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Abstract 

Forecasting returns for the Artificial Intelligence and Robotics Index is of great signifi‑
cance for financial market stability, and the development of the artificial intelligence 
industry. To provide investors with a more reliable reference in terms of artificial intel‑
ligence index investment, this paper selects the NASDAQ CTA Artificial Intelligence and 
Robotics (AIRO) Index as the research target, and proposes innovative hybrid methods 
to forecast returns by considering its multiple structural characteristics. Specifically, 
this paper uses the ensemble empirical mode decomposition (EEMD) method and 
the modified iterative cumulative sum of squares (ICSS) algorithm to decompose the 
index returns and identify the structural breakpoints. Furthermore, it combines the 
least-square support vector machine approach with the particle swarm optimization 
method (PSO-LSSVM) and the generalized autoregressive conditional heteroskedas‑
ticity (GARCH) type models to construct innovative hybrid forecasting methods. On 
the one hand, the empirical results indicate that the AIRO index returns have com‑
plex structural characteristics, and present time-varying and nonlinear characteristics 
with high complexity and mutability; on the other hand, the newly proposed hybrid 
forecasting method (i.e., the EEMD-PSO-LSSVM-ICSS-GARCH models) which considers 
these complex structural characteristics, can yield the optimal forecasting performance 
for the AIRO index returns.

Keywords:  Artificial Intelligence and Robotics index return forecasting, PSO-LSSVM 
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Introduction
Artificial Intelligence and Robotics are key technologies of the Fourth Industrial Rev-
olution which are rapidly changing how people live and work. Since the onset of the 
COVID-19 pandemic, the WHO-advised social distancing has led to a more virtual 
existence, which may accelerate the development of Artificial Intelligence (AI) and 
Robotics technologies further. During the past decade, AI technologies have been hailed 
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by many academics and practitioners as revolutionary and game-changing in the busi-
ness world, a sphere in which the AI and robotics activities have significantly increased 
(Felten et al. 2018; Furman and Seamans 2019; Gruetzemacher et al. 2021; Mikalef and 
Gupta 2021).

Meanwhile, AI and robotics stocks have also attracted wide investor attention, and the 
investment in AI has grown rapidly (Bughin et al. 2017). According to the AI Index 2021 
annual report, despite the pandemic, 2020 still saw a 9.3% increase in private AI invest-
ment from 2019, a higher percentage jump than in 2019 (5.7%). Furthermore, the statis-
tical data also shows that the United States remains the leading destination for private 
investment, with over USD 23.6 billion in funding in 2020, followed by China (USD 9.9 
billion) and the United Kingdom (USD 1.9 billion) (Zhang et  al. 2021a; b). Therefore, 
AI and robotics technology companies are exerting a growing influence on the finan-
cial market, representing an interesting investment option for portfolio diversification. 
It is evident that the growth in AI investment trend is consistent, and seizing this smart 
investment boom has become an important question. Therefore, relevant investors must 
first choose a reliable index reflecting the investment opportunities associated with AI 
technology. Further, they need to make an accurate analysis and prediction of index 
returns, which could help them dynamically grasp the evolution rule for the entire range 
of this industry, and enable them to reasonably develop the optimal portfolio strategy 
(Zhang and Wang 2019; Zhang et al. 2020; Ghosh et al. 2022).

At present, the indices related to AI and robotics mainly include the Nasdaq CTA Arti-
ficial Intelligence and Robotics Index (NQROBO Index), the Global Robotics and Auto-
mation Index (ROBO Index), and the Indxx Global X Robotics & Artificial Intelligence 
Index (IBOTZ Index). The Nasdaq CTA Artificial Intelligence and Robotics Index (here-
after referred to as the AIRO index) is designed to track the performance of companies 
engaged in the AI and robotics segment of the technological, industrial, medical, and 
other economic sectors. Therefore, this index is the most important among the three 
major indices since it can comprehensively reflect the overall stock price change and the 
associated development of the AI industry. Based on its price data, it can be established 
that from December 19, 2017 to July 23, 2021, the cumulative return rate of the AIRO 
index reached 84.84%, and the annualized return rate was 33.92%. The movement in this 
index is closely tied to other financial assets (Le et al. 2021; Tiwari et al. 2021). Thus, it is 
essential to accurately forecast the AIRO index returns which can provide a reference for 
investors to select suitable index funds and investment tools, and to help them target the 
investment opportunities of the growing AI and robotics industries.

However, the literature on AIRO index returns forecasting is relatively scarce, and 
most of the research focuses on AI progress forecasting, and the application of AI tech-
nology in forecasting tasks (Chang et al. 2018; Mascio et al. 2021). In particular, research 
on the nonlinear and time-varying characteristics of this index is scarce, and needs to be 
supplemented. Currently, the commonly used financial time-series forecasting models 
can be classified into traditional econometric models and machine-learning methods; 
both possess advantages and disadvantages when used in forecasting. For example, the 
traditional econometric models are usually effective in capturing the linear and time-
varying components, but they cannot fully capture nonlinear components and have 
several requirements for data stability (Hung 2011; Lin et al. 2011; Zhang et al. 2015). 
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However, the machine-learning methods are suitable for predicting nonstationary, non-
linear time series because of their flexible nonlinear function-fitting capabilities and 
less-restrictive assumptions, but their forecasting performance is easily affected by data 
size and parameter settings (Wang et al. 2005; Psaradellis and Sermpinis 2016). The liter-
ature further shows that single models, characterizing a specific feature of the data, usu-
ally cannot identify all states and correlations in complex time series (Khashei and Bijari 
2011). Consequently, it affects the forecasting accuracy, since they are unable to extract 
the inherent dynamics. Given these limitations, the hybrid models gradually emerged 
in the financial time-series prediction literature (Zhang and Zhang 2018; Li et al. 2021; 
Xiao et al. 2021). Against this background, the issues relevant to the AIRO index returns 
involve the following: the data characteristics this index exhibits, and designing a reli-
able prediction method that accurately explores the intrinsic structural characteristics of 
AIRO index returns.

Hence, this paper focuses on the structural characteristics of the AIRO index and 
attempts to combine the econometric models and machine learning methods to develop 
a hybrid forecasting approach, given the complexity of the data-generating process of 
the AIRO index. Specifically, this paper first employs the ensemble empirical mode 
decomposition (EEMD) method to decompose the AIRO index return series into a 
series of intrinsic mode functions (IMFs) and the residual term. Further, it uses a modi-
fied version of the iterative cumulative sum of squares algorithm (ICSS) to identify the 
structural breakpoints. Second, different models (namely, the least-square support vec-
tor machine approach with the particle swarm optimization method (PSO-LSSVM) and 
the generalized autoregressive conditional heteroskedasticity (GARCH) type models) 
are developed to forecast the IMFs and the residual term, respectively, with the sum of 
forecasted values for all components being the final forecasting results of the decompo-
sition and integration models. Finally, this paper employs two methods to combine the 
econometric and machine learning models, and constructs innovative hybrid forecasting 
models that consider the complexity of the data-generating process of the AIRO index.

The contribution of this paper involves three main aspects: (1) Previous research has 
primarily focused on the common comprehensive indices in the financial market, such 
as the S&P500 index; see Rapach and Zhou (2021) for a detailed discussion of the lit-
erature associated with international stock market forecasting. However, these indices 
cannot reflect and predict the development of the AI industry. This paper focuses on, 
conducting an in-depth analysis and forecasting of the Nasdaq CTA Artificial Intel-
ligence and Robotics Index to provide additional insights and implications for traders. 
This can enable them to make informed investment decisions, while operating in dif-
ferent time horizons. (2) Previous studies have usually employed the single forecasting 
model; however, it cannot systematically capture the inherent structural characteristics 
of overall index returns (Rapach and Zhou 2013; Tiwari et al. 2016). Hence, this paper 
attempts to employ the EEMD and the modified ICSS algorithms to mine the structural 
features in the AIRO index returns. The AIRO index returns not only have linear and 
nonlinear characteristics, but also high complexity and mutability, which provide the 
basis and guidance for constructing the relevant measurement and mathematical models 
used for the AIRO index. (3) Based on the complex inherent characteristics of the AIRO 
index, this paper is unique in exploring appropriate forecasting models from multiple 
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perspectives for the AIRO index returns. These empirical findings provide fresh evi-
dence for investors and portfolio managers concerning hedging and diversification ben-
efits in the era of the Fourth Industrial Revolution.

The empirical results imply that given the data characteristics, the hybrid model (i.e., 
EEMD-PSO-LSSVM-ICSS-GARCH) can overcome the limitations of a single model and 
effectively depict the time-varying, nonlinear, complex and mutable characteristics of 
the AIRO index returns. Thus, this model achieves superior forecasting performance for 
the AIRO index returns, providing investors with a reliable reference for portfolio selec-
tion and asset management. Moreover, this paper uses the forecasting results of the new 
hybrid model to construct different portfolio strategies, finding that it can improve the 
forecasting performance of the single models, but also increase their economic value.

The remainder of this paper is organized as follows: “Literature review” section 
reviews the relevant literature. “Methods” section briefly describes the models, “Data 
descriptions” section presents the data set, “Results and discussions” section discusses 
the empirical results, and “Conclusions and future work” section offers the concluding 
remarks.

Literature review
In the recent past, the adoption and use of AI and robotics technologies in several indus-
tries has increased significantly (Acemoglu et  al. 2018; Felten et  al. 2018; Furman and 
Seamans 2019; Graetz and Michaels 2018; Webster and Ivanov 2020). For instance, Fur-
man and Seamans (2019) showed that while the worldwide shipments of robots rose by 
approximately 150% between 2010 and 2016, and the share of jobs demanding AI skills 
was nearly five times higher in 2016 than in 2013. Acemoglu and Restrepo (2018) indi-
cated that while AI and robotics can help to increase productivity growth, these new 
technologies will render labor redundant. Webster and Ivanov (2020) indicated that AI 
and robotics were all-pervading in various aspects of the economy, including manufac-
turing, trading in financial markets, chatbots in customer relationship management, and 
so on. Enholm et al. (2022) discussed the impact of AI, on the evolution of organizations, 
leading to competitive performance, and identified several implications of AI on the pro-
cess and the firm.

Currently, many scholars choose the AIRO index, which can well represent the per-
formance of technology-intensive companies in the AI and robotics fields, to depict the 
development of the AI industry. For instance, Tiwari et al. (2021) chose this index and 
employed the time-varying Markov-switching copula models to provide evidence of a 
time-varying Markov tail-dependence structure and dynamics between AI and carbon 
prices. Huynh et al. (2020) used this index to explore the role of AI and robotics stocks, 
green bonds, and Bitcoin in portfolio diversification, and proved that the portfolios of 
these assets exhibited heavy-tail dependence. Demiralay et  al. (2021) investigated the 
interdependence between AI and robotics stocks and traditional and alternative assets. 
They identified the weak (strong) co-movements between AI and other investments in 
shorter (longer) investment horizons.

However, these studies focus on the correlation between the AIRO index and other 
financial assets, but lack the systematic research on index return forecasting. Most of 
the forecasting research focuses on AI progress forecasting, or the application of AI 
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technology in the forecasting field (Xiao and Ke 2021). For instance, Chang et al. (2018) 
implemented the social network (SN) technique to examine a corporation’s competitive 
edge. They fed business relationship and financial information into an AI-based tech-
nique to construct a forecasting model. Gruetzemacher et al. (2021) described the devel-
opment of a research agenda for forecasting the progress of AI. It utilized the Delphi 
technique to elicit and aggregate experts’ opinions on which questions and methods to 
prioritize.

Thus, it can be seen that previous research has used this index widely, indicating that 
it can well track the performance of technology-intensive companies active in the AI and 
robotics sector. Yet, research on return forecasting for this index has yielded no pro-
gress. However, many scholars point out that in the financial market, accurately predict-
ing the return sequence of financial assets is one of the most challenging tasks. It is also 
a crucial aspect of investors’ ability to formulate portfolio strategies. This is important in 
pricing assets, and evaluating portfolio performance.

To date, many scholars have focused on stock index return forecasting, and machine-
learning models as well as traditional econometric models have been widely used to 
do so (Zhang and Wang 2019; Zhang et al. 2020; Ghosh et al. 2022; Sebastio and God-
inho 2021). For example, Giovannellia et al. (2021) extracted the information contained 
in a high number of macroeconomic predictors using large dimensional factor models 
to forecast the S&P 500 index return, and their results showed that the Generalized 
Dynamic Factor Model can help predict stock returns. Mascio et al. (2021) assessed the 
performance of three forecasting models to predict the one-month-ahead S&P 500 Index 
return (the sentiment index model) using a combined kitchen-sink forecasting model 
and a LASSO model. The results showed that the LASSO model outperformed the other 
ones. Salisu and Vo (2020) used a historical average-based model to evaluate the rel-
evance of health-news trends in predicting stock returns during the COVID-19 period. 
Their results revealed that the model incorporating the health-news index outperformed 
the benchmark model. Thus, the great theoretical and practical significance to predict 
the index return in the financial market is clear. In this regard, both the traditional meas-
urement, and the machine-learning models have attracted considerable attention.

The relevant literature indicates that the single models, characterizing a specific fea-
ture of the data, usually cannot identify all states and correlations in complex time series 
(Khashei and Bijari 2011). However, some studies indicate that both machine-learning 
and traditional econometric models possess their own advantages and disadvantages in 
the process of forecasting (Zhang et  al. 2015; Wang et  al. 2005; Psaradellis and Serm-
pinis 2016). Hybrid models gradually start to draw attention in forecasting research. 
For instance, Yu et  al. (2008) proposed the “decomposition-integration” hybrid mod-
els, and their results showed that hybrid models always possess better forecasting abil-
ity. Bildirici and Ersin (2013) combined the multilayer perceptron model with the new 
Smooth Transition Autoregressive model and the generalized autoregressive conditional 
heteroskedasticity (GARCH) model, which introduced the fractional integration and 
asymmetric property (LSTAR-LST-GARCH-MLP) model. This proved that the hybrid 
framework can capture the volatility clustering, asymmetry, and nonlinearity character-
istics of petrol prices. Rapach et al. (2010) indicated that this combination of models can 
improve the prediction performance by synthesizing the feature-capturing capability 
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of individual models. Zhang et  al. (2021a; b) developed an innovative ensemble deep-
learning model with dynamic error correction and multi-objective ensemble pruning to 
address time-series forecasting tasks. The superior forecasting performance of the pro-
posed model was verified using time-series data (i.e., PM2.5 concentration, wind speed, 
and electricity price).

Overall, the research on stock return forecasting is already quite extensive, and hybrid 
models become widespread because they can combine the strengths of different models. 
What remains unsolved in the literature is return forecasting for the AIRO index. Most 
related research has focused on the correlation of the AI industry with other industries 
and the application of AI technology in the forecasting field. However, it would be ben-
eficial to design a reliable forecasting method considering the complexity of the data-
generating process of the AIRO index, which could help investors develop optimal stock 
investment portfolios and hedge investment risk. Therefore, this paper attempts to 
combine the econometric models and machine learning methods to depict the complex 
structural characteristics of the AIRO index returns, based on previous research on the 
subject. It then constructs a hybrid forecasting approach to obtain optimal forecasting 
performance.

Methods
The EEMD method

The EEMD method (Wu and Huang 2009) is selected to decompose the complex original 
signal into components with different characteristics while maintaining the nonstation-
ary and nonlinear features of the original time-series data for this study on decomposing 
the AIRO index returns series. The main steps of the decomposition are as follows:

(1)	 Add a white noise series oi(t) with a given amplitude (i.e., 0.1) to the AIRO Index 
returns series x(t) , and the new series xi(t) is as follows:

(2)	 Decompose the time series xi(t) into n IMFs cij(t) (j = 1, 2,..., n) and a residual term 
ri(t) using the EMD method, and the results are as follows:

where cij(t) is the jth IMF in the ith trial.
(3)	 Repeat steps (1) and (2) for M times with different white noise each time, and 

obtain the corresponding IMF components of the decomposition.
(4)	 Calculate the average of the corresponding IMFs of M trials for the final IMFs, as 

follows:

Once the EEMD completes, the original time series can be expressed as a linear com-
bination of IMFs and the residual term as follows:

(1)xi(t)=x(t)+ oi(t)

(2)xi(t) =
n

j=1

cij(t)+ ri(t)

(3)cj(t) =
1

M
cij(t)
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where cj(t) (t = 1, 2,…, T) is the jth IMF obtained by using the EEMD method at time t, 
r(t) is the final residual term, and n is the number of IMFs.

The PSO–LSSVM method

The LSSVM method

To describe the nonlinear characteristics of the AIRO index returns better, we single out 
the LSSVM model, which is a typical method in machine-learning (Suykens and Vande-
walle 1999), and is particularly suitable for modeling small-size samples and nonlinear 
problems. The specific description of the model is as follows.

Given a set of samples, {yt , xt}Tt=1 , xt is the input vector, and yt is the output variable. 
Then the decision function can be defined as:

where w is the weight vector, Ŵ(x) represents the nonlinear function used to map the 
input space to a high-dimensional feature space, and cbias is the bias term.

The objective function of the LSSVM model is:

where creg is the regularization constant, and σt denotes the training error.
Next, the final outcome of the LSSVM method based on the Kuhn-Tucker conditions 

can be described as:

where K (x, xt) denotes the kernel function. We apply the radial basis function (RBF) 
with a width of ω (Keerthi and Lin 2003), which can be expressed as:

The PSO method

The PSO method is a computational technique that uses a set of particles, represent-
ing potential solutions to a problem (Eberhart and Kennedy 1995). Each particle can 
be defined as a potential solution to the problem in a d-dimensional search space. 
Let Ui = (ui1,ui2, . . . ,uid) be the current position of particle i, Vi = (vi1, vi2, . . . , vid) 
be the current velocity, Pi = (pi1, pi2, . . . , pid) be the previous position, and 
Pg = (pg1, pg2, . . . , pgd) be the best position among all particles, then the best positions 
of particle i is shown as:

(4)x(t) =
n

∑

j=1

cj(t)+ r(t)

(5)y(x) = wTŴ(x)+ cbias

(6)
min





1

2
�w�2 + creg

2

T (tr)
�

t=1

σ 2
t





s.t. yt = wTŴ(xt)+ ζ
(tr)
t + cbias, t = 1, 2, . . . ,T (tr)

(7)y(x) =
T (tr)
∑

t=1

�tK (x, xt)+ cbias

(8)K (x, xt) = exp
(

−0.5�x − xt�2/ω2
)

.
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where vki  and uki  are the current velocity and position of particle i, respectively; w is the 
inertia weight; c1 and c2 are acceleration coefficients; and r1 and r2 are two independently, 
uniformly distributed, random variables with the range [0, 1].

The PSO‑LSSVM method

Due to the parameters ω and creg having a significant impact on forecasting accuracy, 
we employ the PSO method to obtain the optimal parameters (Eberhart and Kennedy 
1995); hence, the main steps of the PSO-LSSVM approach can be described as follows:

Step 1 Take the parameters ( ω,creg ) as swarms, and initialize a population of particles 
with random positions and velocities.

Step 2 Evaluate the fitness of each particle based on the following fitness func-

tion:Fitness = [ 1N
20
∑

i=1

(ŷi − y2i )]1/2 , where yi and ŷi represent the actual and forecast 

AIRO Index returns, respectively.
Step 3 Update the previous and global best fitness values according to the fitness eval-

uation results.
Step 4 Update the velocity and position values for each particle until the stop condi-

tions are satisfied based on Eq. (9) and Eq. (10) (i.e., the number of iterations reaches a 
maximum of 100, or the optimal parameters satisfy the accuracy requirement, i.e., the 
value of fitness is less than 0.001).

The GARCH model

To capture the time-varying character of the movements for the AIRO index returns, we 
employ the GARCH model proposed by Bollerslev (1986), which is the most commonly 
used econometric model for analyzing the volatility of returns in financial markets.1 The 
model is defined as follows:

where ut represents the residual series, and ht is the conditional variance. When 
t = 1, . . . , n , εt ~ N(0, 1), the model should satisfy α0 > 0 , α ≥ 0 , β ≥ 0 and α + β < 1.

To depict the structural changes in the AIRO index returns, this paper combines the 
structural breakpoints with GARCH (1,1); the variance equation is shown in Eq. (12).

(9)vk+1
id = wvkid + c1r1[pid − ukid] + c2r2[pgd − ukid]

(10)uk+1
id = ukid + vid

rt = δrt−1 + ut

(11)ut = εt
√

ht

ht = α0 + αu2t−1 + βht−1

1  The GARCH-type models can consider the conditional heteroscedasticity of financial time series and can capture 
some other characteristics, such as time-variation, volatility clustering (Mohammadi and Su 2010; Salisu and Fasanya 
2013), while the AIRO index return series usually exhibit relevant characteristics.
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where D1, . . . ,Dn are dummy variables that are determined according to the structural 
breakpoints identified by the modified ICSS algorithms (Ewing and Malik 2017).

The hybrid method for forecasting AIRO index returns

The hybrid method is capable of modeling both nonlinearity and time variations, which 
indicates that it may possess better forecasting ability in terms of the AIRO index 
returns. In this circumstance, we attempt to construct a hybrid model based on the 
decomposition and integration, and model combination methods. The procedures can 
be described as follows:

(1)	 The EEMD method is used to decompose the original AIRO index return series to 
obtain the IMFs and the residual term.

(2)	 We normalize the decompose IMFs components and residual term, and appropri-
ately select training and testing samples. Then, the single models above (i.e., the 
GARCH-type and PSO-LSSVM models) are used to forecast the IMF components 
and the residual term, respectively.

(3)	 The forecasting results of each IMF component and residual term are superim-
posed to obtain the final forecasting results of the decomposition and integration 
models (i.e., the EEMD-GARCH-type and EEMD-PSO-LSSVM models).

(4)	 The following two methods are used to obtain the hybrid predictions:
(5)	 The GARCH-type models are built to predict high-frequency IMFs with time-

varying characteristics, whereas the PSO-LSSVM model predicts low-frequency 
IMFs and residual terms with nonlinear characteristics. Next, the final forecasting 
results of the new hybrid model are obtained by superimposing the above forecasts, 
i.e., the EEMD-PSO-LSSVM-GARCH(A) and the EEMD-PSO-LSSVM-ICSS-
GARCH(A) models.

(6)	 We combine the forecasting results of the EEMD-GARCH-type and the EEMD-
PSO-LSSVM in Step (3) using the mean combination approach, and the new hybrid 
models, i.e., the EEMD-PSO-LSSVM-GARCH(B) and EEMD-PSO-LSSVM-ICSS-
GARCH(B),2 are used to obtain the final forecasting results.

The evaluation criteria for forecasting performance

In accordance with Hansen and Lunde (2005), we apply two widely used statistical loss 
functions, i.e., the Mean Square Error (MSE) and the Mean Absolute Error (MAE)—to 
evaluate the out-of-sample forecasting performance for the AIRO index returns, which 
are defined as Eqs. (13)–(14):

(12)ht = ω + d1D1 + · · · + dnDn + αu2t−1 + βht−1

2  We use the mean combination approach to obtain the corresponding forecasts. This is because some research points 
out that the simple mean forecast combination cannot be outperformed by other complicated forecast combination 
methods (Rapach et al. 2010; Claeskens et al. 2016).
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where ht represents the actual return, whereas ĥt represents the forecasted return; T and 
N represent the number of full- and in-sample observations, respectively, and T − N is 
the number of out-of-sample observations.

Meanwhile, we use the Model Confidence Set (MCS) method proposed by Hansen 
et al. (2011) to judge whether the models used have a statistically significant difference in 
forecasting performance. In particular, the range statistic is chosen in this study, i.e., 
TR = maxa,b∈M

∣

∣gab,t
∣

∣√
var(gab,t )

 , where gab,t denotes the relative performance variable of 

model a and b . The range statistic and its corresponding p-value are obtained using a 
bootstrap procedure. Following Hansen et al. (2011) and Wang et al. (2016), we consider 
a confidence level of 90%, which means that a model with the MCS p value larger than 
0.1 will be included in the MCS.

Data descriptions
Following Huynh et al. (2020), this study chooses the daily AIRO index price data from 
the NASDAQ market as the research focus, with the data obtained from Bloomb-
erg.3 The AIRO index reflects the innovation level of the market and the performance 
of the AI industry in the era of the Fourth Industrial Revolution (Tiwari et  al. 2021). 
The full sample ranges from 12/19/2017 to 07/26/2021, and the specific sample periods 
for the training and testing samples are 12/19/2017 to 10/13/2020 and 10/14/2020 to 
07/26/2021, respectively. The AIRO index returns are calculated as rt = 100 × [log(pt) − 
log(pt−1)], where pt indicates the AIRO index price at time t. The daily AIRO index log 
returns are shown in Fig. 1.

(13)MSE = 1

T − N

T
∑

t=N+1

(ĥt − ht)
2

(14)MAE = 1

T − N

T
∑

t=N+1

∣

∣

∣ĥt − ht

∣

∣

∣

Fig. 1  The AIRO index log-returns

3  Further information on the AIRO index is available at https://​index​es.​nasda​qomx.​com/​Index/​Overv​iew/​NQROBO.

https://indexes.nasdaqomx.com/Index/Overview/NQROBO
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Table  1 presents the descriptive statistics of the AIRO index returns. It can be 
observed that the AIRO index returns series has negative skewness and positive excess 
kurtosis, suggesting the presence of a leptokurtic and fat-tailed distribution. Moreover, 
the Jarque–Bera test results indicate that the null hypothesis of a normal distribution is 
rejected at the 1% significance level. The Ljung–Box Q-statistics for the squared returns 
also reject the null hypothesis of no autocorrelation up to the 10th order at the 1% sig-
nificance level, which indicates the existence of autocorrelation in the volatility of the 
AIRO index returns. Table 1 also presents the results of the unit root tests. Specifically, 
the results of the Augmented Dickey-Fuller (ADF—Dickey and Fuller 1981) test and the 
Phillips–Perron (PP—Phillips and Perron 1988) test reject the null hypothesis of a unit 
root at the 1% significance level, indicating that the AIRO index returns are stationary 
over the sample period.

Results and discussions
The EEMD decomposition results

Based on this discussion regarding methods, we obtain the EEMD decomposition result 
for the AIRO index returns in Fig.  2. First, the original AIRO index returns series is 
decomposed into eight independent intrinsic mode functions and one residual term, 
defined as sub-series in the following section, using the EEMD method. As depicted in 
Fig. 2, the IMFs obtained by the EEMD algorithm are irregular, which is caused by the 
nonlinear and noise components of the AIRO index returns. In addition, the frequency 
of the eight IMF components and the residual term are arranged from high to low, which 
shows the diversity of the AIRO index returns in terms of the frequency and multi-scale 
characteristics. Furthermore, it shows that the AI industry may be affected by various 
factors, including the strong uncertainty regarding the industrial chain, and the develop-
ment of AI technology. Specifically, the average period of the IMF1-IMF5 is relatively 
short, which is the high-frequency component of the original AIRO index returns series, 
and reflects the impact of short-term irregular events on the AI industry. The GARCH-
type models are used to forecast these sub-series.

The average period of IMF6-IMF8 is relatively long, indicating the impact of major 
events in the field of artificial intelligence, while the PSO-LSSVM model is applied to 
forecast these sub-series. Moreover, the residual term has declined slowly since Septem-
ber 2019, which reflects that under the impact of economic fundamentals—industrial 

Table 1  Descriptive statistics of the log-returns of the AIRO index

The p values are reported in parentheses. SD represents the standard deviation. J–B is Jarque–-Bera test statistic, with the 
null hypothesis of normal distribution. Q(10) and Q2(10) denote the Ljung–Box Q-statistics of the returns and squared 
returns series for up to 10th order serial autocorrelation. ADF and PP are the statistics of the augmented Dickey–Fuller and 
Phillips–Perron unit root tests, respectively, based on lags determined by the Akaike Information Criterion (AIC)

AIRO index returns AIRO index returns

Mean 0.0672 Q(10) 91.354 (0.0000)

SD 1.3775 Q2(10) 619.02 (0.0000)

Skew  − 0.9783 ADF  − 8.8190 (0.0000)

Kurtosis 13.2993 PP  − 29.2280 (0.0000)

J–B 4180.96 (0.0000)
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structure adjustment, macro policy, and so on—the AIRO index returns have declined 
since September 2019. Investors can capture the AI industry development via this long-
term trend, and grasp the investment risks and returns, which enable them to look for 
new AI industry investment opportunities.

Structural breaks test in AI and robotics market

This paper uses the modified version of Inclan and Tiao’s (1994) iterated cumulative 
sum of squares (ICSS) algorithm to identify six structural breakpoints in the AIRO 
index returns series, and divides the sample period into seven intervals accordingly. The 
results are presented in Table 2. It is worth noting that the structural break in February 
2020 was closely related to the COVID-19 pandemic, and “OpenAI Five” beat humans. 
Accenture invested in China and focused on an artificial intelligence layout for the first 
time in August 2018, causing a breakpoint in the AIRO index returns. The disease diag-
nosis based on AI technology made a great breakthrough for the breakpoint in February 

Fig. 2  EEMD decomposition of log-returns for the AIRO index

Table 2  Structural breakpoints in the AIRO index returns, as detected by the ICSS algorithm

This paper employs the modified version of the ICSS algorithm to detect the structural breakpoints. The specific sample 
periods are from 2017/12/19 to 2021/7/26

No Break point Time period Variance

2017/12/19–2018/2/1

1 2018/2/1 2018/2/2–2018/4/9 1.2705

2 2018/4/9 2018/4/10–2018/8/3 0.7396

3 2018/8/3 2018/8/4–2019/1/25 1.6029

4 2019/1/25 2019/1/26–2020/2/21 0.8942

5 2020/2/21 2020/2/22–2020/5/13 3.4373

6 2020/5/13 2020/5/14–2021/7/26 1.2177



Page 13 of 23Zhang et al. Financial Innovation            (2023) 9:75 	

2018, indicating that AI can revolutionize the diagnosis and management of diseases 
through a large amount of data analysis and classification. These results confirm that 
structural breaks in the AIRO index returns tend to occur due to emergencies or exter-
nal shocks.

Forecasting results of AIRO index returns

We examine the forecasting performance of all competitive models, in order to find the 
optimal forecasting model for AIRO index returns based on the randomness, periodic-
ity, and trend of this series. First, we consider a single forecasting model without the data 
decomposition method, i.e., the traditional econometric model (GARCH-type models) 
and the machine-learning framework (PSO-LSSVM method). Second, we employ the 
GARCH-type and the PSO-LSSVM models to forecast all the sub-series, respectively, 
and obtain the forecasts from integrated-decomposed models (i.e., the EEMD-GARCH-
type and EEMD-PSO-LSSVM models). Third, we use two methods to combine the 
EEMD-GARCH-type and EEMD-PSO-LSSVM models and derive forecasts from the 
final new hybrid models (i.e., EEMD-PSO-LSSVM-ICSS-GARCH (A) and (B) models). 
Finally, we calculate the loss function values and corresponding MCS test of 1-day ahead 
forecasting results for the daily log-returns of the AIRO index to evaluate the predictive 
abilities of the different models. The forecasting results are presented in Table 3. From 
this table, we identify the following findings.

(1)	 The MSE and MAE values indicate that the forecasting performances of the 
GARCH and the PSO-LSSVM models are not significantly different. The hybrid 
PSO-LSSVM and GARCH models perform better than the two single models, i.e., 
the EEMD-PSO-LSSVM-GARCH(A) and (B) models. The results show that the 
PSO-LSSVM model can better capture the nonlinear characteristics of the AIRO 
index returns, and has the advantages of nonlinear mapping, self-learning, and self-
organization. On the contrary, the GARCH model has the advantage of capturing 
the time-varying and volatility-clustering characteristics of the AIRO index returns. 
The results also suggest that the hybrid models can consider the linear and non-

Table 3  1-Day ahead forecasting results for the daily log-returns of the AIRO index

The numbers in the table refer to the values of the two loss functions. The bold numbers indicate that the corresponding 
models have the lowest forecasting losses. The underlined numbers indicate that the corresponding models are excluded in 
the MCS under the corresponding criteria

Models MSE MAE

GARCH 1.3760 0.8885

ICSS-GARCH 1.3584 0.8837

PSO-LSSVM 1.3530 0.8807

EEMD-GARCH 0.6745 0.6277

EEMD-ICSS-GARCH 0.6661 0.6294

EEMD-PSO-LSSVM 0.6738 0.6375

EEMD-PSO-LSSVM-GARCH(A) 0.6433 0.6089

EEMD-PSO-LSSVM-GARCH(B) 0.6423 0.6087

EEMD-PSO-LSSVM-ICSS-GARCH(A) 0.6330 0.5932

EEMD-PSO-LSSVM-ICSS-GARCH(B) 0.6280 0.5894
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linear characteristics of the AIRO index returns, and combine the advantages of 
the PSO-LSSVM and GARCH models. This helps in obtaining superior forecasting 
performance compared to the single model.

(2)	 The models that consider structural changes can achieve even better predictive 
performance. As shown in Table 3, the ICSS-GARCH and EEMD-ICSS-GARCH 
models have lower forecasting losses than the models without structural changes. 
The improved predictive performance is particularly evident for the new mixed 
models that consider structural breakpoints. Huynh et al. (2020) point out that as 
these firms are participants in the not yet mature AI market, AI stocks may react 
significantly to changes in other asset markets. Therefore, incorporating structural 
breakpoints can better capture the response of the AI market to emergencies, lead-
ing to the models making more accurate predictions.

(3)	 Compared to the single models, the decomposition-integration models usually 
perform better in their ability to forecast the AIRO index returns. Specifically, as 
shown in Table 3, the values of MSE and MAE always indicate that the forecasting 
results of the EEMD-GARCH-type and EEMD-PSO-LSSVM models are signifi-
cantly better than those of the corresponding models that do not apply the EEMD 
algorithm. Moreover, the decomposition-integration models are always included in 
MCS under more criteria than single models with a confidence level of 90%. This 
result shows that the single model is greatly affected by the characteristics of the AI 
industry and the data itself, such that its prediction ability is weaker than that of the 
decomposition-integration models. Thus, the EEMD method can account for the 
periodicity, randomness, and trend characteristics of the AIRO index returns. This 
method effectively decomposes the original sequence into simple modes to obtain 
stable IMFs components and the residual term, thereby improving the forecasting 
accuracy. Moreover, the results can help investors mine the forecasting information 
of the AI industry index more comprehensively and measure the investment risks 
more reasonably.

The final new hybrid models involving the structural characteristics mentioned 
above always result in superior forecasting. As can be seen from Table  3, the val-
ues for the two loss functions involving the two final hybrid models are significantly 
lower than those of the other models. Additionally, the MCS test results also show 
that compared with other models, the final hybrid models are included in the MCS 
under more criteria. This indicates that the hybrid models can consider the linear 
and nonlinear, complexity, and mutability characteristics of the AIRO index returns, 
thereby obtaining superior forecasting performance compared with other models. 
Particularly, the values of MSE and MAE are significantly reduced with the hybrid 
models compared with the others, and the final mean combination model (i.e., the 
EEMD-PSO-LSSVM-ICSS-GARCH(B) models) usually performs the best out of all 
the models considered. The results show that the AI industry is affected by multiple 
factors. Thus, the AIRO index returns present multiple characteristics, and the final 
hybrid model combined with the EEMD method and the modified ICSS algorithm 
can help investors effectively capture the complexity of the industry index. Hence, 
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they can change their investment strategy to adapt to the changing financial market, 
and obtain steady income streams under different investment risks.

Economic significance

During the past decade, global investors have paid wide attention to the stocks of AI and 
robotics companies to reap the potential investment benefits. In order to judge whether 
the new models can help AI market investors gain higher investment benefits, this paper 
further uses the mean–variance investment strategy to investigate the economic values 
of AIRO index returns forecasting models from an asset allocation perspective (Ferreira 
and Santa-Clara 2011; Xing and Zhang 2022). The main forms are as follows:

Assuming that a mean–variance investor optimally allocates between the AIRO index 
and risk-free bills based on the various return forecasts, the utility Ut of portfolio strat-
egy P can be defined as follows:

where Et(•) and Vart(•) represent the conditional mean and variance of the portfolio 
return RP

t  at time t, respectively. ret  and σ 2
t  are the AIRO index excess return and volatility 

on day t, respectively. rft  is the risk-free rate, γ is the investor’s coefficient of relative risk 
aversion, and ωt is the portfolio weight. By maximizing the objective function, we can 
obtain the optimal portfolio weight ω∗

t  , given by

where r̂et+1 and σ̂ 2
t+1 are the out-of-sample forecasting value of excess returns and volatil-

ity, respectively. Specifically, we apply the forecasting models above to ensure the value 
of r̂et+1 , and use the prevailing historical average to forecast σ̂ 2

t+1 . We restrict the value of 
ω∗
t  between 0 and 1.5 because of the short-sale constraint. Then, we compute the portfo-

lio return RP
t+1 as:

The mean–variance investor who allocates assets using Eq.  (17) can realize the cer-
tainty equivalent return (CER), defined in Eq. (18):

where µ̂p and σ̂ 2
p  are the sample mean and variance, respectively, of the portfolio return 

over the out-of-sample evaluation period.
Using the method above, this paper proposes different portfolio strategies under dif-

ferent optimal weights, which are determined according to the return forecasts above. 
Further, we calculate the average portfolio return (R) and certainty equivalent return 
(CER). It should be noted that the higher values of CER usually mean a greater eco-
nomic value of the corresponding portfolio strategy, i.e., the economic significance of 

(15)
Ut(R

P
t ) = Et(R

P
t )− 0.5γVart(R

P
t )

= ωt(r
e
t + r

f
t )+ (1− ωt)r

f
t − 0.5γω2

t σ
2
t

(16)ω∗
t=

1

γ

(

r̂et+1

σ̂ 2
t+1

)

(17)RP
t+1 = ω∗

t (r
e
t+1 + r

f
t+1)+ (1− ω∗

t )r
f
t+1

(18)CER = µ̂p −
γ

2
σ̂ 2
p



Page 16 of 23Zhang et al. Financial Innovation            (2023) 9:75 

the corresponding model is more positive in practical applications. The test results are 
shown in Table 4. Hence, we have the following findings.

First, the R and CER values of the portfolio strategy are relatively higher for forecasting 
models that consider structural changes, and the decomposition-integration models also 
have better economic value. As shown in Table 4, the values for the models combining 
the EEMD methods (the EEMD-GARCH and EEMD-PSO-LSSVM models) are mostly 
better than those for single models (the GARCH and PSO-LSSVM models). Similarly, 
the economic value of the models combining structural breakpoints is largely better than 
the others, which enables investors to consider this factor when developing portfolio 
strategies to achieve better returns.

Second, the new hybrid model exhibits the best economic performance. As shown in 
Table  4, the R and CER values of the final hybrid models are always the highest (i.e., 
EEMD-PSO-LSSVM-ICSS-GARCH(A) and (B)), which suggests that these can capture 
the complex characteristics of the AIRO index simultaneously, and thus yield the best 
economic value.

Robustness checks

Different data frequencies

The diversity of investor behavior normally results in data exhibiting various characteris-
tics at different frequencies. Therefore, to examine whether and how the central empiri-
cal results change over different data frequencies, and to further judge whether the 
hybrid model is suitable for investors with different trading horizons, this paper replaces 
the daily data with weekly data, while the full sample ranges remain unchanged. Specifi-
cally, we use weekly data to re-estimate the models, with the specific periods of training 
and testing samples being 12/19/2017–08/23/2020 and 08/24/2020–07/26/2021, respec-
tively, given the full sample of 12/19/2017–07/26/2021.

As Table 5 shows, the MSE and MAE values of the EEMD-GARCH and EEMD-PSO-
LSSVM models are lower than those of the GARCH and PSO-LSSVM models without 
the EEMD method. This shows that the EEMD method can effectively decompose the 
AIRO index return series with noise, allowing us to obtain more accurate data for the 

Table 4  Portfolio performance based on the various AIRO index return forecasting models

The underlined numbers indicate that the corresponding models have the highest R or CER among all models

Model γ = 3 γ = 6

CER R CER R

GARCH 5.8206 8.1122 5.1192 8.0959

ICSS-GARCH 5.9958 8.3265 5.3127 8.5046

PSO-LSSVM 6.0763 8.5270 5.0061 8.3902

EEMD-GARCH 6.0251 9.8281 5.4408 9.1478

EEMD-ICSS-GARCH 6.4976 10.1235 6.9680 9.6550

EEMD-PSO-LSSVM 6.2975 9.4479 5.6500 10.1256

EEMD-PSO-LSSVM-GARCH(A) 7.2490 11.1524 7.0463 10.8509

EEMD-PSO-LSSVM-GARCH(B) 7.5180 10.1599 7.0558 11.7524

EEMD-PSO-LSSVM-ICSS-GARCH(A) 7.8384 12.4724 7.1233 10.3698

EEMD-PSO-LSSVM-ICSS-GARCH(B) 8.1890 12.1558 7.5918 11.8649
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subsequent prediction process. Hence, the decomposition-integrated forecasting mod-
els proved to be better than the single models at a weekly frequency as well.

Furthermore, the final hybrid models also yield superior forecasting performance 
compared to the other models. Specifically, the MSE and MAE values of the final hybrid 
models (A and B models) are significantly lower. This shows that investors with both, 
long and short trading horizons, can consider the new hybrid model to capture the com-
plex industry characteristics and forecast the AIRO index returns with more accuracy. 
These findings have important implications for investors and policymakers in terms of 
portfolio diversification, risk management, asset allocation, and price regulation. Over-
all, our results are robust across high and low frequency data.

Different sample periods

Some uncertainties may affect the central results presented till now. To determine 
whether different sample periods can affect our findings, we select a new sample 
period of 07/26/2018–07/26/2021 to re-estimate the models, and the correspond-
ing in and out-of-sample periods are chosen to be 07/26/2018–11/25/2020 and 

Table 5  1-Week ahead forecasting results for weekly log-returns of the AIRO index

The numbers in the table refer to the values of the two loss functions. The underlined numbers indicate that the 
corresponding models have the lowest forecasting losses

Model MSE MAE

GARCH 5.6166 1.8659

ICSS-GARCH 5.6836 1.8563

PSO-LSSVM 5.8967 1.9826

EEMD-GARCH 2.7728 1.2973

EEMD-ICSS-GARCH 2.7684 1.2948

EEMD-PSO-LSSVM 2.7412 1.3188

EEMD-PSO-LSSVM-GARCH(A) 2.7085 1.2966

EEMD-PSO-LSSVM-GARCH(B) 2.6995 1.2869

EEMD-PSO-LSSVM-ICSS-GARCH(A) 2.6832 1.2957

EEMD-PSO-LSSVM-ICSS-GARCH(B) 2.6856 1.2746

Table 6  1-Day ahead forecasting results for daily log-returns of the AIRO index under alternative 
sample periods

The numbers in the table refer to the values of the two loss functions. The underlined numbers indicate that the 
corresponding models have the lowest forecasting losses

Model MSE MAE

GARCH 1.1642 0.8452

ICSS-GARCH 1.0946 0.8384

PSO-LSSVM 1.2654 0.8807

EEMD-GARCH 0.6614 0.6239

EEMD-ICSS-GARCH 0.6593 0.6183

EEMD-PSO-LSSVM 0.6674 0.6146

EEMD-PSO-LSSVM-GARCH(A) 0.5855 0.5935

EEMD-PSO-LSSVM-GARCH(B) 0.5592 0.5902

EEMD-PSO-LSSVM-ICSS-GARCH(A) 0.5686 0.5975

EEMD-PSO-LSSVM-ICSS-GARCH(B) 0.5474 0.5893
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11/26/2020–07/26/2021, respectively. The results of the 1-day ahead forecasting 
using this new setup are presented in Table 6. By comparing the results from the two 
loss functions reveals that the forecasting results of the decomposition-integration 
models are superior to those of the single model. In addition, compared with other 
models, the two new final hybrid models continue to achieve better forecasting per-
formance, and the mean combination model (B model) performs the best among 
all the models. In summary, the central results are also robust to different sample 
periods.

Different artificial intelligence index

To prove the superiority and robustness of the final hybrid model, this paper further 
chooses other Artificial Intelligence and Robotics indices as research objects to depict 
the changes in that specific industry. Specifically, this paper selects the NYSE FactSet 
Global Robotics and Artificial Intelligence Index (NYFSRAI), which can track equity 
performance in robotics and artificial intelligence. The Robotics area mainly includes 
companies referring to robotics integrated applications, development, manufactur-
ing, and the devices involved in high-speed, high-precision, and automation etc. The 
AI area mainly includes companies involved in AI development, programming, and 
software and hardware implementation. The loss function values of each model are 
listed in Table 7, and the main results are discussed below.

On the one hand, the decomposition-integration model still has superior forecast-
ing ability compared to single models for the NYSERAI index. As Table  7 shows, 
the loss function values of the EEMD-PSO-LSSVM and EEMD-GARCH models are 
smaller than those of the PSO-LSSVM and GARCH models. This shows that the 
EEMD algorithm can effectively decompose the NYSERAI index return series con-
taining noise, and obtain the stable IMFs and the residual term to provide more suit-
able data for the subsequent forecasting process. On the other hand, the final hybrid 
models still have the best forecasting performance for the NYSERAI index. Specifi-
cally, the values of MSE and MAE in Table  7 show that the loss function values of 
EEMD-PSO-LSSVM-ICSS-GARCH (A) and (B) decrease significantly.

Table 7  1-Day ahead forecasting results for daily log-returns of the NYSERAI index

The numbers in the table refer to the values of the two loss functions. The underlined numbers indicate that the 
corresponding models have the lowest forecasting losses

Model MSE MAE

GARCH 1.6261 0.9682

ICSS-GARCH 1.5903 0.9632

PSO-LSSVM 1.6339 0.9712

EEMD-GARCH 0.9568 0.7547

EEMD-ICSS-GARCH 0.9034 0.9283

EEMD-PSO-LSSVM 0.8421 0.6611

EEMD-PSO-LSSVM-GARCH(A) 0.8410 0.6601

EEMD-PSO-LSSVM-GARCH(B) 0.7961 0.6693

EEMD-PSO-LSSVM-ICSS-GARCH(A) 0.6930 0.6354

EEMD-PSO-LSSVM-ICSS-GARCH(B) 0.7083 0.6277
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Different benchmarking models

To prove the superiority of the final hybrid model in this paper, we further compare the 
forecasting accuracy of the hybrid model with some recognized benchmarking models, 
such as neural network models according to Fang et al. (2020). The daily data is trained 
with the same interval as above, to obtain objective comparison results. Specifically, we 
set the full sample range from 12/19/2017 to 07/26/2021, and the specific sample peri-
ods for the training and testing samples are 12/19/2017 to 10/13/2020 and 10/14/2020 to 
07/26/2021. The 1-day ahead forecasting results of the different benchmarking models 
are listed in Table 8. A comparison with Table 3 shows that the final hybrid models out-
perform the benchmarking models. For example, the MSE values of the EEMD-PSO-
LSSVM-ICSS-GARCH (A) and (B) are 0.6330 and 0.6280, respectively, whereas those of 
the DNN, LSTM, PSO-BP, and GA-ELM are 1.7882, 1.6924, 1.7660, and 1.6252, respec-
tively. This further proves the robustness of the central conclusion.

Transaction cost

The transaction cost may make a difference in the performance of the portfolio (Guido-
lin and Pedio 2021). Therefore, to judge whether the results of the economic value test 
are robust, this study assumes that there are 30 basis points of transaction cost when 

Table 8  1-Day ahead forecasting results for daily log-returns of the AIRO index of different 
benchmarking models

The numbers in the table refer to the values of the two loss functions. The underlined numbers indicate that the 
corresponding models have the lowest forecasting losses

Model MSE MAE

DNN 1.7882 1.0067

LSTM 1.6924 0.9711

PSO-BP 1.7660 1.0082

GA-ELM 1.6252 0.9368

EEMD-PSO-LSSVM-ICSS-GARCH(A) 0.6330 0.5932

EEMD-PSO-LSSVM-ICSS-GARCH(B) 0.6280 0.5894

Table 9  Portfolio performance based on the various AIRO index return forecasting models 
including transaction cost

The underlined numbers indicate that the corresponding models have the highest R or CER among all models

Model γ = 3 γ = 6

CER R CER R

GARCH 6.0206 9.3271 5.8226 8.5831

ICSS-GARCH 6.1165 9.3118 5.9793 9.2696

PSO-LSSVM 6.1306 9.4493 6.2501 9.3859

EEMD-GARCH 6.9194 10.4653 6.6018 9.7862

EEMD-ICSS-GARCH 7.0716 10.1235 6.9803 10.0194

EEMD-PSO-LSSVM 6.5572 10.2998 6.3590 10.2606

EEMD-PSO-LSSVM-GARCH(A) 8.1190 11.0244 7.2438 11.0990

EEMD-PSO-LSSVM-GARCH(B) 8.0180 11.3953 7.1586 11.4274

EEMD-PSO-LSSVM-ICSS-GARCH(A) 8.9445 13.0896 7.6390 12.9952

EEMD-PSO-LSSVM-ICSS-GARCH(B) 9.1566 12.5948 7.5882 11.9839
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trading assets. The new results are presented in Table 9. We find that the CER and R val-
ues based on the final hybrid models are relatively higher than those of the other models. 
This shows that when the transaction cost is considered, we can still prove the robust-
ness of the economic significance results.

Conclusions and future work
To accelerate the development of the AI industry globally, relevant industries must 
examine this rapidly changing AI market and make innovative investments. Therefore, 
from the investor perspective, it is crucial to understand the Artificial Intelligence index. 
In order to mine the intrinsic structural characteristics of the AIRO index returns deeply 
and comprehensively, and to judge which type of model can better predict the AIRO 
index returns, this paper is the first one attempting to combine machine-learning tech-
niques with traditional econometric models based on the “decomposition-integration” 
and “model combination” methods for the AIRO index returns forecasting. Specifically, 
the EEMD method and modified ICSS algorithm are used to analyze the data character-
istics, and the basic single models in this paper include the PSO-LSSVM and GARCH 
models. The main conclusions are drawn as follows.

First, the EEMD decomposition and integration method significantly improves the 
forecasting performance of the single models of the AIRO index returns. This is mainly 
because the EEMD method can obtain a more stable and simple mode, giving full con-
sideration to the periodicity, randomness, and trend characteristics of the AIRO index 
returns. Consequently, more accurate forecasting results are obtained, driven by the fea-
tures of the data. In addition, the result is valid regardless of whether it is for the PSO-
LSSVM or GARCH models. This further proves the applicability of the decomposition 
and integration method to the AIRO index returns.

Second, regardless of whether we use daily or weekly data and different sample peri-
ods, the forecasting performance of the GARCH and PSO-LSSVM models is not signifi-
cantly different. Additionally, the hybrid model (i.e., the EEMD-PSO-LSSVM-GARCH 
model), which combines these frameworks, can markedly improve the forecasting per-
formance of the single models. This result shows that the traditional econometric model 
is suitable for describing the time-varying characteristics in the AIRO index returns; the 
machine-learning model can better capture the nonlinear characteristics; and the hybrid 
model can effectively combine their advantages.

Third, the AIRO index returns exhibit complex structural characteristics. Specifi-
cally, it not only presents time-varying and nonlinear characteristics, but also possesses 
high complexity and mutability. In a context where most AI market participants are not 
mature, the structural change caused by an external shock plays a critical role in predict-
ing the AIRO index return. Additionally, the final hybrid model, which further considers 
structural change (i.e., the EEMD-PSO-LSSVM-ICSS-GARCH model), can comprehen-
sively capture the complex characteristics of the AIRO index returns, and yield the best 
forecasting performance and economic value.

These conclusions have clear theoretical and practical implications. On the one 
hand, we perfect the research framework in the field of Artificial Intelligence. Previous 
research has focused on the correlation between the AI industry and other industries or 
the application of AI technology in the forecasting field. We further focus on the AIRO 



Page 21 of 23Zhang et al. Financial Innovation            (2023) 9:75 	

Index, and conduct an in-depth analysis and forecasting, thereby perfecting the research 
framework in the field of Artificial Intelligence; On the other hand, based on the essen-
tial characteristics and pattern characteristics exhibited by the AIRO index returns, we 
propose the optimal forecasting model (i.e., EEMD-PSO-LSSVM-ICSS-GARCH model). 
The final forecasting model can overcome the limitations of a single model, which fur-
ther expands the relevant forecasting theory.

The conclusions in this paper also have several practical implications for both policy-
makers and investors interested in portfolio diversification. First, the financial market 
participants can utilize the EEMD-PSO-LSSVM-ICSS-GARCH model to capture and 
mine more of the data characteristics of the AIRO index returns. This can help them 
make more accurate forecasting decisions, which can provide an important reference 
for them to target investment opportunities, prevent risks, and reap benefits in the AI 
industry. Second, forecasting of the AIRO index returns can help the policymakers 
understand the future changes in the AI stock market in a timely way. This can result in 
the formulation of effective policies to maintain the financial market and social stability, 
involving financial market risk management, option pricing etc.

In the future, there is still much interesting work to be explored regarding the AI 
industry. In particular, we could further explore the factors influencing the AI index and 
analyze the characteristics of the AI industry in deeper detail. This would enable the 
construction of an accurate explanatory variables-based forecasting framework, which 
in turn could help investors grasp investment opportunities in the AI industry.
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