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Abstract 

In response to the unprecedented uncertain rare events of the last decade, we derive 
an optimal portfolio choice problem in a semi-closed form by integrating price dif-
fusion ambiguity, volatility diffusion ambiguity, and jump ambiguity occurring in the 
traditional stock market and the cryptocurrency market into a single framework. We 
reach the following conclusions in both markets: first, price diffusion and jump ambi-
guity mainly determine detection-error probability; second, optimal choice is more 
significantly affected by price diffusion ambiguity than by jump ambiguity, and trivially 
affected by volatility diffusion ambiguity. In addition, investors tend to be more aggres-
sive in a stable market than in a volatile one. Next, given a larger volatility jump size, 
investors tend to increase their portfolio during downward price jumps and decrease it 
during upward price jumps. Finally, the welfare loss caused by price diffusion ambigu-
ity is more pronounced than that caused by jump ambiguity in an incomplete market. 
These findings enrich the extant literature on effects of ambiguity on the traditional 
stock market and the evolving cryptocurrency market. The results have implications for 
both investors and regulators.

Keywords:  Robust portfolio choice, Detection error probability, Rare events, 
Ambiguity, Cryptocurrency, Welfare loss
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Introduction
The last decade witnessed unprecedented economic uncertainty in the financial mar-
ket. Episodes of uncertainty include the subprime crisis of 2008, Brexit in 2016, and the 
Sino-US trade conflict in 2019. The most recent and striking event is exemplified by the 
COVID-19 pandemic, which began in January 2020 and exerted a tremendous impact 
on the global economy (Altig et al. 2020) in the last 2 years. According to the Wall Street 
Journal, on March 9, 2020, S &P 500 fell by 7% within several minutes, triggering a cir-
cuit breaker. Then in the second quarter in 2020, S &P 500 Index rose by 19.95%, the 
DJIA rose by 17.77%, and the Nasdaq Index rose by 30.63%, with huge volatility. These 
rare events that precipitate a sudden shock to both security prices and volatilities are 
prevalent in the financial market. Examples include the 1987 stock crash and the 1997 
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Long Term Capital Market (LTCM) collapse (Liu et  al. 2003; Cheng and Yang 2017). 
Such rare events in the stock market naturally cause investors to feel anxious about their 
investments, especially those in emerging economies with limited access to different 
financial derivatives.1 Furthermore, the burgeoning cryptocurrency market is extremely 
highly volatile (Xu et al. 2019). Nobel Prize laureate Robert Shiller also highlighted that 
the source of value of Bitcoin is exceptionally ambiguous.2 Cryptocurrency markets 
experienced exponential growth in 2017 and a bubble burst in early 2018. In the wake of 
the pandemic, the market value of cryptocurrencies rose considerably in 2020. The mar-
ket value of cryptocurrencies has been very volatile but consistently at historically high 
levels in 2021 (Fang et al. 2022). These facts naturally make optimal portfolio allocation 
a novel issue. Therefore, we examine optimal portfolio choice under ambiguity in these 
two markets, when investors are uncertain about rare events.

The motivation behind this study is to recognize the dichotomy between ambiguity 
and the rare events model in the current literature that has three strands. The first strand 
examines rare events without considering the inherent ambiguity, and is exemplified by 
the seminal Duffie et al. (2000), Liu et al. (2003), and Bates (2019) using stochastic vola-
tility model with multi-jump (SVMJ) framework to study stock market problems. The 
second strand discusses only jump ambiguity and is represented in studies by Jin et al. 
(2018), Aït-Sahalia and Matthys (2019), and Jin et al. (2021). The third strand reflected 
in studies such as Branger and Larsen (2013) and Drechsler (2013), considers different 
ambiguities, including price diffusion and jump ambiguity, without focusing on rare 
events. Hence, we introduce ambiguity into the traditional stock market and crypto-
currency market models with rare events to capture such events more accurately. We 
answer the following questions: How can ambiguity influence the detection-error proba-
bility (DEP), measuring the ambiguity between the two models?3 Which effects do differ-
ent ambiguities exert on the investors’ portfolio choice? Do downward jumps (negative 
price jumps) and upward jumps (positive price jumps) have an asymmetric effect? What 
is the effect of different ambiguities on welfare loss? Are the effects on optimal portfolio 
choice in the traditional stock market and the cryptocurrency market different?

The main findings of this study are summarized as follows. First, we derive a semi-
closed form solution for the optimal portfolio choice and DEP with uncertain rare 
events risks. In particular, DEP is determined by price diffusion and jump. Second, opti-
mal portfolio choice is more significantly affected by price diffusion ambiguity than by 
jump ambiguity, and the effect of the volatility diffusion ambiguity is trivial. Third, we 
find an asymmetric effect on portfolio choice and explain this effect from the perspec-
tive of the disposition effect.4 For negative price jumps, investors “speculate” by increas-
ing the exposure. Intuitively, if they are ambiguity averse to a series of negative stock 
jumps, then increase in the volatility jump size decreases their probability of earning 
successive negative returns and increases the probability of market reversal. By contrast, 

1  Due to the financial friction, regulation and technology, financial market in both emerging economies and most devel-
oped ones around the world, including China with more than 180 million individual investors in 2021, can be classified 
as the incomplete market.
2  https://www.cnbc.com/2021/05/23/robert-shiller-sees-wild-west-in-housing-stock-and-crypto-markets.html.
3  Anderson et al. (2003) provide this powerful statistical tool used in Maenhout (2006).
4  Both Barber and Odean (2013) and Barberis and Thaler (2003) give comprehensive survey on the effect.
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they “de-risk” their positions by decreasing the exposure to upward price jumps. There-
fore, our model can explain the “disposition effect,” widely acknowledged as one of the 
most robust features about trading by individual investors (Barberis and Xiong 2009) in 
behavioral finance.5 Finally, welfare loss caused by price diffusion ambiguity and jump 
ambiguity is more significant.

Based on the main results, our study has policy implications in two aspects. First, 
investors should decrease portfolio choice, decrease leverage, and seek more informa-
tion6 when facing high market ambiguity aversion. Second, regulators are responsible for 
educating the investors, developing diverse financial market products, and strengthen-
ing reasonable supervision.

Our study is related to ambiguity aversion in stock market literature. Anderson et al. 
(2003) set the theoretical cornerstone for the following research by developing a robust 
approach in a continuous-time setting to penalize investors’ belief distortions from ref-
erence probability. Maenhout (2004, 2006) use this approach to derive portfolio choice 
rules reduced to uncertainty about the drift of state variables. Researchers examine the 
optimal portfolio choice problem under ambiguity from different perspectives: Branger 
and Larsen (2013) consider price diffusion and jump risk. Aït-Sahalia and Matthys 
(2019) consider price diffusion ambiguity and jump ambiguity. Jin et al. (2021) discuss 
ambiguous jumps with arbitrary tail assumptions. Yan et al. (2020) introduce uncertainty 
to drift in the prices of risky assets and the covariance matrix of asset returns. Yang et al. 
(2020) analytically examine a multi-factor volatility model. Cheng and Escobar-Anel 
(2021) allow separate levels of uncertainty for variance. Our study incorporates price 
diffusion, volatility diffusion, and jump ambiguity into a single framework. In addition, 
Agliardi (2018) explores ambiguity in the calculation of Value-at-Risk in terms of capital 
requirement.

Our study is also related to financial risk. Theoretically, Liu et al. (2003) consider an 
optimal portfolio choice model with stochastic volatility and jumps. Liu and Pan (2003) 
extend the above study to the case of a complete market. Branger et al. (2008) investi-
gate the consequences of incorrectly including or omitting jumps in volatility. Chen et al. 
(2017) discuss the asset allocation under loss aversion in a defined-contribution pen-
sion plan. Mu et al. (2020) investigate the effects of jump risk on fund managers’ optimal 
portfolio choice under a high-water mark contract. Empirically, Kou et al. (2014) apply 
machine learning methods to assess financial risks. Kou et al. (2019) clarify the research 
methods in current cutting-edge machine learning technology to assess and measure 
financial risks.

Our study is also related to the cryptocurrency market. Sebastião and Godinho (2021) 
examine the predictability of three major cryptocurrencies with machine learning meth-
ods. Hou et al. (2020) study the pricing model of cryptocurrency options. Huang et al. 
(2022) study the leverage effect in cryptocurrency markets.

The remainder of the paper is organized as follows. In " Model setup" section, we for-
mulate the problem and set up the model. In "Main results" section, we derive the verifi-
cation theorem, solutions of optimal portfolio choice in the stock market, detection error 

5  Shefrin and Statman (1985) found that investors are reluctant to sell asset at a loss.
6  Wen et al. (2019) find more information will benefit the investors to reduce the stock crash risk.
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probability, and welfare loss. In "Numerical results and discussions" section, we conduct 
numerical analysis. In “Cryptocurrency market” section, we analyze the optimal portfolio 
choice in the cryptocurrency market. In “Conclusion” section, we conclude the paper. All 
proofs are provided in the Appendix.

Model setup
The rare‑events risk model

In this section, we focus on dynamic portfolio choice with uncertain rare event risk in the 
stock market. We consider an investor who has two investment choices. The first is a risk-
free asset Mt in the money market evolving according to dMt = rMtdt , where r is a fixed 
constant interest rate. The second is a risky asset, for instance, a stock, with the price St 
process evolving according to

and the instantaneous volatility Vt of a given cryptocurrency follows a diffusion-jump 
process

as per Bates (2000), Pan (2002), Liu et al. (2003) and Bates (2019), ηVt is a risk premium 
and µ�VtSt can be interpreted as the compensation for expected return due to jump risk 
of the stock price. Similarly, κ�Vt can be treated as compensation due to the jump risk of 
volatility. Z1,t and Z2,t are two standard, independent Brownian motions depicting price 
diffusion and volatility diffusion under the reference measure P . Nt is a Poisson process 
independent of Z1,t and Z2,t with stochastic arrival intensity �Vt (Bates 2000, 2019). ρ is 
the correlation coefficient of two Brownian motions driving St and Vt . All parameters 
α,β , �, κ , and σ are nonnegative. Xt and Yt are jump sizes that characterize price jumps 
and volatility jumps, respectively; they are assumed to be independent of Z1,t ,Z2,t , and 
Nt . To ensure that St is positive (limited liability), the price jump size is Xt with mean µ, 
and support on (−1,∞) . Similarly, to ensure that Vt is positive, the volatility jump size is 
Yt with mean κ , and support on [0,∞).

Ambiguity aversion and optimal portfolio problem

Now we assume that the investor is ambiguous about the model given by (1) and (2), 
which governs the evolution of stock price and instantaneous volatility of stock price, due 
to uncertainty about small diffusion risk as well as large rare-event risk shocks. We fur-
ther assume that though the investor uses the model given by (1) and (2) as their reference 
model, they are skeptical about this model. The investor will consider alternative models 
defined by probability measures. We use P to denote an alternative probability measure. 
Following Branger and Larsen (2013), Drechsler (2013) and Mao et al. (2022), we assume 
that each alternative measure P̃ is defined by the Radon-Nikodym derivative
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is a 
(
P,F

)
 martingale with �0 = 1 . By Ito’s formula, we get the following SDE

By Girsanov’s Theorem, under the alternative measure P̃ , the processes Z̃1,t and Z̃2,t 
defined by dZ̃1,t = dZ1,t + uSt dt, dZ̃2,t = dZ2,t + uVt dt are two standard Brownian 
motions, Nt is a Poisson process; the corresponding jump intensity changes from �Vt 
to uN�Vt , and uN is a perturbation parameter or scaled term (Drechsler 2013). For con-
venience, let Ñt represent the price and volatility jump risk under alternative measure P̃ . 
Furthermore, the stock price and instantaneous volatility under P̃ can be characterized 
by the following equation

Now, we define Wt as the investor’s wealth. The fraction πt of the wealth Wt is invested in 
a risky asset, while the remaining (1− πt)Wt is invested in a risk-free asset. Its dynamic 
under the alternative measure P̃ , evolves as follows:

Following Anderson et al. (2003), Hansen et al. (2006), and Jin et al. (2021), we assume 
that the investor seeks an optimal robust portfolio choice which is the optimal portfolio 
decision in some worst-case models. Thus, under the alternative measure P̃ , we define 
the investor’s robust indirect utility function as

where,

where the expectation on the right-hand side of Eq. (6) is calculated under the alterna-
tive measure P̃ defined by uS ,uV  and uN to account for uncertain rare events. The inves-
tor chooses uSt ,uVt  , and uNt  by considering the worst case, and lets u = (uS ,uV ,uN ) , 

E
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t,w,v[·] = E

P̃
t,w,v[·|(Wt ,Vt) = (w, v)] . The first term in the indirect utility function, 

U(Wt) = W
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t

1−γ
 , is a power utility function used in literature, and γ > 0 is the coefficient 

of relative risk aversion. The second term in the indirect utility function, 
E
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t
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]
 , is a new term to penalize model uncertainty deviation from the ref-

erence probability measure. This penalty term depends on the relative entropy arising 
from price diffusion, volatility diffusion, and jump ambiguity. Specifically, according to 
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Branger and Larsen (2013), Drechsler (2013), and Jin et al. (2021), we obtain the relative 
entropy over the time interval [t, t +�t] to measure discrepancy between P and P̃

In the penalty term �(t,w, v) , the three terms of Eq. (8) are scaled by �S ,�V  , and �N . 
This scaling captures investor ambiguity aversion with respect to price diffusion, volatil-
ity diffusion, and jump risk. Clearly, the larger the �S ,�V  and �N , the higher the ambi-
guity aversion and thus, the smaller the penalty for deviating from the reference model.

Let � denote the set of all the portfolio choices, taking values in R. Let � denote the set of 
all the worst-case measures, taking values in R3 . Next, we define admissibility of a portfolio 
choice as follows.

Definition 1  A portfolio choice (or control) πt is said to be admissible, π ∈ � , if π(t) is 
a progressively measurable process with respect to filtration Ft such that a unique  

solution to Eq. (5) exists and EP̃
t,w,v

[
U(WT )+

∫ T
t �(s,w, v)ds

]
< ∞ , for all u ∈ � , 

(s,w, v) ∈ [0,T ] × R2.

Main results
In this section, we present our main results on the verification theorem, optimal portfolio 
choice, detection error probability (DEP), and welfare loss.

The optimal robust portfolio choice

For convenience, we introduce some notations. Let

For any (t,w, v) ∈ ([0,T )× R2) and J (t,w, v) ∈ C1,2,2([0,T )× R2) , we define an infini-
tesimal generator as

where Jt , Jv , Jw , Jvv , Jww , and Jwv denote the first and second derivatives with respect to t,  
w, and v, and the expectation is taken as a joint distribution of X and Y.

We first solve the optimization problem (6) subject to constraints (4) and (5). As per sto-
chastic dynamic programming mentioned in Anderson et al. (2003), Hansen et al. (2006), 
Jin et al. (2021), and Xu et al. (2022), the investor’s robust indirect utility function J satisfies 
the following Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation:
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C1,2,2([0,T )× R2) = {J (t,w, v)|J (t, ·, ·) be once continuously differentiable on [0,T ]
and J (·,w, v) be twice continuously differentiable on R2}.
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For tractability, we assume �S , �V  , and �N are state-dependent. Following Maenhout 
(2004, 2006) and Luo et al. (2021b), we set

where ambiguity aversion with respect to price diffusion, volatility diffusion, and jump 
risk is increasing in the parameters θS , θV , and θN , respectively.

The following proposition shows the conditions under which the solution to the HJBI 
equation is the value function, and the control is the optimal robust portfolio choice.

Proposition 1  (Verification Theorem). If there exists a function 
J ∈ C1,2,2([0,T )× R2) ∩ C([0,T )× R2) and an optimal control (u∗,π∗) ∈ �×� such 
that 

(i)	Lu,π∗
J (t,w, v)+�(s,w, v,u,π∗) ≥ 0 , for all u ∈ � and (w, v) ∈ R2,

(ii)	Lu∗,π J (t,w, v)+�(s,w, v,u∗,π) ≤ 0 , for all π ∈ � and (w, v) ∈ R2,
(iii)	Lu∗,π∗

J (t,w, v)+�(s,w, v,u∗,π∗) = 0 , for all u ∈ � and (w, v) ∈ R2,
(iv)	 J (T ,w, v) = U(wT ) for all π ∈ � , u ∈ � and (t,w, v) ∈ [0,T )× R2 and,
(v)	 the family {J (τ ,W (τ ),V (τ ))}τ∈T  is uniformly integrable, where T  denotes the set of 

stopping times τ ≤ T  , for all (u,π) ∈ �×� , and (t,w, v) ∈ [0,T )× R2.

Then,

Indeed,

and (u∗,π∗) is an optimal control, and the objective function is

Next, the following proposition gives an analytical solution for the indirect utility 
function, optimal robust portfolio choice, and the worst-case measure.

Proposition 2  The indirect utility function is in the form given by

 the optimal robust portfolio choice is given by
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and the worst-case measure is given by

where B(t) and A(t) satisfy the following differential equation

and

In addition, J (T ,w, v) = w
1−γ
T
1−γ

.

Proof  See Appendix B.
The optimal portfolio choice in (14) consists of three terms. The first term is instantane-
ous risk premium divided by the risk aversion parameter plus ambiguity aversion to 
price diffusion. When � is 0 and Vt is not stochastic, it reduces to η

θS+γ
 , similar to the 

usual myopic component. But here θS plays an important role because the larger the θS , 
the smaller the optimal portfolio choice. The second term is related to the correlation 
coefficient between instantaneous return and change of volatility. The third term is 
directly related to two parts: the first part is E[(1+ π∗X)−γXeB(t)Y ] , representing a 
blend of dynamic portfolio choice and static buy-and-hold portfolio choice, which is 
called M1 in Liu et al. (2003), and the second part is uN∗ , representing the worst-case 
measure about the jump risk in (17).

The detection‑error‑probability (DEP)

We estimate the parameters that characterize the preference for ambiguity aversion, θS , θV , 
and θN based on DEP, ǫT (θS , θV , θN ) . According to Anderson et  al. (2003), Maenhout 
(2006), and Aït-Sahalia and Matthys (2019), θS , θV , and θN should be chosen in such a way 
that it is difficult to distinguish the reference model from the worst-case model. Since our 
robust portfolio choice depends on θS , θV , and θN , we accordingly define DEP, denoted by 
ǫT (θS , θV , θN ) , at time zero as

(14)
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√
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where ξt ≡ ln�t . Given a finite time series, the investor’s decision reduces to two cases: 
accidentally discarding the reference model for the worst-case model (model P̃ ) if 
ξT > 0 or rejecting the worst-case model erroneously if ξT < 0 . If the difference between 
the two models is large, it is easy to distinguish these two models from each other, and 
DEP is small, and vice versa. As recommended by Anderson et al. (2003) and Maenhout 
(2006), we will use θS , θV  , and θN to ensure that ǫT (θS , θV  , θN ) is at least 10%.

Then, the two conditional probabilities in ǫT (θS , θV , θN ) can be obtained by finding 
the conditional characteristic functions of ξT  under P and P̃ , denoted by φP(ω, t,T ) 
and φ

P̃
(ω, t,T ) , respectively, where ω is the usual transform variable. In particular, 

φP(ω, t,T ) and φ
P̃
(ω, t,T ) are defined as the Fourier transforms of the conditional 

expectation

where i =
√
−1 is an imaginary unit. We use simple measure change of the form

and we define u = [uS ,uV ]T and σ = [ρσ
√
V , σ

√
V
√

1− ρ2]T . On applying the Fey-
nman-Kac theorem, φP(ω, t,T ) and φ

P̃
(ω, t,T ) are given by the following differential 

equation:

where � · � is the L2 norm, and φP(ω,T ,T ) = �iω
T  and φ

P̃
(ω,T ,T ) = �iω+1

T  are boundary 
conditions.

Applying Lévy’s general inversion, we obtain DEP, ǫT (θS , θV , θN ) as the following:

 The following proposition summarizes how to compute DEP in a semi-closed form.

Proposition 3 

(1)	 . Solution to the differential Eq. (23) is given by 

(20)ǫT (θS , θV , θN ) =
1

2
Pr(ξT > 0|P,F0)+

1

2
Pr(ξT < 0|P̃,F0),

(21)φP(ω, t,T ) = E
P[eiωξT |Ft ] = E

P[�iω
T |Ft ],

(22)φ
P̃
(ω, t,T ) = E

P̃[�iω
T |Ft ] = E

P[eiωξT eξT |Ft ] = E
P[�iω+1

T |Ft ],

(23)

0 =
∂φP

∂t
+ (α − βV − κ�V )

∂φP

∂V
−

∂φP

∂�
�(uN − 1)�V +

1

2

∂2φP

∂�2
�2�u�2 +

1

2
σ 2V

∂2φP

∂V 2

−
∂2φP

∂�∂V
�uσ

T + �VE[φP(ω, t,T )− φP(ω, t−,T )],

(24)

0 =
∂φ

P̃

∂t
+ (α − βV − κ�V )

∂φ
P̃

∂V
−

∂φ
P̃

∂�
�(uN − 1)�V +

1

2

∂2φ
P̃

∂�2
�2�u�2 +

1

2
σ 2V

∂2φ
P̃

∂V 2

−
∂2φ

P̃

∂�∂V
�uσ

T + �VE
[
φ
P̃
(ω, t,T )− φ

P̃
(ω, t−,T )

]
,

(25)ǫT (θS , θV , θN ) =
1

2
−

1

2π

∫ ∞

0

{
ℜ
(
φ
P̃
(ω, 0,T )

iω

)
−ℜ

(
φP(ω, 0,T )

iω

)}
dω.
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 where D(t) and E(t) satisfy the differential equation system given by 

(2)	 . Solution to the differential Eq. (24) is given by 

 where F(t) and H(t) satisfy the differential equation system given by 

 where pS = uS/
√
V  , pV = uV /

√
V .

Proof  See Appendix C.

Welfare loss

In this subsection, we gauge investors’ welfare losses stemming from ignoring ambigu-
ity (model uncertainty). Similar to Branger and Larsen (2013), Aït-Sahalia and Matthys 
(2019), and Jin et al. (2021), we measure this welfare loss in terms of the percentage of 
wealth loss when investors choose a suboptimal portfolio. Specifically, we must com-
pare expected utility obtained from following the optimal robust portfolio choice with 
that obtained from following an alternative suboptimal portfolio choice. Expected utility 
associated with an arbitrary investment strategy π is given by

where �(t,w, v) is given by Eq. (7). Note that uS , uV  , and uN depend on portfolio choice.
We solve investor’s optimization problem using the principle of optimal stochastic 

control, which leads to the following Hamilton-Jacobi-Bellman (HJB) equation for the 
value function Jπ

(26)φP(ω,T , t) = �iω
t eD(t)+E(t)V ,

(27)0 =D′(t)+ αE(t),

(28)

0 =E′(t)− (κ�+ β)E(t)− iω(uN − 1)�+
1

2
iω(iω − 1)((pS)2 + (pV )2)

+
1

2
σ 2E2(t)− E(t)iω(σ

√
1− ρ2pV + ρσpS)+ �E

[
(uN )iωeE(t)Y − 1

]
.

(29)φ
P̃
(ω, t,T ) = �iω+1

t eF(t)+H(t)V ,

(30)0 =F ′(t)+ αH(t),

(31)

0 =H ′(t)− (κ�+ β)H(t)− (iω + 1)(uN − 1)�+
1

2
iω(iω + 1)((pS)2 + (pV )2)

+
1

2
σ 2H2(t)−H(t)(iω + 1)(σ

√
1− ρ2pV + ρσpS)+ �E

[
(uN )iω+1eH(t)Y − 1

]
,

(32)Jπ (t,wt , vt) = inf
uS ,uV ,uN

E
P
u

t

[
U(WT )+

∫ T

t
�(s,w, v)ds

]
,
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In what follows, we derive the welfare loss incurred when an investor chooses a portfo-
lio while ignoring model uncertainty; thus, the investor chooses a suboptimal portfolio. 
Specifically, they follow the portfolio decision from Proposition 2 with θS = 0, θV = 0, 
and θN = 0 , i.e, πNU = π(θS = 0, θV = 0, θN = 0) . The following proposition gives an 
analytical solution for the suboptimal portfolio.

Proposition 4  The optimal value function of an investor who ignores model uncertainty 
is given by

The worst-case measure is given by

where Bπ (t) and Aπ (t) satisfy the following differential equation:

and

In addition, Jπ (T ,w, v) = w
1−γ
T
1−γ

.

As mentioned above, we quantify welfare loss by the percentage of initial wealth that 
investors are willing to sacrifice to know the optimal robust portfolio. Hence, welfare 
loss L is defined by J (t,w(1− L), v,π∗) = Jπ (t,w, v,π), we have

where π = πNU is suboptimal portfolio choice and π∗ is the optimal robust portfolio 
choice.

(33)

0 = inf
uS ,uV ,uN

Jπt + rwJπw + π(ηv − µ�v −
√
vuS)wJπw +

1

2
vw2π2Jπww +

1

2
σ 2vJπvv

+� + (α − βv − κ�v − σρ
√
vuSt − σ

√
1− ρ2

√
vuVt )J

π
v

+ ρπσvwJπwv + �vuNE[Jπ (t,w(1+ πX), v + Y )− Jπ ].

(34)Jπ (t,w, v) =
w1−γ

1− γ
eA

π (t)+Bπ (t)v .

(35)

uS =(π +
1

1− γ
σρBπ (t))θS

√
v,

uV =
1

1− γ
σ
√
1− ρ2Bπ (t)θV

√
v,

uN =e
− θN

1−γ

(
E[(1+πX)1−γ eB

π (t)Y ]−1
)

,

(36)

0 =
1

1− γ
(Bπ )′(t)+ π(η − µ�)−

1

2
π2(γ + θS)+

(
1

2(1− γ )
−

ρ2θS + (1− ρ2)θV

2(1− γ )2

)
σ 2(Bπ )2(t)

+
(
ρσπ +

πσρθS − (β + κ�)

1− γ

)
Bπ (t)+ �

1

θN

(
1− e

− θN
1−γ

(
E[(1+πX)1−γ eB

π (t)Y ]−1
))

,

(37)0 = r(1− γ )+ (Aπ )′(t)+ Bπ (t)α.

(38)L = 1− e
1

1−γ
(Aπ (t)−A(t)+(Bπ (t)−B(t))v)

,
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Numerical results and discussions
In this section, we conduct numerical analysis to investigate the optimal portfolio choice 
problem under ambiguity in four steps: (1) confirming the effect of different ambiguity 
on Detection-error-probability (DEP), (2) identifying each ambiguity’s contribution over 
the optimal portfolio choice, (3) considering the effect of both price jump size and vola-
tility jump size on the portfolio choice, (4) analyzing welfare loss in the incomplete mar-
ket. To facilitate computation, we consider two special cases by taking the mean of Xt 
and Yt , following Liu et al. (2003) and Branger and Larsen (2013). We follow Pan (2002), 
Liu et  al. (2003)7, and Aït-Sahalia et  al. (2020)8 to set most parameter values. For the 
numerical analysis, we use parameter values given in the following Table 1.

In Fig. 1, we show DEP as a function of ambiguity aversion parameters and confirm 
that θS and θN mainly determine DEP in the case of no ambiguity as well as ambiguity. 
First, considering the no ambiguity case in Panel (a), (b), and (c), the larger the ambiguity 
aversion, the smaller the DEP, which is consistent with Branger and Larsen (2013). Since 
large ambiguity aversion allows investors to easily distinguish between the two mod-
els, we introduce ambiguity to review this effect. As seen in Panel (d), (e) and (f ), when 
ambiguity is introduced, the DEP behaves in the same manner as in the previous case.

Second, we confirm that θS and θN mainly determine DEP. In Panel (a), when θS=0, 
DEP evidently decreases with respect to θN but not with respect to θV  . In Panel (b) when 

Table 1  Parameter values for our numerical example

α r β    σ    η    ρ    µ    κ   �

0.15 0.04 5.32  0.25  4.78  −0.62  −0.24  0.23  1.64 

Fig. 1  DEP in stock market as a function of ambiguity parameters θS , θV and θN . Panel (a), (b), and (c) set θS , 
θN , and θV as 0, respectively. By contrast, Panel (d), (e), and (f) set θS , θN , and θV as 3, respectively

7  They accessed the monthly return series for U.S. stocks during the 1802 to 1925 period in Schwert (1990) and 
appended the CRSP monthly value-weighted index returns for the 1926 to 2000 period spanning nearly 200 years.
8  They analyzed daily data variance swap rates and S &P500 returns for the 1996 to 2010 period.
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θN=0, it evidently decreases with respect to θS , but not with respect to θV  . In Panel (c), 
when θV=0, it substantially decreases with the increase in θS and θN.

Effect of the three sources of ambiguity on optimal portfolio choice

Figure 2 shows the important role of θS and θN in determining the optimal choice. We 
choose parameters to ensure that the DEP is above 10%. From Panels (a) and (b), we can 
see that in cases without ambiguity, portfolio choice is relatively insensitive to θV  . Panel 
(c) indicates that when either θS or θN is relatively small, the exposure to the optimal 
portfolio decreases substantially with respect to θS or θN . On the other hand, the expo-
sure decreases slowly when either θS or θN is larger. Panel (d), (e), and (f ) (case of ambi-
guity) show robust optimal portfolio choice result, compared to that in Panel (a), (b) and 
(c) (case of no ambiguity).

To quantitatively identify which ambiguity is important, we further compare the 
effects of θS , θV  , and θN on optimal portfolio choice as a function of DEP in Fig. 3. We 

Fig. 2  Optimal portfolio choice in stock market as a function of ambiguity aversion parameters θS , θV and θN . 
Panel (a), (b), and (c) set θS , θN and θV as 0, respectively. By contrast, Panel (d), (e), and (f) set θS , θN , and θV as 3, 
respectively

Fig. 3  Optimal portfolio choice in stock market as a function of the DEP using different θS , θN and θV . The 
solid, dashed and dotted line represent change of ambiguity aversion with respect to price diffusion, jump 
and volatility diffusion while keeping the other two parameters as zero, respectively
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begin with a DEP of 0.5, which corresponds to the case without ambiguity by setting 
each parameter as 0. When εT (θS , θV , θN ) = 0.5, reference and alternative models are 
statistically indistinguishable. As seen from the Figure, the solid line lies below the 
dashed line. Therefore, optimal portfolio choice is more significantly affected by price 
diffusion ambiguity than by jump ambiguity. When DEP decreases from 0.5 to 0.3 due to 
an increase in θS (solid line), portfolio exposure reduces by almost 43%; however, reduc-
tion on account of θN (dashed line) is about 7%. Considering its whole range of portfolio 
choice, it is more significantly affected by θS than θN . The smallest portfolio choice by 
price diffusion ambiguity is around 0.52, while that by jump ambiguity is around 1.01. 
Finally, varying volatility ambiguity θV  (dotted line) does not influence portfolio choice 
when DEP decreases from 0.5 to about 0.31.

Effects of price and volatility jump sizes under ambiguity on portfolio choice

In Fig.  4, we show effects of price and volatility jump sizes on portfolio choice under 
ambiguity. When volatility jump size is relatively small, the optimal portfolio choice for 
upward price jumps in Panel (d) is higher than that for downward price jumps in Panel 
(a). Second, according to the results in Panel (a) to (f ), compared with the case of either 
downward or upward price jump, the investor usually chooses a greater portfolio choice 
when there is no price jump. However, the intercept of the vertical axis for the positive 
jump size in Panel (d) is higher than that for the negative price size in Panel (a). This 
asymmetry can be attributed to positive skewness. Here, the effects of jumps on return 
volatility overwhelms that of positive skewness, and thus, the investor takes a smaller 
portfolio portfolio even with a positive price jump size. Third, the investor’s portfolio 
increases with a large volatility jump size for downward jumps (negative price jump size). 
The effect is evident for µ = −0.2 and less evident for µ = −0.5 . However, the investor’s 
portfolio is stable or decreases slowly with a large volatility jump size for upward price 
jumps (positive price jump size). The reasons are as follows. First, according to Liu et al. 
(2003) and Samuelson (1991), if an investor finds a large increase in volatility jump size 

Fig. 4  Effects of price and volatility jump sizes on portfolio choice in stock market. The top three panels show 
downward price jumps and no jump, while the bottom three panels show upward price jumps and no jump
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after a negative (positive) price jump, the probability of earning successive negative (pos-
itive) returns is low. From a behavioral perspective, we can gauge that when the investor 
faces a run of successive negative returns or a negative jump in stock price, the probabil-
ity of further runs of negative returns decreases. Therefore, they become more confident 
and take a larger stock position. This intuition is in line with Samuelson (1991). Second, 
in Panel (a) for a negative jump size, the investor is unwilling to sell the stock due to 
the disposition effect. The increase in portfolio choice during the downward cycle can 
be seen as “speculating,” for investors are more risk-tolerant and even speculate as they 
expect market reversal sooner and increase their portfolio choice. The larger the volatil-
ity jump size, the greater the inclination to speculate.

By contrast, in Panel (d) with large positive jump size, the investors slowly decreases 
their portfolio. Here, two counteracting effects account for this phenomenon: the “de-
risking” effect (that explains that the ambiguity-averse investor ratchets down the port-
folio) equals or marginally dominates the positive skewness effect (that explains that the 
investor is optimistic about the market and unwilling to decrease her portfolio)

Finally, we consider the ambiguity of price jump and volatility jump sizes in two steps. 
In Panels (b) and (e), adding θS brings about the robust result over the optimal portfolio 
choice. Since larger price jump sizes trigger larger volatility jumps, we add θN in Panels 
(c) and (f ). Previous robust patterns still hold but with smaller portfolio choice, due to 
investor’s ambiguity aversion.

Welfare analysis

In this subsection, we conduct welfare analysis in an incomplete market. Figure 5 plots 
expected welfare loss as a function of different ambiguity parameters of investors as 
three groups. The solid line, dashed line, and dotted line represent the different sources 
of ambiguity with 0, 1, and 3, respectively.

Fig. 5  Expected utility loss in stock market as a function of the investor’s ambiguity parameters θS , θV and θN
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The first two panels depict the effect of price diffusion ambiguity on utility loss. In 
Panel (a), all lines are steeper at the initial stage and flatter when price diffusion ambigu-
ity increases, indicating that when price diffusion ambiguity is very small, for example, 
in the range of 0 to 1 or 3, the welfare loss is relatively large. Therefore, investors should 
pay attention to price diffusion ambiguity when identifying such ambiguity during rare 
events. In Panel (b), the pronounced finding of Panel (a) also holds. Furthermore, the 
small gap between the three lines indicates that while different volatility ambiguity is 
secondary, price diffusion ambiguity plays a major role. Moreover, a close look at the 
utility loss change between Panels (a) and (b) indicates that expected utility loss driven 
by the combination of jump ambiguity and very small price diffusion ambiguity domi-
nates the loss resulting from the combination of volatility ambiguity and very small price 
diffusion ambiguity. Next, Panels (c) and (d) depict the effect of jump ambiguity on util-
ity loss. Both the magnitude and slope of utility loss are less than those in Panels (a) and 
(b). The utility loss changes dramatically from the initial case of θS =0 (without price dif-
fusion ambiguity) to the case of θS =1 or 3 (small price diffusion ambiguity), confirming 
again the findings of Panel (a). Finally, the last two panels, Panels (e) and (f ), depict the 
effect of volatility ambiguity on utility loss. In Panel (e), with increase in price diffusion 
ambiguity, welfare loss changes with different volatility ambiguities become larger. The 
flat lines again demonstrate that price diffusion ambiguity dominates jump ambiguity.

Cryptocurrency market
In this section, we focus on Bitcoin for three reasons: first, Bitcoin is the largest crypto-
currency by market capitalization and is highly volatile. Second, Bitcoin volatility itself 
is time-varying and may jump significantly. Third, Bitcoin is exceptionally ambiguous. 
Based on this, we analyze dynamic portfolio choice of Bitcoin with uncertain rare event 
risk in the cryptocurrency market. Our model is inspired by two strands of literature: 
the first is represented by Hou et al. (2020) and Huang et al. (2022), who used the jump 
diffusion model of the stock market developed by Duffie et  al. (2000) to study option 
pricing and leverage effect in the cryptocurrency market; the second is exemplified by 
Luo et al. (2021), who studied the existence of ambiguity aversion in the Bitcoin market 
and its impact on investor returns. It is natural to integrate the traditional stock mar-
ket dynamic portfolio choice model and ambiguity in a single framework to analyze the 
investment decision problem in the cryptocurrency market under ambiguity.

Based on this idea, we replace the stock price and stochastic volatility in Eqs. (1) and 
(2) with the Bitcoin asset price and stochastic volatility. In an idea similar to the stock 
market model, we assume that investors in the Bitcoin market seek an optimal robust 
portfolio choice in a worst-case model. Thus, under the alternative measure, we solve the 
optimization problem (12) subject to constraints (4) and (5) to obtain the optimal robust 
portfolio choice and the worst-case measure. Furthermore, we can also obtain DEP and 
welfare loss in the Bitcoin market. We choose the Bitcoin parameter values given in 

Table 2  Parameter values for our numerical example

α r β    σ    η    ρ    µ    κ   �

0.14 0.04 4.05  0.32  1.80  0.65  −0.31  0.31  0.15 
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Fig. 6  DEP in Bitcoin market as a function of ambiguity parameters θS , θV and θN . Panel (a), (b), and (c) set θS , 
θN , and θV as 0, respectively. By contrast, Panel (d), (e), and (f) set θS , θN , and θV as 3, respectively

Fig. 7  Optimal portfolio choice in Bitcoin market as a function of ambiguity aversion parameters θS , θV and 
θN . Panel (a), (b) and (c) set θS , θN and θV as 0, respectively. By contrast, Panel (d), (e) and (f) set θS , θN and θV as 
3, respectively

Fig. 8  Optimal portfolio choice in Bitcoin market as a function of the DEP using different θS , θN and θV . The 
solid, dashed and dotted line represent change of ambiguity aversion with respect to price diffusion, jump 
and volatility diffusion while keeping the other two parameters as zero, respectively
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Table 2; these are borrowed from Huang et al. (2022).9 DEP is presented in Fig. 6; port-
folio choice concerning the ambiguity parameters is presented in Fig. 7; portfolio choice 
concerning DEP is presented in Fig. 8. We offer the following economic interpretation.

Figure  6 shows the similarity between the results obtained for the Bitcoin market 
and the traditional stock market model (in Fig. 1). In general, DEP is a monotonically 
decreasing function of ambiguity. We observe two striking features: first, the magni-
tude of change in DEP is smaller in the Bitcoin market than in the stock market. Second, 
the differences between the case without ambiguity parameter of the Bitcoin price and 
the case with the same parameter are relatively trivial. To be more specific, when we 
compare Figs. 1 and 6, the price diffusion ambiguity parameter dominates the other two 
parameters; this can be observed in Panels (a) and (d) of these two figures. In Panel (a) 
of Fig. 1, DEP exhibits a steep slope when jump ambiguity is taken into account, but a 
slowly decreasing DEP in panel (a) of Fig. 6. Moreover, the magnitude of DEP decreases 
in Panel (d) of Fig. 1 and is also larger than that in Panel (d) of Fig. 6. This is quite reason-
able when we consider that rational investors will take into consideration uncertain rare 
events risk and make a conservative choice. This can also be explained from the informa-
tion perspective: the traditional stock market has more liquidity and is more accessible 
to the investors. Thus, it contains more information when investors face ambiguity. Both 
financial knowledge and qualification in terms of the investor’s asset capacity make the 
Bitcoin market a novel area, or an area attracting a small volume of investors who prefer 
financial innovation to traditional markets. In other words, more information implies 
that investors have a higher chance of identifying the true model among the alternative 
models. The economic interpretation of the other four panels in Fig. 6 also has a similar 
underlying logic.

Compared with the traditional market, in the Bitcoin market, the change in optimal 
portfolio between the case without ambiguity and the case with ambiguity is substan-
tially smaller. Figure 7 shows the important role of θS and θN in determining the optimal 
choice in the Bitcoin market. This result can be found in Fig. 2. Likewise, we also choose 
parameters to ensure that the DEP is above 10%. In cases without ambiguity, Panels (a) 
and (b) show that the portfolio choice is relatively stable with respect to θV  . Panel (c) 
shows that, when either θS or θN is relatively small, portfolio choice exposure decreases 
substantially with respect to θS or θN but the magnitude is smaller when price diffusion 
and jump ambiguity, θS or θN , change from the case without ambiguity to the case with 
ambiguity. On the other hand, this choice decreases slowly when either θS or θN is larger, 
which is consistent with the pattern we have explained in Fig. 7. In cases with ambiguity, 
Panel (d), (e), and (f ) (case of ambiguity) show the robust optimal portfolio choice result. 
In summary, investors reduce their portfolio choices when the degree of ambiguity aver-
sion in the Bitcoin market is high.

In the similar analogy to Fig.  3, we compare the difference in impact of θS , θV  , 
and θN  on optimal portfolio choice in the Bitcoin market as a function of the DEP 
in Fig. 8 by quantitatively identifying the most important ambiguity. We begin with 
a DEP of 0.5, corresponding to the case without ambiguity, by setting each param-
eter as 0. When εT (θS , θV , θN ) = 0.5, reference and alternative models are statistically 

9  They accessed daily price data for cryptocurrency from coinmarketcap.com during 2017-2021.



Page 19 of 28Lv et al. Financial Innovation            (2023) 9:73 	

indistinguishable. As we can see from Fig. 8, the solid line lies below the dashed line. 
Therefore, optimal portfolio choice is more significantly affected by price diffusion 
ambiguity than by jump ambiguity. When DEP decreases from 0.5 to 0.42 due to an 
increase in θS (solid line), portfolio choice reduces by about 40%, while the reduc-
tion due to θN  is about 12% (dashed line). Here, the whole range of portfolio choice is 
more significantly affected by θS than by θN  . The smallest portfolio choice exposure by 
price diffusion ambiguity is around 0.26, while that by jump ambiguity is around 0.37. 
Volatility ambiguity θV  (dotted line) does not influence the portfolio choice mani-
festly. These results show that cryptocurrency market echoes the traditional market.

In Fig. 9, we show effects of price and volatility jump sizes on portfolio choice under 
ambiguity in the Bitcoin market. We interpret the results from two aspects. On one 
hand, we find two similar results. First, the results for upward jumps are consistent 
with those in the traditional markets. Second, in comparison with the case of either 
a downward or upward price jump, the investor usually chooses a greater portfolio 
choice when there is no price jump, which is consistent with our previous findings. 
However, the intercept of the vertical axis for positive jump size in Panel (d) is almost 
the same as that for negative jump size in Panel (a). On the other hand, the inves-
tor’s choice increases with a large volatility jump size for very large downward jumps 
(negative price jump size). The effect is evident for µ = −0.5 . Such irrational invest-
ing behavior shows that in the Bitcoin market, even sophisticated investors speculate 
when exposed to extremely negative shocks.

Next, we conduct a welfare analysis in an incomplete Bitcoin market. Figure  10 
shows the expected welfare loss as a function of the investor’s different ambiguity 
parameters. The solid, dashed, and dotted lines represent the result from ambiguities 
0, 1, and 3, respectively. Since all panels exhibit similar results in the traditional mar-
ket (Fig. 5), we summarize welfare analysis in the Bitcoin market as follows. First, in 
both Panels (a) and (b), under the effect of price diffusion ambiguity, all lines exhibit 
steeper slopes initially and become flatter gradually. This suggests that investors take 

Fig. 9  Effects of price and volatility jump sizes on portfolio choice in Bitcoin market. The top three panels 
show downward price jumps and no jump, while the bottom three panels show upward price jumps and no 
jump
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price diffusion ambiguity into consideration when making investment decisions. The 
small gap between the three different lines in Panel (b) indicates that different volatil-
ity ambiguity is secondary. Second, Panels (c) and (d) depict the effect of jump ambi-
guity on utility loss, where the slope of utility loss is less than that in Panels (a) and 
(b). The utility loss from different price diffusion ambiguity is larger than that from 
different volatility ambiguity. Finally, the last two panels depict the effect of volatility 
ambiguity on utility loss. Compared with the welfare loss of the volatility ambiguity 
over different jump diffusion ambiguity in Panel (f ), that loss over different price dif-
fusion ambiguity in Panel (e) changes more significantly.

Conclusion
In this study, we integrated price diffusion, volatility diffusion, and jump ambiguity in 
both the traditional stock market and the emerging Bitcoin market into a single frame-
work to examine the optimal portfolio choice during rare events. We first found that 
detection-error probability is mainly determined by price diffusion ambiguity and jump 
ambiguity. Then the optimal portfolio choice is more significantly affected by price dif-
fusion ambiguity than by jump ambiguity, and the effect of volatility diffusion is trivial. 
Finally, we derived the optimal investment strategy during rare events. In particular, 
during negative price jumps, investors can “speculate” by increasing their exposure when 
volatility jump sizes are very large; during positive price jumps, they can “de-risk” by 
decreasing their exposure slowly. Our welfare analysis indicated that the investors in 
emerging economies should consider price diffusion ambiguity in the first instance.

Based on the study’s results, we offer some practical suggestions for investors in the stock 
market and the cryptocurrency market, facing high market ambiguity aversion. These are 
as follows: (1) they should decrease portfolio choice; (2) they should not increase leverage 

Fig. 10  Expected utility loss in cryptocurrency market as a function of the investor’s ambiguity parameters 
θS , θV and θN
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during periods of intense market volatility. Our investment advice to investors in cryp-
tocurrency markets is based on the following two facts: on the one hand, the emerging 
cryptocurrency market is associated with low efficiency and high degree of asymmetric 
information, leading to few risk-hedging opportunities for investors; on the other hand, 
they tend to make less rational financial decisions due to less proficiency in financial exper-
tise and risk consciousness. Therefore, compared with those in traditional markets, the 
investors in emerging economies should be more cautious about extremely high volatility 
in the market, seek more information, and practice value investing rather than speculation.

Regulators are advised to incorporate the following measure while designing policy: (1) 
educating investors so that they are abreast with the latest technology. This is urgent for 
investors in emerging economies as most investors in such economies are less informed, 
and noise traders comprise a large proportion; (2) developing diverse financial market 
products and derivatives to mitigate market incompleteness; (3) strengthening reasonable 
supervision, enhancing information transparency, and protecting the rights and interests 
of investors. Transparent information disclosure can benefit investors and encourage them 
to make rational decisions. The more effectively they protect the interests of the investors 
(through measures such as warning and punishing those violating the rules in the market), 
the more positive the feedback to investors.

Appendix: Proofs

A Proof of Proposition 1
The proof of this proposition is inspired by Chiu and Wong (2018) and Mataramvura and 
Øksendal (2008)) and is divided into three steps to complete.

First, applying Ito’s formula to J(t, w, v) with respect to W and V under P̃ yields

where {τN ,N = 1, 2, · · ·} is a localizing sequence of stopping times such that 
limN→∞ τN = T  . According to the Lu,π∗

J (t,w, v)+�(s,w, v,u,π∗) ≥ 0 , we have

When N → ∞ , the equalities (iv) and (v) imply that

since this holds for all u ∈ U  we deduce that

Hence, we have

(A.1)E
P̃

t,w,v

[
J (τN ,WτN ,VτN )

]
= J (t,w, v)+ E

P̃

t,w,v

[∫ τN

t
L
u,π J (s,Ws,Vs)ds

]
,

(A.2)J (t,w, v) ≤ E
P̃

t,w,v

[
U(WτN )+

∫ τN

t
�(s,Ws,Vs,us,π

∗)ds

]
.

(A.3)J (t,w, v) ≤ Ou,π∗
(t,w, v),

(A.4)J (t,w, v) ≤ inf
u∈�

Ou,π (t,w, v).
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Next, we apply Eq. (A.1) to u∗,π , with π ∈ � , and use Lu∗,π J (t,w, v)+�(s,w, v,u∗,π) ≤ 0 
for all v = Vt and w = Wt , we have

When N → ∞ , the equalities (iv) and (v) imply that

Since this holds for all π ∈ � , we deduce that

Finally, we apply Eq. (A.1) to u∗,π∗ and proceed as above. Then we have

Combining Eqs. (A.5), (A.8) and (A.9), we have

On the other hand, we have

By the inequalities (A.10) and (A.11), we have

B Proof of Proposition 2
The first order condition with respect to the worst case measure uS , uV  and uN  of the 
HJBI-equation (10) implies that

Substituting (B.1) into HJBI-equation yields

(A.5)J (t,w, v) ≤ sup
π∈�

inf
u∈�

Ou,π (t,w, v).

(A.6)J (t,w, v) ≥ E
P̃

t,w,v

[
U(WτN )+

∫ τN

t
�(s,Ws,Vs,u

∗,πs)ds

]
.

(A.7)J (t,w, v) ≥ Ou∗,π (t,w, v) ≥ inf
u∈U

Ou,π (t,w, v).

(A.8)J (t,w, v) ≥ sup
π∈�

inf
u∈�

Ou,π (t,w, v).

(A.9)J (t,w, v) = Ou∗,π∗
(t,w, v).

(A.10)inf
u∈�

sup
π∈�

Ou,π (t,w, v) ≤ J (t,w, v) = Ou∗,π∗
(t,w, v) ≤ sup

π∈�
inf
u∈�

Ou,π (t,w, v).

(A.11)sup
π∈�

inf
u∈�

Ou,π (t,w, v) ≤ inf
u∈�

sup
π∈�

Ou,π (t,w, v).

(A.12)inf
u∈�

sup
π∈�

Ou,π (t,w, v) = J (t,w, v) = sup
π∈�

inf
u∈�

Ou,π (t,w, v).

(B.1)

uS∗ =π
√
vwJw�

S + σρ
√
vJv�

S ,

uV ∗ =σ
√
1− ρ2

√
vJv�

V ,

uN∗ =e−�N
E[J (t,w(1+πX),v+Y )−J ] .
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The first order conditions with respect to π , we can derive the optimal investment strat-
egy follows

Suppose that solution is J (t,w, v) = w1−γ

1−γ
eA(t)+B(t)v . By calculating the partial derivative, 

we have

We choose � i = θi
(1−γ )J (t,w,v) , i = S,V ,N  , where θS , θV , θN > 0 . By simple calculation, 

we obtain

and

Note that

Substituting (13) into (B.3), we obtain the robust optimal robust portfolio choice (14). 
Plugging (13) in (B.1), we obtain the worst case measure. Substituting (B.4) - (B.7), 
� i, i = S,V ,N  and (14) into (B.2) and simplifying, we have

(B.2)

0 = sup
π

Jt + rwJw + π(η − µ�)vwJw −
1

2
π2vw2J2w�

S − πσρvwJvJw�
S

+ (α − βv − κ�v)Jv −
1

2
σ 2ρ2vJ2v�

S − 1

2
σ 2(1− ρ2)vJ2v�

V + 1

2
vw2π2Jww

+
1

2
σ 2vJvv + ρπσvwJwv + �v

1

�N
(1− e−�N

E[J (t,w(1+πX),v+Y )−J ]) .

(B.3)

π∗ =
(η − µ�)Jw

w(�SJ2w − Jww)
+

ρσ(Jwv − JvJw�
S)

w(�SJ2w − Jww)
+

�E[XJw(t,w(1+ π∗X), v + Y )]

w(�SJ2w − Jww)
uN∗.

(B.4)

Jt =
w1−γ

1− γ
eA(t)+B(t)v(A′(t)+ B′(t)v), Jw = w−γ eA(t)+B(t)v ,

Jv =
w1−γ

1− γ
eA(t)+B(t)vB(t), Jww = −γw−γ−1eA(t)+B(t)v , Jwv = w−γ eA(t)+B(t)vB(t),

Jvv =
w1−γ

1− γ
eA(t)+B(t)vB(t)2.

(B.5)
Jw(η − µ�)

w(�SJ2w − Jww)
=

η − µ�

θS + γ
,

(B.6)
ρσ Jwv

W (�SJ2w − Jww)
= ρσB(t)

θS + γ
.

(B.7)

E
[
J (t,w(1+ π∗X), v + Y )− J

]
=

1

1− γ
w1−γ (E

[
(1+ π∗X)1−γ eB(t)Y

]
− 1)eA(t)+B(t)v .

(B.8)

0 =
1

1− γ
(A′(t)+ B′(t)v)+ r + π∗(η − µ�)v −

1

2
π∗2θSv +

1

1− γ
π∗σρθSB(t)v + α

1

1− γ
B(t)

− (β + κ�)
1

1− γ
B(t)v − σ 2

2(1− γ )2
ρ2B2(t)θSv −

σ 2

2(1− γ )2
(1− ρ2)B2(t)θV v

−
1

2
π∗2γ v +

1

2(1− γ )
σ 2B2(t)v + ρπ∗σB(t)v + �v

1

θN
(1− e

− θN
1−γ

(E[(1+π∗X)1−γ eB(t)Y ]−1)
) .
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The right side of the above equation is an affine function in v. In order to make this equa-
tion hold for all v, then the constant term and the linear coefficient of v must be set to 
zero respectively, so we obtain the ordinary differential equation for B(t) and A(t) in (18) 
and (19). The terminal condition is J (T ,w, v) = U(wT ) , where U(wT ) =

w
1−γ
T
1−γ

 is a power 
utility function.

C Detection‑error probabilities
Firstly, following Maenhout (2006) and Aït-Sahalia and Matthys (2019), by applying the 
Lévy’s general inversion, we obtain ǫT (θS , θV , θN ) is

By using Feynman-Kac theorem, we solve two partial differential difference equations 
(PDDE) for φP(ω, t,T ) and φ

P̃
(ω, t,T ) satisfying the corresponding boundary conditions 

and thus compute the φP(ω,T , t) and φ
P̃
(ω, t,T ).

Secondly, define the Fourier transforms of the conditional expectation

which ω being the usual transforms variable, i =
√
−1 , and ξt ≡ ln�t . Let u = [uS ,uV ]T 

and σ = [ρσ
√
V , σ

√
V
√

1− ρ2]T .
Thirdly, by applying Feynman-Kac theorem, φP(ω, t,T ) and φ

P̃
(ω, t,T ) are given by the 

following differential equation

with the boundary condition φP(ω,T ,T ) = �iω
T  and φ

P̃
(ω,T ,T ) = �iω+1

T .

Finally, we will calculate the differential equation. Let pS ≡ uS√
V

 , pV ≡ uV√
V

 . Suppose 

that solution is φP(ω,T , t) = �iω
t eD(t)+E(t)V  . Substituting the solution into (C.1) yields

subject to D(T ) = E(T ) = 0.

ǫT (θS , θV , θN ) =
1

2
− 1

2π

∫ ∞

0

{
ℜ
(
φ
P̃
(ω, 0,T )

iω

)
−ℜ

(
φP(ω, 0,T )

iω

)}
dω.

φP(ω, t,T ) =E
P[eiωξT |Ft ] = E

P[�iω
T |Ft ] ,

φ
P̃
(ω, t,T ) =E

P̃[eiωξT |Ft ] = E
P̃[�iω

T |Ft ] = E
P[eiωξT eξT |Ft ] = E

P[�iω+1
T |Ft ],

(C.1)
0 =

∂φP

∂t
+ (α − βV − κ�V )

∂φP

∂V
−

∂φP

∂�
�(uN − 1)�V +

1

2

∂2φP

∂�2
�2�u�2

+
1

2
σ 2V

∂2φP

∂V 2
−

∂2φP

∂�∂V
�uσ

T + �VE[φP(ω, t,T )− φP(ω, t−,T )],

(C.2)
0 =

∂φ
P̃

∂t
+ (α − βV − κ�V )

∂φ
P̃

∂V
−

∂φ
P̃

∂�
�(uN − 1)�V +

1

2

∂2φ
P̃

∂�2
�2�u�2

+
1

2
σ 2V

∂2φ
P̃

∂V 2
−

∂2φ
P̃

∂�∂V
�uσ

T + �VE
[
φ
P̃
(ω, t,T )− φ

P̃
(ω, t−,T )

]
,

0 =D′(t)+ αE(t) ,

0 =E′(t)− (κ�+ β)E(t)− iω(uN − 1)�+ 1

2
iω(iω − 1)((pS)2 + (pV )2)+ 1

2
σ 2E2(t)

− iω(σ
√
1− ρ2pV + ρσpS)E(t)+ �E

[
(uN )iωeE(t)Y − 1

]
,
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Likewise, suppose that solution is φ
P̃
(ω,T , t) = �iω+1

t eF(t)+H(t)V  . Plugging in (C.2) 
yields

subject to F(T ) = H(T ) = 0.

D Proof of Proposition 4
To obtain the suboptimal investment strategy, we solve the HJB equation (33). Solving 
the Minimization problem, the first order condition with respect to the worst case meas-
ure uS , uV  and uN of the HJB-equation (33) implies that

Substituting (D.1) into the HJB equation yields

Suppose that solution is Jπ (t,w, v) = w1−γ

1−γ
eA

π (t)+Bπ (t)v . By calculating the partial deriva-
tive have

We choose � i = θi
(1−γ )Jπ (W ,V ,t) , i = S,V ,N  , where θS , θV , θN > 0 . By simple calculation, 

we obtain

and

0 =F ′(t)+ αH(t) ,

0 =H ′(t)− (κ�+ β)H(t)− (iω + 1)(uN − 1)�+
1

2
iω(iω + 1)((pS)2 + (pV )2)

+
1

2
σ 2H2(t)− (iω + 1)(σ

√
1− ρ2pV + ρσpS)H(t)+ �E

[
(uN )iω+1eH(t)Y − 1

]
,

(D.1)

uS =π
√
vwJπw�

S + σρ
√
vJπv �

S ,

uV =σ
√
1− ρ2

√
vJπv �

V ,

uN =e−�N
E[Jπ (t,w(1+πX),v+Y )−Jπ ] .

(D.2)

0 =Jπt + rwJπw + π(η − µ�)vwJπw −
1

2
π2vw2(Jπw )

2�S − πσρvwJπv J
π
w�

S

+ (α − βv − κ�v)Jπv − 1

2
σ 2ρ2v(Jπv )

2�S − 1

2
σ 2(1− ρ2)v(Jπv )

2�V + 1

2
vw2π2Jπww

+
1

2
σ 2vJπvv + ρπσvwJπwv + �v

1

�N
(1− e−�N

E[Jπ (t,w(1+πX),v+Y )−Jπ ]) .

(D.3)

J
π
t =

w1−γ

1− γ
e
Aπ (t)+Bπ (t)v((Aπ )′(t)+ (Bπ )′(t)v), Jπw = W

−γ
e
Aπ (t)+Bπ (t)v

,

J
π
v =

w1−γ

1− γ
e
A
π (t)+B

π (t)v
B
π (t), Jπww = −γw−γ−1

e
A
π (t)+B

π (t)v
,

J
π
wv = w

−γ
e
A
π (t)+B

π (t)v
B
π (t), Jπvv =

w1−γ

1− γ
e
A
π (t)+B

π (t)v(Bπ )2(t).

(D.4)
Jπw (η − µ�)

w(�S(Jπw )
2 − Jπww)

=
η − µ�

θS + γ
,
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Note that

By simple calculation, we obtain

Substituting (D.3)–(D.6), � i, i = S,V ,N  into (D.2), and simplify, we have

The right side of the above equation is an affine function in v. In order to make this equa-
tion hold for all v, then the constant term and the linear coefficient of v must be set to 
zero respectively, so we obtain the ordinary differential equation for Bπ (t) and Aπ (t) in 

(36) and (37). The terminal condition is J (T ,w, v) = U(wT ) , where U(wT ) =
w
1−γ
T
1−γ

 is a 
power utility function.

The welfare loss L is defined by J (t,w(1− L), v,T ,π∗) = Jπ (t,w, v, t,T ,π), we have
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(D.5)
ρσ Jπwv

w(�S(Jπw )
2 − Jπww)

=
ρσBπ (t)

θS + γ
.

Jπ (t,w(1+ πX), v + Y ) = 1

1− γ
w1−γ (1+ πX)1−γ eA

π (t)+Bπ (t)(v+Y ).

(D.6)

E[Jπ (t,w(1+ πX), v + Y )− Jπ ] =
eA

π (t)+Bπ (t)v

1− γ
w1−γ (E

[
(1+ πX)1−γ eB

π (t)Y
]
− 1).

0 =
1

1− γ
((Aπ )′(t)+ (Bπ )′(t)v)+ r + π(η − µ�)v

−
1

2
π2θSv +

1

1− γ
πσρθSB

π (t)v + α
1

1− γ
B
π (t)

− (β + κ�)
1

1− γ
B
π (t)v −

σ 2

2(1− γ )2
ρ2(Bπ )2(t)θSv

−
σ 2

2(1− γ )2
(1− ρ2)(Bπ )2(t)θV v

− 1

2
π2γ v + 1

2(1− γ )
σ 2(Bπ )2(t)v + ρπσBπ (t)v

+ �v
1

θN
(1− e

− θN
1−γ

(E

[
(1+πX)1−γ

e
Bπ (t)Y

]
−1)

) .

(D.7)L = 1− e
1

1−γ
(Aπ (t)−A(t)+(Bπ (t)−B(t))v)
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