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Abstract 

We propose a novel stochastic modeling framework for coal production and logistics 
using option pricing theory. The problem of valuing the inherent real optionality a coal 
producer has when mining and processing thermal coal is modelled as pricing spread 
options of three assets under the stochastic volatility model. We derive a three-dimen-
sional Fast Fourier Transform (“FFT”) lower bound approximation to value the inher-
ent real optionality and for robustness check, we compare the semi-analytical pricing 
accuracy with the Monte Carlo simulation. Model parameters are estimated from the 
historical monthly data, and stochastic volatility parameters are obtained by matching 
the Kurtosis of the low-ash diff data to the Kurtosis of the stochastic volatility process 
which is assumed to follow Cox–Ingersoll–Ross (“CIR”) model.

Keywords:  Stochastic volatility, Real option analysis, Fast Fourier transform method, 
Coal, Monte-Carlo, Closed-form solution

Introduction
Coal is a combustible black or dark brown rock, mainly consisting of altered plant mat-
ter, inorganic matter and water. It is predominantly used for the production of electricity 
and in the steel making process. Whilst there is a strong political will against the use 
of fossil fuels like coal, commentators point out that the economical and socio-demo-
graphic drivers remain strong, see for instance (Schernikau 2010). The International 
Energy Agency’s World Energy Outlook 2021 has a forecast based on the stated policies 
of governments, both those implemented as well as in development. This only predicts a 
reduction in coal demand between 2020 and 2030 of less than 5% (IEA 2021) suggesting 
that Coal will remain an important commodity globally for several more years.

The thermal coal market places more value on coal with a higher calorific value and 
a lower content of inorganic matter. Coal with a higher calorific value is less costly to 
transport and often more suitable for the power station boilers currently in existence. 
The inorganic mineral matter mainly consists of metal oxides such as silicon and alu-
minium which are incombustible and so this dilutes the thermal energy content of the 
coal. Furthermore, the inorganic matter forms ash and clinker in the furnace of a coal 
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fired power station, which can be costly to dispose of. The industry commonly refers to 
the amount of inorganic mineral matter as the ash content of the coal.

During the production of thermal coal the miner/producer can make various choices 
such as how the coal is mined, and how it is prepared which affect the quality and the 
amount of coal produced. For example, in a long-wall underground mine, the height of 
the section being mined can be modified. Typically, mining a narrow section allows the 
miner to select for the better quality coal but this is at the expense of not recovering 
all the resource in the seam. Similarly, industrial techniques such as density separation 
methods can be used to reduce the ash content of the coal; a process commonly referred 
to as washing. A sample of raw coal contains particles of all relative density values in a 
continuous range from the lowest to the highest value. The ash percentage of coal par-
ticles increases as their relative density increases, Nicol (1997). Therefore, the density 
of the medium that is used in the separation method can be varied to achieve different 
levels of ash content in the final coal product. Whilst washing harder removes more ash, 
the downside is that more organic combustible matter is also removed. The ratio of the 
weight of product coal to weight of the coal fed into the wash plant is known as the yield.

Historically, the difference in price between high and low quality coals was rela-
tively small and static. The decision on how to mine and wash the coal only needed to 
be periodically evaluated in a deterministic setting using tools that optimised based on 
discounted cash-flow analysis (“DCF”). However, more recently, the spread in prices 
between different grades of coal has become much more volatile and so the optimal con-
figuration for mining would frequently change. One could seek to run DCF based opti-
misers more frequently, however, the use of DCF models for mine planning has been the 
subject of criticism (Davis and Newman 2008) given markets follow a stochastic process; 
not deterministic. Furthermore, the use of DCF optimisers does not allow for the eco-
nomic valuation of the flexibility inherent in the mining operation. The ability to value 
such flexibility would allow mining producers to make better investment decisions on 
plant, machinery upgrades and process change.

A different approach to DCF analysis is required in order to value the flexibility within 
a mining operation. We have therefore proposed to consider the application of Real 
Option Analysis (“ROA”) on the aforementioned mining and washing flexibilities—the 
most flexible parts of the coal production process—along with consideration for the sto-
chastic process of coal prices. Which will be the first study of its kind (ROA) in regards 
to washing flexibilities at a coal mine. With the hypothesis that the value that could be 
monetized is at a level significant to warrant a change in business practises within the 
coal mining community.

Real Option is the name given to assets or managerial flexibility that allow for choice 
and have payoffs similar to financial options such as calls or puts. Real Option Analysis is 
the application of mathematical finance techniques to value and risk manage these Real 
Options. A lot of the literature on Real Options focuses on managerial flexibility or long 
term investment decisions. Myers (1977) Pioneered real option pricing methodology 
and introduced ROA as a decision opportunity for a corporation or an individual. Like-
wise, Leslie and Michaels (1997) advocated the use of ROA with a hypothetical example 
applied to oil field extraction choices. Studies on ROA being applied to investment deci-
sions also include the likes of Amusan and Adinya (2021) for the investment timing and 
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value of iron ore mining projects; Chen et al. (2018) for the investment timing and value 
of gas storage; and also in the coal arena with Krisna and Faturohman (2021) for coal 
mining project investments. Recently (Alexander and Chen 2021) introduced a general 
decision-tree framework to manage model risk for real option to divest in a project.

An ROA study on Power Generation Assets, Eydeland and Wolyniec (2002) shows how 
one can value and monetize flexibility within an asset or piece of equipment that has 
asymetric monetary pay-offs. This is very similar in nature to the asset flexibility inher-
ent in a coal wash-plant, whereby the choice to generate electricity or not is akin to the 
choice of whether to wash coal or by-pass. Therefore, the first contribution of this paper 
is that we add to this literature which lacks a comprehensive study on stochastic mod-
elling of coal production using real options in conjunction with option pricing theory. 
Secondly, we formulate a three-dimensional version of Fourier transform method for the 
flexible computation of the real option prices and performed a numerical experiment to 
show substantial computational gain compared to the Monte Carlo method. Thirdly, we 
carry out empirical analysis to provide important insights of using real options analysis 
in coal production to advance financial risk management for a hypothetical coal mine 
and this will be critical for risk assessment and business evaluation. Lastly, to the best 
of our knowledge, this paper is the first to adopt option pricing theory to model real 
options with stochastic volatility component.

The remainder of this paper is organised as follows: in “Real options for investment 
projects” section, we describe the nature of the problem and reduce the valuation prob-
lem to a spread option pricing problem. “The model and methods” section discusses 
the model. Here we consider a 4-dimensional stochastic volatility model driving the 
modeling variables. We derive the numerical scheme based on a lower bound approxi-
mation for pricing a three-asset spread options. “Data and model parameters” section   
focuses on data and data analysis. We also discuss the methodology to estimate the 
model parameters. In “Empirical analysis” section, we implement the model; we com-
pare the semi-analytical formula with the Monte Carlo Simulation. “Conclusion” section  
concludes.

Real options for investment projects
A hypothetical coal mine is considered, that is similar to those found in the Hunter Val-
ley region of New South Wales, Australia, whereby the coal is exported through the Port 
of Newcastle. The run of mine coal (the coal prior to any processing) is high in ash (inor-
ganic non-combustible matter) and a wash plant is situated at the mine site. The mine 
has the ability to either wash the run of mine coal (“Washed Scenario”) to produce a “low 
ash” coal or bypass the wash plant (“Bypass Scenario”) to produce a “high ash” coal.

In both scenarios, the mining costs are the same. The Washed Scenario, carries extra 
processing costs over the Bypass Scenario due to the operational costs of the wash plant 
and the cost of disposing of the rejects from the wash plant (mainly inorganic matter) 
back into the pit. Logistics costs of getting the coal from the mine to the port and onto 
the vessel for export is considered to be the same on a per tonne basis. Ad val royalites 
are applied at the same rate for both scenarios with the exception that the differential in 
wash and bypass costs includes the value of being able to deduct the beneficiation costs 
(Ian Macdonald and Mf  2008) from the final royalty payments. The low ash and high 
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ash coal are considered to be of a quality with a typical ash content of 14.2% and 22.5% 
(air dried) respectively. The former is a grade of coal that would typically be exported to 
Japanese customers and the latter is of a quality that would typically go to the markets 
of China and India. For simplicity the wash plant is considered to only have one setting, 
with the resultant yield being between 65 and 80%. Logistical constraints such as stock-
yard space are considered to not impact the ability for the producer to elect whether to 
wash or bypass the coal. Coal sold into the export market is usually sold in US Dollars. 
The differential in costs between the two scenarios are in Australian Dollars. The two 
scenarios can therefore be modelled as a spread option with a strike that follows a sto-
chastic process; mainly due to the strike being in Australian Dollars and the underlying 
coal prices being in US Dollars. This problem construction is solved for a lower bound, 
however, if one was to also consider the various settings of the wash plant, the financial 
mathematical modelling would be that of a rainbow option. Furthermore, given there 
are also choices in how the coal is mined, the application of Real Option Analysis can be 
expanded to modelling the full production, processing and logistics chain as compound 
options.

Model variables

The problem parameters and variables, and their associated assumptions are defined 
below:

•	 u: underlying, with historical prices used for low and high ash coal delivered on a 
Free on Board (“FOB”)1 basis out of the Port of Newcastle, Australia.

•	 y: yield being between 65 and 80% for the washed coal (low ash) and 100% for bypass 
coal (high ash),2

•	 x: royalty (8.2% has been used as per the royalty rate applied in NSW for open-cut 
coal mines, therefore x = 91.8%), Ian Macdonald and Mf (2008)

•	 a: United States Dollar (“USD”)/ Australian Dollar (“AUD”) exchange rate
•	 l: logistics costs. 10.55 AUD/mt (rail) + 2.50/mt AUD (port) to give 13.05 AUD/mt, 

Naess (2015)
•	 ω : wasted rejects costs at 3 AUD/mt,
•	 c: cost of mining
•	 PLA : profit or loss of mining and selling coal under Washed Scenario to produce a 

low ash. A, i.e., 

•	 PLB : profit or loss of mining and selling coal under Bypass Scenario to produce a high 
ash coal B, i.e., 

(1)PLA = (uAyAx)− a((lyA)+ (1− yA)ω + c)

(2)PLB = (uByBx)− a((lyB)+ (1− yB)ω + c)

1  Free on Board means that the seller delivers when the goods pass the ship’s rail at the named port of shipment. Ram-
berg et al. (1999).
2  The range of yield is based on expert opinion provided by Dave Porteus, Principal Consultant (Managing Director) at 
DFP Solutions Pty Ltd.
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Spread option payoff

The payoff at expiry date T is given by

 Let uA = (uB + uC)6000/5500 where uC = the differential in price basis 5500 kcal/kg 
NCV between the underlyings:

In Eq.  (7), we assume the differential in price between the low ash coal and high ash 
coal uC , and high ash coal uB , and foreign exchange, all evolve stochastically and the for-
ward dynamic under a risk-neutral measure will be discussed in “The model and meth-
ods” section. The payoff in Eq. (7) can be seen or easily translated as the payoff of spread 
option with three underlying assets with strike equal to zero.3

Under classical assumptions of Black and Scholes  Kirk (1995)4 derived an approxi-
mation formula for spread options with two underlying assets, which is widely applied 
in practice but not as accurate as desired. Departing from log-normality assumptions5 
means one has to resolve to numerical methods. Although Monte Carlo method is 
always an alternative solution to solving many problems where no closed-form solu-
tions are available, it has its drawback on computational speed especially in cases where 
a pricing model has to be calibrated to liquid pricing data. Therefore there is a trade-off 
that has to be tackled between numerical accuracy and computational heaviness. The 
widely used numerical method is the fast Fourier transform (FFT) method developed by 
Carr and Madan (1999). This method is applicable as long as the characteristic function 
for asset return is known. Lot more extensions to Carr and Madan were suggested and 
implemented to price different kind of options with different payoff functions. Many of 
these examples appear in the study by Eberlein et al. (2010). For multi-assets cases, as 
mentioned above the first Fourier Transform implementation is due to Dempster and 
Hong (2002) and which was then extended by Hurd and Zhou (2010) to multidimen-
sional FFT method for spread options.

(3)P = max{PLA − PLB, 0}

(4)= max{(uAyAx)− a((lyA)+ (1− yA)ω)− (uByBx)+ a((lyB)+ (1− yB)ω), 0}

(5)= max{(uAyAx)− (uByBx)− (a(lyA − lyB + (yB − yA)ω)), 0}

(6)= max{(uAyAx)− (uByBx)− a(ω − l)(yB − yA), 0}.

(7)P = max{((6000/5500(uB + uC))yAx)− (uByBx)− a(ω − l)(yB − yA), 0}.

3  The cost of mining c is the same in both scenarios and so cancels out. This leads to pricing a spread option on three 
assets with strike price K = 0 , just as in the case for Margrabe option (Margrabe 1978).
4  Assuming modeling variables follow a Geometric Brownian motion.
5  In fact it will be hard to derive close-form approximation under some model such as Lévy based models.
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Option type

As we are solving for a lower-bound Real Option, we only have two states. The first 
state is to wash the coal. This would typically be the default for any mine with a wash 
plant. The second state would be to exercise and elect to bypass the coal.

The strike of the option is Australian Dollar denominated and so in US Dollar terms 
it behaves stochastically. We therefore consider such in the model.

The Monte-Carlo method is then run with starting prices taken at times in history 
whereby the option would have been Out-Of-The-Money (“OTM”).

The simulations assume the expiry of the option is three months prior to the mining 
of the subject coal which is to allow for changes to mine planning. The coal consid-
ered is to be mined in approximately fifteen months time and so the time to expiry is 
twelve months.

The yield is also varied so the sensitivity to the yield can be explored. The lower 
the yield the more likely that market may move to a place whereby the option would 
become In-The-Money (“ITM”) and so the producer would elect to by-pass the coal. 
See Model Implementation and numerical results section.

The model and methods
In this section we introduce a stochastic model. We describe all model parameters 
and constraints. We outline how such model is estimated from real data. We will also 
do a little exercise on pricing such a model using Monte Carlo method or semi-ana-
lytical method.

We model 3 correlated assets in the multivariate (Heston 1993) framework. The for-
ward prices for these assets under the forward pricing measure Q are:

where

(8)
dF1(t,T )

F1(t,T )
= σ1 VtdW1(t),

(9)
dF2(t,T )

F2(t,T )
= σ2

√

VtdW2(t),

(10)
dF3(t,T )

F3(t,T )
= σ3

√

VtdW3(t),

(11)dVt = κ(θ − Vt)dt + σV
√

VtdWV (t),

EQ[dW1dW2] = ρ12dt,

EQ[dW1dW3] = ρ13dt,

EQ[dW2dW3] = ρ23dt,

EQ[dW1dWV ] = ρ1V dt,

EQ[dW2dWV ] = ρ2V dt,

EQ[dW3dWV ] = ρ3V dt.
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Model definitions :

•	 Equation  (8) is the forward process for low-ash diff, 
F1(t,T ) = (6000/5500(uB(t)+ uC(t))er(T−t) , r is the risk-free rate,

•	 Equation (9) is the forward process for high-ash, i.e., F2(t,T ) = uB(t)er(T−t)

•	 Equation  (10) is the forward process for foreign exchange, i.e., 
F3(t,T ) = a(t)e(rd−rf )(T−t) , rd and rf  are the domestic and foreign spot rate respec-
tively,

•	 Equation (11) is the instantaneous stochastic volatility assumed for follow CIR pro-
cess [refer to Cox et al. (1985)].

Now working with log forward prices, fi = log Fi for i = 1, 2, 3 one gets the following 
pair of stochastic differential equations:

By applying Itô’s Lemma we get the characteristic function:

where6

(12)df1(t) = −1

2
σ 2
1Vtdt + σ1

√

VtdW1(t)

(13)df2(t) = −1

2
σ 2
2Vtdt + σ2

√

VtdW2(t)

(14)df3(t) = −1

2
σ 2
3Vtdt + σ3

√

VtdW3(t).

(15)χ(u1,u2,u3) = EQ



exp



i

3
�

j=1

ujfj(T)









(16)= exp



i

3
�

j=1

ujfj(0)+ A(T)+ B(T)V(0)



,

(17)i =
√
−1

(18)A = − κθ

σ 2
V

[

2 log

(

2̺ − (̺ − γ )(1− e−̺T )

2̺

)

+ (̺ − γ )T

]

(19)B = 2ζ(1− e−̺T )

2̺ − (̺ − γ )(1− e−̺T )

6  Here

with the scaling constants:
F̃1(t , T ) = C1F1(t , T ), F̃2(t , T ) = C2F2(t , T ), F̃3(t , T ) = C3F3(t , T )

C1 = yAx ,C2 = yBx ,C3 = (ω − l)(yB − yA .).
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 Our valuation problem in Eq. (7) can be translated in the following form:

where

FFT method

The first application of closely related to multidimensional FFT pricing of spread options 
was proposed by Dempster and Hong (2002) who derived FFT algorithms for correla-
tion options and spread options. In the case for spread options, Dempster and Hong 
approximated the exercise region through a combination of rectangular strips thereby 
attempting to account for singularities in the transform variables and then they applied 
FFT techniques on a regularized region to derive the upper and lower bounds for spread 
options value. As mentioned above, spread options have exercise region with non-linear 
edge and applying the methodologies of Dempster and Hong can be computationally 
expensive. A workaround to deriving the analytic approximation of the 2-dimensional 
exercise region, Hurd and Zhou (2010) proposed an alternative and the most suitable 
version for FFT algorithms to pricing options in two and higher dimensions (while pre-
serving the simplicity) which is based on square integrable integral formulae for the pay-
off function [see also Alfeus and Schlögl (2019)]. As in Dempster and Hong (2002), we 
consider the following modified exercise region:

Equation (23) can be rewritten as:

where qT represents the risk-neutral density function at time T. Define the spread option 
lower bound as:

(20)
ζ =− 1

2









3
�

j=1

σ 2

j u
2

j + 2ρ12σ1σ2u1u2 + 2ρ13σ1σ3u1u3 + 2ρ23σ2σ3u2u3





+i(σ 2

1 u1 + σ 2

2 u2 + σ 2

3 u3)
�

(21)γ = κ − i(ρ1Vσ1u1 + ρ2Vσ2u2 + ρ3Vσ3u3)σV

(22)̺ =
√

γ 2 − 2σ 2
V ζ .

(23)p = e−rTEQ[(F̃1(T )− F̃2(T )− F̃3(T ))+] := e−rTEQ

[

(

ef̃1 − ef̃2 − ef̃3
)+]6

x+ = max{x, 0}.

�� :=
{

(f̃1, f̃2, f̃3) ∈ R× R×
[

−1

2
N�,

1

2
N�

)

|ef̃1 − ef̃2 − ef̃3 ≥ 0

}

.

(24)p = e−rT

∫ ∫ ∫

��

(

ef̃1 − ef̃2 − ef̃3
)

qT (f̃1, f̃2, f̃3)df̃3df̃2df̃1,
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Let α1,α2,α3 > 0.7 Define the modified integral as:

Notice that the characteristic function can be obtained via Fourier transform of Eq. (26) 
and it is computed as follows:

 Define an N × N × N  equally space grid �1 ×�2 ×�3, where

�1, �2 and �3 are chosen such that

where �1,�2 and �3 denote the integration step size.
For each p = 0, . . . ,N − 1, define

The price is now computed via inverse FFT:

(25)�(k1, k2, k3) =
∫ ∞

k1

∫ ∞

k2

∫ ∞

k3

(

ef̃1 − ef̃2 − ef̃3
)

qT (f̃1, f̃2, f̃3)df̃3df̃2df̃1.

(26)π(k1, k2, k3,α1,α2,α3) = eα1k1+α2k2+α3k3�(k1, k2, k3).

(27)

χ(u1,u2,u3,α1,α2,α3)

=
∫

R

∫

R

∫

R

ei(u1k1+u2k2+u3k3)π(k1, k2, k3,α1,α2,α3)dk3dk2dk1

=
∫

R

∫

R

∫

R

e(α1+iu1)k1+(α2+iu2)k2+(α3+iu3)k3

∫ ∞

k1

∫ ∞

k2

∫ ∞

k3

(

ef̃1 − ef̃2 − ef̃3
)

qT (f̃1, f̃2, f̃3)df̃1df̃2df̃3dk1dk2dk3

=
∫

R

∫

R

∫

R

(

ef̃1 − ef̃2 − ef̃3
)

qT (f̃1, f̃2, f̃3)

∫ f̃1

−∞

∫ f̃2

−∞

∫ f̃3

−∞
e(α1+iu1)k1+(α2+iu2)k2+(α3+iu3)k3dk3dk2dk1df̃3df̃2df̃1

=
∫

R

∫

R

∫

R

(

ef̃1 − ef̃2 − ef̃3
)

qT (f̃1, f̃2, f̃3)
e(α1+iu1)f̃1+(α2+iu2)f̃2+(α3+iu3)f̃3

(α1 + iu1)(α2 + iu2)(α3 + iu3)
df̃3df̃2df̃1

= φT (u1 − α1i,u2 − (α2 + 1)i,u3 − (α3 + 2)i)− φT (u1 − (α1 + 2)i,u2 − (α2 + 1)i,u3 − α3i)

(α1 + iu1)(α2 + iu2)(α3 + iu3)
.

�1 := {k1,p} :=
{(

p− 1

2
N

)

�1 ∈ R|0 ≤ p ≤ N − 2

}

�2 := {k2,q} :=
{(

q − 1

2
N

)

�2 ∈ R|0 ≤ q ≤ N − 2

}

�3 := {k3,s} :=
{(

s − 1

2
N

)

�3 ∈ R|0 ≤ s ≤ N − 2

}

,

�1�1 = �2�2 = �3�3 =
2π

N
,

k3(p) := min
0≤q≤N−1

{

k3,s ∈ �3|ek3,s − ek2,p+2 − ek1,p+1 ≥ 0
}

k2(p) : = min
0≤q≤N−1

{

k2,q ∈ �2|ek3,p+2 − ek2,q − ek1,p+1 ≥ 0
}

.

(28)�(k1,p, k2,q , k3,s,α1,α2,α3)

7  As pointed out in Carr and Madan (1999), we multiply the option price lower bound expression in (25) by an exponen-
tially decaying term so that it is square-integrable in k1, k2 and k3 over the negative axes.
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 where

and

As in Dempster and Hong (2002), Eq. (23) is approximated as follows:

 Equation (30) is the lower bound approximation of spread option with three assets. We 
can compute this quickly using Riemann sums8 or three-dimensional FFT methods. We 
compare the semi-analytical solution in Eq. (30) with the Monte Carlo simulation in the 
next section.

Data and model parameters
Historical market data of coal markets for both low and high ash coal; and foreign 
exchange rates are used:

•	 Low-ash Spot Coal Price (USD/mt basis 6000 NAR): “low-ash”.
•	 High-ash Spot Coal Price (USD/mt basis 5500 NAR): “high-ash”.
•	 Low-ash Spot Coal Price (USD/mt converted to basis 5500 NAR less High-ash Spot 

Coal Price (USD/mt basis 5500 NAR): “low-ash diff”.
•	 Low-ash first full calendar forward contract Price (USD/mt basis 6000 NAR): “low-

ash cal”.
•	 Spot foreign exchange rate for Australian Dollars to US Dollars: “AUD/USD”.

The low-ash and high-ash coal markets will and have rarely ever inverted i.e. the price 
for low ash coal is always greater than high-ash coal. This is as a result of the ability for 
the market to arbitrage if the spread was ever inverted: buying low-ash and delivering 
into high-ash coal contracts. As a result, rather than model using a typical spread option, 

(29)

= e−α1k1,p−α1k2,q−α3k3,s

(2π)3

∫

R

∫

R

∫

R

e−i(u1k1,p+u2k2,q+u3k3,s

χ(u1,u2,u3,α1,α2,α3)du3du2du1

≈ e−α1k1,p−α1k2,q−α3k3,s

(2π)3

N−1
∑

l=0

N−1
∑

m=0

N−1
∑

n=0

e−i(u1,lk1,p+u2,mk2,q+u3,nk3,s)

χ(u1,l ,u2,m,u3,n,α1,α2,α3)�3�2�1,

�1�1 = �2�2 = �3�3 =
2π

N
,

u1,l =
(

l − N

2

)

�1,um,2 =
(

m− N

2

)

�2,u3,n =
(

n− N

2

)

�3.

(30)
e−rTEQ[

(

ef̂1 − ef̂2 − ef̂3
)+

] = e−rT
N−2
∑

p=0

�(k1,p, k2(p), k3(p),α1,α2,α3)

−�(k1,p+1, k2(p), k3(p),α1,α2,α3).

8  The integral in Eq. (28) can be solved easily using three dimensional numerical integration schemes. In MATLAB, we 
have used integral3.
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which allows for prices to invert, we model the markets as a high ash coal price, and gen-
erate a low-ash coal price by adding an always positive differential that behaves stochas-
tically: the low ash diff.

Whilst there are financial options traded in the coal market, few are ever spread 
options and liquidity can be poor for vanilla options. We therefore do not have implied 
volatilies and correlation between any of the assets, rather we use conservative estimates 
based on historical returns.

Data analysis

The historical volatilities of the spot contracts with a rolling window of 50 trading days 
are shown below. In Fig. 1 each chart shows that the volatility behaves stochastically, and 
can exhibit significant step changes.

The historical correlation between the spot contracts with a rolling window of 50 trad-
ing days are shown in Fig. 2. The correlations for each relationship would appear to have 
noise and/or follow a stochastic process.

For each asset, the returns exhibit fat tails of varying degrees and this is shown in 
Fig. 3. This is comparable to other commodity markets.

The historical kurtosis of the returns with a rolling window of 50 trading days is shown 
in Fig. 4. It is broadly consistent to the QQ plots with distinct periods of high kurtosis at 
various places in time for each of the assets.

Model parameters

In this section we discuss a methodology of obtaining model parameters. We estimate 
the volatility and correlations parameters from historical data.9 We are only left with 
instantaneous volatility CIR model parameters that are unknown. Our approach is to 
estimate these unknown parameters through moment matching, i.e., we impose that the 

Fig. 1  Rolling historical volatility of the historical market returns

9  i.e. σ1, σ2, σ3, ρ12, ρ13, ρ23 are all estimated from the monthly historical data as introduced in “Data and model param-
eters” section.
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Kurtosis of the instantaneous volatility process must be the same as the Kurtosis of the 
differential of the low ash and high ash.

The Kurtosis10 of the volatility process is computed as in Jafari and Abbasian (2017) 
and also given in Eq. (31).

where

Table  1 depicts model parameters that will be used in “Empirical analysis” section to 
price spread options. In Table 2, we give correlations among modeling variables.

Empirical analysis
A series of monte-carlo simulations have been run with different wash plant yields. 
The initial market prices have been taken from times during the last 15 years where the 
options started off as OTM. The mean undiscounted option premiums in USD/mt for 
each yield are in Table 3 below:

In Table 4 and Fig. 5, we compare the semi-analytical solution with the Monte Carlo 
simulations. We ran 1 million simulations over 1000 time steps. Results are very close, 
justifying the correctness of the implementation of the closed-form solution. Looking 
at Fig. 5, the bounds are very tight and one can observe that the semi-analytical price 
is within the 95% confident level of Monte Carlo bound. For semi-analytical method, 

(31)E

[

V 4
t

]

=
2

∑

j=0

(

4
j

)

A
4−2j
t B

2j
t

[

1

2κ

(

e2κ − 1
)

]2j

,

At = e−κtV0 + θ(1− e−κt) and Bt = σV e
−κt .

Fig. 2  Rolling correlation of the historical returns

10  We compute

Then
µ2 = E[Vt − E[Vt ]2] and µ4 = E[Vt − E[Vt ]4].

Kurtosis = µ4

µ2
2

.
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we chose α1 = 0.65,α2 = 1.4,α3 = 0.25.11 Next, in Fig. 6 we investigate the effect of the 
correlation between the forward prices and the instantaneous stochastic volatility, and 
these correlation have impacts on option prices. Finally, in Fig. 7 we show the distribu-
tion of the Monte Carlo payoff for the spread option. As the time to expiry increases the 
payoff becomes asymptotically normal distributed.

Fig. 3  a Low ash. b High ash. c Low ash diff. d Forex. e Low ash front calendar contract. QQplots analysis

11  For efficient approach of computing these damping factor see Bayer et al. (2022).
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Conclusion
The key findings show that an application of Real Option Analysis, with consideration 
of the stochastic nature of coal prices suggests that there is significant value that can be 
monetised from the washplant/bypass asset flexibility of between almost 1 USD to over 
9 USD for each ROM tonne. See Table 3 above.

Fig. 4  Rolling historical kurtosis of the historical market returns

Table 1  Model parameters

κ 1.21780019 σ1 1

θ 0.93593908 σ2 0.2

V0 0.36863154 σ3 0.24

σV 0.36881736

Table 2  Correlation parameters

Highash Lowash diff Forex Vol of vol

Highash 1 0.2 0.4 0.5

Lowash diff 0.2 1 0 0.5

Forex 0.4 0 1 0.5

Vol of vol 0.5 0.5 0.5 1

Table 3  Undiscounted option premiums basic statistics

Yield of 65% Yield of 70% Yield of 75% Yield of 80%

Count 119.00 119.00 119.00 119.00

Mean 9.64 5.44 2.34 0.86

Std 2.37 1.52 0.82 0.31

Min 5.25 2.14 0.84 0.13

25% 7.99 4.31 1.79 0.66

50% 9.51 5.22 2.22 0.80

75% 10.71 6.21 2.85 1.07

Max 15.76 9.80 5.03 1.51
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In previous studies, such as Ajak and Topal (2015), the application of Real Option 
Analysis in practise at an operational level is a greater issue than proving there is value 
to utilising the Real Option methods. Ayodele (2019) performed a study on factors which 
influence the adoption of real option analysis in emergent markets, and found that firm/

Table 4  Semi-analytical pricing compared with Monte Carlo

For semi-analytical method [refer to Eq. (30)], we chose α1 = 0.65,α2 = 1.4,α3 = 0.25 , CPU times in secs

T In-the-money At-the-money Out-of-the-money

Analytics Monte Carlo Analytics Monte Carlo Analytics Monte Carlo

Semi-
analytical

Price Std errors Semi-
analytical

Price Std errors Semi-
analytic

Price Std errors

0.5 9.655 9.680 0.00005 9.682 9.690 0.00006 10.050 10.054 0.00007

1.0 13.887 13.923 0.00014 14.160 14.145 0.00014 15.827 15.827 0.00019

1.5 17.263 17.285 0.00022 17.731 17.689 0.00023 20.425 20.458 0.00031

2.0 20.124 20.129 0.00030 20.758 20.715 0.00032 24.342 24.393 0.00041

2.5 22.601 22.629 0.00037 23.381 23.410 0.00039 27.849 27.809 0.00051

3.0 24.770 24.788 0.00043 25.676 25.644 0.00045 30.822 30.805 0.00059

3.5 26.679 26.632 0.00047 27.698 27.694 0.00050 33.456 33.445 0.00065

4.0 28.365 28.367 0.00051 29.483 29.526 0.00054 35.831 35.781 0.00070

4.5 29.857 29.897 0.00055 31.064 31.059 0.00058 37.857 37.851 0.00075

5.0 31.177 31.155 0.00057 32.465 32.416 0.00060 39.661 39.687 0.00078

CPU 35 126 34 124 36 128

45

40

35

30

25

20

15 Monte  Carlo  Lower  Bound
Analytical  Price
Monte  Carlo  Lower  Bound

10
0 2 4 6 8 10

Expiry  (T)

Fig. 5  Monte Carlo bounds versus semi-analytical prices

50

45

40

35

30 1V=0, 2V=0, 3V
=0

1V=-0.75, 2V=-0.68, 3V=-0.6
25 1V =-0.5, 2V =-0.46, 3V =-0.4

1V=-0.25, 2V=-0.24, 3V=-0.2

20 1V=0, 2V=-0.02, 3V=0

1V=0.25, 2V=0.2, 3V=0.2

15 1V=0.5, 2V=0.42, 3V=0.4

1V=0.75, 2V=0.64, 3V=0.6
10

0 2 4 6 8 10
EXPIRY (T)

Fig. 6  Correlation effect on option prices
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management constraint was a major factor influencing the choice of appraisal techniques 
for assets. Furthermore, the authors referenced (Andalib et al. 2016) whereby they found 
that most firms expect strict adherence to laid down standard practice. Horn et al. (2015) 
surveyed the chief financial officers of companies within Scandinavia, less than 10 % used 
real option analysis. The authors found that larger companies and companies with higher 
research and development intensity and capital expenditures are more likely to use real 
option analysis. The dominant reason for non-use is a lack of familiarity, where 70% of 
respondents report to not be familiar with real option concepts and techniques. How-
ever, Ajak and Topal (2015) demonstrated that a Real Option method can be applied to 
decision making at a mine’s operational level. In the authors’ experience, firms willing 
to make the investment in human resource expertise and real option projects have typi-
cally found success and often gained a comparative advantage over firms who did not take 
those steps. The author would also surmise that the knowledge gained by a business in 
the pursuit of monetising assets via ROA would also benefit the firm’s understanding of 
the underlying market, in a similar fashion to that found by Li (2021) whereby trading in 
the option market induces informed trading and thus reduces information asymmetry. 

Fig. 7  a 1
2
 year, b 2 year, c 5 year, d 10 year. Spread option Monte Carlo payoff distribution
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Nevertheless, the hurdle of a business having the will and ability to restructure its busi-
ness to monetise such real options would appear to be the main limitation to this study.

The hypothesis, that an application of Real Option Analysis on coal production would 
yield enough value to prompt a miner to change its business practise in order to mon-
etise such flexibility is partially answered, whereby we now have a theoretical value for 
such optionality. However, a coal miner would need to judge whether such value is suf-
ficient to justify applying human and financial resources to apply Real Option Analysis 
to their business. Which would suggest that future research into this area would be best 
related to how businesses successfully apply Real Option Analysis.

Appendix: literature review
The relevant literature in relation to ROA is reviewed and categorised in the Table 5.

Table 5  Literature review

Paper Category

Myers (1977) Pioneered real option pricing methodol-
ogy

Introduced Real option as a decision opportunity for a 
corporation or an individual. The real option value (ROV) 
is the value of this decision opportunity to buy or sell 
the project

McDonald and Siegel (1986), Quigg (1993) and Kulati-
laka (1998)

First to consider real option with stochastic strike

Capozza and Sick (1991), Trigeorgis (1993), Benaroch 
and Kauffman (2000), Boer (2000), Yeo and Qiu (2002)

They assume that forward prices follow geometric 
Brownian motion

Oil exploration, Leslie and Michaels (1997) Advocating the use of Real Option Analysis with a hypo-
thetical example applied to oil field extraction choices

Oil refineries whereby management has some flex-
ibility to switch operating process units in response to 
a change in prices, Imai and Nakajima (2000)

Development of multinomial lattice model to value 
the flexibility of the inherent real options within an 
oil refinery with recommendation that management 
incorporate such valuations when evaluating oil refinery 
projects

Power Generation Assets, Eydeland and Wolyniec 
(2002)

Description of the mathematical problem of optimising 
and valuing power generation and storage assets

Valuing the option to switch between the dry bulk 
market and wet bulk market for a combination carri-
ers, Sødal et al. (2008)

Uses real option analysis to investigate market efficiency 
in switching a dry bulk to the wet tanker market and 
vice versa

Evaluate investments in pump storage plants, Muche 
(2009)

Application of Real Option Analysis in order to value the 
flexibility of pump storage plants, taking into considera-
tion power price volatility and price spikes

Investment strategy for underground gas storage 
facilities based on real option model considering gas 
market reform in China, chen2018investment

Real option application for the investment timing and 
value of gas storage

Valuing investment decisions of renewable energy 
projects considering changing volatility, Zhang 
et al. (2020)

Real option application to model solar power genera-
tion investment

Coal Mining Project, krisna2021economic Application of real option analysis to coal mining project 
investments

Economic feasibility of forest biomass thermal energy 
facility, An and Min (2021)

Real Option approach on the use of forecst biomass 
investments

Assessment of Iron Ore Project, Amusan and Adinya 
(2021)

Real option application for the investment timing and 
value of iron ore mining projects

Re-processing of mine tailings, Araya et al. (2021) Application of real option analysis on investment deci-
sions related to re-processing of mine tailings
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Abbreviations
A	� Low ash coal
B	� High ash coal
C	� Difference between low ash and high ash
u	� Underlying asset
y	� Yield being between 65 and 80% for the washed coal (low ash) and 100% for bypass coal (high ash)
x	� Royalty (8.2% has been used as per the royalty rate applied in NSW
a	� USD/AUD exchange rate
l	� Logistics costs
ω	� Wasted rejects costs
c	� Cost of mining
PL	� Profit or loss
T	� Maturity of the option
rd	� Domestic spot rate
rf 	� Foreign spot rate
σ1	� Volatility of low-ash diff C
σ2	� Volatility of high-ash B
σ3	� Volatility of foreign exchange
Vt	� Instantaneous volatility process assumed to follow Cox–Ingersoll–Ross (1985) dynamics
κ	� Mean reversion speed of the volatility
θ	� Long term volatility
σV 	� Volatility of volatility
ρ	� Correlation of the driving Brownian motions
FFT	� Fast Fourier transform
CIR	� Cox–Ingersoll–Ross
DCF	� Discounted cash-flow analysis
ROA	� Real option analysis
FOB	� Free on board
OTM	� Out-of-the-money
ATM	� At-the-money
ITM	� In-the-money
USD	� United States Dollar
AUD	� Australian Dollar
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