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Abstract 

Purpose: The Group Method of Data Handling (GMDH) neural network has demon‑
strated good performance in data mining, prediction, and optimization. Scholars have 
used it to forecast stock and real estate investment trust (REIT) returns in some coun‑
tries and region, but not in the United States (US) REIT market. The primary goal of this 
study is to predict the US REIT market using GMDH and then compare its accuracy with 
that derived from the traditional prediction method.

Design/methodology/approach: To forecast the return on the US REIT index, this 
study used the GMDH neural network and the generalized autoregressive conditional 
heteroscedasticity (GARCH) model. In this test, the training samples, testing samples, 
and kernel functions of the GMDH model are controlled to investigate their impact 
on the accuracy of the machine learning approach. Corresponding experiments were 
performed using the GARCH model, and the accuracies of these two approaches were 
compared.

Findings: Compared with GARCH, GMDH’s accuracy is much higher, indicating that 
the machine learning approach can provide a highly accurate prediction of REIT prices. 
The size of the training samples and the kernel functions in the GMDH model affect 
the accuracy of the prediction results. In particular, the kernel function has a signifi‑
cant impact on prediction accuracy. The linear and linear covariance kernel functions 
are simple to train and yield accurate predictions, whereas the quadratic function is 
difficult to train. Even with small training samples, GMDH can outperform GARCH in 
prediction accuracy.

Research limitations/implications: Although GMDH shows good performance in 
predicting the US REIT return, it is still a black‑box model, and the algorithm is difficult 
for financial analysts to develop and customize. The data used in this study come from 
the US REIT market, which is the world’s largest and most liquid market.

Social implications: This research shows that the GMDH model outperforms the 
GARCH model in forecasting REIT returns. Hence, investors can use the machine 
learning approach to make more accurate predictions of the target REITs’ returns and 
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thus better investment decisions. Future investors and researchers may use GMDH to 
forecast the performance of REITs in other markets.

Originality/value: This is the first study to apply the GMDH neural network to the 
US REIT market and determine the impact of the two factors on its performance. For 
example, this research first discusses the impact of kernel functions on the US REIT 
market using the GMDH neural network. It also includes short‑term daily prediction 
returns that were not previously considered, making it a valuable reference for financial 
industry analysts.

Keywords: REIT prediction, Machine learning, GMDH, GARCH, Accuracy

Introduction
REIT is the shorthand for real estate investment trust, which is an open-end trust run 
by a company that allows people to invest in real estate in a non-physical purchase. 
The US Congress built the first REIT and introduced four main regulations to protect 
investors and regulate REIT. First, REIT contains at least 75% of assets in real estate, 
government bonds, and cash. Second, they must have more than 50% of the total 
shareholding of more than five people combined. Third, more than 75% of income 
should come from renting or selling real estate, or from mortgage interest. Fourth, 
at least 95% of taxable income must be distributed as dividends each year (Irem et al. 
2020; Brueggeman & Fisher 2022).

Based on their characteristics, REITs are classified into three types: equity-REIT 
(EREIT), mortgage-REIT (MREIT), and hybrid-REIT (HREIT). EREIT is a publicly 
traded company whose primary business is the acquisition, management, renovation, 
maintenance, and, in some cases, sale of real estate properties. MREITs issue and hold 
loan and other debt instruments backed by real estate, and their dividend yield is gen-
erally higher than MREIT. Meanwhile, HREIT combines the features and operations 
of EREIT and MREIT (Block 2012; Hansz et al. 2017).

REITs have become a popular financial product over the last half-century, and more 
than 40 countries have now established REIT markets to securitize their real estate 
assets. The global REIT market is now worth over $2 trillion. REITs have become 
a vital investment option for many investors today. Ott et  al. (2005) indicated that 
REITs have become one of the most popular investment options for investors, and the 
market has reached maturity in many markets and regions outside the United States, 
such as Australia and Canada. Furthermore, because the majority of REIT earnings 
are distributed to investors, they are considered a more profitable financial product 
than common stock portfolios (Mori & Ziobrowski 2011). A new investment trend 
is to construct investment portfolios by integrating common stocks and REITs; such 
activities increase investment portfolios’ diversification and profitability (Ander-
son et al. 2015). REIT selection and return prediction, like stocks, are two important 
strategies for REIT investment that affect principal and investment returns and help 
investors optimize their portfolio returns (Lee & Pai 2010).

REIT prices are important in the investment process. Predicting the returns of 
various REIT products can assist in determining whether they should be added to 
the portfolio; additionally, it can assist in determining the best trading operations, 
such as buying, holding, or selling these REIT products (Cici et al. 2011). Researchers 
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have attempted to develop and apply various traditional and machine learning (ML) 
approaches to improve the selection and price prediction of REIT products.

The fintech and ML approaches have become popular across diverse research areas, 
such as stock market analysis, users’ behavior identification, biometrics, customer ser-
vice, cyber defense, bankruptcy prediction, and peer-to-peer network analysis (Living-
ston 2005; Maxwell et al. 2018; Kou et al. 2021a, b; Li et al. 2022). Conventional methods 
have a fundamental difference from the ML approach in that they are model-based and 
rely on a parametric model constructed based on domain knowledge. For example, the 
underlying process of the GARCH model is a plausible mathematical model. The data 
are then used to fit the parametric model to find the optimal parameter settings. By 
contrast, ML is purely data-driven and non-parametric. A learning algorithm (support 
vector machine (SVM), neural network, etc.) is selected to apply to the data to learn 
a function that best maps inputs to outputs. There is no requirement that this learned 
function be a close approximation of the true (but unknown) function underlying the 
data—in most cases, one simply chooses a convenient ML algorithm that is expressive 
enough and then uses data to learn an ML model that can best map inputs to outputs on 
all possible observations in the training set (Dixon et al. 2020).

Nevertheless, the ML method in REIT prediction remains relatively new. Exist-
ing studies mainly focused on using the ML approach to construct portfolios for REIT 
investment. This method can forecast REIT performance in the future and assist inves-
tors in making better investment decisions to optimize their REIT portfolio or control 
the proportion of REIT in multi-asset portfolios. For example, Li et al. (2017) studied the 
performance of the GMDH to predict the long-term return trend of REITs, whereas Loo 
(2019) used an artificial neural network (ANN) to estimate the Hong Kong REIT mar-
ket’s future performance.

The Group Method of Data Handling (GMDH) is used in this study to forecast US 
REIT returns. Using the GMDH has several advantages. First, the GMDH relies less on 
the input because of its self-organization programming. Second, GMDH automatically 
determines the number of hidden layers, ensuring that the training process selects the 
most relevant variables (Li et al. 2017). In their study related to the electricity market, 
Yang et al. (2018) found that GMDH can process complex datasets in a highly effective 
manner in forecasting the daily electricity usage. Similarly, Srinivasan (2008) claimed 
that GMDH shows more precise prediction results than traditional regression models in 
short-to-medium-term energy consumption.

The following factors motivate our research. First, REIT investment has grown in pop-
ularity; thus, investigating the effectiveness of ML in REIT prediction is worthwhile, as 
it is one of the most popular data mining techniques in recent years. Second, when com-
pared with traditional data analysis techniques, the application of ML in REIT invest-
ment is still in its early stages. Although many scholars have studied the implementation 
of ML in REIT selection in recent years, the accuracy of the ML technique in REIT pre-
diction remains questionable (Li et al. 2017; Loo 2019). Thus, it is worthwhile to compare 
the accuracy of ML and traditional models. Third, when dealing with systemic financial 
risk, such as the one caused by COVID-19, REIT is an important asset. The outbreak of 
COVID-19 causes a setback for the REIT and the stock market, with both losing 30% of 
their market capitalization in a short time (Hui & Chan 2022). However, stock indexes, 
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such as S&P 500 and Dow Jones Industrial Average, which took six months to complete 
a U-shaped recovery, it took only four months for the REIT markets to bounce back. 
REITs seem to have a stronger ability to hedge the sysmatic financial risk and thus are 
valuable in portfolio diversification.

We contribute to the literature by introducing a new method for predicting the US 
REIT market, despite the fact that a previous study applied GMDH to REIT in some 
non-US markets and showed that it is an effective tool for REIT prediction (Li et  al. 
2017). Nevertheless, the previous study’s results may not be representative because the 
GMDH algorithm was not applied to the US REIT, which constitutes 2/3 of the REIT 
market in the world. The US REIT is important to the global REIT market not only 
because of its market share, but also because it is the country with the largest variety of 
REITs. Furthermore, our study discusses in detail the impact of different kernel func-
tions on the GMDH neural network for predicting the US REIT market. Our out-of-
sample test yields day-by-day prediction results using various kernel functions. The 
discovery of significant differences in prediction accuracy between kernel functions for 
different prediction horizons is novel in the literature.

Furthermore, based solely on the GMDH model’s analysis, it is difficult to ascertain 
whether the GMDH model outperforms traditional models in predicting REIT returns 
(Li et al. 2017; Loo 2019). To ensure the robustness of the evidence, this study extends 
the analysis and compares the prediction of the GMDH model with that of the tradi-
tional GARCH model.

The remainder of the study is organized as follows: "Literature review: REIT predic-
tion with traditional and ML methods" section reviews the literature and summarizes 
empirical studies conducted over the last two decades in both traditional and ML set-
tings. "Model specifications and data" section presents the GMDH and GARCH models 
and discusses the variables and data used in the study. "Empirical results and analysis" 
section presents and analyzes the empirical results. “Discussion” section provides a dis-
cussion. Finally,  “Conclusions” sectioon concludes the paper.

Literature review: REIT prediction with traditional and ML methods
Previous research has applied and developed many different traditional and ML meth-
ods to predict the REITs’ return and price. Traditional methods dominated the REIT 
price and return studies before 2007.

An earlier study notes that a simple linear regression model is difficult to obtain 
good out-of-sample testing results in the US REIT return prediction (Ling et al. 2000). 
Researchers use multifactor models to respond, and they find that REIT return is highly 
correlated with dividend, return history, price momentum, liquidity, and profitability 
factors (Chui et al. 2003; Cheng & Roulac 2007; Olanrele et al. 2014). Furthermore, Li & 
Lei (2011) found that the macroeconomy plays a significant role in determining REIT’s 
performance; meanwhile, the REIT market’s performance has an impact on the macro-
economy. Using Fama–Macbeth approach, Shen (2021) determined that distressed REIT 
securities earn high future returns, whereas Shen et  al. (2021) showed that low-beta 
REITs deliver a significantly higher risk-adjusted return than high-beta REITs. Swinkels 
(2023) noted that the real estate index has a significant impact on the value of real estate 
tokens, which are digital tokens similar to REITs.
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The vector autoregression model is another traditional model commonly used in REIT 
research. According to Lu and So (2001), the REIT return is negatively related to the 
economy’s inflation rate. Ling and Naranjo (2006) found that new fund flow has a greater 
effect on REIT price than trading volume. Moreover, some researchers attempt to pre-
dict REIT returns using publicly available information; for example, Ling and Naranjo 
(2015) used publicly available information to predict REIT returns, but their results are 
unsatisfactory. Sirmans et al. (2006) reported that management changes cannot be used 
to predict REIT performance. According to Siew (2015), random events may cause a 
shift in the development trend of the Australian REIT market. Although many research-
ers have used traditional approaches to study REIT, they acknowledge that ML may be a 
more efficient method of research (Cheng & Roulac 2007; Siew 2015). Several research-
ers have also advocated for the use of ML and emerging algorithms in financial analysis 
(Kou et al., 2022).

Since 2007, ML has been widely used in REIT research. Lertwachara (2007) com-
pared the return of a randomly chosen portfolio with that of an ANN-based portfolio; 
the ANN outperforms the randomly chosen portfolio by 26.05% higher return. Feng & 
Li (2014) created an REIT portfolio with 20% above market returns via an SVM. Wang 
et al. (2016) employed SVM and back-propagation neural network in the Singaporean 
REIT market; they report that ML approaches predict REIT performance more accu-
rately than simple regression models, and that the selection of variables affects the simu-
lation outcomes. According to Li et al. (2017), the GMDH neural network can accurately 
predict REIT performance in following countries and region: Australia, Hong Kong, 
Italy, and Turkey. Furthermore, Hausler et al. (2018) captured and analyzed investor sen-
timent via the SVM; they reported that, in addition to financial and environmental fac-
tors, news-based sentiment has a significant impact on the returns of REITs and security 
markets.

The review finds that ML methods can improve portfolio selection as well as REIT per-
formance prediction. The return of portfolios constructed using ML approaches is gen-
erally higher than the return of portfolios constructed using traditional methods for the 
construction of REIT portfolios (Le 2006; Lertwachara 2007; Feng & Li 2014; Loo 2020). 
In terms of REIT return prediction, the accuracy of results obtained from ML models is 
higher than that obtained from non-ML methods (Wang et al. 2016; Li et al. 2017; Loo 
2019; Antunes 2021). In summary, this review suggests that it is still a relatively new area 
of research to use ML techniques to predict REIT returns. Most researchers continue to 
focus on using ML to build portfolios for REIT investment.

However, the review of the literature reveals some challenges in implementing ML 
approaches in REIT prediction. First, the GMDH neural network can predict the return 
of the REIT in four countries and region in a timely and accurate manner (Li et al. 2017). 
However, the study overlooked the US REIT market, which is the world’s largest. The 
US Congress created the world’s first REIT in the 1960s and established REIT-related 
regulations. Other countries and regions have established REITs in accordance with US 
regulations. The US REIT market capitalization reached $1,352.41 billion at the end of 
2021, accounting for 67.4% of the global market. In contrast, the total capitalization of 
REITs in these four markets is only $124.59 billion, accounting for only 6.21% of the 
global market (EPRA 2022). The REIT market in the United States is more iconic and 
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representative of the global REIT trend. As a result, the GMDH neural network should 
be assessed on the US REIT market. Second, previous research has not addressed the 
impact of the sample size used in ML on the accuracy of REIT prediction results. Time-
series model research shows that REIT prediction results are related to regression analy-
sis datasets. In this case, the study seeks to investigate whether this effect exists in ML 
approaches.

Based on the above reviews and discussions, we developed the following two testable 
hypotheses:

Hypothesis 1. The GMDH neural network predicts the US REIT market more effi-
ciently and accurately than the GARCH model.

Hypothesis 2. GMDH neural network can predict both short- and long-term returns in 
the US REIT market.

Model specifications and data
This section describes how GMDH, an ANN-based technique, predicts US REIT prices. 
It goes over the definitions of the variables as well as the data sources used to estimate 
the model. The traditional model for predicting REIT returns is the generalized autore-
gressive conditional heteroscedasticity (GARCH). The results of GMDH and GARCH 
were compared to assess the relative effectiveness of these two techniques in predicting 
REIT returns.

The ANN model

Theoretical framework of the ANN model

The general expression of the output of a neuron j is given by:

where x is a vector of inputs to the jth neuron, b the bias term, yj is the output of the jth 
neuron, net the network and w the weights. Figure 1 shows the fundamental structure of 
a neuron.

The feedforward structure, which includes the input layer, multiple hidden layers, and 
the output layer, is the most common type of ANN. Each layer’s neuron receives signals 
from the previous layer and generates signals for the next layer. The first and last layers 
are referred to as the input and output layers, respectively, while the other intermediate 
layers are referred to as the hidden layers. The neurons in two adjacent layers are com-
pletely linked (Hornik et al. 1989; Svozil et al. 1997; Liu & Chen 2020).

The training process starts the ANN with random weights and iteratively updates the 
weights using the back-propagation (BP) algorithm. The BP algorithm propagates the 
error computed at the output during training back through the layers, adjusting the 
weight of each neuron accordingly until the network converges to a local optimum. Fol-
lowing the completion of the training process, the network’s performance is evaluated 

(1)
yj = f netj

netj =
n

wjnxn + wj0 = wjx + b
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using the testing dataset. ANNs have been demonstrated to be effective algorithms and 
are widely used in complex nonlinear function mapping, image processing, and pattern 
recognition (Svozil et al. 1997).

Our study employs GMDH, as proposed by Li et  al. (2017), to forecast US REIT 
returns. GMDH has a number of advantages that make it appealing for REIT research. 
First, the self-organization and control characteristics of GMDH ensure that the output 
has few effects from the input. Second, because GMDH algorithms do not require many 
assumptions, they are relatively easy to develop. Third, the GMDH method enables each 
layer to obtain the best structure in the training process to find the most relevant vari-
ables and eliminate irrelevant variables automatically. Fourth, GMDH can automatically 
determine the number of network layers and the neurons contained within them (Li 
et al. 2017).

The structure of the GMDH neural network is depicted in Fig.  2. The GMDH net-
work is made up of a series of identical modules that are linked together. The com-
puting process of one module, for example, the process from x(k)i  to y(k)i  can be 
explained as follows. The x(k)i  is a series of input variables and y(k)i  is a series of the out-
put of the k-th module. From x(k)i  to y(k)i  , a kernel function is selected to connect the 
input variables and the outputs. In general, the kernel function can be expressed as 
y = f (x1, x2, . . . xi, . . . , xj , . . . , xn) . In this equation, xi and xj indicate the input variables, 
and n represents the number of variables. The three kernel functions used are as fol-
lows: a linear function, a linear covariance function, and a quadratic function. With vari-
ous models, these kernel functions can resolve underfitting and overfitting issues. The 
most commonly used kernel function for GMDH is shown in Eq. (4). Here, w represents 
the weights assigned to these variables during the process of obtaining outputs from the 
input layer to the output layer.

(2)y = w0 + w1xi + w2xj

Fig. 1 Basic structure of a neuron
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The results are labeled as G in Fig. 2. To select the appropriate variables from the inter-
mediate outputs to feed to the next module, a filtering procedure is used. When the 
appropriate variables are chosen, the next module’s calculation repeats the operations of 
the previous module until the final outputs are obtained.

Variables used in the ANN model

Several variables are directly inputted into the training process, allowing the GMDH 
method to select the appropriate variables. Table  1 defines the variables used in the 
training test. This empirical analysis takes into account four types of variables: volatility, 
trend, momentum, and return rates. These variables are, in general, standard technical 
indicators used in the stock market to forecast stock prices. They were chosen to fore-
cast the return on the REIT index in the US market. “Appendix 1” contains detailed defi-
nitions and explanations of these variables.

Computation pipeline

The ML method’s computation pipeline is divided into six steps: data collection, tech-
nical indicator measurements, training, test, accuracy evaluation, and discussion. Each 
step is depicted in Fig. 3.

GARCH model

The GARCH model was developed around 40 years ago (Bollerslev 1986). Previous stud-
ies compared the GARCH model’s performance in predicting stock returns and vola-
tility with that of other traditional financial models, such as the Capital Asset Pricing 
Model (CAPM) and the Stochastic Volatility Model. Prior studies have demonstrated 

(3)y = w0 + w1xi + w2xj + w3xixj

(4)y = G(xi, xj) = w0 + w1xi + w2xj + w3xixj + w4x
2
i + w5x

2
j

Fig. 2 Structure of the GMDH model
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Table 1 List and definitions of the variables used in GMDH neural network

Category Abbreviation Variable Description

Volatility ATR Average True Range An indicator used to measure the volatil‑
ity of the prices in the past two weeks

BB Bollinger Bands An indicator related to the volatility of 
the price, proposed by John Bollinger, 
contains three‑track lines, high (BBH), 
low (BBL), and median (BBM)

KC Keltner Channel An indicator related to the volatility 
of the price, proposed by Chester W. 
Keltner, contains three‑track lines, high 
(KCH), low (KCL), and center (KCC)

DC Donchian Channel An indicator related to the volatil‑
ity of the price, proposed by Richard 
Donchian, includes three track lines, high 
(DCH), low (DCL), and median (DCM)

Trend MACD Moving Average Convergence Diver‑
gence

A typical indicator that illustrates the 
securities and stocks’ price trend, guiding 
investors when to buy and sell. It shows 
the strength of the stock and securities 
to investors and the changing orienta‑
tion of the prices

ADX Average Directional Movement Index An indicator that measures the average 
values of a stock or security’s prices with 
an expanding price range. Overall, it 
illustrates the possible change trends’ 
strength, letting investors know whether 
the price is more likely to rise or decrease

VI Vortex Indicator An indicator to present the changing 
trend of the prices of stocks. It can iden‑
tify the prices’ current trends or identify 
the current trends’ reversal

MI Mass Index An indicator related to the trend is 
mainly used to identify the current price 
trend’s possible reversals

CCI Commodity Channel Index An indicator that is used to evaluate the 
trend of stock prices and the strength 
of the trend. Simultaneously, it can also 
be used to identify the scenario of being 
oversold or overbought

DPO Detrended Price Oscillator An indicator related to the trend is used 
to evaluate the change cycle of a stock’s 
prices

PSR Parabolic Stop and Reverse An indicator that is similar to VI, which 
identifies the potential trend or reversals 
in the prices

Return DR Daily Return The daily return rate of a stock

DLR Daily Log Return The logarithm value of the daily return 
rate

CR Cumulative Return The return rate of stock in a period
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the outperformance of GARCH models over other models (Ng 1991; Fung et al. 2014; 
Maneemaroj et al. 2021). In addition, the GARCH model supports a significantly posi-
tive relationship between risk and return in several markets (Darrat et al. 2011). There-
fore, this study employs the GMDH model to forecast US REIT and stock market returns 
and compares its performance with that of the traditional financial data analysis model, 
GARCH. The general form of the GARCH model is as follows (Lee & Pai 2010; Cho & 
Elshahat 2011; Zhou & Kang 2011):

(5a)rt = ln(pt)− ln(pt−1)

Table 1 (continued)

Category Abbreviation Variable Description

Momentum MFI Money Flow Index An indicator that is used to identify the 
signals related to oversold and over‑
bought based on the trading volume 
and prices

RSI Relative Strength Index An indicator related to momentum, 
measuring the changing speed of the 
prices of stocks

TSI True Strength Index An indicator that is used to illustrate the 
changing orientation of the prices

UO Ultimate Oscillator An indicator that is used to identify the 
momentum of the price of an asset in 
different periods

SR Stochastic Oscillator An indicator related to the momentum 
that identifies the gaps between the 
close price and the average price in a 
particular period

WR Williams %R An indicator that is used to identify an 
asset’s close price to judge the oversold 
and overbought conditions

AO Awesome Oscillator An indicator that is used to measure the 
overall momentum of the stock market

KAMA Kaufman’s Adaptive Moving Average An indicator that is developed to identify 
the level of noise in the market

ROC Rate of Change An indicator that measures the changing 
rate of the prices of an asset

TRIX Triple Exponential Average An indicator related to momentum, 
proposed by Jack Hutson, shows the 
percentages of changes in the triple 
smoothed moving average. It is used 
to filter the changes in prices, which 
are regarded as unimportant, enabling 
investors to focus on those crucial 
changes

KST Know Sure Thing Oscillator A momentum oscillator that is used to 
help investors or stock traders under‑
stand the changes in rates. It is based on 
the measurement of the ROC

Ichimoku Ichimoku Kinko Hyo An indicator developed to monitor the 
changes of momentum and to identify 
the resistance and support for future 
changes
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The expression (5a) shows how the dependent variable is measured (Lee & Pai 2010; 
Zhou & Kang 2011). The pt and pt−1 are the prices of the REIT at t and t-1, respec-
tively. rt indicates REIT return at time t, and ln the logarithm value of price. The daily 
log return used in the GMDH neural network can be used directly in the estimation 
process.

The expression (5b) shows how the previous instance’s information affects the REIT 
return. In this expression, rt−1 indicates the return value in the previous instance, and 
εt represents how the returns are innovated; it depends on the return variance and a 
distribution function. Equation  (6a) presents the expression of εt (Lee & Pai 2010). 
According to the expressions shown in Eq. (6), the value of εt depends on the variance 
value and the traditional distribution value at the instance t (Lee & Pai, REIT volatil-
ity prediction for skew-GED distribution of the GARCH model, 2010; Zhou & Kang 
2011). Here, the density function of the error term zt is a standard normal distribu-
tion, shown in Eq. (6b) (Lee & Pai 2010).

Equation (5c) shows the calculation of the variance in the prediction process (Lee & 
Pai 2010; Zhou & Kang 2011). This equation shows that the variance at time t depends 
on its previous value and the innovation value in the last instance.

The other variables shown in Eq.  (5), including µ , α , β , γ , and ω , are the coeffi-
cients obtained from the estimation process. They can be constants (Lee & Pai, REIT 

(5b)rt = µ+ αrt−1 + εt

(5c)σ
2
t = ω + βε2t−1 + γ σ 2

t−1

(6a)
εt = σtzt

(6b)f(zt) =
1

√
2π

e−
z2t
2

Fig. 3 Computation pipeline of machine learning process
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volatility prediction for skew-GED distribution of the GARCH model, 2010), or they 
can be changed to meet proper distribution function (Cho & Elshahat 2011); this is 
one way to improve the GARCH model’s performance and accuracy. In this empirical 
study, no distribution functions are used to measure these coefficients, and their val-
ues are obtained directly from regression estimation.

When the REIT’s return is predicted by Eq. (5b), its price at time t can be recalculated 
by transforming the Eq. (5b).

Data sources

Our daily data come from DataStream and Bloomberg. The US REIT index includes 135 
of EREIT, MREIT, and HREIT stocks. These REITs invest in the following industries: 
residential, industries, retail, health care, offices, hotel & resort, and mortgages. Our var-
iables, such as momentum, volatility, and trend, are calculated from S&P500. The total 
number of daily observations used in this study was over 2 million.

The sample period for the US REIT daily data is from October 6, 2016, to July 30, 2021. 
The US REIT index includes 135 of EREIT, MREIT, and HREIT stocks. These REITs 
invest in the following industries: residential, industries, retail, health care, offices, hotel 
& resort, and mortgages. The S&P500 is used to calculate our variables, such as momen-
tum, volatility, and trend. The number of training and test samples is controlled to inves-
tigate GMDH’s accuracy under different scenarios. The training cases considered are 30, 
100, 200, 300, and 600 observations, with testing samples of 30 and 60 observations. A 
sample is an observation at a specific time point in this context. To compare the perfor-
mance of ML and traditional approaches, we estimate the GARCH model with the same 
number of observations.

Empirical results and analysis
The three kernel functions mentioned above are tested when using the GMDH model 
to predict REIT returns. Meanwhile, cases of various training and testing samples are 
being tested. The accuracy of these cases’ results is then compared to determine which 
case produces the best prediction results. In addition, the GMDH model’s results are 
compared with the GARCH model’s results to determine which model produces more 
accurate REIT prediction results.

Estimates of the GMDH model

Linear function

In this empirical study, 17 cases were tested. Table 2 contains information about these 
cases, such as the number of training samples, the number of testing samples, the kernel 
functions used, and the input variables.

The sample period for these cases with 30 testing samples is from May 13, 2021, to 
June 30, 2021. The sample period for these cases with 60 testing samples is from March 
31, 2021, to June 30, 2021. These cases’ training periods are the transaction days preced-
ing their testing period. The training period of the case linear-30/30, for example, is the 
30 transaction days preceding the testing period.

(7)pt = pt−1e
rt
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Figure  4 depicts a comparison of actual returns and cases with 30 testing samples 
when the kernel function is the linear function. Except for the case linear-30/30, the 
other cases can generally depict the development trend of US REIT returns during the 
testing period, but the prediction results are almost always lower than the actual returns.

Table  4 presents the results that compare the gaps between the actual and pre-
dicted returns of these cases under the three kernel functions. Table 3 shows that the 
gaps between actual and predicted returns are much smaller for linear-100/30 and lin-
ear-200/30 than for the other cases. However, the gaps between actual and predicted 
returns for linear-30/30 are the largest of the five cases. Thus, the linear-100/30 and lin-
ear-200/30 prediction results outperform the other cases.

The mean squared error (MSE) is used to determine the predictability of the results. It 
computes the mean squared value of the difference between predicted and actual values, 
as shown below (Pai & Lin, 2005; Wang & Bovik 2009):

Table 2 Details of the machine learning cases tested in this study

Note: The linear function, linear covariance function, quadratic function indicates the kernel functions described in Eqs. 2, 3, 
and 4, respectively

Case Training 
Samples

Testing 
samples

Kernel function Input variables

Linear‑30/30 30 30 linear function All variables

Linear‑100/30 100 30 linear function All variables

Linear‑200/30 200 30 linear function All variables

Linear‑300/30 300 30 linear function All variables

Linear‑600/30 600 30 linear function All variables

Linear‑300/60 300 60 linear function All variables

Linear‑cov‑30/30 30 30 linear covariance function All variables

Linear‑cov‑100/30 100 30 linear covariance function All variables

Linear‑cov‑200/30 200 30 linear covariance function All variables

Linear‑cov‑300/30 300 30 linear covariance function All variables

Linear‑cov‑300/60 300 60 linear covariance function All variables

Quadratic‑30/30 30 30 quadratic function All variables

Quadratic‑100/30 100 30 quadratic function All variables

Quadratic‑200/30 200 30 quadratic function All variables

Quadratic‑300/30 300 30 quadratic function All variables

Quadratic‑600/30 600 30 quadratic function All variables

Quadratic‑300/60 300 60 quadratic function All variables

Fig. 4 Actual versus predicted returns [Case A: 30 testing samples under linear function]
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A lower MSE indicates that the prediction is more accurate. However, preliminary 
research does not suggest that there are fixed criteria for determining what value of MSE 
is acceptable when the MSE is used to assess prediction accuracy. Table 4 summarizes 
the findings from studies on stock prediction and REIT prediction to determine the 
acceptable level of MSE. When different models were used to predict stock and REIT 
returns, different studies obtained different MSE values.

Compared with the MSE values of the five cases under the linear function shown in 
Table 3, case linear-200/30 has the lowest value, 0.70, while case linear-100/30 has a very 

(8)MSE =

∑

i=1,n

(

yreali − y
predicted
i

)2

n

Table 3 Gaps between actual and predicted returns under the linear function [The presented 
value = predicted returns—actual returns]

Day Linear-30/30 Linear-100/30 Linear-200/30 Linear-300/30 Linear-600/30

1 − 2.27 − 0.98 − 1.26 − 1.15 − 1.79

2 − 1.26 − 0.87 − 0.61 − 1.52 − 1.36

3 − 1.35 − 0.19 − 0.01 − 0.80 − 0.60

4 − 2.39 − 0.11 − 0.15 − 1.01 − 0.64

5 − 2.72 0.04 − 0.14 − 0.88 − 0.53

6 − 3.18 − 1.22 − 0.94 − 1.75 − 1.48

7 − 2.29 − 0.21 − 0.02 − 0.47 − 0.20

8 − 3.23 − 0.97 − 0.78 − 1.39 − 0.92

9 − 1.97 − 0.79 − 0.11 − 0.38 − 0.39

10 − 2.54 − 0.49 − 0.36 − 0.96 − 0.67

11 − 1.44 0.52 0.42 0.02 0.35

12 − 0.38 − 0.23 − 0.40 − 0.91 − 0.45

13 − 2.24 − 2.04 − 1.85 − 2.48 − 1.94

14 − 1.64 − 1.28 − 1.23 − 1.59 − 0.98

15 − 1.04 − 0.04 − 0.26 − 0.36 0.32

16 − 0.69 0.34 − 0.11 − 0.26 0.54

17 − 1.98 − 1.08 − 1.48 − 1.74 − 0.83

18 − 1.80 − 1.23 − 1.37 − 1.46 − 0.54

19 − 2.15 − 1.23 − 1.40 − 1.49 − 0.46

20 − 1.72 − 0.29 − 0.43 − 0.47 0.70

21 − 2.31 − 0.69 − 1.00 − 1.19 0.05

22 − 0.85 0.76 0.53 0.29 1.60

23 0.41 0.79 0.44 0.01 1.27

24 1.14 − 0.05 − 0.15 − 0.90 0.38

25 3.29 1.12 1.26 1.22 1.72

26 0.33 − 1.58 − 1.65 − 2.71 − 1.56

27 0.43 − 0.05 0.34 − 0.52 0.33

28 − 1.39 − 0.18 − 0.17 − 0.96 − 0.08

29 − 1.72 0.40 0.42 − 0.47 0.51

30 − 2.94 − 0.68 − 0.80 − 1.82 − 0.83

31 − 0.86 0.32 0.23 − 0.83 0.20

32 − 0.98 1.13 0.65 − 0.46 0.51

MSE 3.69 0.72 0.70 1.45 0.87
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close MSE value, 0.72. These results show that the test accuracy in the two cases is higher 
than in the other three cases, which is consistent with the analysis of the gaps between 
actual and predicted returns. Furthermore, when the MSE values of the five cases are 
compared with the previous works, the linear function’s accuracy is similar to the find-
ings of Kogan et al. (2009). However, this study can accept prediction results when the 
MSE is less than 1.45 because the MSE value is still small. In other words, except for lin-
ear-30/30, the results of all cases can be accepted.

Linear covariance function

When the linear covariance function is used as the kernel function in the GMDH model, 
four cases with the same linear function condition setting are studied. Table 5 describes 
the details of these cases, which are labeled linear-cov-30/30, linear-cov-100/30, lin-
ear-cov-200/30, and linear-cov-300/30. Figure 6 compares the prediction results under 
the linear covariance function with the actual returns. This graph shows that, with the 
exception of case linear-cov-30/30, the prediction results are close to the actual results 
for all cases under the linear covariance function. The results in Fig. 5 and Table 5 show 
that the prediction results of the other three tests under the linear covariance function 
are acceptable.

Table 5 shows that with an MSE value of 0.69, the gap between the actual and predicted 
returns for case linear-cov-200/30 is much smaller than the gaps for the other cases 
under the linear covariance function. Cases linear-cov-100/30 and linear-cov-300/30 
have acceptable gaps of around 1%, with MSE values of 1.05 and 1.08, respectively.

Quadratic function

This study also tests cases where the quadratic function is implemented as the ker-
nel function. In total, six cases are tested: quadratic-30/30, quadratic-100/30, quad-
ratic-200/30, quadratic-300/30, quadratic-600/30, and quadratic-300/60. Table 6 shows 
the results of these cases. All cases, with the exception of quadratic-300/60, test 30 sam-
ples. Figure 6 compares the actual returns in these cases with the predicted results.

Figure  6 shows that three cases—quadratic-30/30, quadratic-100/30, and quad-
ratic-200/30—have invalid results due to outliers in their predicted returns and the 

Table 4 MSE obtained by other studies in predicting returns of stocks and REITs

Author(s) Objective MSE

Pai and Lin (2005) Stock prediction 0.0114–1.4676, and below 0.3001 is accepted

Panda et al. (2007) Stock prediction 0.0001–0.1

Kogan et al. (2009) Stock and REIT prediction 0.1365–5.6778, and below 0.3 is accepted

Schumaker and Chen (2009a) Stock prediction 0.04261–0.17944

Schumaker and Chen (2009b) Stock prediction 0.1954

Lee and Pai (2010) REIT prediction 2.5727–2.7067

Ma et al. (2010) Stock prediction 5.1176e‑4 − 0.0478

Xiao et al. (2012) REIT prediction 0.0011–0.0027

Braun (2016) REIT prediction 8.6277–11.9349

Dietzel (2016) REIT prediction 0.082

Feng et al. (2019) Stock prediction 2.28e‑4–5.20e‑4
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absence of a similar trend as the actual return. Meanwhile, the predicted returns of 
quadratic-300/30 and quadratic-600/30 are close to the actual returns. As a result, the 
three cases, quadratic-30/30, quadratic-100/30, and quadratic-200/30, are deemed 
invalid, and no further investigation is conducted for them.

Table  6 shows the differences between the actual and predicted returns for quad-
ratic-300/30 and quadratic-600/30. Compared with the gaps between actual and 
predicted quadratic-300/30 results, the gaps between actual and predicted quad-
ratic-600/30 results are much smaller. The respective MSE values for the two cases 
are 4.35 and 0.62. Thus, only the predicted quadratic-600/30 is acceptable when the 
quadratic function is used as the kernel function.

Table 5 Gaps between actual and predicted returns under the linear covariance function

Day Linear-cov-30/30 Linear-cov-100/30 Linear-cov-200/30 Linear-
cov-300/30

1 − 1.01 − 0.95 − 0.57 − 0.62

2 1.62 − 0.29 0.19 − 0.32

3 − 0.29 0.28 0.48 0.25

4 − 0.10 0.48 0.48 0.09

5 − 0.54 0.82 0.53 0.07

6 0.70 0.14 0.42 − 0.60

7 − 1.11 1.53 0.85 0.24

8 − 1.94 0.47 0.18 − 0.64

9 − 1.87 1.08 0.76 − 0.22

10 − 2.06 1.21 0.59 − 0.56

11 − 1.20 2.14 1.61 0.28

12 − 2.80 0.91 0.89 − 0.55

13 − 4.33 − 1.84 − 0.40 − 2.12

14 − 5.81 − 1.67 0.11 − 0.76

15 − 11.85 0.21 0.81 0.25

16 − 9.40 0.56 0.87 0.46

17 − 8.42 − 0.88 − 0.44 − 1.86

18 − 17.04 − 0.70 − 0.21 − 2.14

19 − 29.16 − 0.71 − 0.34 − 1.06

20 8.07 0.38 0.72 − 0.48

21 − 11.14 − 0.19 0.07 − 2.87

22 − 5.71 1.35 1.60 − 0.93

23 − 5.57 1.01 1.23 − 0.02

24 − 4.74 0.49 0.28 − 0.61

25 − 2.10 1.86 0.91 0.46

26 − 2.63 − 1.74 − 2.00 − 2.11

27 − 2.04 0.89 − 0.17 − 0.76

28 − 2.86 − 0.15 − 0.41 − 0.97

29 − 2.03 0.37 0.03 − 0.25

30 − 2.63 − 1.35 − 0.68 − 1.33

31 − 1.30 0.17 0.51 − 0.46

32 0.31 − 0.19 1.86 0.31

MSE 57.22 1.05 0.69 1.08
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Long‑term predictions

The above cases have predicted 30 days’ returns of the US REIT. In general, a 30-day 
period is relatively short, and when the training samples meet the proper conditions, 
the GMDH model effectively predicts the short-term returns of REIT under the three 
kernel functions. Under these circumstances, it is worthwhile to determine whether 
the GMDH model is also capable of predicting REIT long-term returns. Hence, the 
effectiveness of the GMDH model in predicting 60-day returns was tested in this 
study, with 300 training samples. The testing period runs from March 31, 2021 to June 
30, 2021, with 300 training samples coming before that. In this study, three more cases 
are tested: linear-300/60, linear-cov-300/60, and quadratic-300/60. Figure  7 depicts 
a comparison of the three cases’ actual returns and prediction results. Directly, the 

Table 6 Gaps between actual and predicted returns under the quadratic function

Note: The gaps between the actual returns and the predicted returns of quadratic-30/30, quadratic-100/30, and 
quadratic-200/30 are not calculated because the results of these three cases are not acceptable

Day Quadratic-300/30 Quadratic-600/30

1 − 2.85 − 1.36

2 − 4.42 − 0.86

3 − 3.15 − 0.16

4 − 3.25 − 0.39

5 − 2.88 − 0.34

6 − 4.32 − 1.23

7 − 1.99 0.03

8 − 2.57 − 0.83

9 − 0.74 − 0.10

10 − 1.01 − 0.39

11 0.07 0.58

12 − 0.92 − 0.34

13 − 2.18 − 1.82

14 − 1.14 − 0.57

15 0.15 1.18

16 0.20 1.12

17 − 1.22 − 0.49

18 − 0.97 0.64

19 − 0.87 0.58

20 0.50 0.25

21 − 0.14 − 0.69

22 0.63 0.87

23 − 0.72 0.50

24 − 0.28 − 0.56

25 1.01 0.41

26 − 1.92 − 1.88

27 − 0.10 0.26

28 − 0.86 − 0.12

29 − 0.61 0.41

30 − 2.52 − 0.95

31 − 1.31 − 0.02

32 − 5.18 0.34

MSE 4.35 0.62
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Table 7 Gaps between actual and long‑term predicted returns [Under linear and linear covariance 
and quadratic functions]

Day Linear
[300/60]

Linear 
covariance
[300/60]

Quadratic
[300/60]

Day Linear
[300/60]

Linear 
covariance
[300/60]

Quadratic
[300/60]

1 − 0.23 0.42 0.65 32 − 1.96 − 1.36 − 1.73

2 − 2.06 − 1.57 − 1.41 33 − 1.20 − 0.54 − 0.67

3 − 0.84 0.04 0.34 34 − 1.21 − 0.59 − 0.68

4 − 1.45 − 0.76 − 0.76 35 − 1.00 − 0.55 − 0.47

5 − 1.06 − 0.35 − 0.28 36 − 1.74 − 1.31 − 1.28

6 − 0.64 0.04 0.35 37 − 0.71 − 0.23 0.07

7 − 0.52 − 0.03 − 0.01 38 − 1.46 − 0.90 − 0.75

8 − 0.99 − 0.44 − 0.43 39 − 0.82 − 0.29 0.06

9 − 1.77 − 1.09 − 0.91 40 − 0.97 − 0.59 − 0.37

10 0.08 0.57 0.99 41 − 0.07 0.30 0.57

11 − 1.40 − 1.32 − 1.48 42 − 0.84 − 0.50 − 0.44

12 − 0.42 0.07 0.49 43 − 2.69 − 2.04 − 1.77

13 − 0.70 − 0.52 − 0.04 44 − 2.02 − 1.38 − 0.77

14 − 1.52 − 1.14 − 0.55 45 − 0.72 − 0.34 0.53

15 − 1.23 − 0.88 0.11 46 − 0.46 − 0.13 0.52

16 − 0.06 0.24 1.83 47 − 2.02 − 1.53 − 0.63

17 − 0.72 − 0.46 − 1.40 48 − 2.02 − 1.45 91.50

18 − 0.57 − 0.08 − 0.50 49 − 2.10 − 1.48 − 1.15E+09

19 − 0.92 − 0.43 0.10 50 − 1.20 − 0.55 − 1.66E+29

20 − 0.57 − 0.01 0.74 51 − 1.78 − 1.03 − 4.86E+13

21 − 1.69 − 1.15 − 2.64 52 − 0.50 0.54 − 8.40E+88

22 − 1.48 − 0.82 1.06 53 − 0.44 0.43 272.20

23 − 0.44 0.34 8.56 54 − 1.43 − 0.37 − 3.89E+51

24 − 0.24 0.20 − 0.14 55 − 0.02 0.97 − 3.79E+71

25 1.11 1.35 − 8.96 56 − 3.08 − 1.95 − 3.82E+46

26 − 1.36 − 0.81 − 9.03 57 − 1.61 0.05 − 536.51

27 − 2.52 − 1.52 − 6.65 58 − 1.51 − 0.20 − 6.71E+10

28 − 0.70 0.26 − 2.41 59 − 1.07 0.36 − 328.70

29 0.01 0.62 − 2.01 60 − 2.32 − 0.97 61.35

30 1.70 2.20 − 0.82 61 − 1.53 − 0.03 − 42.26

31 − 1.52 − 1.38 − 3.03 62 − 0.76 0.44 − 163.85

MSE Linear‑300/60 1.83 Linear‑cov‑300/60 0.82 Quadratic‑300/60 1.138E+176

Fig. 5 Actual versus predicted returns [Case B: 30 testing samples under linear covariance function]
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results of the case quadratic-300/60 are unacceptable because the magnitude of this 
model’s prediction results is not at the same level as the actual returns.

Meanwhile, the other two cases can show the trend of actual returns, but there are 
still significant gaps between the prediction results and the actual returns. The gaps 
between the two cases and the actual returns, as well as their MSE values, are calcu-
lated to determine whether the two cases should be accepted. Table 7 shows the dif-
ferences between the actual returns and linear-300/60 and linear-cov-300/60.

The results in Table  7 show that the gaps between actual returns and linear-
cov-300/60 are much smaller than those between actual returns and linear-300/60. 
The MSE values for linear-cov-300/60 and linear-300/60 are 0.82 and 1.83, respec-
tively, indicating that linear-cov-300/60 is more accurate in predicting long-term 
returns than linear-300/60.

The following points can be summarized based on an analysis of the results of these 
tests with different kernel functions. First, the linear kernel function is robust to 
training model use in that the prediction is very stable and can achieve stable returns 
for both long-term and short-term goals. Second, the linear covariance kernel func-
tion is robust to the use of the training model. When compared with the linear kernel, 
the linear covariance kernel function fits the data better and predicts more accurate 

Fig. 6 Actual versus predicted returns [Case C: 30 testing samples under the quadratic function]

Fig. 7 Actual versus long‑term predicted returns [Under linear, linear covariance and quadratic functions]
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results, but it is less stable, which requires further consideration (e.g., long-term 
goals). Third, the quadratic kernel function is difficult to train, necessitating a large 
number of samples (300+) to facilitate learning. A trained quadratic kernel is excel-
lent for short-term goals but fails miserably for long-term goals.

The preceding analysis shows that kernel functions play an important role in deter-
mining the outcomes of the GMDH approach in predicting REIT returns. Scholars 
find that, aside from the GMDH model, kernel functions impact the outcomes of 
other ML approaches, such as the SVM model (Yuan et al. 2010). Yuan et al. (2010) 
have implemented the SVM model to test the internet traffic classification, and they 
investigated the effectiveness of four kernel functions, including RBF (radial basis 
function), poly, linear, and sigmoid, and discovered that RBF has the highest accuracy, 
followed by poly. This study, like Yuan et al. (2010), finds that different kernel func-
tions are accurate in different cases. When the training sample is 100 and the testing 
sample is 30, the linear function is more accurate than the other two functions.

For the following pairs of training and testing samples, the linear covariance func-
tion is more accurate than the other two functions: 200/30, 300/30, and 300/60. The 
quadratic function is more accurate than the other two functions when the train-
ing sample is 600, and the testing sample is 30. Therefore, when implementing the 
GMDH model to forecast REIT returns, it is important to control the kernel func-
tions in order to improve the accuracy of this ML method.

Estimates of the GARCH model

The GARCH model is also used to predict REIT returns. To compare the results of 
the GARCH model and the GMDH model, the numbers of observations used in the 
GARCH model and the numbers of predicted returns were controlled, and then six 
scenarios were tested, including Scenarios G-300/60, G-600/30, G-300/30, G-200/30, 
G-100/30, and G-30/30. These scenarios are explained as follows: Scenario G-600/30 
means that the 300 samples are used in the GARCH model to estimate coefficients 
in Eqs.  (5a), (5b), and (5c), and 60 returns are predicted. The meanings of the other 
scenarios are similar to Scenario G-600/30, but the number of samples used in the 
simulation and prediction differ. Table  8 depicts the specifics of these scenarios. 
Meanwhile, Table  9 displays the simulation results for these scenarios using the 
GARCH model.

Table 8 Descriptions of the scenarios by the GARCH model

Scenarios Number of observations Number of 
predicted 
returns

G‑300/60 300 60

G‑600/30 600 30

G‑300/30 300 30

G‑200/30 200 30

G‑100/30 100 30

G‑30/30 30 30
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GMDH versus GARCH predictions: a comparison

The MSEs of the two approaches were shown in Table 10. Given enough training sam-
ples, the GMDH neural network outperforms the GARCH model in terms of accu-
racy. Moreover, the GMDH model always outperforms the GARCH model in terms of 
accuracy when the kernel function is linear. When the number of training samples is 
greater than 100, the accuracy of the linear covariance function is greater than that of 
the GARCH model. When the kernel function is the quadratic function, its accuracy 
is higher than the GARCH model only for one case with 600 training samples, quad-
ratic-600/30. Unlike the GARCH model, whose accuracy increases as the number of 
samples increases, the GMDH model’s accuracy is much more negatively affected by a 
lack of training samples.

When compared with a traditional GARCH-based approach, ML-based GMDH 
outperforms the GARCH model significantly. In other words, GMDH can predict 
more accurate results with less data and obtain results faster than GARCH models.

Discussion
The results shown above support the first hypothesis that the GMDH neural network 
outperforms the GARCH model in predicting the US REIT market. The GMDH neu-
ral network outperforms GARCH in predicting the US REIT for two reasons. First, 

Table 9 Coefficients of these scenarios based on the GARCH model

Note: *** and ** significant at the 1% and 5% levels, respectively

rt = µ+ αrt−1 + εt σ
2
t = ω + βε2

t−1
+ γ σ 2

t−1

Scenarios µ α ω β γ MSE

G‑300/60 0.0710*** 0.0691** 0.0493*** 0.1311*** 0.7613*** 1.9317

G‑600/30 0.0711*** 0.0693*** 0.0491*** 0.1307*** 0.7615** 1.6315

G‑300/30 0.0703** 0.0652*** 0.0474*** 0.1265*** 0.7521*** 1.8723

G‑200/30 0.0723*** 0.0673*** 0.0511** 0.1329*** 0.7631*** 2.2102

G‑100/30 0.0812*** 0.0686*** 0.0525*** 0.1341** 0.7671** 3.7935

G‑30/30 0.0896** 0.0690** 0.0562*** 0.1368** 0.7713*** 4.9346

Table 10 MSE values of the two approaches

Note: The training and testing numbers of samples for the GARCH model indicate the number of samples used for 
calculating the coefficients and then the number of returns predicted by the model. "–" indicates that these cases are not 
accepted in this study because their predicted results are greatly impacted by outliers

Training/testing GARCH Model GMDH Model

Linear kernel Linear covariance 
kernel

Quadratic 
kernel

30/30 4.9346 3.69 57.22 –

100/30 3.7935 0.72 1.05 –

200/30 2.2102 0.70 0.69 –

300/30 1.8723 1.45 1.08 4.35

600/30 1.6315 0.87 – 0.62

300/60 1.9317 1.93 0.82 –
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GMDH’s self-organization can sort the effects of all possible model variables to find 
the best solution. Second, GDMH can analyze the structure of nonlinear and complex 
systems and avoid overfitting through using appropriate kernel functions.

Table  10 lists the comparison results of the two approaches for different number of 
training and testing samples. Our findings are consistent with Li et al. (2017) in that the 
GMDH neural network and ANN have better performance in predicting stocks and 
REITs than other traditional models, such as CAPM and double exponential smooth 
models. Furthermore, our results also lend support to the second hypothesis that 
GMDH can predict the US REIT market in both short- and long-term. Tables 3, 5, and 
6 illustrate the short-term prediction results, while Table 7 shows the long-term predic-
tion results of GMDH using various kernel functions. Given enough training data, our 
empirical results suggest that the GMDH approach can accurately predict REIT prices. 
Finally, we find that the GMDH produces better prediction results by avoiding model 
underfitting and overfitting issues through the use of different kernel functions. For 
example, using a linear kernel function can avoid the overfitting with simple data, while 
the quadratic function can better fit complex data.

Previous research applies two ML approaches to predict four REIT markets—Aus-
tralia, Hong Kong, Italy, and Turkey—illustrating that the GMDH neural network stands 
out from the simple BP neural network (Li et al. 2017). However, the world’s largest REIT 
market, the US, has been omitted. This study uses the GMDH neural network to forecast 
short- and long-term return forecasts for the US REIT market, as well as daily return 
forecasts. Furthermore, it demonstrates how the kernel function influences GMDH pre-
diction results, which has previously been overlooked.

Conclusions
In recent years, ML has been widely used in the study of finance and economics, and it 
has also been practically applied to the field of finance. For example, JP Morgan devoted 
280 pages of its investor report to reporting on how JP Morgan applies ML, deep learn-
ing, and neural networks to quantitative investment and algorithmic trading. Our study 
employs the ML-based GMDH model to forecast REIT returns in the United States 
and assesses the method’s practical utility. The primary contribution of this study is the 
application of a GMDH neural network to forecast the trend of the US REIT market. The 
accuracy of the GMDH neural network is compared with that of a traditional approach, 
the GARCH model, in an empirical study. Several points can be identified by comparing 
the results of the two models. First, GMDH outperforms GARCH in predicting REIT 
returns. The ML method is used to test 17 cases while controlling the training samples, 
testing samples, and kernel functions. The test results reveal that the ML approach’s 
accuracy is high in most cases, except when the training sample size is 30. Except for the 
quadratic kernel function, the linear and linear covariance kernel functions can be easily 
trained to obtain stable prediction results. Compared with the GARCH method’s accu-
racy, the MSE values of most of these cases for the GMDH method are lower, indicat-
ing that the ML approach can easily obtain more accurate prediction results. However, 
the accuracy of the GMDH method is influenced by the kernel functions used when the 
training and testing samples are changed. Hence, when using the GMDH method to 
forecast REIT returns, the kernel function must be adjusted when changing the training 
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and testing samples. Based on the results of this study, the GMDH method produces 
more accurate predictions of REIT returns in the US market, even with small sample 
sizes. When investors decide to enter the REIT market, they can use the GMDH method 
to predict the short-term trend of the US REIT market based on the previous year’s his-
torical data.

Although this study found that the ML approach is more significant than traditional 
methods—by comparing the accuracy of the GMDH neural network with that of the 
GARCH model in an empirical study—this research still has some limitations. First, 
although the GMDH neural network is an excellent data analysis algorithm, it is a model 
that financial analysts will find more difficult to develop and implement. Second, the US 
REIT index was used in this empirical analysis. Although the US REIT market capitaliza-
tion accounts for 61% of the global market, comparison results based on the US REIT 
index cannot accurately represent the overall situation of all REIT stocks. Therefore, fur-
ther analysis is needed to improve the representativeness of the findings.

The following research directions can be considered for future studies. First, more ML 
and non-ML approaches can be tested and compared to determine the efficiency and 
effectiveness of ML approaches in predicting REIT returns. In the future, researchers 
can compare the efficiency of other ML and deep learning methods, such as SVM and 
Random Forest, in predicting REIT returns with the results of the GMDH method. Sec-
ond, out-of-sample studies can collect data on REITs from multiple markets, as opposed 
to only the US market. Third, future research can explore which ML approaches can be 
used to effectively build REIT portfolios to increase returns.

Appendix 1: Definitions of the variables used in GMDH model

(1) Average True Range (ATR)
The expression to calculate the ATR of the REIT can be described by the following 

equation (Panapongpakorn & Banjerdpongchai, 2019):

In this expression, Pd−i and Vd−i are the highest and lowest prices in the period d − i , 
where d is forecasted day and i is the initial day, and N is the total number of the selected 
period. In this case, Pd−i − Vd−i measures that price range in the period d − i.

(2) Bollinger Bands (BB)
The calculation formula of the BB can be expressed as follows (Bollinger 1992):

(9)ATR =
∑N

i=1(Pd−i − Vd−i)

N

(10a)Upperband(BBH) : X + 2σ

(10b)Middleband(BBM) : X
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In this case, the value of X  and σ are: X =
∑N

i=1xi
N  , σ =

√

∑N
i=1(xi−X)

2

N  , representing the 

mean value and derivation of the observed samples. When these formulas are used, the 
observed samples are the closing prices in a period and the value X  indicates the mean 
value in the selected duration, while the upper band has added two deviations, and the 
lower band has deducted two deviations.

(3) Keltner Channel (KC)
The calculation of the KC depends on the calculation of the EMA (Exponential Mov-

ing Average) and the ATR, and the details of formulas are listed as follows (Ruiz-Franco 
et al. 2018):

Here, EMA is calculated by the following formula:

The EMA is implicitly calculated, depending on the value of the previous period 
( EMAn−1 ). Pt−1 indicates the closing price of the asset of the previous period, and n is 
the sample of the current period, and k indicates the number of periods.

(4) Donchian Channel (DC)
Formulas do not measure the upper band and lower band of the DC. In contrast, they 

are determined by the observations. The upper band indicates the highest prices in a 
period, while the lower band indicates the lowest prices in the same period. The middle 
band indicates the mean value of the gaps between the upper band and the lower band. 
Hence, it can be measured by Patil et al. (2020):

(5) Moving Average Convergence Divergence (MACD)
MACD is also an indicator based on the calculation of EMA, and its expression is 

shown (Du Plessis 2012):

(10c)Lowerband(BBL) : X − 2σ

(11a)The upper band (KCH) : EMA(n1)+ k × ATR(n2)

(11b)Middle band (KCC) : EMA(n1)

(11c)The lower band (KCL) : EMA(n1)− k × ATR(n2)

(12)EMAn =
2

k + 1
× Pt−1 + (1−

2

k + 1
)× EMAn−1

(13a)The upper band (DCH) : The highest values in N periods

(13b)Middleband(DCM) : DCM =
DCH − DCL

2

(13c)The lower band (DCL) : The lowest values in N periods

(14)MACD = EMA
(

12− dayclosingprices
)

− EMA(26− dayclosingprices)
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This is a particular situation used in this research. The general formula of MACD can be 
expressed as follows (Hung, 2016):

In this formula, t indicates the moment, EMA(s) and EMA(l) are two states of EMA, 
determined by the lag lengths, and s and l represent short and long lag lengths, and the 
short lag length represents the fast-moving average while the long lag length represents the 
slow-moving average (Hung, 2016). In this empirical analysis, the short lag length is 12 days, 
and the long lag length is 26 days, which are two standard lag lengths used by researchers 
(Du Plessis 2012).

(6) Average Directional Movement Index (ADX)
The ADX is an indicator depending on the measurement of the ATR. Because it is used 

to identify the direction, it depends on the judgment of the directional indicator (DI) and 
directional movement (DM) (Gurrib 2018). The details of the calculation formula of the 
ADX can be expressed as follows (Gurrib 2018).

First, the DM is calculated, and it is divided into two types, DM(+) and DM(−) (in sim-
ple, +DM and −DM).

When the value of DM is identified, the trader must measure the DI based on the 14−
period−DM. The 14−period−DM is measured by the following formula (Gurrib 2018):

Then the value of DI can be calculated by:

When the values of DI are obtained, the values of the directional index (DX) can be 
obtained (Gurrib 2018).

Furthermore, ADX is the average value of DX in a 14-period (Gurrib 2018).

(15)MACDt = EMA(s)t − EMA(l)t

(16)DMt =
{

DMt(+) = hight − hight−1ifhight − hight−1 > lowt − lowt−1

DMt(−) = lowt − lowt−1iflowt − lowt−1 > hight − hight−1

(17a)14 − period − DM =
∑

i=1,14
DMi

(17b)

Subsequent−14−period−DM = 14−period−DMt−1−
(

∑

i=1,14DMi

14

)

t−1

+DMt

(18)DIt =

{

DIt(+) = smoothed DMt (+)
ATRt

= 100
14−period−TRi

14 − period − DMt(+)

DIt(−) = smoothed DMt (−)
ATRt

= 100
14−period−TRi

14 − period − DMt(−)

(19)DXt =
∣

∣

∣

∣

DIt(+)− DIt(−)

DIt(+)+ DIt(−)

∣

∣

∣

∣

(20a)ADXt =
∑

i=1,14DXi

14
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According to the above equations from 17 to 20, the ADX estimates the trend in 
recent periods by integrating the temporary directional movements.

(7) Vortex Indicator (VI)
The calculation of the VI can be divided into four steps, and it is also divided into 

two trends, VI(+) and VI(−) CITATION Żbi15 \l 2052  (Żbikowski 2015).
The first step is to calculate the true range (TR), measured by Eq. (21). It measures 

the maximum value among the three items, including the gaps between the current 
high and current low prices, the gaps between the current high and previous close 
prices, and the gaps between the current low and previous close prices.

The second step is to measure the two-directional movements, the downtrend 
( VM(−) ) and the uptrend ( VM(+) ). The expression is shown in Eq. (22).

The third step is to calculate the special n periods’ movement, and the formulas are 
shown in Eq. 23. Here, a period can be 14 days or 30 days, representing two weeks or 
a month. In this empirical, 14 days is selected.

And the final step is to calculate the two trends VI(+) and VI(−) , shown in Eq. 24  
CITATION Żbi15 \l 2052  (Żbikowski 2015). Like other indicators related to trends, 
the VI also depends on the true range in the past periods.

(8) Mass Index (MI)
The MI depends on the EMA calculation expressed in Eq. 11 and the simple moving 

average (SMA). The SMA calculation is shown in Eq.  25, which indicates the mean 
values of the closing prices in a period of 14 days. Here, PC indicates the closing price 
of a trading day.

The MI is calculated by Eq. 26, referring to the sum of the ratio between EMA and 
SMA. In this case, a period for SMA and EMA is 14 days, and a variety of periods are 
considered, including 2 periods, 6 periods, 20 periods, and 40 periods.

(20b)Subsequent ADXt =
13ADXt−1 + DXt

14

(21)TRt = max{hight − lowt, hight − closet−1, lowt − closet−1}

(22)VMt =
{

VMt(+) = |hight − lowt−1|
VMt(−) = |lowt − hight−1|

(23)VMn
t =

{∑

i=0,nVMt−i(+) =
∑

i=0,n|hight−i − lowt−1−i|
∑

i=0,nVMt−i(−) =
∑

i=0,n|lowt−i − hight−1−i|

(24)VIt =







VIt(+) =
�

i=0,nVMt−i(+)
�

i=0,nTRt−i

VIt(−) =
�

i=0,nVMt−i(−)
�

i=0,nTRt−i

(25)SMAt =
∑

d=1,DPCd

D
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(9) Commodity Channel Index (CCI)
The CCI is calculated by Eq. (27), which depends on the moving average of price in the 

past days (Srinivasan et al. 2018).

Here, the typical price refers to the sum of the average value of the high, low, and close 
price in a series of periods, and MA and mean deviation indicates the moving aver-
age and deviation of these typical prices. The expressions of them are shown as follows 
(Srinivasan et al. 2018).

(10) Detrended Price Oscillator (DPO)
The DPO is calculated by Eq. 29 (Oyewola et al. 2019). It indicates the gaps between 

the current closing price and the moving average in the last (n2 + 1) days. In this empiri-
cal analysis, a period is 14 days, hence 

(

n
2 + 1

)

 indicates 8 days.

(11) Parabolic Stop and Reverse (PSR)
The PSR can be divided into two trends, downtrend, and uptrend, and they can be cal-

culated by the same expression (Chen & Metghalchi 2012).

In this formula, PSRt and PSRt−1 represent the current and the previous PSR of the 
asset, AF is an acceleration factor, changing in the range [0.02, 0.2]. The factor’s best 
value is 0.2; hence, this empirical analysis uses 0.2 in the computing process. EP indicates 
an extreme price, either the highest or the lowest prices. For the downtrend condition, 
the lowest price is used. For the uptrend, the highest price is used (Chen & Metghalchi 
2012).

(12) Money Flow Index (MFI)
The expression of the MFI is shown in equation (Di 2014).

(26)MTt =
∑

n=1,N

EMAk−day,n

SMAk−day,n

(27)CCIt =
Typical pricet −MAt

0.015×mean deviationt

(28a)Typical pricet =
hight + lowt + closet

3

(28b)MAt =
∑

i=1,NTypical priceN−i

N

(28c)mean deviationt =
∑

i=1,N (Typicalpricet −MAt)

N

(29)DPOt = closet − SMAn
2+1

(30)PSRt = PSRt−1 + AF × (EPt−1 − PSRt−1)

(31)MFIt = 100−
100

1+MRt
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In this formula, MR is the Money Ratio, indicating the percentage between the 
positive flow and negative money flow in a period marked as MF( +) and MF(−), 
respectively. MRt = MFt (+)

MFt (−)
 . In general, money flow is calculated by the typical price 

multiplying the trading volume, MFt = Typical price × volume . The money flow is 
divided into positive and negative ones due to the changes in the typical price, and the 
relationship is shown in Eq. (32). The calculation of the typical price is shown in Eq. 
(28a).

(13) Relative Strength Index (RSI)
RSI expressions similar to MFI, shown in Eq. 32 (Crowell et al. 2016).

In this formula, RS indicates relative strength, which is calculated by: 
RSt =

∑

k=i−n,iPU(tk )
∑

k=i−n,iPD(tk )
 , where PU and PD are uptrend and downtrend prices. When the 

current closing price is greater than the closing price in the previous period, for 
example, the previous trading day, the price is marketed as a uptrend price. In con-
trast, it is the market as a downtrend price. Therefore, the RS means the percentage 
between the uptrend and downtrend prices in a particular period with n trading days. 
In this empirical analysis, n is 14, indicating 14 days (Crowell et al. 2016).

(14) True Strength Index (TSI)
The calculation of the TSI can be expressed (Hartle 2002).

In this formula, mtm indicates the gaps between the current closing price and the 
previous trading day’s closing price, mtm = closing pricet − closing pricet−1 . EMA 
indicates the exponential moving average operation shown in Eq. 11, and r and s are 
the length of a period and the number of periods, which are 25 and 13, respectively, 
indicating 25 days and 13 periods (Hartle 2002).

(15) Ultimate Oscillator (UO)
The expression of UO is shown in Eq. 34.

In this formula, TR is the true range, which is calculated by Eq. 20. BP is the buying 
pressure, which is calculated by BPt = closing pricet −min{lowt , closing pricet−1} . Due 
to this, BP(7)TR(7) =

∑

k=1,7BPk
∑

k=1,7TRk
 , BP(14)TR(14) =

∑

k=1,14BPk
∑

k=1,14TRk
 , and BP(28)TR(28) =

∑

k=1,28BPk
∑

k=1,28TRk
 , which indicates 

the conditions of 7 days, 14 days, and 28 days before the current closing price.
(16) Stochastic Oscillator (SO)
The expression of SO is shown in Eq. 35.

MFt =
{

MFt(+), if Typical pricet > Typical pricet−1

MFt(−), if Typical pricet < Typical pricet−1

(32)RSIt = 100−
100

1+ RSt

(33)TSIt =
EMA(EMA(mtm, r), s)

EMA(EMA(|mtm|, r), s)
× 100

(34)UOt = 100×
4 × BP(7)

TR(7) + 2× BP(14)
TR(14) +

BP(28)
TR(28)

7
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In this formula, Closingpricet indicates the current closing price, L14 and H14 are the low-
est and highest prices in the previous 14 trading days.

(17) Williams %R (WR)
The expression of WR is shown as follow (Li et al. 2017).

The meaning of these abbreviations, including L14 and H14 , share the same meanings of 
the SO.

(18) Awesome Oscillator (AO)
The AO means the gaps between the average value of 5 days before the current trading 

day and the average value of 34 days before the current trading day (Iovane et al. 2016). The 
calculation of SMA is shown in Eq. 24.

(19) Kaufman’s Adaptive Moving Average (KAMA)
KAMA’s expressions are shown as follows (Karasu et al. 2020).

In this equation, St is the smoothing constant proposed by Kaufman (1995), the following 
formula calculates it.

And, the formula of ER is ERt = Dt
Vt

= closing pricet−closing pricet−n
∑

i=1,n|closing pricet−closingpricet−i| . The fast and slow 

smoothing constant ( scfast and scslow ) can be 0.6667 and 0.0645 when the periods are 2 and 
30 days (Rakićević et al.  2014).

(20) Rate of Change (ROC)
The formula of the ROC is presented. In this formula, n indicates the number of days 

before the current trading day. As for daily ROC, n is 1.

(21) Triple Exponential Average (TRIX)
The calculation formula of the TRIX can be expressed as follows (Di 2014). It is based on 

the EMA, which is shown in Eq. 11. Here, n indicates the number of days before the current 
trading day. As for the daily TRIX, n is 1.

(22) Know Sure Thing Oscillator (KST)

(35)SOt =
Closing pricet − L14

H14 − L14
× 100

(36)WRt =
H14 − closing pricet

H14 − L14
× 100

(37)AOt = SMA(5, t)− SMA(34, t)

(38)KAMAt = KAMAt−1 + St × (closing pricet − KAMAt−1)

(39)St = sc2 = ERt × scfast + (1− ERt)× scslow

(40)ROCt(n) =
closing pricet − closingpricet−n

closing pricet−n

(41)TRIXt =
EMA(EMA(EMA(closing pricet)))

EMA(EMA(EMA(closing pricet−n)))
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The calculation of KST depends on the ROC, and its expression is shown in Eq. 42 
(Oyewola et al. 2019). In this formula, ROC indicates the change rate, which is meas-
ured by Eq. 29, and SMA indicates the moving average, measured by Eq. 24.

(23) Ichimoku Kinko Hyo (Ichimoku)
Ichimoku’s expression can be expressed as Eq. (43), which includes 5 components, 

Tenkan-sen, Kijun-sen, Senkou Span A, Senkou Span B, and Chikou Span (Cahyadi, 
2012). Tenkan-sen focuses on the past 9 periods, Kijun-sen focuses on the past 26 
periods, and Senkou Span B focuses on the past 52 periods. Chikou Span means to 
lag 26 days for the current prices, moving the price line to back to 26 days (Cahyadi, 
2012).

(24) Daily Return (DR)
The DR is calculated by measuring the change ratio of the closing prices from the 

previous day to the current day (Li et al. 2017).

(25) Daily Log Return (DLR)
The DLR is the logarithm value of the daily return (Li et al. 2017).

(26) Cumulative Return (CR)
The CR is similar to the DR, but it does not indicate the adjacent two days’ gaps. In 

contrast, it focuses on the changes in the prices over a period. In the formula, n indi-
cates the length of the period. In this empirical analysis, n is 14.

(42)
KSTt = 1× SMAt(ROC(10), 10)+ 2× SMAt(ROC(15), 10)

+ 3× SMAt(ROC(20), 10)+ 4 × SMAt(ROC(30), 15)

(43a)Tenkan − sent =
max{hight−1, . . . , hight−9} +min{lowt−1, . . . , lowt−9}

2

(43b)Kijun − sent =
max{hight−1, . . . , hight−26} +min{lowt−1, . . . , lowt−26}

2

(43c)Senkou SpanAt =
Tenkan − sent + Kijun − sent

2

(43d)Senkou SpanBt =
max{hight−1, . . . , hight−52} +min{lowt−1, . . . , lowt−52}

2

(43e)Chikou Spant = closing pricet+26

(44)DRt =
closing pricet − closing pricet−1

closing pricet−1

(45)

DLRt = ln(1+ DRt) = ln

(

closing pricet

closing pricet−1

)

= ln
(

closing pricet
)

−ln(closing pricet−1)
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