraint 2 of the model (3) into the objective 
function. The utility function in the objective is in the form of linear function, which 
is expressed as the multiplication of yield and weight. R =

[

rf ,C1 − OFc,P1 − OFp
]′

 is 

the expected yield vector of options contract.  X =
[

xf , xc, xp
]′

 represents the investment 
weight of the portfolio on risk-free assets and options contracts. C =

[

1,OFc,OFp
]′

 is 

(4)

max
X ,d,α

RTX

s.t. CTX ≤ W0,

βqTd + α ≤ ρ,

−AX − d − α1 ≤ 0,

� �⊙ X �1≤ W0L,

d ≥ 0,
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the investment cost vector. � = (1, θ1, θ2, . . . , θN ) , θi = S0 ∗ uniti , uniti denotes the trad-
ing unit of the ith options contract. Constraints 3, 4, and 5 are linear forms of CVaR 
measure.
|�⊙ X |1/W0 can be regarded as the ratio of the total value of the underlying assets 

agreed by the portfolio to the initial wealth, i.e., the leverage ratio of the spot-right portfolio. 
L constrains the upper limit of option portfolio leverage.

The key aspect of the model (4) performance lies in the accurate prediction of the 
medium and forward price S1 of the vector R = g(S1). Because we assume that the options 
contracts deliver at the realized price until the expiration date, whether option pricing OF 
has a bias toward the realized price has little impact on the model. The underlying asset 
of an options contract is an index, which has many convenient features in forward price 
prediction and portfolio construction. Compared with index options, the underlying asset 
prices of commodity options are often affected by factors such as season, supply, and 
demand, which may create new challenges to forecast. There are a variety of methods for 
predicting index prices, and a large number of scholars have demonstrated the effective-
ness of machine learning for such problems and applied it to portfolio problems. Machine 
learning is often regarded as a black box problem in which the network logic is difficult to 
explain the economic significance. But it cannot be denied that it gives a new basis for anal-
ysis in the time series prediction. In view of the continuous improvement of data availability 
and computing power in recent years, deep learning has become a fundamental component 
of the new generation of time series prediction models and achieved excellent results (Gu 
et al. 2020; Avramov et al. 2021). We use the deep machine learning method to analyze the 
expected price of the underlying asset, which increases the decision-making ability of the 
model. Because it is difficult to calculate the yield of each options contract in an options 
portfolio without the forward price of the underlying asset. The model (4) with the deep 
machine learning method is described as an intelligent option portfolio. And it can also tell 
us which risk-free condition should be adopted to build a “gilt-edged, loss-free” portfolio 
(the specific strategy is reflected in Section Risk-free profit conditions). The motivation of 
this paper is to construct a class of option portfolio models with realistic constraints, which 
adapt to multiple methods for analyzing the underlying asset price. Therefore, we did not 
focus on comparing which type of method is more accurate, and give a commonly used 
deep learning method. Following the study of Cho et al. (2014), the content of the predic-
tion methods of deep learning is explained in detail in Appendix 1.

After introducing the leverage constraint of intelligent option portfolio in model (4), 
investors can adjust the upper limit of portfolio leverage according to their personal 
requirements or their level of certainty about the current market. Leverage is one of the 
key factors that distinguishes the option portfolio from the general portfolio such as stocks. 
Reasonable adjustment of portfolio leverage can serve the purpose of amplifying returns or 
controlling risk for investors. Therefore, exploring how this parameter, the upper leverage 
limit L, affects the final wealth of a portfolio can help us better understand options invest-
ment. To facilitate the analysis and reduce the difficulty of the model, we transformed the L1 
norm by linear equivalence. Problem (4) is reformulated into the following equivalent form
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The reformulation reduces half of the number of inequalities added to the con-
straints compared with model (4). It is worth mentioning that model (4) and (5) are 
both linear programming problems, and their dual forms can be derived according 
to the dual theory. But the dual form of L1 norm is L∞ norm, which will increase 
the analysis difficulty of dual conclusions. We reduce the complexity of the model 
after dual transformation by performing a linear equivalence transformation of the 
L1 norm. This simplifies the original model and provides convenient support for our 
subsequent analysis of the shadow price of the model.

Model analysis
This chapter mainly discusses some extended properties of the model (5). On the one 
hand, the model’s main factor inputs (capital, risk tolerance, leverage ratio) are ana-
lyzed from the perspective of shadow prices and the degree of their marginal con-
tribution, which has implications on how investors allocate their assets and set their 
preferences. On the other hand, we propose a risk-free option portfolio condition, 
which guarantees that the expected portfolio return is non-negative. This condition is 
introduced into the intelligent option portfolio model as a risk constraint.

Shadow price

Option investment is an economic behavior with a high yield and high risk. Inves-
tors are exposed to certain risks when obtaining high rates of return. In addition, this 
risk is magnified by the characteristics of options trading, as one of the main features 
of options investment is the high leverage. In the case of China 50 ETF options, for 
example, the leverage of one options contract is about 10 times of total contract value. 
Therefore, how to measure the value of initial capital, risk tolerance, and preset lever-
age, or how the distribution of input factors affects the expected return of its port-
folio is a matter of great interest and urgency for investors to explore. This section 
analyzes the shadow price of initial capital, risk tolerance and preset leverage from 
the perspective of duality theory. Shadow price reflects the scarcity of resources and 
the marginal contribution of resources to the objective function. It is an important 
basis for investors to realize a rational allocation of resources.

As input elements, the variables in the model (5) include initial capital W0, the 
upper limit of risk tolerance ρ, and the upper limit of portfolio leverage L. According 
to duality theory, the Dual form of model (5) can be represented as follows

(5)

max
X ,d,α

RTX

s.t. CTX ≤ W0,

βqTd + α ≤ ρ,

−AX − d − α1 ≤ 0,

eT (2z −�⊙ X) ≤ W0L,

�⊙ X ≤ z,

z, d ≥ 0,
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where y1, y2, ...y7 denote dual variables, 1 ∈  RN is an n-dimensional full 1 vector, and 
the definitions of other variables are the same with model (5). y1, y2 and y4 reflect the 
marginal contribution of their input factors to the objective function, respectively. In 
other word, they are the marginal value of total wealth under the optimal utilization of 
resources Because the optimal value of the objective function of the original problem is 
equivalent to that of the dual problem, which is the total wealth in the terminal period. 
y1, y2and y4 also represent the marginal contribution of their corresponding elements to 
the final wealth in the economic sense. Detailed proofs can be viewed in Appendix 2. In 
this subsection, we consider the case of a single asset, in which, Θ is a single constant 
value and therefore is not reflected in the model (6).

Figure 4 illustrates how the marginal contribution varies with the objective function 
when each of the three input factors is changed. Combining Panel (a) and (b), it can be 
seen that the shadow prices (marginal contributions) of the three factors are approxi-
mately constant when the initial capital W0 and risk tolerance ρ are increased, respec-
tively. The value of y1 is close to 1, which is the largest marginal contribution to the 
objective function among the three factors. It indicates that increasing 1 unit of initial 
investment will increase the same value of final wealth. This is also consistent with the 
economic explanation because the objective function represents the final wealth, and the 
initial wealth input most directly affects the final wealth. The second-largest marginal 
contribution is the upper limit of portfolio leverage L. The factor with the smallest mar-
ginal contribution is the risk tolerance of CVaR, which is close to 0. This result exceeds 
our expectations, but it also reflects the large number of lower-risk profit opportunities 
that exist in the Chinese index options market. Under the assumption, investors will not 
receive additional final wealth as a result of the increased risk tolerance.

The model (5) is a high-dimensional linear model. The obtained portfolio is the opti-
mal solution in the current market environment, which also means to find a portfolio 

(6)

mixW0y1 + ρy2 + Ly4

s.t. Cy1 − ATy3 − 1y4 + y5 = R,

βqy2 − y3 − y7 = 0,

y2 − 1
T y3 = 0,

1 ∗ 2y4 − y5− y6 = 0,

y1, y2, y3, y4, y5, y6, y7 ≥ 0.

Fig. 4 Shadow Price of W0, ρ, and L. Panel (a) shows how the objective function and three dual variables 
change when the capital W0 varies from 0 to 2 at the beginning of the current period. The x-axis is the 
variation range of input factors, and the y-axis is the value of objective function value and the marginal 
contribution of y1, y2, and y3. In the same way, Panel (b) and Panel (c) show the results of ρ and L respectively. 
When a parameter is changed, the initial value of other parameters is W0 = 1, ρ = 0.5 and L = 5
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that maximizes the final wealth in the sample. The model allows for the purchase of 
options contracts to obtain exercise rights and also the sale of options contracts to earn 
option fees. The portfolio may be trapped in an infinite cycle of buying options contracts 
at the initial moment with option fees from selling. If the market liquidity is sufficient 
and the predicted forward price value is accurate, the return exposure of the method is 
the result of convergence to positive infinity. Therefore, the ability to magnify this return 
and reasonably control risk depends on another key element, the upper limit of portfolio 
leverage. In contrast, the upper limit of portfolio leverage ratio is more likely to generate 
wealth for investors, as reflected in Fig. 4. The leverage ratio of L starts at 1, indicating 
that the initial wealth is equal to the value of holding risk-free assets and options con-
tracts. The situation is the same as that shown in panel (a) and (b), and the initial wealth 
is the main influencing factor. The leverage ratio remains a key parameter affecting the 
final wealth, maintaining a marginal contribution of about 0.2. This means that raising 
the leverage limit by 1 unit increases the final wealth by 0.2 units of value.

Risk‑free profit conditions

Section  Characteristics of options in China statistically analyzes the distribution of 
return of major financial options in options market of China. It is found that anoma-
lies occur frequently and the distribution of returns is very asymmetric, which greatly 
improves the possibility of the deviation between the price and value of options con-
tracts. Is there a condition that makes the expected return of the option portfolio model 
non-negative, and is there such an opportunity of” making a steady profit without loss” 
in the options market of China?

Dert and Oldenkamp (1997) proposed optimal guaranteed portfolios, which are com- 
posed of a single stock index and several European options that can control the maxi-
mum loss. The nature of this risk-free model is that the expected loss is almost 0, but the 
return may be very attractive. In model (5), there is a risk-free asset in the assets of the 
intelligent option portfolio. It ensures that the expected return is not lower than the risk-
free return from the perspective of the model objective function. Proposition 1 reveals 
the inequality relationship that option portfolio weights should satisfy different forward 
prices S1 in relation to the strike price K.

Proposition 1: Risk-free Profit Conditions
If the expected return on the option portfolio is guaranteed to be non-negative, the 

call option weight xc and the put option weight xp should satisfy

The inequality is equivalent to: if S1 > K  , then

if S1 < K, then

(7)|S1 − K |T (xc + xp) ≥ (K − S1)
T (xc − xp)+ 2(OFc + OFp)

T (xc + xp).

(8)xc ≥ (
OFc + OFp

S1 − K − OFc − OFp
)Txp,

(9)xp ≥ (
OFc + OFp

K − S1 − OFc − OFp
)Txc.
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From the proposition above, we determine the conditions under which the expected 
return on an options portfolio is non-negative for a different relationship between for-
ward price and strike price. This condition can also be regarded as a way to control port-
folio risk, as it controls the minimum return of the portfolio. Therefore, the risk measure 
of CVaR is replaced by the risk-free condition in Proposition 1. The original model (4) is 
transformed into the model as follows called the risk-free option model

where Xc =
(

xc,1, xc,2, . . . , xc,N
)

 presents the weight vector of N call options contracts, 
Xp =

(

xp,1, xp,2, . . . , xp,N
)

 is the weight vector of N put options contracts.
The constraint formed by Proposition 1 controls the maximum loss of the model (10). 

Compared with model (4), the risk control based on CVaR is replaced by the constraint 
conditions. Of course, S1 remains a crucial parameter in the model (10). When the fore-
cast deviates, the option portfolio still fails to obtain a non-negative return. However, 
based on the judgment of history, it can be concluded that the monthly price fluctua-
tion of the underlying asset will be within a range of [L, U]. With the monthly volatil-
ity of the underlying asset σ, we set the forward price range of the underlying asset as 
[S0(1− ϕ ∗ σ), S0(1+ ϕ ∗ σ)] . φ reflects investors’ risk preference. The larger the value, 
the less confidence the investors have in the future direction of prices. The range is parti-
tioned to obtain a finite M number of possible forward prices. According to Proposition 
1, M forward prices are converted into M constraints, which ensures that the return of 
the model (10) is non-negative in the range.

Empirical results
In this section, the out-of-sample performance of the models (5) and (10) are evaluated based 
on the data of 50ETF options and 300ETF options in the option market of China. In the case 
of single option asset, investors only allocate assets on risk-free assets and 50ETF options 
contracts. 50 ETF options have been around for a long time and there is more data avail-
able for analysis. While comparing the out-of-sample performance, the return distribution 
and regression analysis of the option portfolios are used to explain the model’s superior per-
formance. To further illustrate the characteristics of the model and reduce the instability in 
parameter estimation, 300 ETF options are introduced to investment on a single-asset basis.

Data

The return of the 50ETF index from February 2005 to October 2021 is used to simulate 
the underlying asset process, with data from the Wind database. 50ETF options con-
tracts expire on the fourth Wednesday of each month. Options are settled in cash on 

(10)

max
X ,d,α

rf xf + (C − OFc)
TXc + (P − OFp)

TXp

s.t. OFT
c Xc + OFT

p Xp + xf ≤ W0,

xc,i ≥
FC + FP

S1 − K − FC − FP
xp,i if S1 ≥ ki,

xp,i ≥
FC + FP

K − S1 − FC − FP
xc,i if S1 < ki,

� θc ⊙ Xc � + � θp ⊙ Xp �≤ L,



Page 13 of 28Xu and Ma  Financial Innovation            (2023) 9:79  

the business day after expiration. Our asset allocation uses risk-free assets and index 
options with a variety of different strike prices. The majority of trading activity in 50 
ETF options are concentrated in the closest contracts less than 30 days from expiration, 
so the options contracts have high liquidity. Holding options until maturity will only 
incur transaction costs at the beginning of the transaction. We select options that expire 
in one month and establish the portfolio 80 times on the entire dataset with monthly 
investment frequency.

In the numerical experiment, we assume the transaction cost of 0.5%, the initial capital 
W0 = 1, the upper limit of risk aversion ρ = 0.5, the upper limit of leverage L = 5. Regard-
ing the setting of L, two main facets are considered. One aspect is the real situation of 
the options market. Usually, the leverage of financial option contracts is 10 times, but 
considering the margin of about 15%, the leverage of individual option contracts is 
about 5 times. In addition, a parametric sensitivity analysis was also performed for L . 
The detailed results are presented in Appendix 4. Note that we assume sufficient margin 
in our numerical experiments and do not take margin into account in the cost versus 
return.

Performance of intelligent options model under single asset

In this section, the performance of the index option portfolio is compared under a single 
underlying asset. Here we take the 50ETF option as an example (because 50 ETF options 
were issued earlier, there is a longer data set), which provides a sufficient sample size to 
perform an imputation analysis of the intelligent option portfolio returns.

The sample during the investment period is from 2015 to 2021, and the cumulative 
yield is shown in the Fig. 5. Table 3 describes the performance of the intelligent option 
model, risk-free model (the risk preference parameter φ = 1.5 for no loss), the underly-
ing assets and the classical option portfolio model. Overall, the intelligent option model 
has a higher average return, but it is also very volatile. The maximum drawdown ratio 
reaches 0.2901. The reason for this loss stems mainly from the deviation of the predicted 
price from the realized price. The model performs very well within the sample and even 
shows the possibility of an exponential increase in total assets in one month.

Fig. 5 Cumulative wealth of 50ETF, intelligent option model, and risk-free model. Note: This figure shows the 
change of accumulated wealth from 2015–02-26 to 2021–09-23, and adjusts each portfolio 80 times. The 
initial wealth is 1. Since the fluctuation of 50ETF is relatively small compared with the other two strategies, 
the change of cumulative income is not obvious. The maximum value during this period is 1.4640 and the 
minimum value is 0.7519
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Although the maximum drawdown of the intelligent option strategy is approx-
imately 1.2 times that of the 50 ETF. The average monthly return of the intelligent 
option portfolio is approximately 13.73 times that of the 50 ETF, and the Sharpe ratio 
is 8.10 times that of the 50 ETF. Of course, this does not completely eliminate the 
fears of the risk averse. Therefore, the paper also proposes a risk-free option strategy, 
which is also designed to balance the high-return, high-risk nature of the intelligent 
option strategy. Both the intelligent option model and risk-free model have higher 
Sharpe ratios than the underlying asset, the 50 ETF. Although the volatility of 50ETF 
exhibits minimal volatility, it is worth mentioning that the fluctuation of the risk-free 
model is entirely upward, which is pleasing to the investors. This is also reflected in 
the maximum drawdown of 0.0368 (a value of 0 when transaction costs are not taken 
into account).

We further illustrate the advantages of intelligent portfolio models from both clas-
sical option portfolio models and forward price analysis. In the model perspective, we 
compare with the CRRA utility function for the option portfolio strategy5 (Faias and 
Santa-Clara 2017) and the CVaR option portfolio strategy5 (Alexander et  al. 2006). 
The predicted values of the forward prices of the above strategies are derived from 
the GRU method, which is the same as the intelligent portfolio model. In the Chinese 
financial derivatives market, the classical CRRA utility function model and the CVaR 
model still achieve good portfolio performance. In comparison, t the intelligent port-
folio significantly outperforms the two classical portfolios in terms of mean return 
and Sharpe ratio. Specifically, the returns of the intelligent portfolio are 13.26% and 
28.87% higher, and the Sharpe ratios are 11.92% and 23.99% higher, respectively. It is 
worth noting that we don’t attempting to compare the risk-free option model with the 
classical option portfolio strategy. The two types of models have different motivations 
and are suitable for different types of investors.

One reason for the superior performance of the intelligent portfolio model is its 
leverage constraint, which is the L1-norm constraint. This constraint makes the 
model sparse and concentrates portfolio weights. This may increase the volatility 
of the model but generally improves the Sharpe ratio. This response to the portfo-
lio results may increase the volatility of the model, but generally the Sharpe ratio is 
also improved. Moreover, our proposed option portfolio model permits the selling 
of option contracts. By selling option contracts, the cost of constructing an options 
portfolio can be used to expand its size. This approach increases the return and risk 

Table 3 Performance of 50 ETFs and different option models

This table displays the out-of-sample performance of 50ETF index and different option strategies with one month 
adjustment frequency. The performance of different strategies is judged from six dimensions (mean, variance, Sharpe ratio, 
maximum drawdown, maximum and minimum monthly return), and the bold content indicates the best numerical result

Mean Std Sharpe Ratio MDD Max Min

50ETF 0.0064 0.0733 0.0653 0.1252 0.2446 − 0.2890

Intelligent option model 0.0838 0.1525 0.5385 0.2742 0.7634 − 0.1647

Risk-free model 0.0685 0.1734 0.3856 0.0368 1.2326 0.0000
CRRA option model 0.0731 0.1505 0.4746 0.2611 0.6763 − 0.2039

CVaR option model 0.0599 0.1423 0.4095 0.2178 0.7424 − 0.1430
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exposure of the portfolio under the constraint of the target leverage ratio. Selling 
option contracts is an effective method for achieving higher returns if there is little 
deviation in the judgment of the future forward price of the underlying asset. To dem-
onstrate the robustness of the model, we next compare the impact of different meth-
ods of forward asset price analysis on the model.

We consider the classical model Carlo simulation approach and the volatility correc-
tion approach5 (Faias and Santa-Clara 2017). The two traditional analytical methods are 
brought into the portfolio model proposed in this paper and compared with the intelligent 
portfolio model. The empirical results in Table 4 continue to compare the mean, standard 
deviation, maximum and minimum values of the portfolio return, the Sharpe ratio and 
the maximum drawdown ratio of the portfolio (the bolded font indicates the best results).

When the traditional forward price analysis method is substituted for the machine 
learning method, the return and Sharpe ratio metrics of the option portfolio model 
decrease to an extent. The option portfolios under the two traditional methods per-
formed similarly, with the average value of return above 4%. Overall, the results of the 
Intelligent Portfolio outperformed both in terms of return and Sharpe ratio. The main 
reason for this result is the forecast errors of the different methods. The substitution of 
forecasting methods also exposes the parameter sensitivity of the model with respect to 
forward prices. In terms of root mean square error, mean absolute error, and mean abso-
lute percentage error, the GRU method exhibits relative advantages over the traditional 
method for forward price prediction. The results are supplemented in Appendix A.

Figure 6 displays the returns and the forecast errors per period for both models. We 
can get two preliminary inferences. First, when the 50ETF option is just launched, the 
underlying index’s returns are more volatile, while the two option portfolios possess 

Table 4 Comparative of results under different price analysis methods

This table shows the results of the option portfolio model under different forward price predictive methods. The portfolio is 
held to maturity and the adjustment frequency is monthly

Mean Std Sharpe Ratio MDD Max Min

50ETF 0.0064 0.0733 0.0653 0.1252 0.2446 − 0.2890

Intelligent option model 0.0838 0.1525 0.5385 0.2742 0.7634 − 0.1647

Monte Carlo 0.0411 0.1423 0.2771 0.4506 0.3434 − 0.3883

Volatility correction 0.0429 0.1496 0.2755 0.4286 0.5523 − 0.4083

Fig. 6 Out-of-sample monthly return of different model and prediction error. Note: This figure shows the 
monthly yield of the underlying asset 50ETF, intelligent option model and risk-free model from 2015 to 2021. 
The yellow line indicates the prediction error. The ordinate on the left is the average monthly rate of return, 
and the ordinate on the right is the prediction error
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the higher return. In addition, forecast errors overall also have a significant impact 
on the returns of the model. This conclusion is also consistent with the nature of the 
model, because the predicted forward price is an important parameter affecting the 
weight of the option portfolio. We give a further explanation in the next subsection.

To visually explain how the risk-free model achieves the continuous rising trend, 
Fig. 7 presents the expected return of the portfolio in 12 portfolios throughout 2018 
with forward prices within the range [L, U].

The numerical experiment assumes that the initial wealth of each period is 1. It 
can be seen that the expected wealth of the risk-free model stays above the initial 
wealth regardless of the price movement of the underlying asset. In other words, no 
matter how the underlying assets change, the return of a risk-free portfolio is always 
non-negative. The amount of yield in each period mainly depends on two aspects. 
One is the accuracy of the prediction method. In the 12 periods shown in Fig. 7, the 
return from executing the portfolio’s contracts at the forecast price is higher than the 
return from executing at the realized return. On the other hand, the existence of con-
tracts with price deviations allows the model (10) to construct a portfolio with an 
expected high return. It is also a key factor to obtain returns. For example, although 
the forecast deviation in February is relatively large, with a relative deviation of 7.65%. 

Fig. 7 12-month risk-free model terminal wealth. Note: The X-axis of charts is the forward price of the 
underlying assets, and the Y-axis is the expected wealth in the next period. The red line is the real forward 
price of the underlying asset. The green line is the predicted forward asset price. The x-axis covered by the 
blue block means the risk-free range
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However, because the portfolio in February may obtain huge expected returns, the 
real risk-free model finally produced a yield of 32.83% in February.

Regression analysis

The intelligent option model has a surprising performance, which makes us very curi-
ous about the potential driving factors. We explore the source of the return of the intel-
ligence option model through the method of factor analysis. The explained variable is 
the return of the intelligent option model. The core explanatory variables include the 
volatility of the underlying asset and the forecast error. For other explanatory variables, 
we refer to some option factors mentioned by Buechner and Kelly (2022) and Kang and 
Kwon (2020). The time series regression is as follows

where X indicates the different explanatory variables, including realized volatility, abso-
lute value of predictive error, implied volatility (IV), embedded leverage (EL), and five 
Greek value of options.

A total of 80 observations are made for each variable, shown in the Table 5. The data 
in Table 4 are consistent with the out-of-sample time of the portfolio and cover monthly 
data from 2015 to 2021. Vol is the realized volatility of the futures market and is cal-
culated from the weighted average of the square of the difference between the possible 
value and the expected value during time interval t. Err represents the absolute value of 
predictive error based on deep learning in time t. IV and EL are implied volatility and 
embedded leverage respectively, and refer to (Buechner and Kelly (forthcoming); Kang 
and Kwon 2020) for calculation.

Table 6 reports corresponding results for options markets from 2015 to 2021. Consid-
ering the relation with the intelligent option portfolio return, the observation conclusion 
in the previous subsection is confirmed.

Regression (2) shows that the volatility of the underlying asset is significantly and posi-
tively related to the return on our intelligent option portfolio. The more volatile the mar-
ket, the higher the model’s return. This also reflects the relationship between the options 
contract and the underlying asset. The greater the price fluctuation of the underlying 
asset, the more difficult it is to maintain the relationship between the option price and its 
expected rate of return under the no arbitrage pricing theory. This provides more profit 
for our intelligent option model. Regression (3) gives a significant negative correlation 

(11)rt = α + βXt + et ,

Table 5 Summary statistics of option variables

This table provides summary statistics for the sample of option returns and factors used in the analysis. The sample period is 
2015 to 2021. For option variables the table shows the yield and volatility of the underlying asset, the prediction error of the 
forward price, embedded leverage, Black–Scholes implied volatility (IV), option Delta, option Gamma, option Vega, option 
Theta and option Rho

Vol Err IV EL Delta Gamma Vega Theta Rho

Mean 0.0691 0.0697 0.2567 − 0.1386 − 0.1502 − 0.6070 − 0.0784 0.1337 − 0.0441

Median 0.0561 0.0747 0.2625 − 0.6038 − 0.7318 − 0.4884 − 0.0618 0.1044 − 0.1532

Std 0.0420 0.0434 0.2188 0.8345 0.9062 1.3628 0.1844 0.3355 0.2111

No. Obs 80 80 80 80 80 80 80 80 80
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between prediction error and intelligent option portfolio return. This conclusion is con-
sistent with our realistic cognition that forecast accuracy is critical to the return of the 
intelligent option portfolio. The exposure of expected return is also enlarged for the 
investors or forecast methods that can better capture the market trend and the price of 
underlying assets This is why we introduce deep learning to predict the underlying asset 
price and thus improve the model return. But R2 of the two regressions are not ideal 
enough, indicating that some of the key explanatory variables are missing.

Finally, the R2 of regression (11) reaches 50.70% after the inclusion of all control vari-
ables. The results show that volatility of the underlying asset also has a positively signifi-
cant coefficient of 1.4281 with a t-statistic of 3.37, which means that a one-unit increase 
in volatility of underlying assets raises expected returns by 1.4281 per month after 
excluding transaction cost. Similarly, the coefficient for prediction error is statistically 
negatively significant at –1.9285 (t-statistic = –5.00). The embedded leverage also has 
a significant positive effect on the return, with a coefficient of 0.1208 that approximates 
the results we obtained at shadow prices. In addition, the Delta and Rho values of the 
portfolio also have a significant impact on the yield. High-yielding option strategies pre-
fer high Delta and low Rho values.

The impact of forward price range on risk‑free models

In this subsection, we compare the impact of the size of the risk-free range on returns. 
The risk-free range implies that when the forward price of the underlying asset is within 
this range it will not bring losses to the investors. If the range is too large, the constraints 
of the model may be too strict reducing the possibility of return. While a small range 
may make the forward price of the underlying asset jump out of the range, thus bringing 
losses. Therefore, how to set an appropriate range still needs to be selected according to 
investors’ confidence in the market and their risk preferences.

Table  7 describes the underlying assets and the out-of-sample performance of risk-
free option portfolios with different risk preferences φ from 2015 to 2021. Risk prefer-
ence controls the risk-free range [S0(1 – φ*σ), S0(1+ φ*σ)] of the option portfolio. It is 
observed that the larger the value of φ , the larger the risk-free range, corresponding to 
the stricter constraints of the model (10). φ has a clear effect on the performance of the 
portfolio over this 7-year sample horizon. An obvious positive correlation between the 

Table 7 The relationship between risk preference and out-of-sample performance of risk- free 
model

This table displays how the forward price range [S0(1− ϕ ∗ σ), S0(1+ ϕ ∗ σ)] of the underlying asset affects the risk-free 
model under different investor preferences φ . The out-of-sample performance is mainly compared from the mean, standard 
deviation, Sharpe ratio, maximum drawdown rate, maximum and minimum return

Mean Std SpR MDD Max Min

φ = 0.25 0.2671 0.5184 0.5121 0.8761 0.3614 − 0.8711

φ = 0.5 0.1909 0.4056 0.4665 0.7776 0.3029 − 0.7533

φ = 1 0.1148 0.2984 0.3791 0.4986 0.2742 − 0.4910

φ = 1.5 0.0685 0.1734 0.3856 0.0368 0.2232 0.0000

φ = 2 0.0462 0.1356 0.3285 0.0408 0.1953 0.0000

φ = 2.5 0.0381 0.1081 0.3371 0.0646 0.1621 0.0000

φ = 5 0.0250 0.0690 0.3374 0.0646 0.1328 0.0000
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average monthly return and the maximum monthly return in the sample period. For the 
standard deviation and minimum return within the full sample, they decrease with the 
increase of φ . This result is consistent with our theoretical expectation, since the expan-
sion of the risk-free range necessarily leads to an increase in the constraints of the model. 
In terms of the in- sample performance of the model, an increase of φ necessarily results 
in a smaller feasible domain for the model (10), which in turn leads to a suboptimal 
solution.

Figure  8 further depicts the trend of risk preference on model performance. The 
performance of the model stabilizes after a single φ greater than 3. However, for the 
actual investment situation, a smaller φ value doesn’t guarantee that the model can 
achieve the risk-free purpose. The maximum drawdown rate presents a decreasing 
and then increasing trend for φ . After the φ value is greater than 1.5, the minimum 
return of the portfolio is 0. The maximum drawdown rate at this point is 3.68%. 
Because we assume that the model has a transaction cost of 0.5% per portfolio con-
struction, maintaining a return of 0 in the long run also results in a small drawdown 
ratio. This value is about 6.46% after model stabilization. Although the Sharpe ratio 
gradually decreases as φ increases in the results, the portfolio with the maximum 
drawdown of 0 may generate more temptation for risk-averse investors.

Performance of options portfolio model under multiple asset

We now compare the impact of multiple underlying assets versus a single underlying 
asset on the intelligent option model in the Chinese market. 300ETF options con-
tracts are included in our portfolio. Because 300ETF options have been available for 
less than two years, a total of 20 option portfolios have been constructed in the next 
experiment of the dataset since 2020. The model (5) needs to forecast the forward 
price of the underlying assets. Increasing the number of underlying assets can theo-
retically increase the stability of the model. An increase in the number of forecast 

Fig. 8 The relation between the risk preference φ and out-of-sample performance. Note: This figure plots the 
impact of the change of investor’s risk preference φ on the model (10). The x-axis is the parameter φ ∈ [0.25, 5], 
and the value interval is 0.25. There are 20 groups of data in total. The y-axis is the value corresponding to different 
indicators
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forward prices of the underlying assets leads to a convergence of the average forecast 
error of the forecast methods, reducing the impact of extreme forecast errors.

Table 8 describes the out-of-sample performance of the intelligent option model and 
risk-free model under multiple assets from 2020 to 2021 and provides an experimental 
control for the single-asset case. Although the average monthly return of the 300ETF 
option model is higher, it also more volatile. Its maximum monthly loss reaches 29.09%, 
and the maximum drawdown rate is 41.35%. The multi-asset model enables the model 
(5) to have return and volatility between the two single underlying asset models and 
obtain a higher Sharpe ratio. For the intelligent option model, the result is in line with 
our expectation, achieving the purpose of increasing the underlying assets and making 
the intelligent option model more robust. The multi-asset model reduces the impact of 
extreme deviation in the predicted value of a single asset or sudden black swan event on 
the return of the portfolio.

The multi-asset risk-free model can attain the requirements of no loss and a higher 
Sharpe ratio. The maximum rate of return has also improved, indicating that there are 
fewer investment periods with a return of 0. The greater number of options contracts 
will increase the investment opportunities of the risk-free model, which in turn increases 
the return of the strategy. We try to explain the results of the multi-asset model through 
Fig. 9.

On the one hand, multi-asset may increase the maximum expected return of 
the model because of the access to increased investment opportunities. On the 
other hand, since multi-asset risk-free model needs to keep the final wealth larger 
than the initial wealth in the ranges of [S50(1− ϕ ∗ σ50), S50(1+ ϕ ∗ σ50)] and 
[S300(1− ϕ ∗ σ300), S300(1+ ϕ ∗ σ300)] . This causes the M constraints for risk-free in 
the model (10) to become M 2. For all models, the option portfolio weight is based on 
the results in-sample and greatly affected by the forecast forward price. This also makes 
the final wealth of the risk-free model and the distance between the realized price and 
the forecast price negatively correlated. The single asset risk-free model only needs to 
ensure that a forecast forward price is as close as possible to the realized maturity price. 
The multi-asset risk-free model needs to guarantee that the error between multiple fore-
cast prices and realized values is as small as possible. This requires more time to solve 
the multi-asset model and more accuracy in the forecast method. In general, both the 

Table 8 Performance of 50ETF, intelligent option model, and risk-free model under multi-asset

This table displays the out-of-sample performance of benchmark index, multi-asset option model, 50ETF option model, and 
300ETF option model with one month adjustment frequency. For risk-free model setting, the experimental design is the 
same as subsection 4.2. The performance of different models is judged from six dimensions (mean, variance, Sharpe ratio, 
maximum drawdown, maximum return and minimum return), and the bold content indicates the best numerical result

Index and model Mean Std SpR MDD Max Min

Underlying 50ETF 0.0058 0.0525 0.0782 0.1703 0.1271 − 0.0882

asset 300ETF 0.0101 0.0513 0.1651 0.1042 0.1369 − 0.0731

Intelligent option model Multi-asset option model 
50ETF option model 
300ETF option model

0.1267 0.1468 0.8519 0.1497 0.4252 − 0.1447

0.1066 0.1258 0.8339 0.0522 0.4252 − 0.0472

0.1889 0.3065 0.6109 0.4135 0.9986 − 0.2909

Risk-free model Multi-asset risk-free model
50ETF risk-free model 
300ETF risk-free model

0.0557
0.0397
0.0602

0.1358
0.0987
0.1750

0.3980
0.3856
0.3343

0.0149
0.0248
0.0199

0.5798
0.4563
0.8021

0.0000
0.0000
0.0000
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intelligent option model and risk-free model bring their volatility between the volatil-
ity of the two single asset strategies. The number of times that the multi-asset risk-free 
model gain returns also increases significantly. Therefore, multi-asset option model can 
successfully build a stable portfolio.

Conclusions
This paper proposes a class of intelligent option portfolio models in a market where 
multiple call and put options with multiple strike prices are available. While allowing 
the option to be sold for a premium, we consider the highly leveraged nature of options 
and find option portfolios that maximize terminal wealth. The deep learning approach is 
applied to forecast the key parameter in the model—the forward price of the underlying 
asset. The dual theory is used to analyze the shadow price of the initial asset, the upper 
risk tolerance limit, and the upper portfolio leverage to the final wealth. A risk-free con-
dition is given for the option portfolio to obtain returns without drawdown and com-
bines it with our intelligent option portfolio model in place of the CVaR risk constraint. 
This risk- free strategy is a good application of the hedging features of options and offers 
investors with different preferences more choices. Strictly speaking, the two constraints 
are not substitutes, although to some extent they both express a risk constraint. CVaR is 
more focused on controlling risk when extreme risks occur and is a formalized approach 
to risk control. Risk-free strategies provide a more intuitive and simple approach to risk 
control for investors with different risk appetites. Numerical experiments demonstrate 

Fig. 9 The relationship between underlying asset prices and expected wealth of the risk-free model. Note: 
This graph depicts the effect of forward price changes on the expected wealth of the risk-free model. The 
curved surface is the expected wealth value of the multi-asset risk-free model. The dark green surface is the 
risk-free range of the model. The light green color indicates the initial wealth for comparison purposes. The 
orange and yellow lines are the expected wealth of the 50 ETF and 300 ETF option portfolios, respectively. 
The vertical line indicates the price of the underlying asset at the final exercise. The blue line then shows the 
position of the final wealth under the multi-asset model
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that the proposed intelligent option portfolio model can effectively obtain returns based 
on the mispriced options contracts and the peak and fat tail of options contract returns 
in the market of China. This out-of-sample return is positively correlated with the vola-
tility of the underlying asset and negatively correlated with the forecast error of the for-
ward price of the underlying asset. The risk-free model realizes the goal of no drawdown 
without considering transaction costs. Expanding the range of the underlying assets of 
the intelligent option portfolio model increases the Sharpe ratio and robustness of the 
intelligent option portfolio model.

Appendix
Appendix 1: Prediction method of forward price of underlying assets

The Gated Recurrent Unit (GRU) is a generation of Recurrent Neural Networks (RNN) 
and is very similar to an LSTM. To solve the vanishing gradient problem of a standard 
RNN, GRU uses the update gate and reset gate. These are two gates that decide what 
information should be passed to the output. These two gates can be trained to keep infor-
mation from many time steps before the actual time step, without washing it through 
time, or to remove information that is irrelevant for the prediction (Cho et al.  2014). If 
carefully trained, GRU can perform extremely well even in complex scenarios (Dautel 
et al. 2020). In our paper, GRU is utilized to predict the forward price of options.

The sliding window method (see Fig. 
10) is used in the simulation to reflect the actual price of the index. The sliding window 
method is used in the simulation to reflect the actual price of the index. The deep learning 
model is trained with the most up- to-date training data and gives the forward price of the 
index to build the intelligent option portfolio. Such an approach ensures that the machine 
learning model under each time window uses only historical data, making the results for 
the options portfolio out- of-sample. We select the monthly closing price of 50ETF from 
2005 to 2021 as the full sample, and the time node is selected as the monthly delivery 
date of the options contract. After standardizing the data of full sample, it is divided into 
two subperiods: training data and test data. During each study period, the model is esti-
mated on the training data and generate predictions for the test data, which contributes to 
maintain temporal consistency within and outside the sample.

The loss function minimizes the cross-entropy between predictions and actual target 
values. We stop the training if the loss on the validation set maintains non-decreasing 
for 20 epochs. The activation function uses the sigmoid function given by σ(x) = (1 + 
e−x)−1 to enhance computational efficiency. Following the model architecture of Dau-
tel et al. (2020) and Gupta et al. (2022), we set the GRU model with 3 hidden layers, 50 

Fig. 10 Sliding window method for predicting the forward price
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neurons per hidden layer. The dropout layers with dropout rate of 25 percent after each 
hidden layer. The proposed model is trained using Adam optimizer with learning rate 
0.0005. The training batch size is 32.

To evaluate the performance of the GRU, three evaluation criteria are used in the 
study: (a) the root mean square error (RMSE), (b) the mean absolute error (MAE), and 
(c) the mean absolute percentage error (MAPE)

where At is the realized closed price of index for the tth observation, Pt means the pre-
dicted value for the corresponding index, and n is the time of sliding window.

The Table  9 demonstrates the out-of-sample performance of the GRU model’s and 
classic method’s prediction results. The accuracy of the prediction results is in line with 
the general machine learning model requirements, and this result is also consistent with 
the review in Weng et  al. (2018). Compared to traditional methods, GRU models can 
effectively improve forecasting performance to help option portfolio models achieve 
higher out-of-sample returns. A more intuitive relationship between the predicted and 
realized values is shown in the Fig. 11.

(12)

RMSE =

√

√

√

√

1

n

n
∑

t=1

(At − Pt)2,

MAE =
1

n

n
∑

t=1

|At − Pt |,

MAPE =
1

n

n
∑

t=1

|
At − Pt

At
|,

Table 9 The out-of-sample performance of the different methods

The table reflects the out-of-sample prediction results of the machine learning model and classic methods

RMSE MAE MAPE (%)

GRU model 2.0560 0.1948 7.001

Monte Carlo 2.3303 0.2016 7.673

Volatility correction 2.4363 0.2246 8.168

Fig. 11 Predictions and actual price of the 50ETF over time. Note: This graph depicts the time series of the 
predicted and realized values from Feb 2011 to October 2021. The orange line is the predicted value of the 
GRU model for a total of 80 time points
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Cho et al. (2014).
Dautel et al. (2020)
Gupta et al. (2022)
He et al. (2015)
Weng et al. (2018)

Appendix 2: Transformation of dual form

Proof. The original problem (5) can be abbreviated as:

where H = (C , 0, 0, 0; 0,βq, 1, 0;−A,−1,−1, 0;−e, 0, 0, 2e; 1, 0, 0,−1; 0, 0, 0,−1; 0,−1, 0, 0) , 
b = (W0, ρ, 0, L, 0, 0, 0)

T

The dual problem of this problem is:

where y = (y1, y2, ..., y7).
According to the dual theory of linear programming problem, the necessary condition 

for the existence of optimal solution X∗ =
(

x∗1, x
∗
2, . . . , x2N

∗
)T is that the dual problem 

also has optimal solution Y ∗ =
(

y∗1, y
∗
2, . . . , y

∗
7

)

 , and max Z = RTX∗ = minG = Y ∗b . 
The original problem pursues the maximization of the objective function. In the dual 
problem, Y  reflects the reasonable valuation of the final income of each input element. If 
B is the optimal basis of the original problem, because

In the original problem Z = Rt , max Z is a linear function of the decision variable 
X. Since the original problem is to solve the maximum value of the objective function 
under the constraint condition of HX ≤ b , max Z is constrained by the input element b. 
It can be expressed as

Based on ∂Z
∂bi

= y∗i  , we know y∗i  represent the marginal benefit of the i element under 
the optimal option portfolio, which reflects the impact of the change of the i th element 
on the value of the objective function, and becomes the shadow price.

Since shadow price reflects the marginal value of resources under the optimal decision, 
there is no shadow price without the optimal decision. Under different economic prob-
lems and different optimal decisions (the corresponding linear programming problem 
may have more than one optimal solution), the shadow price of the same resource may 
be different. Therefore, the shadow price is restricted by the objective conditions of the 
economic structure itself. The relationship between the optimal solution of the primal 
problem and its dual problem shows that the shadow price of resources quantitatively 
reflects the value that resources should provide for total income under the optimal deci-
sion. In our problem, because the solution of the model (5) is unique, the shadow price 
of each element is also determined. The shadow price of the i th resource represents the 

(13)max Z = RTXs.t.HX ≤ b,

(14)min G = Yb s.t.YH = R,Y ≥ 0

(15)max Z = RTX∗ = min G = Y ∗b = CBB
−zb = b1y

∗
1 + b2y

∗
2 + · · · + b7y

∗
7

(16)max Z = F(b) = b1y
∗
1 + b2y

∗
2 + ...+ b7y

∗
7
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estimation of the contribution of the i th resource to the final value of wealth under the 
condition of reasonable allocation of resources.

Appendix 3: Risk‑free profit conditions

Proof. When considering the option fee, the expected return of the option portfolio can 
be expressed as:

where [·]+ represents a non-negative element of a vector, [·]− has the opposite meaning. 
Then we make the expected return of the option portfolio greater than or equal to 0,

(17)([S1 − K ]+ − OFc)
Txc + ([K − S1]+ − OFP)

Txc

(18)

([S1 − K ]+ − OFc)
Txc + ([K − S1]+ − OFp)

Txc ≥ 0

⇔ (
1

2
(|S1 − K | + S1 − K )− OFc))

Txc + (
1

2
(|S1 − K | − S1 + K )− OFp))

Txp ≥ 0

⇔
1

2
|S1 − K |T (xc + xp) ≥ (

1

2
(K − S1)− OFc)

Txc + (
1

2
(S1 − K )− OFp))

Txp

= (OFc + OFp)
T (xc + xp)+

1

2
(K − S1)

T (xc − xp),

This yields: if S1 > K  , then

if S1 < K  , then

For now, we obtain the result from Proposition 1. For option investors, after judging 
the relationship between forward price S1 and strike price K  , the portfolio weight can 
meet the conditions (19) or (20) to achieve the goal of non-negative expected return.

Appendix 4: Parameter sensitivity analysis of L

In the section on shadow price, the paper illustrates the positive effect of the upper limit 
of leverage L on the final wealth of the portfolio. For the realized data, increasing L does 
increase in-sample returns, but equally amplifies out-of-sample returns and risks. There-
fore, the article also discusses about the setting and impact of L. Usually financial option 
contracts are leveraged by a factor of 10, but considering the margin of around 15%, the 
leverage of individual option contracts is around 5 times. In addition, the article also 
analyzes the sensitivity of L. Different parameters with portfolio results are presented in 
Table 10.

All indicators except the Sharpe ratio show a monotonic relationship with the param-
eter L in Table 10. When the upper limit of leverage is in the range of 5 to 10, the Sharpe 
ratio of the portfolio varies less. However, the maximum retracement for L = 10 is about 

(19)
1
2
(S1 − K )T (xc + xp)−

1
2
(K − S1)

T (xc − xp) ≥ (OFc + OFp)
T (xc + xp)

⇔ xc ≥
(

OFc+OFp
S1−K−OFc−OFp

)T
xp,

(20)
1
2
(K − S1)

T (xc + xp)−
1
2
(K − S1)

T (xc − xp) ≥ (OFc + OFp)
T (xc + xp)

⇔ xp ≥ (
OFc+OFp

K−S1−OFc−OFp
)Txc.
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78% greater compared to L = 5 . This means that a single increase in the upper leverage 
limit brings high returns while increasing the risk of the portfolio.

Combining the real market situation and the sensitivity analysis of the parameters, L is 
set to 5 in the experiment. Of course, for investors with higher risk appetite, the level of 
L can be increased appropriately.

Appendix 5: Abbreviations

Table 11 mainly presents the abbreviations mentioned in the article.
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MDD Maximum drawdown rate
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