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Abstract 

This paper presents an optimization approach—residual-based bootstrap averaging 
(RBBA)—for different types of forecast ensembles. Unlike traditional residual-mean-
square-error-based ensemble forecast averaging approaches, the RBBA method 
attempts to find optimal forecast weights in an ensemble and allows for their combi-
nation into the most effective additive forecast. In the RBBA method, all the different 
types of forecasts obtain the optimal weights for ensemble residuals that are statisti-
cally optimal in terms of the fitness function of the residuals. Empirical studies have 
been conducted to demonstrate why and how the RBBA method works. The experi-
mental results based on the real-world time series of contemporary stock exchanges 
show that the RBBA method can produce ensemble forecasts with good generalization 
ability.
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Introduction
The stock exchange data forecasting problem is very large and complex when traditional 
statistical methods are used alone. There are several examples of incorrect forecasts from 
the real world that are made by even the best specialists and forecasting business-con-
sulting centers. Even the success of artificial neural networks (ANNs) and ANN ensem-
bles in forecasting (Liu and Yao 1999) is insufficient to avoid typical ANN problems, 
such as too-deep-to-learn, too-wide-to-forget, or overfitting, whereby surplus memory 
may be mistakenly regarded as a good learning result. Different types of assets, as well 
as ample dependencies and external factors, make ANN-based stock exchange forecast-
ing a very difficult task. In practice, it is possible to obtain reliable but not sufficiently 
accurate predictions via simple standard methods such as SARIMAX, single-layer neural 
networks, wavelets, exponential smoothing, asymptotic linear regression, and so on.

This paper deals exclusively with random processes that occur on the stock exchange 
and are in one way or another implicitly related to human behavior. The random pro-
cesses under consideration differ from the high-frequency ergodic random processes 
occurring in nature.

It would be naive to believe that random stock exchange factors related mainly 
to human behavior fully correspond to the classical concepts of the statistics of 
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stochastic processes. If there were such a correspondence, most economists would 
have been able to unequivocally predict both the beginning of the Arab Spring and 
the crisis of 2008, as well as the beginning of the energy crisis of 2022, a few months 
before these events occurresd.

This problem primarily implies the adaptation of predictive methods based on the 
actual situation. Unfortunately, the currently available methods of expert forecast-
ing (references to EIA forecasts from 2017 to 2021) as well as the classical methods 
of statistical forecasting proposed more than 100 years ago by Fienberg and Lazar 
(2001) are rather weak. The objective of this study is to develop a statistical evaluation 
method vis-à-vis the performance of a forecast that provides a more accurate result 
than the currently known predictive ensemble methods.

In this case, the major task is to combine forecasts such that the residuals exclu-
sively contain the random walk component or express it most accurately (Hashem 
et al. 1994). In most cases, any optimal ensemble gives better forecasting results than 
individual methods (Kuncheva and Whitaker 2003). Meanwhile, it is almost generally 
accepted that an increase in the differences in extrapolation methods enhances the 
overall quality of forecasts (Gashler et al. 2008). Considering both traditional meth-
ods of ensemble optimization, such as the Bayes optimal classifier (Mitchell 1997), 
bootstrap aggregating (Salman et  al. 2021), boosting (Emer 2018), and advanced 
ensemble methods based on statistical estimates of the forecast correlation (Liu and 
Yao 1999), the author reflects on a tendency that is common to all methods and con-
sists of using the residual mean square error (RMSE) or its variations as a generally 
accepted geometric measure of forecast error. Paying attention to its properties, such 
as unidimensionality and asymmetry of the estimate, as a function of the area of the 
deviation bounds, the author has conducted a study that allows for the development 
of a multidimensional geometric evaluation function of the ensemble residuals that is 
easily applicable to bootstrap averaging as a penalty function and shows quite inter-
esting results, especially for large samples.

Considering the works of contemporary authors, Kou et al. (2021) developed a model 
for predicting bankruptcies of small and medium-sized enterprises. This model uses 
transactional data and two-stage multi-objective feature selection. Wen et  al. (2019) 
revealed a correlation between investor interest in an asset and asset quality. The better 
the asset, the higher the investor’s interest in it. Conversely, if the investor’s interest in 
the asset decreases, the asset soon collapses. Li et al. (2022) proposed a new clustering 
approach. They improved the multidimensional K-means algorithm, which allowed for 
better data clustering. This approach helps to reduce the number of clusters and obtain a 
more accurate image.

The remainder of this paper is organized as follows: Sect. “Multidimensional evalua-
tion of residuals: idea and implementation” describes the idea and implementation of a 
multidimensional function of the geometric evaluation of the ensemble residual quality 
and the residual-based bootstrap averaging (RBBA) method itself. Section “Experimen-
tal verification of the RBBA method” describes the conditions and procedures for exper-
imenting with a comparative analysis of the RBBA and traditional predictive ensemble 
methods. Section “The results of the experiment” presents the results of the real stock 
asset forecasting experiment, compares them with standard Bayesian optimization, 
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AdaBoost, and bootstrap aggregating methods, and provides some discussions. Finally, 
Sect. “Discussion” concludes with a summary of the paper and a few remarks.

Multidimensional evaluation of residuals: idea and implementation
Computation age and artificial neural networks

It is usually assumed that RMSE minimization is a fairly good criterion for network 
training or prediction optimization, but the practical application of this method does 
not always present adequate results. Having agreed that the residuals of the approxima-
tion of the method should have minimum error, we nevertheless do not consider the 
basic statistical idea of the random component (Wetherill 1981). Often, an overfitted 
neural network or an idealized predictive method, being sufficiently trained, optimized, 
and showing good results on homogeneous, standardly distributed data, still turns out 
to be ineffective for practical application. With the stock market, this means that, in fact, 
the incoming data are not only heterogeneous but also have a purposeful tendency to 
deviate from statistically sound forecasts because a high-quality forecast that becomes 
a matter of common knowledge is actually a factor that minimizes the agent’s profit. 
Thus, the use of standard methods of predictive error estimation forces the forecaster 
to deliberately expand the forecast corridor to avoid real estimates beyond theoretical 
boundaries. Of course, the least squares method, invented by Gauss more than 200 years 
ago (Stigler 1981), is currently one of the most commonly used optimization criteria 
for approximating dependencies. This method is extremely simple and requires mini-
mal computing resources. However, it does not guarantee that it will separate the main 
functions and dependencies from a random component; it only finds its most plausible 
placement. As a rule, the evaluation of approximation residuals is more often used as 
a verification method rather than an optimizing one; traditionally, in the pre-computer 
and early computer era (primary and secondary information age), it was considered 
highly resource-intensive. Since 2008, the computing power of nonspecialized private 
systems has grown so much that we have entered a new computing era (tertiary infor-
mation age) (Hilbert 2020). Modern computing resources have become widely available 
and extremely cheap over the past half-century, and the emergence of multi-core video 
processors (Corana 2015), method of massive error backpropagation (Goodfellow et al. 
2016), and software libraries for the Levenberg–Marquardt algorithm (Transtrum and 
Sethna 2012) have allowed the widespread use of neural networks and computational 
ensembles as universal approximating and predictive mathematical tools. These three 
tools, mutually reinforcing one another, have created the conditions for a technologi-
cal breakthrough in the field of processing and analyzing large amounts of data in small 
laboratories. The availability of supercomputing capacities has ceased to play a signifi-
cant role because the computing power of conventional desktop computing systems has 
reached hundreds of teraflops.

Nearly every modern forecasting method uses the squared deviation or its modifications 
in one form or another, such as the fitness penalty function and the Levenberg–Marquardt 
algorithm, sometimes combined with stochastic functions, as a method of finding the opti-
mum. Although the algorithm for finding a local or global error minimum solely affects 
the speed of achieving the result, the fitness penalty function is responsible for its quality. 
The idea of improving the quality of the forecast by replacing the optimization criterion 
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appeared during the actual forecasting of stock data, when many forecasts of real data 
turned out to be of insufficient quality despite the low standard error and excellent approxi-
mation quality.

The idea of a new quality criterion of residuals

The main criteria for the quality of random residuals, regardless of whether they appeared 
as a result of multiplicative (Bessel distribution), additive (Gaussian distribution), or mixed 
effects of random factors, are the actual characteristics reflecting their association with a 
set of random processes. Such characteristics include, first, the mutual independence of 
residuals of the time series, the absence of autocorrelation, and plausibility expressed in 
proximity to the normal distribution (symmetry, pronounced modality, moderate excessiv-
ity). Such a synthetic criterion may be multidimensional and expressed geometrically, simi-
lar to the RMSE, in terms of volume or hypervolume corresponding to the deviation from 
the set of ideal values of statistical tests of residuals corresponding to zero values.

Mathematical implementation of the penalty function

The following criteria were selected as components of the residual quality measure: the 
Bienaymé turning point test (Kendall 1973), as a characteristic of the mutual dependence 
of time series elements; the Durbin–Watson statistic (Durbin and Watson 1950), as a char-
acteristic of the presence of autocorrelation; and the Shapiro–Wilk test (Shapiro and Wilk 
1965), as a measure of deviation from normality.

Modified turning point test

A test first described by Bienaymé (1874) and further considered in detail by Kendall (1973) 
characterizes the presence of connectivity of time series elements. In most of the literature 
(Brockwell and Davis 2002), as well as in the implementation of statistical software pack-
ages, such as R (the turningpoint.test function), counting turning points is a rather slow 
procedure because it uses two comparison operations and, accordingly, branches for each 
point. We have developed and first introduced an equation that allows it to speed up this 
procedure because it does not use comparisons and branches but is based on the properties 
of the modulus of a number and the sign function (1). This equation contains a single slow 
operation (division) performed at the end of the calculations and can be optimized for data 
flow processing. Typically, the total number of turning points of a series, calculated as (1), 
is estimated only by the left boundary of the criterion, checking for the presence of linear 
dependencies between the elements of the series. However, the right boundary also charac-
terizes the presence of a connection, but unlike the left boundary, it is periodic. Thus, the 
necessary components normalized to the optimum corresponding to the zero value can be 
expressed as (2).

(1)

T =
n−1

i=2

sgn(|xt | − |xt−1|) · sgn(|xt | − |xt+1|)+ 1

2

·
n−1

i=2

sgn(|xt | − |xt−1|) · sgn(|xt | − |xt+1|)
2

.



Page 5 of 12Ivanyuk ﻿Financial Innovation            (2023) 9:37 	

where respectively, T is the actual number of turning points, n is the sample size of the 
approximation residuals, sgn(x) is the sign function of the number [Kronecker function 
(Rich and Jeffrey 1996)], xt are valuefunction of the number of the time series of the 
approximation residuals, t denotes the number of sample elements corresponding to the 
time point of the series, Tp is the penalty function component, and zα is the width of the 
boundaries of critical values (Z-score).

Modified Durbin–Watson statistic: because the optimum point for this criterion (cor-
responding to 2) and the extreme values of the upper and lower bounds (corresponding 
to 0 and 4) are known, it is sufficient to use Eq. 3 to calculate the normalized estimate of 
the absence of autocorrelation.

where respectively, Dp is the penalty function component, n is the sample size of the 
approximation residuals, xt are the values of the time series of the approximation resid-
uals, and t is the number of sample elements corresponding to the time points of the 
series.

Similar to the previous component, this modified criterion is normalized to one, and 
its optimum point corresponds to zero.

Modified Shapiro–Wilk test

This criterion which determines the plausibility of the normality of the residual distribu-
tion has limited statistical tables that do not allow estimating time series of more than 
50 elements. To expand its applicability, we can use the Kazakevičius approximation 
(Kazakevičius 1988), expressed by Eqs.  (4)–(6), which allows working with any sample 
size, normalized to one with an optimum at zero.

where respectively, zt is the approximated tabular value used to calculate the coefficients 
of at , n is the sample size of the approximation residuals, t is the number of sample ele-
ments corresponding to the time point of the series, at is the approximated tabular value 

(2)Tp =

∣

∣

∣
T − 2n−4

3

∣

∣

∣

zα

√

16n−29
90

,

(3)Dp =

∣

∣

∣

∑n
t=2(xt−xt−1)

2
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∣

∣
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,

(4)zt =
n− 2t + 1

n− 0.5
,

(5)at =
(

0.899

(n− 2.4)0.4162
− 0.02

)

·
[

zt +
1483

(3− zt)10.845
+

7161 · 10−8

(1.1− zt)8.26

]

,

(6)Wp =
(

1−
0.6695

n0.6518

)

·
1

n−1

∑n
t=1 (xt − x̄)2
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at(xn−t+1 − xt)
]2

,
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for calculating the value of Wp , Wp is the penalty function component, xt is the values of 
the time series of the approximation residuals, and x̄ denotes the arithmetic mean of xt.

Despite the apparent complexity of Kazakevičius’ equations, unlike the original Sha-
piro–Wilk test, they not only allow the evaluation of a sample of any volume, but are 
also well suited for parallelizing calculations on multiprocessor systems. In addition, 
it should be noted that the coefficients zt and at are essentially tabular values that are 
calculated once and appear to be common to all estimated time series residuals.

Penalty function: as a result, having characteristics of the series of residuals as 
mutual independence, characterized by the value Tp , the absence of autocorrelation, 
characterized by the value Dp , and the proximity of the distribution to the normal, 
characterized as Wp , considering that all three parameters have critical values nor-
malized to unity with an optimum point at zero, we can create a function charac-
terizing all three parameters as a volume normalized in the interval [0;  1] with an 
optimum at the origin point. The final function is given by Eq. (7).

In the future, we will consider RBBA to minimize the penalty function Pp of the time 
series residuals by selecting the optimal values of the ensemble of variable coefficients of 
the approximated series by any gradient or stochastic method.

Experimental verification of the RBBA method
For the experimental verification of the method, a statistical assessment of the qual-
ity of additive ensemble forecasts formed by the following ensemble methods was 
applied: Bayes optimal classifier (Mitchell 1997), bootstrap aggregating (Breiman 
1996), Adaptive Boosting (Hastie et al. 2009), and particularly, RBBA.

Ensemble components: The following types of forecasts were used as the main 
components of the additive predictive ensemble: classical linear, classical indicative, 
asymptotic linear, asymptotic indicative, classical wavelet, combined neural, and clas-
sical perceptron-based.

The classical and asymptotic linear forecasts are described by Eqs. (8) and (9):

where respectively, F(t)lin denotes the value of the linear forecast, a is the coefficient of 
the linear equation selected by the optimization method, t denotes the number of sample 
elements corresponding to the time point of the series, b is the coefficient of the linear 
equation selected by the optimization method, F(t)asl is the asymptotic linear forecast 
value, n is the sample size of the time series elements, e is the Euler number (McCartin 
2006), c is the asymptotic coefficient selected by the optimization method, and τ is the 
forecast lead time.

The classical and asymptotic indicative forecasts are described by Eqs. (10) and (11):

(7)Pp =
√

Tp Dp Wp.

(8)F(t)lin =at + b,

(9)F(t)asl =F(t)lin + (F(n)lin − xn)e
−c(t−n) e

τ ,
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where respectively: F(t)e is the indicative forecast value, H is the Heaviside function 
(Zhang and Zhou 2020), a is the coefficient of the linear equation selected by the opti-
mization method, xmax is the maximum element of the time series, xmin is the minimum 
element of the time series, e is the Euler number (McCartin 2006), b is the coefficient 
of the linear equation selected by the optimization method, t denotes the number of 
sample elements corresponding to the time point of the series, F(t)ae is the asymptotic 
indicative forecast value, n is the sample size of the time series elements, c is the asymp-
totic coefficient selected by the optimization method, and τ is the forecast lead time.

Because asymptotic forecasts are non-standard methods (Figs. 1 and 2), we suggest a 
graphic presentation of the difference between these forecasts and the existing classical 
methods, which allows for enhancing the prediction quality as a result of the asymptotic 
expansion of the forecast values.

The wavelet forecast is formed by the method of sequential decomposition of a time 
series by a set of wavelets similar to Eq. (12), all the wavelets are combined into a com-
mon additive forecast, according to Eq. (13).

where respectively, ψi(t) is the value of the wavelet, a is the amplitude of the wave-
let selected by the optimization method, i is the number of wavelets obtained during 

(10)F(t)e =H(a)
(

xmax − xmine
−bt

)

+H(−a)
(

xmin + xmaxe
−bt

)

,

(11)F(t)ae =F(t)e + (F(n)e − xn)e
−c(t−n) e

τ ,

(12)ψi(t) =ai(sin bi(t + di))e
−|ci(t+di)|,

(13)F(t)wav =
m
∑

i=1

ψi(t),

Fig. 1  Asymptotic linear forecast
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decomposition, b is the Wavelet compression coefficient selected by the optimization 
method, t is the number of sample elements of the time series corresponding to the time 
point of the series, d—the wavelet shift coefficient selected by the optimization method, 
e is the Euler number (McCartin 2006), c is the Wavelet decay coefficient selected by 
the optimization method, F(t)wav is the wavelet forecast value, and m is the number of 
wavelets obtained during decomposition of the series.

A perceptron-based neural forecast, which reflects the impact of external correlat-
ing factors, is formed by a single-layered nonrecurrent neural network with multiple 
inputs receiving data on the values of influencing external factors. Such a forecast is 
calculated according to Eq. (14):

where respectively, F(t)ann is the value of the neural network forecast, ς is the Verhulst 
logistic function (Verhulst 1838), m is the unit depth of the neural network, k is the coef-
ficients of the receptive field selected by the network training method, n is the unit width 
of the neural network, xij is the input value of the neural network, t is the number of 
sample elements of the time series corresponding to the time point of the series, and τ is 
the forecast lead time.

Residual-based optimization function.
To perform optimization using gradient methods in an empirical study, a four-

dimensional criterion of the residual quality was chosen, combining both the classical 
least-squares method and the proposed method for evaluating the quality of residuals 
corresponding to Eq. (15)

(14)F(t)ann = ςk0



ςk1

i=m
�

i=1

ςki





j=n
�

j=i

ς
�

kijxij(t − τ )
�



+ . . .



,

Fig. 2  Indicative and asymptotic indicative forecast of gasoline price
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The results of the experiment
General equation of the forecast and optimization of confidence coefficients based on 
the forecasts described above, an additive equation of the predictive ensemble (16) is 
compiled:

where respectively, F(t)ens is the ensemble forecast value, k is the coefficient of receptive 
confidence selected using the ensemble averaging method, and F(t) is the corresponding 
forecast described above.

The main optimization task for this type of forecast is to determine the confidence 
coefficients, which is the concept of ensemble optimization (ensemble averaging). 
Notably, it is just the method of determining these coefficients that constitutes the 
main difference between the basic approaches of the evaluated ensemble methods. 
Therefore, for the Bayes optimal classifier method, the probability of a correct fore-
cast for each of the ensemble components determines the confidence coefficients; 
bootstrap aggregating is based on discarding the worst forecasts characterizing cer-
tain properties of the series already used in forecasts with better results; Adaptive 
Boosting, despite the pronounced tendency to overfitting, relies on the idea of grad-
ual improvement of confidence coefficients based on a continuous reassessment of 
the squared forecast deviations; and RBBA, combining the ideas of Adaptive Boosting 
and bootstrap aggregating, implies a gradual sequential selection of confidence coef-
ficients based on the optimization of comprehensive quality estimates of predictive 
residuals of a set of forecasts.

To assess the quality of the forecasts, a random sample of real stock exchange data was 
used. The main characteristics of the forecast quality are the estimates of the standard 
deviation (17), confidence interval (18), and total percentage of forecasting errors with 
the corresponding lead time. The evaluation results are averaged arithmetically.

where RMSE is the forecast error, i is the number of sample elements of the forecast 
residuals, n is the sample size of forecast residuals, xi is the value of the time series of 
the forecast residuals, x̄ denotes the arithmetic mean of xi , �F(t)ens is the forecast con-
fidence interval, and tα is the Student’s t-distribution coefficient corresponding to the 
significance level α.

Quality evaluation of ensembles Below is the general result of the quality evaluation 
of ensembles for α = 0.05 , see Table 1 and Fig. 3.

(15)Pp = 4
√

Tp · Dp ·Wp · RMSEp,

(16)F(t)ens = klF(t)l + kalF(t)al + keF(t)e + kaeF(t)ae + kwF(t)w + knF(t)n.

(17)RMSE =

√

∑n
i=1(xi − x̄)2

n
,

(18)�F(t)ens =± tα
RMSEFens√

n
.
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Discussion
Evaluating the above, it is worth noting that the idea of the ideality of random residu-
als in itself is just a widespread hypothesis. In fact, when analyzing real data, we often 
observe periods of the distribution of residuals that are not only extremely close to 
normal (for example, the dollar exchange rate in the Russian Federation during the 
2009–2014 period) but also extended periods with significant asymmetry and fre-
quent outliers (for example, the dollar exchange rate in the Russian Federation in 
the 1994–2000 period), when the residuals do not correspond to statistical charac-
teristics of normality by most criteria, which means that they imply trends that are 
unaccounted for and dependencies missed or deliberately ignored by forecasters. 
The optimization criteria chosen by the authors, despite the increase in the quality of 
predictive ensembles, do not guarantee that the approximation residuals correspond 
perfectly to the normal distribution but are only an alarming red flag indicating a sig-
nificant intensity of processes and trends that are overlooked in the forecasts. The 
main advantages of the proposed method include higher prediction accuracy and no 

Table 1  The final result of the quality evaluation of the forecast ensembling methods

Method RMSE (the smaller the
better)

Confidence interval
(the smaller the better)

Forecast 
accuracy
(the higher 
the better) 
(%)

Bayes optimal classifier 0.040325645 0.024994094 94.27

Bootstrap aggregating 0.042994277 0.026648129 93.89

Adaptive boosting 0.039093313 0.024230286 94.44

RBBA 0.026864154 0.016650575 96.18

Fig. 3  Gazoline prices forecast ensembling methods
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need to perform a quality test on the residuals of the forecast, which leaves out a 
whole mandatory stage from the standard methodology of statistical research. Owing 
to the optimization of the quality of residuals, we obtain a multidimensional, optimal 
result as early as the forecasting stage. However, because the proposed method uses 
criteria applicable exclusively for large samples, it is not applicable for small ones, 
which is its real downside. Over the past 120 years, statistics has come a long way as 
a separate scientific field, but the period of transition to the third information age, 
when computing resources became extremely cheap and new statistical methods 
gained high demand again, was practically ignored by it.

Despite the allure of the idea of an approximating “self-learning smart black box,” 
which served the development and widespread use of multilayer neural networks of 
deep learning and the latest forecasting methods, we could not qualitatively predict the 
crisis of 2008, the Arab Spring, or the energy crisis of 2020–2022.

Conclusion
The idea of a multidimensional residual-based optimization approach is not limited to 
this evaluation method. As a penalty function, one can use third- and fourth-order devi-
ations from the normal moments, as well as higher-order estimates, or other criteria- 
and non-criteria-based methods. It is evident that both the method of turning points 
and the Shapiro–Wilk test described in this article imply the evaluation of large sam-
ples. Meanwhile, the RBBA method remains suitable for samples with a small number of 
elements, although in this case, it is necessary to use similar criteria designed for small 
samples. It is also worth noting that the RBBA method cannot be sensitive to any initial 
conditions or parameters for calculating the forecast because, unlike stochastic boot-
strap methods, which depend on the initial time, it uses statistical criteria and gradient 
methods.

It is also worth noting that the quality criteria of the residuals chosen by the authors 
are far from a comprehensive assessment, as parameters such as correlations of deep 
orders, higher moments of distributions, and systematic external asymmetry are clearly 
not considered in the penalty function, which is the main criterion for RBBA optimiza-
tion. Perhaps, to improve the quality of forecasts, it is necessary to add other measures 
that primarily characterize the presence of unaccounted trends, hidden dependencies, 
and multiplicative factors.

Abbreviations
RBBA	� Residual-based bootstrap averaging
RMSE	� Residual mean square error
ANN	� Artificial neural network
SARIMAX	� Seasonal auto-regressive integrated moving average with eXogenous factors.
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