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Introduction
Most studies on security-bid auctions (e.g., Board 2007; Cong 2019, 2020) report that 
auctioneers can offer bidders the opportunity to invest in a lumpy investment project 
with an exogenously given intensity. As Bar-Ilan and Strange (1999) indicate, uncom-
binability and adjustment costs are two main reasons why investments exhibit lumpi-
ness.1 However, it is more appropriate to assume that investment is lumpy with variable 
intensity. For example, landowners must decide the time to change use and density of 

Abstract 

This study investigates the design of the royalty rate in a first‑price auction across three 
types of investments: incremental and lumpy with or without an exogenously given 
intensity. A bidder’s investment cost comprises private information. This, together with 
the stochastic evolution of the price of the output generated from the auctioned pro‑
ject, precludes the seller from setting the exact dates of investment with the winner. 
However, the seller can set the royalty rate to equate the winner’s royalty payment with 
the winner’s information rent so that the winner acts as if to maximize the seller’s rev‑
enue. We derive two main conclusions. First, compared with the case in which invest‑
ment is lumpy with an exogenously given intensity, the seller can set a lower royalty 
rate on incremental investment because she can collect additional royalty payments 
from the winner, who has the option to later expand capacity. Second, the impact of 
output price uncertainty on the optimal royalty rate for the three types of investments 
exhibits two different patterns. When investment is either incremental or lumpy with 
an exogenously given intensity, greater output price uncertainty reduces the royalty 
rate. When investment is lumpy with variable intensity, greater output uncertainty 
raises the royalty rate. Our results imply that auctioneers may charge differential royalty 
rates for different types of investments.

Keywords: Cash payment, First‑price auction, Incremental investment, Lumpy 
investment, Mechanism design, Real options, Royalty rate, Uncertainty

JEL Classification: D82, G11, G30, L20

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Jou and Lee  Financial Innovation            (2023) 9:69  
https://doi.org/10.1186/s40854-023-00450-0 Financial Innovation

*Correspondence:   
jbjou@ntu.edu.tw
1 Graduate Institute of National 
Development, National Taiwan 
University, No. 1, Sec. 4, Roosevelt 
Road, Taipei City 10617, Taiwan
2 Department of Finance, 
National Central University, No. 
300, Zhongda Road, Zhongli 
District, Taoyuan City 32001, 
Taiwan
Full list of author information is 
available at the end of the article

1 For example, land development is not combinable, because redeveloping a piece of land usually requires dismantling or 
substantially renovating an existing structure. Another example is that, when replacing equipment or renovating public 
infrastructure, fixed adjustment costs are likely to be generated.

http://orcid.org/0000-0002-9507-3370
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40854-023-00450-0&domain=pdf


Page 2 of 25Jou and Lee  Financial Innovation            (2023) 9:69 

development (Capozza and Li 1994; Jou and Lee 2007). Similarly, a power-generating 
company must decide when to replace its facility and the capacity level of a new plant. 
By contrast, other investments occur incrementally. For example, a government may 
offer bidders the opportunity to exploit minerals and later expand their investments 
(Trigeorgis 1993).

Auctioneers may offer cash bids at a given royalty rate. However, we contribute to the 
literature by developing a unified model to investigate the optimal royalty rate across the 
aforementioned three types of investments, including incremental and lumpy, with an 
exogenously given or variable intensity. Bar-Ilan and Strange (1999) find that the com-
parative statics and capital stock evolution of the first two types, which are quite similar, 
are strikingly different from the last one. This study investigates whether this pattern 
persists in contingent royalty rate design.

We construct a two-stage private value model (Vickrey 1961) in which a seller and 
multiple potential bidders are risk-neutral and maximize their expected payoffs.2 In 
the first stage, the seller uses a direct revelation mechanism that includes the allocation 
rule, cash payments, and the royalty rate. Participating bidders have private information 
regarding their investment costs and bid cash through a first-price auction (FPA). After 
winning the bid, the winner has the option to engage in one of three types of invest-
ments. The equilibrium bid is derived using a perfect Bayesian Nash solution subject to 
the constraints of incentive compatibility and individual rationality. In the second stage, 
the winner faces a stochastic evolution in the price of the output generated by exercising 
the investment option. The winner chooses the timing and/or intensity of investment 
upon winning the auction and then delivers the royalty payment to the seller after pro-
ducing the output. A postauction moral hazard problem arises as an unobservable type 
of bidder, and the stochastic evolution of the output price precludes the seller from con-
tractually setting the exact dates of investment with the winner.

We solve the two-stage problem backwards. In the case of lumpy investment, in the 
second stage, the winner faces an investment decision, as described by McDonald and 
Siegel (1986) and Bar-Ilan and Strange (1999). The winner chooses the intensity of the 
investment on the date when the option value of waiting is equal to the sunk cost of 
investment. In the case of incremental investment, in the second stage, the winner faces 
a marginal investment decision, as described by Pindyck (1988).3 The winner invests in 
the expansion option on the date on which the option value of investing in an additional 
unit of capital is equal to the marginal value of that unit, net of the unit cost of capital. 
Furthermore, in the first stage, the seller sets the royalty rate and participating bidders 
bid cash for the investment project. The winner maximizes his valuation of the invest-
ment less his royalty payment, whereas the seller maximizes her revenue, which equals 
the winner’s valuation of the investment minus his information rent. Therefore, the seller 
should set the royalty rate to equate the winner’s royalty payment with his information 
rent, with the winner acting as if to maximize the seller’s revenue.

We derive the following two main conclusions: first, compared with the case in which 
investment is lumpy with an exogenously given intensity, the seller can set a lower 

2 For ease of exposition, the seller is female, and the bidders are male.
3 See also Hagspiel et al. (2016) and Huisman and Kort (2015), both of which focus on a firm’s capacity choice problem.
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royalty rate on incremental investment because she can collect additional royalty pay-
ments from the winner, who has the option to later expand capacity. Second, the impact 
of output price uncertainty on the optimal royalty rate for the three types of investments 
exhibits two different patterns. When investment is either incremental or lumpy with an 
exogenously given intensity, greater output price uncertainty encourages the winner to 
wait for a more favorable output price to exercise the investment option, which raises 
the winner’s royalty payment. Therefore, the seller can reduce the royalty rate. When 
the investment is lumpy with variable intensity, greater output uncertainty induces the 
winner to choose a larger investment intensity. Although this results in the seller receiv-
ing more royalty payments that are subject to decreasing marginal returns to capital, the 
benefit is outweighed by the increment of the information rent collected by the winner 
(embedded in the investment cost), which is linear in the capital stock. Consequently, 
greater uncertainty induces the seller to increase their royalty rate.

Our results have implications for auctions in terms of the opportunity to invest in 
long-lived investment projects, such as the Outer Continental Shelf (OCS) lease auc-
tions in the United States. The United States Department of the Interior (DOI) uses auc-
tions to allocate exploration and drilling rights for oil and gas to federal lands on the 
OCS (Hendricks and Porter 1988; Hendricks et al. 2003; Haile et al. 2010).4 These lands 
are divided into tracts that have not been previously explored, or “wildcat tracts,” and 
tracts adjacent to wildcat tracts in which a discovery has been made, or “drainage tracts.” 
Since the introduction of the Area-Wide Leasing program in 1983, the federal offshore 
leasing program has sold leases using a first-price sealed bid auction with a reserve price. 
The winner of a lease pays the bid, or “bonus,” on the sale date and 18.75% or 12.5% 
(16.67% prior to 2008) in royalties on revenues earned from post-sale production. If a 
wildcat tract lease is sold, the winner has the right to conduct exploratory drilling over a 
fixed period (typically 5 years). Most sales are wildcat sales (Hendricks and Porter 1996). 
The winner who leases a wildcat tract is likely to have the option to invest in an incre-
mental project because he needs to decide the timing and initial intensity capacity. After 
making a discovery, he has the option of expanding capacity.5 Thus, our study suggests 
that the DOI can charge a higher royalty rate for the wildcat tract when the uncertainty 
is smaller.

The rest of this study is organized as follows: "Literature review" section presents a 
literature review. "Model"  section introduces the assumptions of this model. "Lumpy 
investment"  section  analyzes the winner’s choice of lumpy investment with variable 
or an exogenously given intensity. For each case, we derive the optimal royalty rate and 
assess how various factors (including output price uncertainty) affect this rate. "Incre-
mental investment"  section is similar to   "Lumpy investment"  section for the case of 
incremental investment. "Managerial and policy implications"  section describes how the 
auctioneer’s design of the royalty rate relates to the type of investment and presents the 
policy and managerial implications of the theoretical results. Finally, "Conclusion"  sec-
tion offers concluding remarks and suggestions for future research.

4 The lease auctions were conducted by the Minerals Management Service before 2010, then by the Bureau of Ocean 
Energy Management and the Bureau of Safety and Environmental Enforcement (Cong 2019).
5 Hendricks et al. (1987) report that during 1954 and 1969, 71% of wildcat leases made a discovery.
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Literature review
This study is closely related to the literature that employs the real options approach to 
investigate auction design, such as Board (2007) and Cong (2019, 2020).6 Board (2007) 
considers a seller who auctions a dynamic option among many bidders. After the auc-
tion, the winning bidder, with private information regarding the value of the option, 
decides the date of executing the option when faced with the stochastic evolution of 
the investment cost over time. In this case, a revenue-maximizing auction consists of 
an upfront bid plus a contingent fee, whereby the fee is chosen in a Pigouvian manner. 
Thus, the winning bidder’s choice of exercise time maximizes the seller’s expected reve-
nue. Furthermore, the type of the winning bidder determines the contingent fee. In con-
trast, this study demonstrates that the optimal contingent royalty rate is related to the 
parameters that characterize the stochastic evolution of the output price.

Cong (2019, 2020) assumed that bidders have private information about their invest-
ment costs. The winning bidder has the choice to execute an investment project with 
an exogenously given capacity that generates revenue evolving as a geometric Brownian 
motion. Cong (2020) reports that informal auctions take place before formal auctions. 
By contrast, Cong (2019) considers various selling mechanisms and shows that the opti-
mal mechanism combines an upfront charge with a contingent royalty rate. He empiri-
cally demonstrates that a higher royalty rate delays the investment project’s exercise. He 
provides an analytically tractable solution for the optimal royalty rate that is similar to 
ours, which is only applied to the case of lumpy investment with an exogenously given 
capacity.

This study is related to the literature on security-bid auctions (e.g., Krishna 2010), pio-
neered by DeMarzo et  al. (2005). They analyze auctions in the context of asymmetric 
information, in which the winner’s payment includes a share of the cash flow or (ex-
post) value generated from the auctioned asset. They reveal that the seller’s expected 
revenue is higher if the payment to the seller as a function of the realized value is steeper. 
In contrast, this study analyzes the choice of royalty rate in the presence of postauction 
moral hazard.7

Several articles on security-bid auctions either make assumptions or investigate top-
ics that differ from ours in this study. These include: Liu (2016), Sogo (2017), Bern-
hardt et al. (2020), Liu and Bernhardt (2021), and Fioriti and Hernandez-Chanto (2021). 
Although we assume that bidders are ex ante identical, Liu (2016) analyzes the effects of 
heterogeneity in terms of bidders’ valuation distribution and standalone values in equity 

7 Our paper is thus also related to Samuelson (1987), Kogan and Morgan (2010), Laffont and Tirole (1987), Esö and 
Szentes (2007), Riordan and Sappington (1987), and McAfee and McMillan (1987). The first article indicates that adverse 
selection and moral hazard complicate the effect described in DeMarzo et al. (2005). The second presents a comparison 
of equity and debt auctions under moral hazard in an experimental study. The third derives an optimal linear incentive 
contract under competition, information asymmetry, and moral hazard. The remaining three articles focus on how post-
auction decisions affect auction design.

6 See also Bhattacharya et al. (2022), and Herrnstadt et al. (2019). Bhattacharya et al. (2022) propose a common-value 
model of contingent payment auctions that explicitly links auction design to postauction economic activity in the con-
text of Permian Basin oil auctions in New Mexico State. They reveal that the New Mexico State government can choose 
a royalty rate equal to 29% to maximize its revenue among all bonus auction formats. Herrnstadt et al. (2019) explicitly 
model the effects of the length of the primary term on drilling decisions and on the value received by the mineral owner 
and firm on the Haynesville Shale in northwestern Louisiana and East Texas. The primary term specified in the lease 
contract is the period of time the firm has to drill at least one well on the leased parcel. They determine that, for the sec-
tion with drilling, 72%, 15%, 5%, and 4% of firms had one, two, three, and four or more wells drilled. This result suggests 
that the winning firm in the oil lease auction is provided with an opportunity to invest in the type of incremental invest-
ment project adopted in our framework.
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auctions. Sogo (2017) considers a moral hazard problem inherent in the equity auctions 
of assets, in which, before an auction, the seller has private information about the pos-
sible returns on the auctioned assets. By contrast, we assume that bidders have private 
information about their investment costs.8 Bernhardt et al. (2020) analyze optimal auc-
tion mechanisms when bidders, who base heterogeneous costly entry decisions on their 
valuations, pay with a fixed royalty rate and cash. However, we assume that bidders have 
the same entry costs. Fioriti and Hernandez-Chanto (2021) introduce risk-averse bidders 
to assess how security design affects bidders’ equilibrium behavior as well as the revenue 
and efficiency of the auction. We assume that the seller and bidders are all risk-neutral. 
Finally, Liu and Bernhardt (2021) consider a setting in which potential merger partners 
are privately informed of their standalone values and merger synergies. We investigate 
formal rather than informal auctions.

Model
Assume that a risk-neutral seller and N risk-neutral potential bidders have the same 
discount rate ρ . When the seller auctions an option to invest in a project to these bid-
ders, each bidder i knows his private investment cost of installing one unit of capital, 
θi, where the investment costs are completely irreversible as typically assumed in the 
real options literature (e.g., Dixit and Pindyck 1994).9 Bidder i learns that the distribu-
tion of types for other bidders is independently and identically distributed with posi-
tive support θ, θ  . The cumulative distribution and density function of θj are denoted 
by F(θj) and f (θj), respectively, where θ ≤ θj ≤ θ , j = 1, . . . ,N . Let θ = (θ1, . . . , θN ) 
and θ−i = (θ1, . . . , θi−1, θi+1, . . . , θN ) . An investment project that is never developed is 
worthless to the winner and seller.10

We compare an auctioneer’s design of contingent royalty rates among three types of 
investments in a two-stage framework. In the first stage, the seller uses a direct revela-
tion mechanism (Qi,Ci,φi) that consists of an allocation function, upfront payments, 
and a royalty rate, respectively. The seller holds an auction through an FPA and sets the 
royalty rate at time t = 0 . Each bidder i who announces his type θ̃i and makes an upfront 
cash payment Ci(θ̃) is awarded the option to invest in a project with probability Qi(θ̃) , 
where θ̃ = (θ̃1, . . . , θ̃N ) and 

∑N
i=1Qi(θ̃) ≤ 1 . In the second stage, if bidder i wins the 

auction, he must decide the timing of investment. If his investment is lumpy, he invests 
in either an exogenously given or variable intensity at t ≥ 0 . By contrast, if investment 
is incremental, he chooses a capacity at t ≥ 0 and has the option to later increase the 
capacity. In either scenario, he is required to pay royalties after producing the output.

8 Consequently, in our paper there is no need for the seller to induce an optimal ex-post game for the winning bidder as 
in Sogo (2017).
9 As Lambrecht (2017) indicates, Dixit and Pindyck (1994) provide an overview of real options research up to the mid-
dle of the 1990s. From the middle of the 1990s onward, the focus of real options research shifted from developing to 
applying real options methods. The real options approach remains highly relevant today, as illustrated by a special issue 
of Journal of Banking and Finance (Lambrecht 2017) and a review article published in Journal of International Business 
Studies analyzing this approach (Chi et al. 2019). One may apply the real options approach to the recent types of invest-
ment such as Fintech investments (Kou et  al. 2021) and solar energy-based transportation investment projects (Kou 
et al. 2022).
10 Extending the model to the case in which the investment project is valuable despite never being developed is straight-
forward, as Board (2007) and Cong (2019) demonstrate.
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We solve the two-stage problem backwards. We first solve the winner’s optimal invest-
ment strategy. Next, we derive the bidding equilibrium and the seller’s optimal choice of 
royalty rate. We consider both cases in which the investment is lumpy and incremental.

Lumpy investment
Suppose that the investment is lumpy. In the second stage, bidder i faces an investment 
problem, as described by McDonald and Siegel (1986) and Bar-Ilan and Strange (1999). 
Let Ki(t) denote bidder i’s stock of capital, and Yi(t) denote his level of output at time 
t after he has won the bid on date 0. Bidder i transforms each unit of capital, Ki(t), to 
Ki(t)

α units of output per period using the production technology as follows:

where α is the productivity of capital, that is, the percentage change in output, given a 
1% change in capital stock. The price of the output P(t) evolves according to geometric 
Brownian motion, which is written as follows:

where µ is the expected growth rate of P(t) , σ (> 0) is the instantaneous volatility of this 
growth rate, and d�(t) is the increment of the standard Wiener process.11

Under the assumption that capital never depreciates and the marginal cost of produc-
tion is constant, as denoted by w , bidder i’s profit before royalty payment at time t is 
obtained as follows12:

Using Eq.  (1): In the absence of any royalty payment, bidder i’s value of investment 
at time t, V1(Ki(t),P(t)) , is equal to the expected present value of the return on capital 
from time t to infinity, beginning from the output price P(t) , that is,

We assume that the investment cost θiKi(t) is not observable. This, together with the 
stochastic evolution of the output price, precludes the seller setting a contract with the 
winning bidder regarding the investment timing. Our assumption is realistic because, in 
practice, contracts or security designs based on profits are rare; profit-sharing is instead 
often combined with employee ownership and may be associated with other forms of 
financial participation and with varying levels of employee information and partici-
pation in decision-making (Estrin et  al. 1997). Furthermore, following DeMarzo et  al. 
(2005) and Bernhardt et al. (2020), we assume that the winning bidder incurs an upfront 
cost X ≥ 0. This cost can be interpreted as initial resources required for the project, such 
as illiquid human capital, the cost of underwriting (in the case of security issuance), or 

(1)Yi(t) = Ki(t)
α, 0 < α < 1,

(2)dP(t) = µP(t)dt + σP(t)d�(t),

(3)πi(Ki(t),P(t)) = Ki(t)
α(P(t)− w).

(4)V1(Ki(t),P(t)) = E

∫ ∞

t
e−ρ(s−t)Ki(t)

α
[P(s)− w]ds = Ki(t)

α

[

P(t)

(ρ− µ)
−

w

ρ

]

.

11 One may assume that the output price follows a Possion jump process to capture the possibility of the catastrophic 
event such as the stock price crash risk as in Wen et al. (2019).
12 If we assume that capital depreciates at a constant rate, then the impact of the depreciation rate on bidder i’s value 
and choice of capital, the seller’s revenue, and royalty rate is qualitatively the same as that of the discount rate.
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simply the winning bidder’s opportunity cost. In any case, X is common knowledge and 
invariable across bidders.13

The seller holds an auction on date 0, with P0 = P(0). The winning bidder, bidder i, 
invests on date τi and installs either an exogenously given stock of capital, K , or a vari-
able stock of capital equal to Ki(τi) . After the date τi , at each instant t, bidder i delivers 
contingent payment φi(θ̃)K

α
P(t) or  φi(θ̃)Ki(τi)

αP(t) to the seller.14

Lumpy investment with variable intensity

Choices of investment timing and intensity

Consider the case in which the winning bidder installs a stock of capital, Ki(τi) . We first 
derive the choice of investment timing and intensity in this case and then investigate 
how various exogenous parameters affect these two decisions. We investigate the design 
of the contingent royalty and bidding equilibrium in an FPA. Finally, we investigate the 
effect of various parameters on the optimal royalty rate.

Given that the output price is P(t) and the royalty rate is φi , the value of investment at 
time t after bidder i executes the project, denoted by V (Ki(τi),P(t),φi) , is equal to the 
expected present value of the return on capital net of the royalty payment from time t to 
infinity, that is,

The winner of type θi pays cash Ci at the time of the auction, t = 0 , and pays roy-
alties φiKi(τi)

αP(t)  at each instant t ≥ τi. Let us define W (Ki(τi),P(τi),φi, θi)

= V (Ki(τi),P(τi),φi)− θiKi(τi) . The bidder i’s valuation on the project net of royalty 
payments, investment costs, and cash payments ( Ci ) at t = 0 is then obtained as follows:

When the winner chooses the timing and intensity of the investment, the first term in 
Eq. (6), Ee−ρτi [W (Ki(τi),P(τi),φi, θi)] , can be written as the expected discounted present 
value of the cash flows to bidder i over the infinite future beginning from τi as follows:

Equation (7) indicates that when making the investment decision at time τi , bidder i 
also chooses the stock of capital, Ki(τi), which maximizes the net value of investment. 
As reported in the real options literature (Dixit and Pindyck 1994), we cannot determine 
the optimal value of τi , denoted by τ∗i  . Instead, we can derive the critical level of P(τi) 

(5)

V (Ki(τi),P(t),φi) = E

∫ ∞

t
e−ρ(s−t)Ki(τi)

α
[(1− φi)P(s)− w]ds = Ki(τi)

α

[

(1− φi)P(t)

(ρ− µ)
−

w

ρ

]

.

(6)Si(Ci,φi, θi) = Ee−ρτi [W (Ki(τi),P(τi),φi, θi)]− X − Ci.

(7)
Ee−ρτi [W (Ki(τi),P(τi),φi, θi)]

= Max
Ki(τi)

E

{
∫ ∞

τi

e−ρsKi(τi)
α
[(1− φi)P(s)− w]ds − θiKi(τi)

}

.

13 Che and Kim (2010) demonstrate that all the results related to security auctions are very sensitive to the assumptions 
regarding X. If X can vary from bidder to bidder, the relative performance of different securities depends on the nature 
of X. We abstract away from investigating this issue, since this issue is beyound the context of our model. We thank a 
referee for pointing out this.
14 In the second-stage problem, we write φi(θ̃) as φi because the contingent royalty rate has been determined in the first 
stage and is thus exogenous to the winning bidder in this stage.
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that triggers investment, denoted by P∗
i  . When P(τi) reaches this trigger level, bidder i 

installs the stock of capital Ki(τi), as denoted by K ∗
i  . Proposition 1 is as follows:

Proposition 1 (Choices of timing and intensity of investment) If we assume that the 
output price on the date of auction is sufficiently unfavorable, such that bidder i does not 
invest immediately, then his respective choices of investment timing and intensity are as 
follows:

and

where β1 = 1
2
− µ

σ2
+

√

(

1
2
− µ

σ2

)2

+ 2ρ

σ2
 and β1(1− α) must be larger than one to ensure 

that P∗
i  and K ∗

i  are positive.15 The comparative static results are as follows:

(i) Bidder i delays investment ( P∗
i  increases) and installs a larger stock of capital ( K ∗

i  
increases) if either the output price uncertainty is greater ( σ increases) or the produc-
tivity of capital is higher ( α increases).16

(ii) If bidder i faces a higher royalty rate ( φi increases), he does not change the stock of 
capital but delays investment.

(iii) Bidder i delays investment and installs a larger stock of capital if he incurs a higher 
marginal cost of production ( w increases).

(iv) If bidder i expects the output price to increase more rapidly ( µ is higher) or discounts 
the future less ( ρ is lower), he installs a larger stock of capital but may accelerate, 
delay, or retain the investment date.17

(v) If bidder i incurs a higher investment cost ( θi increases), he does not change the date 
of investment but installs a smaller stock of capital.

Proof See “Appendix 1”.

Determinants of the optimal royalty rate

Consider the problem in the initial stage, when the seller determines the optimal royalty 
rate and bidders employ their bidding strategies. If all other bidders report truthfully, 
bidder i chooses his report θ̃i and the intensity of the investment at exercise time τi to 
maximize his interim utility, which is obtained as follows:

(8)P∗
i =

β1(ρ− µ)(1− α)w

(β1(1− α)− 1)ρ(1− φi)
,

(9)K ∗
i =

[

αw

(β1(1− α)− 1)ρθi

]
1

(1−α)

,

15 Given that σ is negatively related to β1 , σ must vary from zero to a ceiling level.
16 We assume that K∗

i
≥ 1 for the comparative static result of α.

17 An increase in µ or a decrease in ρ raises both the value of investing and the option value of waiting. An increase in µ 
encourages investment and a decrease in ρ discourages investment, thus leading to an indefinite effect on the investment 
timing.
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The equilibrium utility of bidder i, under the assumption that the other bidders report 
honestly, is obtained through Ti(θi) = Ui(θi, θi, τ

∗
i (θi,φi(θi, θ−i))). Incentive compatibil-

ity requires that Ti(θi) ≥ Ui(θi, θ̃i, τi) , that is, bidder i’s utility is not reduced when the 
bidder reports honestly. Individual rationality requires Ti(θi) ≥ 0 , that is, bidder i is not 
negatively affected by participating in the auction. Proposition 2 is as follows:

Proposition 2 Let us define the value of W (Ki(τi),P(τi),φi, θi) at date τi = τ∗i  as just 

equal to X, that is, W (Ki(τ
∗
i ),P(τ

∗
i ),φ

∗
i , θ̂i) = X . Suppose that Eθ−i

[

Qi(θ̃i, θ−i)S1(θ̃i)
]

 is 

decreasing in θ̃i , where S1(θ̃i) = E

[

Max
Ki(τ

∗
i )
Ee−ρτ∗i Ki(τ

∗
i )

]

 and τ∗i = τ∗i

(

θ̃i,φi(θ̃i, θ−i)

)

 . Thus, 

an optimal auction design is present in an FPA and is expressed as follows:

and

where θ = min(θ, θ̂), z(θi) = θi +
(

F(θi)
/

f (θi)
)

  and P∗(z(θi)) =
β1(ρ−µ)
(β1−1)ρ

(

w + ρz(θi)K
∗
i (z(θi))

)

.18

Proof See “Appendix 2”.

Although we derive the bidding equilibrium in a perfect Bayesian Nash concept in 
Proposition 2, we focus on investigating the design of the royalty rate ( φi ) in the fol-
lowing discussion. As indicated in “Appendix 2”, the seller sets an optimal royalty rate, 
such that the winning bidder acts as if to maximize the seller’s expected revenue. This 
requires that the expected present value of the royalties paid be equal to the informa-
tion rent received by the winning bidder. Bidder i chooses the investment timing τi (≥ 0) 
and intensity Ki to maximize his net private valuation of the opportunity to invest in a 
project minus the expected present value of the royalty payment, as expressed in Eq. (7), 
where the expected present value of the royalty payment at time τi , calculated using 
Eq. (5), is expressed as follows:

(10)

Ui(θi, θ̃i, τi)

= Eθ−i

{

Qi(θ̃i, θ−i)Max
Ki(τi)

E

[
∫ ∞

τi

e−ρsKi(τi)
α
(

(1− ϕi(θ̃i, θ−i))P(s)− w
)

ds

−θiKi(τi)]− X − Ci(θ̃i, θ−i)

}

.

(11)φ∗
i =

(

1+
(1− α)θif (θi)β1

αF(θi)

)−1

,

(12)C∗
i (θi) =

P
β
0

βP∗(z(θi))β−1
−

∫ θ

θi

(

1− F(θ′)

1− F(θi)

)N−1[
P0

P∗(z(θ′))

]β

dθ′ − X ,

(13)D1(φi,Ki(τi),P(τi)) =
φiP(τi)Ki(τi)

α

(ρ− µ)
.

18 The incentive compatible condition requires that the virtual valuation of bidder i, namely θi +
(

F(θi)
/

f (θi)
)

, is 
increasing with θi . A sufficient condition for this to hold is that the inverse hazard function F(θi)

/

f (θi) is nondecreasing 
in θi , which we assume in this study.
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In contrast, the seller’s revenue equals bidder i’s net private valuation of the opportu-
nity to invest in a project minus his information rent, where the information rent at time 
τi , calculated using Eq. (35) in “Appendix 2”, is expressed as follows:

The seller’s strategy is to set D1(φi,Ki(τi),P(τi)) = D2(θi,Ki(τi)) , that is, to determine 
an optimal royalty rate that equates the winner’s royalty payment with his information 
rent. Substituting Ki(τi) = K ∗

i   and P(τi) = P∗
i , that is, the date on which bidder i exer-

cises the option to invest in this equality, yields the optimal royalty rate, denoted by φ∗
i  , 

as obtained using Eq. (11).
Differentiating φ∗

i  with respect to α , µ, ρ, σ , and θi the results in Proposition 3 is 
obtained.

Proposition 3 (Optimal choice of royalty rate on lumpy investment with variable 
intensity) The seller should charge a higher royalty rate ( φ∗

i  is higher) when capital pro-
ductivity is higher ( α is higher), the output price is expected to grow more rapidly ( µ is 
higher), both the winner and seller discount the future less ( ρ is lower), or the output price 
uncertainty is greater ( σ is higher).19

Bidder i chooses a larger stock of capital if (i) either the winner’s productivity of capital 
or the uncertainty of the output price is greater, as suggested in Proposition 1(i); and (ii) 
the expected growth rate of the output price increases or the discount rate decreases, 
as suggested in Proposition 1(iv). This raises both bidder i’s royalty payments and the 
information rent. However, the increment of bidder i’s royalty payment, which is subject 
to decreasing marginal return on capital, is outweighed by his information rent, which 
is proportional to the stock of capital, because he has private information about his 
investment cost. Accordingly, the seller should increase the royalty rate, as Proposition 3 
indicates.

Lumpy investment with an exogenously given intensity

Consider the case in which the winner undertakes a lumpy investment with an exog-
enously given intensity K  . Substituting Ki(t) = K  into Eq. (25) in “Appendix 1” generates 
the critical level of the output price that triggers bidder i to invest, calculated as follows:

Imposing P(τi) = P′
i and Ki(τi) = K  into Eqs.  (13), (14), and (15) yields the optimal 

royalty rate, denoted by φ′
i , calculated as follows:

(14)D2(θi,Ki(τi)) =
F(θi)

f (θi)
Ki(τi).

(15)P′
i =

β1(ρ− µ)

(β1 − 1)ρ(1− φi)

(

w + ρθiK
(1−α)

)

.

19 In addition, the seller may increase, decrease, or retain the current royalty rate when the winner incurs a larger cost 
in investment ( θi is higher). This is because an increase in the winner’s cost of investment will lead to two effects that 
are offset with each other: (1) bidder i will install a smaller stock of capital, as suggested by Proposition 1(v), which 
decreases the optimal royalty rate; and (2) bidder i’s information rent will not decrease, given that the inverse hazard 
function is non-decreasing in θi , which raises or does not affect the optimal royalty rate. Consequently, the optimal roy-
alty rate may increase, decrease, or not be affected.



Page 11 of 25Jou and Lee  Financial Innovation            (2023) 9:69  

According to Proposition 4, we differentiate φ′
i from α , µ, ρ, σ , K  , w , and θi.

Proposition 4 (Optimal choice of royalty rate on a lumpy investment with an exog-
enously given intensity) The seller should set a higher royalty rate when the output price 
is expected to grow less rapidly ( µ is lower), both the winner and seller discount the future 
more ( ρ is higher), output price uncertainty is reduced ( σ is lower), the exogenously given 
stock of capital is larger ( K  is higher), or the marginal cost of production is lower ( w is 
lower).20

Proposition 4 applies mainly in this case because either a decrease in µ , σ , or w or 
an increase in ρ and K  reduces the critical level of the output price that triggers bidder 
i to invest, which decreases bidder i’s royalty payment. Consequently, the seller must 
increase her royalty rate.

Incremental investment
Capacity expansion decision

We repeat the procedures for lumpy investment with variable intensity, as described in 
"Lumpy investment with variable intensity"  section. Let us retain all assumptions for the 
case of lumpy investment but consider the case in which investment is incremental. Bid-
der i installs capital stock immediately if the auction date t = 0 is sufficiently favorable. 
Otherwise, he waits until τi0 , at which point P(τi0) passes a threshold. After either date 0 
or τi0, at each instant, t bidder i pays royalty φi(θ̃)Ki(t)

αP(t) to the seller.
As detailed in “Appendix 3”, the critical level of the output price that triggers the win-

ner to expand capacity is calculated as follows21:

The optimal trigger strategy in Eq. (17) yields an expression for K ′′
i (t) , which, using the 

terminology of Bertola and Caballero (1994), we refer to as the “desired” stock of capital, 
expressed as follows:

The meanings of P′′
i (t) and K ′′

i (t) are as follows. Suppose that the date of auction 
t = 0 is sufficiently favorable. At time 0, bidder i installs an initial capacity, K ′′

i (0), 
which is obtained by substituting P(t) = P(0) = P0 into Eq.  (18).22 If the output price 

(16)φ′
i =

(

1+
f (θi)β1

F(θi)(β1 − 1)

(

w

ρK
(1−α)

+ θi

))−1

.

(17)P′′
i (t) =

β1(ρ− µ)

(β1 − 1)ρ(1− φi)

[

ρθi

αKi(t)α−1
+ w

]

.

(18)K ′′
i (t) =

[(

(β1 − 1)(1− φi)P(t)

β1(ρ− µ)
−

w

ρ

)

α

θi

]
1

(1−α)

.

20 In addition, the seller may increase, decrease, or retain the royalty rate when capital productivity is higher ( α is higher) 
or when the winner incurs a larger investment cost ( θi is higher).
21 We assume Ki(t) ≥ 1 so that P′′

i
(t) increases with Ki(t).

22 In Eq. (17), we assume that P(t) has a lower bound, Pc = β1(ρ−µ)w
(β1−1)ρ(1−φi )

 , and that K ′′
i
(t) is thus positive. If P0 < Pc , then 

bidder i does not install the initial capacity until the time at which P(t) first passes Pc.



Page 12 of 25Jou and Lee  Financial Innovation            (2023) 9:69 

P(t) is higher than P0 , bidder i adds more capital, increasing Ki(t) until P′′
i (t) in Eq. (17) 

increases to P(t) . In other words, when the output price reaches its historical high, bid-
der i adds capital.

Equation (17) indicates that bidder i delays installing new capital ( P′′
i (t) increases) if 

the output price uncertainty is greater ( σ increases), bidder i incurs higher investment 
costs ( θi increases), or bidder i pays more royalty ( φi increases). These comparative static 
results are qualitatively the same as those for lumpy investment with an exogenously 
given intensity.

Determinants of the optimal royalty rate

For lumpy investment, as illustrated in Eqs. (8) and (9), we must impose w > 0 to derive 
a positive value for the trigger price and optimal stock of capital. However, for the case of 
incremental investment, we consider w = 0 , from which we can derive testable implica-
tions regarding the determinants of the optimal royalty rate. Proposition 5 is as follows:

Proposition 5 Let us define the value of W3(Ki(t),P(t),φi, θ) as X at θ = θ̂ , that is, 
W3(Ki,P

′′
i ,φ

′′
i , θ̂) = X , where φ′′

i  is obtained using Eq.  (19). Suppose that 
Eθ−i

[

Qi(θ̃i, θ−i)S2(θ̃i)
]

 decreases in θ̃i, where 

S2(θ̃i) =

[

Max
{Ki(τ

∗
i )}

E
∫∞
τi0

e−ρτ∗i 1[dKi(τ
∗
i )>0]dKi(τ

∗
i )

]

 and τ∗i = τ∗i

(

θ̃i,φi(θ̃i, θ−i)

)

 . Thus, an 

optimal auction design is present in an FPA and is expressed as follows:

and

where θ = min(θ, θ̂), τ∗i = τ∗i (θ
′,φi(θ

′, θ−i)) , and z(θi) = θi +
(

F(θi)
/

f (θi)
)

.

Proof See “Appendix 4”.

As detailed in “Appendix 4”, bidder i chooses an exercise time τi (≥ 0) to maximize his 
net private valuation of the opportunity to invest in a project minus the expected present 
value of the royalty payment, where the expected present value of the royalty payment at 
time t (≥ 0) , as calculated using Eq. (49), is expressed as follows23:

(19)φ′′
i =

[

1+
(θiβ1(β1(1− α)− 1)+ α)f (θi)

α(β1(1− α)− 1)(β1 − 1)F(θi)

]−1

(20)

C ′′
i (θi) =

∫ ∞

Ki

(

P

P′′(z(θi))

)β1
[

αvα−1
i

(

P′′(z(θi))

(ρ− µ)

)

− θi

]

dvi

−

∫ θ

θi

[

1− F(θ′)

1− F(θi)

]N−1

Max
{Ki(τ

∗
i )}

E

[
∫ ∞

τi0

e−ρτ∗i 1[dKi(τ
∗
i )>0]dKi(τ

∗
i )

]

dθ′ − X ,

23 We must multiply W3(Ki(t), P(t),φi , θi) in Eq. (49) by φi

/

(1− φi) when deriving the option value resulting from 
the royalty payment at time t  obtained through φi Ki(t)

αP(t) , because bidder i’s revenue at time t  is obtained through 
(1− φi)Ki(t)

αP(t).
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where b2 =
[

α(1−φi)
β1(ρ−µ)

]β1
(β1 − 1)(β1−1).

“Appendix 4” also indicates that the seller’s revenue equals the winner’s net private 
valuation of the opportunity to invest in a project minus his information rent, where the 
information rent at time t , as calculated using Eq. (54), is expressed as follows:

The seller should set D1(φi,P(t)) = D2(θi,Ki(t)) so that the winner acts as if to choose 
the exercise time that maximizes the seller’s expected revenue. Substituting P(t) = P′′

i (t) 
into this equality yields the optimal royalty rate, denoted by φ′′

i  , obtained from Eq. (19). 
Proposition 6 is as follows:

Proposition 6 (Optimal choice of royalty rate on incremental investment) The seller 
should charge a higher royalty rate ( φ′′

i  is higher) for incremental investment when the 
growth rate of the output price is expected to decrease ( µ is lower), the discount rate 
increases ( ρ is higher), or the output price uncertainty is reduced ( σ is lower).24

Proof See “Appendix 5”.

Equations (58)–(60) indicate that a smaller appreciation of the output price, a larger 
discount rate, or reduced uncertainty in the output price reduces the critical level of the 
output price that triggers the winner to add capital, which decreases the winner’s royalty 
payment but does not change his information rent. Thus, the seller should increase the 
royalty rate, as Proposition 6 indicates.

Managerial and policy implications
Auctioneer’s design of the royalty rate across the investment types

Our results extend the research on security-bid auctions, such as that of Board (2007) 
and Cong (2019). Board (2007) assumes that a bidder’s valuation of the option to invest 
is private information and demonstrates that the seller can set a contingent payment that 
only depends on the type of bidder. In addition, Cong (2019) adopts a model that resem-
bles our case of lumpy investment, with an exogenously given intensity and zero variable 
cost. He derives an optimal royalty rate that resembles the φ∗

i  in Eq. (11). However, he 
does not examine how the underlying parameters affect this rate.

(21)D1(φi,P(t)) =
φiP(t)Ki(t)

α

(ρ− µ)
+

φi

(1− φi)

∫ ∞

Ki(t)
b2θ

1−β1
i P(t)β1k

(α−1)β1
i dki,

(22)D2(θi,Ki(t)) =
F(θi)

f (θi)
Ki(t).

24 In addition, the relation between each of the levels of capital productivity ( α ) or the unit cost of capital ( θi ) and the 
optimal royalty rate is indeterminate. As stated, the optimal royalty rate equates the winner’s royalty payment with his 
information rent. Eq. (56) indicates that an increase in the winner’s productivity of capital (a higher α ) may increase, 
decrease, or not change the critical level of the output price that triggers the winner to expand capacity, which ambigu-
ously affects his royalty payment but does not change his information rent. Thus, the seller may increase, decrease, or 
retain the royalty rate. Eq. (57) indicates that although an increase in the winner’s investment cost (a higher θi ) raises the 
critical level of the output price that triggers the winner to expand capacity and thus increases his royalty payment, his 
information rent either increases or remains unchanged, because ∂

(

F(θi)
/

f (θi)
)/

∂θi ≥ 0 . Thus, the seller may increase, 
decrease, or retain the royalty rate.
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Table 1 presents a comparison of the optimal royalty rate across the three types of 
investments and summarizes all the comparative static results stated in Propositions 
3, 4, and 6. The comparative static results of the optimal royalty rate with respect 
to µ, ρ, and σ for the case of lumpy investment with an exogenously given intensity 
are similar to those for incremental investment but are opposite to those for lumpy 
investment with variable intensity. In other words, a bidder’s flexibility in choosing 
the intensity of investment affects the auctioneer’s design of the royalty rate. This par-
allels the findings of Bar-Ilan and Strange (1999), which indicate that the compara-
tive static results of the timing of investment and the evolution of capital stock are 
strikingly different when comparing lumpy investment with and without choice of 
intensity.

We focus on output price uncertainty σ to explain the rationale. An increase in out-
put price uncertainty reduces the optimal royalty rate when the winner does not have 
the option to determine the intensity of investment, as assumed in Cong (2019), but 
increases the optimal royalty rate when the winner can determine the intensity. The 
reason is that when the investment intensity is exogenously given, the winner who 
faces greater output price uncertainty delays investment until a more favorable output 
price is presented and thus pays more royalties and receives the same information 
rent. Consequently, the seller needs to reduce the royalty rate to ensure that the win-
ner chooses a date of investment that maximizes her expected revenue. When the 
bidder has the flexibility to choose the intensity, an additional effect should be con-
sidered; an increase in output price uncertainty increases the optimal stock of capital, 
as stated in Proposition 1(i). As explained in "Determinants of the optimal royalty 
rate"  section, this raises the winner’s royalty payment to a less extent than his infor-
mation rent, such that the seller must increase the royalty rate. This adds effect more 
than offsets the effect on the optimal royalty rate resulting from the impact of output 
price uncertainty on the optimal date of investment. We thus contribute to the litera-
ture by demonstrating that, when designing the contingent royalty rate, auctioneers 

Table 1 Summary of the comparison of the optimal royalty rate across three investment types and 
the effect on the optimal royalty rate of increasing one variable when all others remain fixed

φ∗
i
 , φ′

i
 , and φ′′

i
 are the optimal royalty rate for lumpy investment with variable intensity, lumpy investment with an 

exogenously given intensity, and incremental investment, respectively. If w = 0, then φ′
i
> φ′′

i
.

+ indicates that an increase in the variable causes the optimal royalty rate to increase.
− indicates that an increase in the variable causes the optimal royalty rate to be reduced.

? indicates that the relationship is uncertain.

0 indicates no effect.

N.A. indicates that the result is not applicable.

Variable φ
∗

i
φ
′

i
φ
′′

i

Capital productivity, α  + ? ?

Expected growth rate of output price, µ  + − −

Discount rate, ρ −  +  + 

Output price volatility, σ  + − −

Unit cost of capital, θi ? ? ?

Fixed scale of operation, K N.A.  + N.A.

Marginal cost of production, w 0 − N.A.
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must consider not only the uncertainty embedded in the auctioned project but also 
whether the winner can choose the intensity of investment as he wishes.

We may compare the optimal royalty rate for the case of lumpy investment with an 
exogenously given intensity φ′

i with that of incremental investment φ′′
i  in the special 

case where the marginal cost, w , is equal to zero. Imposing the condition of w = 0 onto 
φ′
i in Eq. (16) and comparing the result with φ′′

i  in Eq. (19) yields φ′
i > φ′′

i .
25 This result 

indicates that the seller should set a higher royalty rate when investment is lumpy with 
an exogenously given intensity compared to when investment is incremental, because 
the seller expects to collect additional royalty payments from bidder i when he has the 
option to incrementally add capital, as determined by comparing Eqs. (21) and (13).

Policy implications

The aforementioned results have implications for auctions on the opportunity to invest 
in long-lived investment projects such as OCS lease auctions in the United States. As 
explained in “Introduction” section, the leased lands are divided into tracts that have 
not been previously explored (i.e., wildcat tracts) and tracts adjacent to wildcat tracts in 
which a discovery has been made (i.e., drainage tracts). The winner of a lease pays the 
bid (i.e., bonus) on the sale date and 18.75% or 12.5% (16.67% prior to 2008) in royalties 
on revenues earned from post-sale production. Most sales are wildcat sales (Hendricks 
and Porter 1996). The winner who leases the wildcat tract undertakes an incremen-
tal project. He decides the timing and initial capacity when he discovers any minerals 
worth exploiting. After he makes a valuable discovery, he has the option of incremen-
tally increasing the capital.26 Thus, the results of Propositions 4 and 6 suggest that the 
DOI may charge differential royalty rates for wildcat tracts that face different oil price 
uncertainties.27

We may investigate whether the DOI has changed the OCS royalty rates using oil price 
volatility as a proxy for the CBOE Crude Oil ETF Volatility Index (MacroMicro n.d. 
OVX, https:// en. macro micro. me/ colle ctions/ 4536/ volat ility/ 21526/ ovx). The DOI has 
changed OCS royalty rates three times since 2007.28 First, in 2007 and 2008, the DOI 
made major adjustments to the OCS royalty rates. At that time, the shallow water (200 m 
or less) rate was 16.67%, whereas the deepwater rate was generally 12.5%. Initially, the 
deepwater rate increased to 16.67%. Soon after, the rates of new leases at all water depths 
increased to 18.75%. The CBOE Crude Oil ETF Volatility Index rose from a trough of 27 

25 We use Eq. (55) to derive the analytically tractable solution of φ′′
i
 in Eq. (19). The second term on the right-hand side 

of Eq. (55) is equal to the first term on the right-hand side of Eq. (49) multiplied by φi

/

(1− φi) , assuming that w = 0 . If 
we do not assume w = 0 , then we need to solve for φi , which is in the integral of the first term on the right-hand side of 
Eq. (49). As a result, we will not be able to drive the closed-form solution of φ∗∗

i
 in Eq. (19). Instead, we need to solve φ∗∗

i
 

by numerical analysis. We would like to derive a sharp result so that we assume that w = 0.
26 The distinction between a wildcat and drainage lease may arguably be the quality of information about potential well 
productivity, which means that after exploratory drilling has been conducted, a wildcat lease is effectively a drainage 
lease, in terms of the type of investment per se. As Trigeorgis (1993) suggests, natural resource industries such as mine 
operations typically have the option to defer or to alter the operation scale. Both lessees of wildcat and drainage tracts 
have the option to defer. However, within the same term of a lease, lessees of drainage tracts are more likely to have the 
option to alter the operation scale than lessees of wildcat tracts.
27 Royalties should be different for exploratory and drainage tracts, because exploration generates positive externalities 
both for neighboring tracts and for future investment on the same tract. These externalities are not accounted for fully 
by the firm because of revenue sharing. Generally, incremental investment decisions affect the continuation value of the 
object sold, but, as with the oil example, the firm does not internalize this effect. We thank one referee for providing this 
insight.
28 Humphries (2017) reported the first two changes.

https://en.macromicro.me/collections/4536/volatility/21526/ovx
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in 2007 to a peak of 96 in 2008. Consequently, royalties tend to be positively related to 
uncertainty in oil prices. Second, the DOI reduced the OCS royalty rate from 18.75% to 
12.5% for shallow water blocks in lease sales held in the Gulf of Mexico on August 16, 
2017. The CBOE Crude Oil ETF Volatility Index was approximately 26. Finally, on April 
15, 2022, the DOI increased the royalty rate from 12.5% to 18.75% for new shallow water 
blocks in lease sales (The Associated Press April 16, 2022, https:// www. npr. org/ 2022/ 04/ 
16/ 10931 95479/ biden- feder al- oil- leases- royal ties). The CBOE Crude Oil ETF Volatil-
ity Index was approximately 52. Consequently, none of the changes fit our prediction in 
Proposition 6 because the DOI had considerations different from ours.29

Managerial implications

Our analysis has two implications for managers who wish to attend contingent royalty 
auctions. First, the optimal bidding rule depends on the investment type. Failing to 
conform to the bidding rule results in a manager bidding too low and therefore losing 
the bid or bidding too high and receiving a suboptimal payoff. Second, after winning 
the auction, the winner’s investment rule depends on the investment type. A thorough 
understanding of the investment rule can provide managers with the opportunity to 
obtain the maximum investment payoff.

Conclusion
In this study, we compare the design of contingent royalty rates among the following 
three types of investment: (1) lumpy investment with variable intensity, (2) lumpy invest-
ment with an exogenously given intensity, and (3) incremental investment. The first 
involves a two-dimensional model, because the winner chooses investment timing and 
intensity. The other two involve a one-dimensional model in which the winner chooses 
either the timing or intensity of the investment, but not both. This study has two main 
findings. First, the seller should set a lower royalty rate for the winner and provide them 
with the opportunity to add capital incrementally. Second, output price uncertainty 
increases the optimal contingent royalty rate in the case of the two-dimensional model 
but decreases it in the case of the two one-dimensional models. The aforementioned 
results suggest that auctioneers must be cautious regarding auctioned investment types 
that may exhibit characteristics of capital irreversibility and uncertainty, as emphasized 
in the real options literature.

Our findings are based on the following simplified assumptions. First, the seller holds 
the auction on a prespecified date. Second, each bidder has private information regard-
ing his investment costs and submits an independent bid. Third, all the bidders have the 
same entry costs. Fourth, all bidders are risk neutral. Finally, the auctioned investment 
project can be completed instantly, and the investment costs incurred once are com-
pletely irreversible.

Future studies could relax these assumptions to determine whether our findings are 
valid. First, bidders can choose the date on which an auction is held (Cong 2020) or have 

29 The DOI’s explanation for its decision to drop the royalty rate on 16 August 2017 centered on the declining leasing, 
drilling, and production in shallow water. The DOI also indicated that oil and gas resource estimates in shallow water 
had declined in recent years, and low oil and natural gas prices and the marginal nature of the remaining Gulf of Mexico 
shelf resources supported the need for a lower rate.

https://www.npr.org/2022/04/16/1093195479/biden-federal-oil-leases-royalties
https://www.npr.org/2022/04/16/1093195479/biden-federal-oil-leases-royalties
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common expectations regarding the value of the auctioned project (Bhattacharya et al. 
2022). Second, bidders can be provided with time to construct an investment project 
(Aguerrevere 2003) or be allowed to partially recover the cost of their investment (Jou 
2022; Kandel and Pearson 2002). Third, bidders can be assumed to have different entry 
costs, as in Bernhardt et al. (2020). Fourth, bidders could be assumed to be risk-averse, 
as in Fioriti and Hernandez-Chanto (2021). Finally, the role of joint bids can be consid-
ered, for instance, in US OCS auctions (Haile et al. 2010).

Appendix 1: Derivation of P∗

i
 and K∗

i

The value of investment before bidder i exercises the project is obtained through 
F(Ki(t),P(t),φi) , where t ≤ τi. Applying Itô’s lemma, contingent claims analysis, and the 
required boundary conditions, we obtain the solution of F(·) and the threshold level of 
the output price that triggers investment P′(t) , as follows:

where b0 and P′(t) are calculated as

and

and β1 is the larger root of

P′(t) in Eq.(25) applies to lumpy investment regardless of whether the intensity is 
exogenously given or not. If the intensity is variable, then the optimal Ki(t), denoted by 
K ′
i (t), maximizes the option value to invest, F(Ki(t),P(t),φi), and therefore satisfies the 

first-order condition obtained through dF(Ki(t),P(t),φi)
/

dKi = 0. Solving this condi-
tion yields the following equation:

Substituting P(t) = P′(t) into Eq. (27) and Ki(t) = K ′
i (t) into Eq. (25) and solving 

these two equations simultaneously yields the solution to K ′
i (t), denoted by K ∗

i  , which is 
expressed as

This implies that K ∗
i  is finite when β1(1− α) > 1 . Furthermore, the solution to P′(t) is 

expressed as

(23)F(Ki(t),P(t),φi) = b0P(t)
β1 ,

(24)b0 =
(1− φi)Ki(t)

α

β1(ρ− µ)
P′(t)1−β1 ,

(25)P′(t) =
β1(ρ− µ)

(β1 − 1)ρ(1− φi)

(

w + ρθiKi(t)
1−α

)

.

(26)φ(β) = −
1

2
σ2β(β− 1)− µβ+ ρ = 0.

(27)K ′
i (t) =

[

α

θi

(

(1− φi)P(t)

(ρ− µ)
−

w

ρ

)]
1

(1−α)

.

(28)K ∗
i =

[

αw

(β1(1− α)− 1)ρθi

]
1

(1−α)

.
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The comparative static results of Proposition 1 are obtained when we differentiate P∗
i  and 

K ∗
i  with respect to α, σ , φi , w , µ , ρ , and θi.
Q.E.D.

Appendix 2: Proof of Proposition 2
Applying the revelation principle as described by Board (2007) and Milgrom and Segal 
(2002), we transform the indirect mechanism that implements the contrainsed optimal 
mechanism into the direct mechanism. More precisely, we derive the optimal choice of θ̃i as 
θi ; hence, bidder i ‘s equilibrium utility is obtained as follows:

where S1(ε) = E

[

Max
Ki(τ

∗
i )
Ee−ρτ∗i Ki(τ

∗
i )

]

 , τ∗i = τ∗i (ε,φi(ε, θ−i)) , and ε vary from θi to θ . In 

Eq. (30), Ti(θ̃i) must be decreasing in θ̃i , which suggests that a bidder who reports a lower 
cost has a higher probability of winning the auction. Taking expectations over bidder i’s 
type, θi , and integrating Eq. (30) by parts yields bidder i’s ex-ante utility before the auc-
tion takes place, which is calculated as follows:

To verify the incentive compatibility condition, select (θi, θ̃i) , where θi < θ̃i.

where the inequality comes from the monotonic condition stated in Proposition 2, and 
the equality is derived from Eq. (30). To verify individual rationality, Eq. (30) implies that 
Ti(θi) is decreasing in θi . Hence, Ti(θi) ≥ 0 implies that Ti(θi) ≥ 0.

Welfare at t = 0 is defined as the sum of the bidders’ utilities and the seller’s revenue at 
t = 0 . Welfare, denoted by Y1 , thus equals the expected net present value of the option to 
invest net of the upfront cost, which is expressed as follows:

where V1(Ki(t),P(t)) is defined in Eq. (4). The seller’s revenue in an auction with com-
petitive bids at t = 0 , denoted by R1 , is equal to the welfare obtained using Eq.  (33) 

(29)P∗
i =

β1(ρ− µ)(1− α)w

(β1(1− α)− 1)ρ(1− φi)
.

(30)Ti(θi) = Eθ−i

{

∫ θ

θi

Qi(ε, θ−i)S1(ε)dε

}

+ Ti(θ),

(31)Eθi [Ti(θi)] = Eθ

{

Qi(θ)

[

Max
Ki(τ

∗
i )
Ee−ρτ∗i Ki(τ

∗
i )

F(θi)

f (θi)

]

}

+ Ti(θ)

(32)

Ui

(

θi, θ̃i, τ
∗
i (θ̃i,φi(θ̃i, θ−i))

)

= Ti(θ̃i)−

∫ θ̃i

θi

∂

∂θi
Ui

(

α, θ̃i, τ
∗
i (α,φi(θ̃i, θ−i))

)

dα

≤ Ti(θ̃i)−

∫ θ̃i

θi

∂

∂θi
Ui

(

α, α, τ∗i (α,φi(α, θ̃i, θ−i))

)

dα

= Ti(θi),

(33)Y1 = Eθ

{

N
∑

i=1

Qi(θ)Ee
−ρτ∗i

[(

V1(Ki(τ
∗
i ),P(τ

∗
i ))− θiKi(τ

∗
i )
)

− X
]

}

,
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minus the sum of all bidders’ utilities, as obtained using Eq. (31) (see Board 2007), and is 
calculated as follows:

where z(θi) = θi +
(

F(θi)
/

f (θi)
)

 is the “virtual” valuation of bidder i. Incentive com-
patibility requires that z(θi) be increasing in θi . A sufficient condition for this relation 
to hold is that the inverse hazard function, F(θi)

/

f (θi), is nondecreasing in θi , where 
(

F(θi)
/

f (θi)
)

Ki(τ
∗
i ) is the information rent received by bidder i.

The seller chooses (Qi,Ci,φi) to maximize the revenue obtained through Eq. (34) subject 
to the incentive compatibility condition (32) and the individual rationality where bidder i 
chooses τ∗i (θi,φi(θi, θ−i)) to maximize Ui(θi, θ̃i, τi) , as obtained through Eq.  (10). Impos-
ing the conditions of θ̃i = θi and τi = τ∗i (θi,φi(θi, θ−i)) on Ui(θi, θ̃i, τi) results in bidder i 
choosing the exercise date to maximize R1 if the following condition holds:

Note that the seller was not able to extract the winning bidder’s surplus because the win-
ning bidder has private information regarding the investment cost. However, the seller is 
able to align the winning bidder’s interest with her own when Condition (35) holds. In equi-
librium, the interim utility of bidder i, as expressed in Eq. (10), must be equal to his ex-post 
utility, as expressed in Eq. (30). The individual rationality condition requires that the ex-post 
utility of the least favorable type be equal to zero, Ti(θ) = 0 . Using these two conditions and 
Eq. (35) and assuming that the perfect Bayesian Nash equilibrium holds, we determine that 
bidder i’s cash payment in an FPA is obtained through C∗

i (θi) in Eq. (12).
Q.E.D.

Appendix 3: Derivation of P′′

i
(t)

We first derive bidder i’s ex-post value, that is, his value after an auction takes place. Fol-
lowing Pindyck (1988) and Kandel and Pearson (2002), given bidder i’s stock of capital Ki(t) 
and the output price P(t) , his gross private valuation of the project is calculated as follows:

where on the right-hand side of Eq. (36), the first term is the value of the pro-
ject, assuming bidder i does not add any capital, and the second term is the value of 
the option to install more capital. Define the value of an additional unit of capital as 
�V1(Ki(t),P(t)) = ∂V1(Ki(t),P(t))/∂Ki(t) and the value of the option to add this unit 
of capital as �F1(Ki(t),P(t)) = −∂F1(Ki(t),P(t))/∂Ki(t) , given that bidder i has already 
installed Ki(t) units of capital. Using these definitions, we can write

(34)

R1 = Eθ

{

N
∑

i=1

Qi(θ)E

[

e−ρτ∗i
(

V1(Ki(τ
∗
i ),P(τ

∗
i ))− θiKi(τ

∗
i )
)

− X
]

−

N
∑

i=1

Ti(θi)

}

= Eθ

{

N
∑

i=1

Qi(θ)E

[

e−ρτ∗i (V1(Ki(τ
∗
i ),P(τ

∗
i ))− z(θi)Ki(τ

∗
i ))

]

− X

}

−

N
∑

i=1

Ti(θ),

(35)
φiP(τi)Ki(τi)

α

(ρ− µ)
=

F(θi)

f (θi)
Ki(τi).

(36)W1(Ki(t),P(t)) = V1(Ki(t),P(t))+ F1(Ki(t),P(t)),
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L e t 
�W1(Ki(t),P(t)) = ∂W1(Ki(t),P(t))

/

∂Ki(t) = �V1(Ki(t),P(t))−�F1(Ki(t),P(t)). The 
term �V1(Ki(t),P(t)) must equal the expected present value of the marginal return to 
capital from time t to infinity, beginning from the output price P(t) , that is,

Let

where

and

such that

The winner of type θi pays cash Ci at the time of auction, t = 0 , and pays royalties 
φiKi(t)

αP(t) after he installs the initial capacity at τi0 , where t ≥ τi0 . Bidder i ‘s gross 
valuation net of the royalty payments, investment costs, and cash payments ( Ci ) on 
date 0 is then calculated as follows:

where W3(Ki(t),P(t),φi, θi) = W2(Ki(t),P(t),φi)− θiKi(t) and its expected value at 
t = 0, Ee−ρτi0 [W3(Ki(τi0),P(τi0),φi, θi)] can be written as follows as the expected present 
value of the cash flows to bidder i over the infinite future beginning from τi0:

where τi is the moment when new capital is installed, and 1[·] is an indicator function 
that is equal to one if new capital is installed and zero otherwise. Equation (44) indicates 
that when making a long-run investment decision, bidder i must choose the cumulative 
capital stock process, Ki(t), that maximizes his net value of investment.

Applying Itô’s lemma, contingent claims analysis, and the necessary boundary con-
ditions, we obtain the solution for �F2(Ki(t),P(t),φi) in Eq. (41) and the threshold 
level of P(t) that triggers investment, P′′

i (t) , through the following calculation:

(37)W1(Ki(t),P(t)) =

∫ Ki(t)

0

�V1(ki(t),P(t))dki(t)+

∫ ∞

Ki(t)
�F1(ki(t),P(t))dki(t).

(38)

�V1(Ki(t),P(t)) = Et

∫ ∞

t
e−ρ(s−t) ∂πi(Ki(s),P(s))

∂Ki(s)
ds = αKi(t)

α−1

[

P(t)

(ρ− µ)
−

w

ρ

]

.

(39)�W2(Ki(t),P(t),φi) = �V2(Ki(t),P(t),φi)−�F2(Ki(t),P(t),φi),

(40)�V2(Ki(t),P(t),φi) = �V1(Ki(t),P(t))−�V1(Ki(t),φiP(t))

(41)�F2(Ki(t),P(t),φi) = �F1(Ki(t),P(t))−�F1(Ki(t),φiP(t)),

(42)�W2(Ki(t),P(t),φi) = �W1(Ki(t),P(t))−�W1(Ki(t),φiP(t)).

(43)Si(Ci,φi, θi) = Ee−ρτi0 [W3(Ki(τi0),P(τi0),φi, θi)]− Ci − X ,

(44)

Ee−ρτi0 [W3(Ki(τi0),P(τi0),φi, θi)]

= Max
{Ki(τi)}

E

{
∫ ∞

τi0

e−ρτi [(1− φi)Ki(τi)
α(P(τi)− w)dτi − θi(1[dKi(τi)>0])dKi(τi)]

}

,
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where β1 is defined in Eq. (25),

and

Q.E.D.

Appendix 4: Proof of Proposition 5
After solving for bidder i’s desired stock of capital, K ′′

i (t) in Eq.  (18), we derive his 
expected net valuation of investment. The option value to bidder i of installing an addi-
tional unit of capital �F2(·) is equal to the probability of reaching P′′

i (t) , given that the 
current state is P(t) , (P(t)/P′′

i (t))
β1 , multiplied by the net value of installing this unit 

immediately. Substituting b1 in Eq. (46) into Eq. (45) yields the following equation:

Substituting Eqs. (40) and (48) into (39) and integrating the first and second terms on 
the right-hand side yields V2(Ki(t),P(t),φi) and F2(Ki(t),P(t),φi) , respectively. Sum-
ming these two terms and subtracting the term θiKi(t) yields bidder i’s net valuation of 
the investment project, which is expressed as

Let us consider the problem in the first stage. If all other bidders report truthfully, bid-
der i chooses his report θ̃i and exercise time τi to maximize his interim utility, which is 
calculated as follows:

The equilibrium utility of bidder i, assuming that the other bidders report truthfully, 
is calculated as Ti(θi) = Ui(θi, θi, τ

∗
i (θi,φi(θi, θ−i))). Incentive compatibility requires that 

Ti(θi) ≥ Ui(θi, θ̃i, τi) , and individual rationality requires that Ti(θi) ≥ 0.

(45)�F2(Ki(t),P(t),φi) = b1P(t)
β1 ,

(46)b1 =

[

αKi(t)
α−1

(

(1− φi)P
′′
i (t)

(ρ− µ)
−

w

ρ

)

− θi

]

P′′
i (t)

−β1

(47)P′′
i (t) =

β1(ρ− µ)

(β1 − 1)ρ(1− φi)

[

ρθi

αKi(t)α−1
+ w

]

.

(48)�F2(Ki(t),P(t),φi) =

(

P(t)

P′′(t)

)β1
[

αKi(t)
α−1

(

(1− φi)P
′′(t)

(ρ− µ)
−

w

ρ

)

− θi

]

.

(49)

W3(Ki(t),P(t),φi , θi)

=

∫ ∞

Ki(t)

(1− φi)α

β1(ρ− µ)

[

β1(ρ− µ)

(β1 − 1)(1− φi)ρ

(

ρθi

(1− φi)αβ
α−1
1

+ w

)](1−β1)

P(t)β1k
(α−1)β1
i dki

+ Ki(t)
α

[

(1− φi)P(t)

(ρ− µ)
−

w

ρ

]

− θiKi(t).

(50)

Ui(θi, θ̃i, τi)

= Eθ−i

{

Qi(θ̃i, θ−i) Max
{Ki(τi)}

E

[
∫ ∞

τi0

e−ρτiKi(τi)
α
[

(1− φi(θ̃i, θ−i))P(τi)− w
]

dτi

−θi
(

1[dKi(τi)>0]

)

dKi(τi)
]

− Ci(θ̃i, θ−i)

}

.
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By applying the revelation principle, we derive the optimal choice of θ̃i as θi , and hence, 
bidder i ‘s equilibrium utility is calculated as

where S2(ε) =

[

Max
{Ki(τ

∗
i )}

E
∫∞
τi0

e−ρτ∗i 1[dKi(τ
∗
i )>0]dKi(τ

∗
i )

]

, and τ∗i = τ∗i (ε,φi(ε, θ−i)) . Tak-

ing expectations over bidder i’s type θi and integrating Eq. (51) by parts yields bidder i’s 
ex-ante utility before the auction takes place as follows:

The price of the incentive compatibility condition and the individual rationality 
conditions resembles their counterpartsthat for the case of lumpy investment.

We define welfare at t = 0 as the sum of the bidders’ utilities and the seller’s revenue 
at t = 0 . Welfare, denoted by Y2 , thus equals the summation of the expected value of 
the option to invest net of the upfront cost which is expressed as follows:

The seller’s revenue in an auction with competitive bids at t = 0 , denoted by R2 , is 
equal to the welfare as obtained using Eq. (53) minus the sum of all bidders’ utilities 
as obtained using Eq. (52):

where F(θi)f (θi)
Ki(τi0) is the information rent received by bidder i at t = τi0.

The seller chooses (Qi,Ci,φi) to maximize the revenue obtained from Eq. (54) sub-
ject to the incentive compatibility condition and individual rationality, where bidder i 
chooses τ∗i (θi,φi(θi, θ−i)) to maximize Ui(θi, θ̃i, τi) , as obtained using Eq. (50). Impos-
ing the conditions of w = 0, θ̃i = θi , and τi = τ∗i (θi,φi(θi, θ−i)) onto Ui(θi, θ̃i, τi) reveals 
that bidder i chooses the exercise date to maximize R2 if the following condition 
holds:

where b2 =
[

α(1−φi)
β1(ρ−µ)

]β1
(β1 − 1)(β1−1).

(51)Ti(θi) = Eθ−i

{

∫ θ

θi

Qi(ε, θ−i)S2(ε)dε

}

+ Ti(θ),

(52)

Eθi [Ti(θi)]

= Eθ

{

Qi(θ)

[

Max
{Ki(τ

∗
i )}

E

∫ ∞

τi0

e−ρτ∗i 1[dKi(τ
∗
i )>0]dKi(τ

∗
i )

F(θi)

f (θi)

]

}

+ Ti(θ).

(53)Y2 = Eθ

{

N
∑

i=1

Qi(θ)E
[

e−ρτi0(W1(Ki(τi0),P(τi0))− θiKi(τi0))
]

}

.

(54)

R2 = Eθ

{

N
∑

i=1

Qi(θ)E
[

e−ρτi0(W1(Ki(τi0),P(τi0))− θiKi(τi0))
]

−

N
∑

i=1

Ti(θi)

}

= Eθ

{

N
∑

i=1

Qi(θ)E

[

e−ρτi0(W1(Ki(τi0),P(τi0))−

(

θi +
F(θi)

f (θi)

)

Ki(τi0))

]

}

−

N
∑

i=1

Ti(θ),

(55)
φiP(t)Ki(t)

α

(ρ− µ)
+

φi

(1− φi)

∫ ∞

Ki(t)
b2θ

1−β1
i P(t)β1K

(α−1)β1
i dKi =

F(θi)

f (θi)
Ki(t),
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In equilibrium, the interim utility of bidder i, as expressed in Eq. (51), must be equal 
to his ex-post utility obtained from Eq. (50). The individual rationality condition 
requires that the ex-post utility of the least favorable type be equal to zero, Ti(θ) = 0 . 
Using these two conditions and Eq. (55) and assuming that the perfect Bayesian Nash 
equilibrium holds, we determine that bidder i’s cash payment in an FPA is obtained 
through C ′′

i (θi) in Eq. (20).
Q.E.D.

Appendix 5: Proof of Proposition 6
Differentiating φ′′

i  in Eq. (19) with respect to α, θi , µ, ρ, and σ and rearranging yields the fol-
lowing equations:

and

where

(56)
∂φ′′

i

∂α
=

�1

−�

>

<
0,

(57)
∂φ′′

i

∂θi
=

�2

−�

>

<
0,

(58)
∂φ′′

i

∂µ
=

�3

−�
< 0,

(59)
∂φ′′

i

∂ρ
=

�4

−�
> 0,

(60)
∂φ′′

i

∂σ
=

�5

−�
< 0,

(61)

� = −

[

θi

α(1− β−1
1 )(φ′′−1

i − 1)2
+

1

(1− β−1
1 )(β1(1− α)− 1)(φ′′−1

i − 1)2

]

1

φ′′2
i

< 0,

(62)�1 =
θi

α2(φ′′−1
i − 1)(1− β−1

1 )
−

1

(φ′′−1
i − 1)(1− β−1

1 )(β1(1− α)− 1)2

>

<
0,

(63)�2 =

[

∂
(

F(θi)
/

f (θi)
)

∂θi
−

1

α(φ′′−1
i − 1)(1− β−1

1
)

]

>

<
0

(64)�3 = E
∂β1

∂µ
< 0,

(65)�4 = E
∂β1

∂ρ
> 0,
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and

given that ∂β1
∂µ

< 0 , ∂β1
∂ρ

> 0 , and ∂β1
∂σ

< 0.Q.E.D.

Abbreviations
DOI  Department of the interior
FPA  First‑price auction
OCS  Outer continental shelf
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