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Abstract 

Mean-variance portfolio optimization models are sensitive to uncertainty in risk-return 
estimates, which may result in poor out-of-sample performance. In particular, the 
estimates may suffer when the number of assets considered is high and the length of 
the return time series is not sufficiently long. This is precisely the case in the cryptocur-
rency market, where there are hundreds of crypto assets that have been traded for a 
few years. We propose enhancing the mean-variance (MV) model with a pre-selection 
stage that uses a prototype-based clustering algorithm to reduce the number of 
crypto assets considered at each investment period. In the pre-selection stage, we run 
a prototype-based clustering algorithm where the assets are described by variables 
representing the profit-risk duality. The prototypes of the clustering partition are auto-
matically examined and the one that best suits our risk-aversion preference is selected. 
We then run the MV portfolio optimization with the crypto assets of the selected 
cluster. The proposed approach is tested for a period of 17 months in the whole cryp-
tocurrency market and two selections of the cryptocurrencies with the higher market 
capitalization (175 and 250 cryptos). We compare the results against three methods 
applied to the whole market: classic MV, risk parity, and hierarchical risk parity methods. 
We also compare our results with those from investing in the market index CCI30. The 
simulation results generally favor our proposal in terms of profit and risk-profit financial 
indicators. This result reaffirms the convenience of using machine learning methods to 
guide financial investments in complex and highly-volatile environments such as the 
cryptocurrency market.

Keywords: Fintech, Mean-variance, Cryptocurrency, Electronic market, Portfolio 
allocation model, Clustering

Introduction
Blockchain technology is one of the most disruptive technologies in the last 30 years, 
with applications to many different domains where process transactions take place. 
As a result, blockchain has changed our view of contracts, logistics, and shipping, and 
has sparked academic research (Zhou et al. 2021). Finance (Zhao et al. 2016; Xu et al. 
2019) is one of the fields where the impact of blockchain has been more important; in 
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particular, the use of cryptocurrencies as trading assets, which in turn has raised consid-
erable interest from academia (Fang et al. 2022).

Since the appearance of Bitcoin in 2008, the cryptocurrency market capitalization has 
grown to $1676bn in February 2022, where Bitcoin and Ethereum represent 41.8% and 
18.1% of the market, respectively.1

While the market is only in its infancy, some studies highlight a Compound Annual 
Growth Rate (CAGR) higher than 21% for the next 5 years,2 which makes it extremely 
attractive for investors. At the same time, its volatility is also extremely high, and the 
number of crypto assets traded is also very high at an estimated total of around 10,000 
as of February 2022.3 Most of those crypto assets have been traded for just a few years or 
even less.

While the market is attractive to investors, the aforementioned characteristics render 
well-known portfolio optimization models, such as the Mean-Variance (MV) methods 
(Markowitz 1952a, 1959) unreliable. In particular, the high number of potential crypto 
assets and their short time in the market may hinder the estimation of the covariance 
matrix.

Some studies use a predefined criterion for reducing the number of considered crypto 
assets, such as focusing on those with higher capitalization. However, such a strategy 
may leave aside potentially interesting assets for the investor. Thus, we propose the use 
of a clustering method to partition the cryptocurrency space and the automatic selection 
of the partition that best suits the risk-aversion preference of the investor. In particu-
lar, we propose the use of a prototype-based clustering algorithm, such as K-Means or 
K-Medois, as the prototypes will be used as representative elements of the partitions. 
The usefulness of such methods for characterizing the crypto-asset market in a mean-
ingful way has previously been demonstrated in Lorenzo and Arroyo (2022). Following 
this work, we use the bivariate representation of the average and standard deviation of 
the returns together with a partitional clustering algorithm as a preliminary step before 
the portfolio optimization. After clustering, we select the cluster that best fits one of 
the predefined risk-aversion profiles using the prototype as an adequate summary of the 
cluster. By doing so, our method reduces the number of crypto assets that will be con-
sidered by the portfolio optimization model, focusing only on those that best suit the 
investor strategy. Furthermore, our approach acknowledges the changing nature of the 
cryptocurrency market, as we repeat the process (clustering analysis, selection of the 
cluster, and portfolio optimization). The resulting number of clusters and their composi-
tion may change completely. In this way, our approach can be considered as an online 
portfolio selection methodology, where decisions are made sequentially incorporating 
the new information and it goes beyond the static or cross-sectional use of clustering 
methods in other portfolio selection approaches.

We compare the results of our clustered MV model with those of the standard MV 
model applied to the whole market. In addition, we also compare it with those from 

1 https:// coinm arket cap. com/ all/ views/ all/.
2 https:// www. repor tlink er. com/ p0561 9614/ Crypto- Asset- Manag ement- Market- by- Platf orm- And- Region- Global- Forec 
ast- to. html? utm_ source= GNW.
3 https:// www. stati sta. com/ stati stics/ 863917/ number- crypto- coins- tokens/.

https://coinmarketcap.com/all/views/all/
https://www.reportlinker.com/p05619614/Crypto-Asset-Management-Market-by-Platform-And-Region-Global-Forecast-to.html?utm_source=GNW
https://www.reportlinker.com/p05619614/Crypto-Asset-Management-Market-by-Platform-And-Region-Global-Forecast-to.html?utm_source=GNW
https://www.statista.com/statistics/863917/number-crypto-coins-tokens/
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more sophisticated methods such as the Risk Parity (Qian 2016), and the Hierarchical 
Risk Parity (HRP) methods (de  Prado 2016). Furthermore, we also compare it against 
a buy-and-hold strategy of the CCI30 cryptocurrency index that represents the overall 
market behavior.

The simulation entails a test period of 17 months. We perform three experiments with 
a different set of cryptocurrencies: the whole cryptocurrency market with data available 
(over 500 cryptocurrencies), and two selections of the cryptocurrencies with the higher 
market capitalization (175 and 250 cryptocurrencies, respectively). For each experi-
ment and each method, we repeat the simulation 1500 times using different investment 
paths, each one represents the simulation days that an investor considers for entering 
the market. If an investment is made on a given day, the position is held for the next 30 
days. The different methods are compared using standard profit and risk-profit financial 
indicators.

The rest of this paper is organized as follows. A literature review is presented in “Lit-
erature review” section, in which we support our investigation on well-stated portfolio 
allocation models and different approaches for clustering of financial markets with more 
details for the cryptocurrency domain. The “Data and methods” section includes data 
processing, the methods followed, and the simulation carried out. Finally, we discuss 
our results and present concluding remarks in the “Results” and “Conclusions” sections, 
respectively.

Literature review
Portfolio selection

An investment portfolio is a basket of tradable assets and portfolio optimization mod-
els are concerned with finding the best combination of assets according to due objec-
tives. There are two main schools of principles and theories for portfolio selection: (i) 
Markowitz’s Mean Variance models and (ii) Capital Growth Theory (Kelly jr 1956; Brei-
man 1960; Thorp 1975; Finkelstein and Whitley 1981). This research focuses on the first 
type of model. Modern Portfolio Theory (MPT), also referred to as Mean-Variance Opti-
mization models (MVO), was first posited in the 1950s by (Markowitz 1952a; Sharpe 
1964; Lintner 1965) and considers the diversification of assets as the most effective way 
to obtain low risk-reward ratios maximizing the expected utility of the returns. Diversi-
fication of capital helps to neutralize idiosyncratic risks. In this way, MVO links with the 
theory of rational behavior under uncertainty (Markowitz 1952b) and they are included 
in what are known as risk-based models. The portfolio allocation theory framework has 
been exponentially developed in very different works (Steinbach 2001; Kolm et al. 2014) 
to propose solutions to existing constraints on the different models mostly considering 
practical applicability to the markets. The models now include transaction costs, tax 
effects, estimation errors on the risk and return forecast, and inter-temporal effects as 
edging conditions, and the inclusion of specific features required by financial planners. 
We can find an exhaustive taxonomy of MVO methods in Kalayci et  al. (2019), all of 
which are focused on reducing risk while increasing diversification. One of the weak-
nesses of MVO models is that it is necessary to provide an estimation of the expected 
returns and covariances of all the securities in the investment universe; more details on 
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criticism of MVO can be found in Michaud (1989) and Leland (1999). We use the acro-
nyms MPT, MV, and MVO to refer to the same portfolio allocation model.

Risk Parity Portfolio (RPP) (Qian 2016; Roncalli 2013), also known as Equally weighted 
Risk Contribution (ERC) portfolio, together with MVO, belong to risk-based models. It 
is an approach to portfolio management that focuses on risk allocation rather than capi-
tal allocation. While the MVO methods minimize the variance, RPP models try to con-
strain each asset to contribute equally to the portfolio’s overall volatility (Maillard et al. 
2010) and equalize risk contribution. In other words, it balances the risk so that the risk 
contribution of every asset is equal and in this sense, it is also considered a risk-based 
model.

Merging classical portfolio optimization models and hierarchical methods from unsu-
pervised learning techniques detailed in the next subsection, the Hierarchical Risk Parity 
(HRP) model introduced by de Prado (2016) addresses the problems of traditional risk-
based portfolios to compute a portfolio on an ill-generated or even a singular covariance 
matrix by conducting the optimization process by a top-down recursive bisection using 
graph theory and machine learning techniques. Based on the same idea, Raffinot (2017) 
proposed Hierarchical Clustering Based Asset Allocation (HCAA ) that allocates capi-
tal within and across clusters of assets in multiple hierarchical models. The Hierarchical 
Equal Risk Contribution Portfolio (HERC) (Raffinot 2018) merges HRP and HCAA . Sev-
eral variations to this approach have also been proposed (Lohre et al. 2020; Molyboga 
2020). In particular, we use the HRP model as a benchmarking method to compare our 
proposal, as explained below. Moreover, our approach also tackles the problem of the 
covariance matrix. However, it focuses only on one cluster and in doing so, reduces the 
number of crypto assets and makes the computation and the inversion process of the 
covariance matrix easier.

An exhaustive study of the latest risk-based portfolio optimization strategies applied 
to the 30 highest market capitalization cryptos of the cryptocurrency market can be 
found in Burggraf (2019). An important strand of research is focused on the effects of 
adding cryptocurrencies to traditional asset portfolios (Eisl et al. 2015; Chuen et al. 2017; 
Petukhina et al. 2021; Culjak et al. 2022). Others, as in our proposal, are devoted exclu-
sively to crypto markets. For example, Liu (2019) analyze the invertibility of selected top-
10 major cryptocurrencies demonstrating the benefits of the diversification for different 
portfolio optimization models as ERC, MV, RPP, maximum Sharpe ratio, and maximum 
utility.

We test the performance of our proposal in cryptocurrency markets using MV, RPP, 
and HRP models as benchmarks, which are among the most relevant in the portfolio 
allocation literature.

Clustering techniques in portfolio selection

The application of unsupervised models and in particular clustering techniques to find 
groups of assets characterized by their financial behavior arises with the seminal paper 
of Mantegna (Mantegna 1999) applying a hierarchical Minimum Spanning Tree (MST) 
that takes the linkage between stocks from the New York Stock Exchange market into 
account. While Mantegna’s methodology has been extensively applied, it has some 
drawbacks. A criticism of the initial Mantegna approach was related to the employed 



Page 5 of 40Lorenzo and Arroyo  Financial Innovation            (2023) 9:25  

distance, based on a simple static correlation among the returns’ time series. Alternative 
approaches have been developed considering auto-correlation structure (Piccolo 1990), 
distances based on GARCH parameters (Otranto 2008), frequency domain features, 
higher moments of time series, and so on. Different alternatives have been proposed. 
Onnela et  al. (2003) investigated the distribution and dynamics of correlation coeffi-
cients. For example, Bonanno et al. (2004) compared the return and volatility networks 
considering different time horizons. Tumminello et  al. (2006) proposed Planar Maxi-
mally Filtered Graph (PMFG) graphs instead of MST. Brida and Risso (2009) combined 
symbolic time series analysis with MST. Musmeci et  al. (2014) applied a new linkage 
method known as a Directed Bubble Hierarchical Tree (DBHT) to financial markets. 
From our viewpoint, Mantegna’s approach is a powerful methodology to determine the 
structures of the market in the context of a cross-sectional analysis. However, we con-
sider it difficult to adapt it to streaming data and online portfolios due to different con-
straints for instance with the sampling frequency (Bonanno et al. 2001) (e.g., intra-day, 
daily, weekly), the length of the rolling window T (Onnela et al. 2003), and the number 
of assets N under study (Borysov et al. 2014). We later tackle the same challenge when N 
approaches the T value in portfolio optimization risk-based models. Marti et al. (2017) 
presents an exhaustive revision of hierarchical clustering in financial markets.

Another important strand of clustering in finance applies partitional prototype-based 
clustering to financial markets. D’Urso et  al. (2013) and D’Urso et  al. (2016) used a 
model-based approach with different variations of fuzzy clusters and different distance 
metrics (autoregressive, Caiado). Iorio et al. (2018) proposed a clustering based on the 
computation of the spline coefficients of the time series and directly measured the per-
formance within MV, Equally Weighted (EW), and ERC portfolio allocation models. 
Similarly, D’Urso et  al. (2020) proposed a fuzzy clustering method based on cepstral 
representation, using the daily Sharpe ratio as a variable of clustering. Soleymani and 
Vasighi (2020) adapted a K-means to cluster NYSE stocks based on Value-at-Risk (VaR) 
and Conditioned Value-at-Risk (CVar) measures. Gubu et  al. (2020) presents a robust 
portfolio selection using the KAMILA algorithm on a combination of continuous and 
categorical variables with a robust covariance estimation. Cerqueti et al. (2021) propose 
a clustering time series according to their estimated conditional moments via Autocor-
relation-based fuzzy C-means (A-FCM algorithm); the proposal is enhanced in Cerqueti 
et al. (2022), in which they computed an optimal weight for each moment. Both propos-
als are tested directly on different time series as empirical experiments.

Regarding the partitional clustering family, Nanda et al. (2010) applied K-means, fuzzy 
C-means, and Self-Organizing Maps (SOM) to returns and financial ratios from Indian 
stocks to classify them into different clusters and subsequently develop portfolios. The 
analysis considers a set of stocks with fixed-weight allocation along the investing period. 
However, the approach does not use out-of-sample data and the study is not replicated 
over time to investigate how the clusters and the results evolve. Nguyen  Cong et  al. 
(2014) proposed another precedent, which combines a stage of clustering using return 
and standard deviation variables and a multi-objective portfolio optimization allocating 
stocks from the different clusters using a genetic algorithm. The simulation is carried 
out using 570 stocks from the Stock Exchange of Thailand (SET) and identifies four clus-
ters. Again, the number of clusters does not change over time. Datta and Ghosh (2015) 
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propose an approach that groups the daily Indian market volatility by comparing Kernel 
K-means, SOM, and Gaussian clustering models to achieve the right volatility prediction 
using the clusters as predictors. Luca and Zuccolotto (2017) propose a dynamic cluster-
ing procedure for time-series returns using the time-varying tail dependency as a dis-
similarity measure. The aim is to provide a criterion for portfolio selection focusing on 
the lower tails of the returns distributions that are sensitive to the contagion phenom-
ena between stocks for the FTSE MIB index. Duarte and De Castro (2020) segment the 
assets of the Brazilian Stock Exchange (B3) into partitional clusters of correlated assets 
taken as initial medoids of those assets with the lowest standard deviation of the past 
series of prices that feed an MV model and compared the performance with the RPP 
model. Instead, our approach is not based on any correlation measure but on a Euclid-
ean distance defined on the volatility-return space.

Clustering techniques applied to the cryptocurrency market

Regarding the application of clustering methods to the cryptocurrency market, Song 
et  al. (2012) applied Mantegna’s initial ideas based on hierarchical clustering but 
renewed for the emerging crypto market. Similarly, Stosic et al. (2018) use clustering to 
characterize the cryptocurrency market using the correlations of 110 cryptocurrencies 
and detect hierarchical structures using the MST. Song et al. (2019) also applied MST 
but removed the influence of Bitcoin-Ethereum to avoid a highly-correlated matrix. Lor-
enzo and Arroyo (2022) applied three different prototype-based clustering techniques 
to conduct a cross-sectional analysis of the cryptocurrency market and identify associa-
tions between the clusters and several financial and technological descriptors. Each clus-
tering method deals with the cryptocurrencies represented in a different way. Namely, 
a representation as two variables of the average and standard deviation of the daily 
returns, the distribution of daily returns, and the daily return time series.

Our approach uses clustering, but contrary to other works, it uses a sliding window, 
allowing for the number of clusters and their composition to change over time and auto-
matically deciding the number of clusters by combining several validity indexes using a 
voting mechanism.

Online portfolio selection

We adopt an approach that fits into the Online Portfolio Selection (OLPS) models. The 
main characteristic of such portfolios is that it sequentially select a portfolio over a set of 
assets to achieve certain targets. In OLPS, market information arrives sequentially and 
the allocation decision must be made immediately. An exhaustive survey can be found in 
Li and Hoi (2014), which is complemented in Li et al. (2016) with an open-source MAT-
LAB library to apply different online algorithms.

There are two types of methodologies in the OLPS literature: (i) Batch learning where 
the model is trained from a batch of training instances and (ii) Online learning where the 
model is successively trained from a single instance taking the price change (xt,i =

pt,i
pt−1,i

) 
as an input vector. Our research is focused on the continuous-time MV model devel-
oped for multiple period (batch) portfolio selection for the control part and it is analyti-
cally resolved in Li and Ng (2000) and Dai et  al. (2010). Our proposal suits the batch 
approach because it is based on the deterministic management of historical data for the 
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portfolio selection where there is not any dependency on the allocation decisions 
between different time frames. In addition, the target into each iteration for every invest-
ing window is a mean reversion formula inspired by the Online Mean Average Reversion 
(OLMAR) methods (Li and Hoi 2012; Li et al. 2015; Umino et al. 2022).

Jiang and Liang (2017) proposes an online portfolio approach in cryptocurrency mar-
kets. In particular, they propose a deterministic deep reinforcement learning based on a 
Convolutional Neural Network (CNN) applied to a training window of the historic price 
changes. The weight on the allocation is based on a reward function that maximizes 
the portfolio value although only for 12 cryptocurrencies. There are some similarities 
between this work and our approach since both use parameter tuning based on back-
testing trading, and both combine machine learning and portfolio allocation. However, 
we first apply a clustering technique instead of the more complex CNN. Second, we use 
the classical portfolio allocation model MV instead of a reward function that does not 
consider any aspect of risk-aversion on the investor. Third, we apply our method to 534 
cryptos instead of just 12.

Another relevant reference is Khedmati and Azin (2020), who presents an online 
selection algorithm based on the pattern matching principle where it uses K-means, 
k-medoids, spectral, and hierarchical clustering for the selection of the best investing 
time window.

Market efficiency

Market efficiency is a key financial subject that the researchers try to transpose from 
the classical to the cryptocurrency domain. Starting with the seminal works of Fama 
(1965) and Samuelson (1965) on traditional financial markets, there have been differ-
ent attempts to understand the applicability of efficiency to the new markets. Kyriazis 
(2019) conducts a systematic survey on the predictability of cryptocurrency prices and 
concludes that the Efficient Market Hypothesis (EMH) is rejected, opening a door to 
speculation, a conclusion that we partially confirm in our investigation. Makarov and 
Schoar (2020) comes to the same conclusion but analyzes arbitrage opportunities for 
the price deviation across the different exchanges. One of the major implications of the 
inefficiencies of the cryptocurrency markets is that they offer investment opportunities 
to portfolio management of making excess returns based on out-performing the market 
(Palamalai et al. 2021). We find different examples of how we can take advantage of such 
inefficiencies by applying different machine learning techniques. For instance, Alessan-
dretti et al. (2018) applied different forecasting models achieving profits over the invest-
ing period and performing better than a baseline strategy. The parameter optimization 
based on the Sharpe ratio achieves the best results, which is one of the strategies that we 
analyze herein. Livieris et  al. (2020) ensemble different learning strategies that exhibit 
high efficiency and reliability mainly for low-frequency applications. Fang et al. (2021) 
analyze a data-driven approach with a retraining method to predict successful mid-price 
movements in cryptocurrency markets. The disadvantage of the learning algorithms that 
take advantage of the market inefficiency is that the methods are data-hungry (Marcus 
2018) and the forecasting benefit decay in non-stationary time series. Finally, Sebastião 
and Godinho (2021) analyze the predictability of three important cryptocurrencies, Bit-
coin, Ethereum, and Litecoin, using several machine learning methods and compare 
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their profitability incorporating trading costs. The results indicate that it is possible to 
propose profitable trading strategies in the cryptocurrency market, even under adverse 
market conditions, providing an example of the market inefficiencies.

Data and methods
Dataset and preprocessing

From Cryptocompare exchange,4 we retrieve the daily closing price for all the crypto-
currencies traded from January 1, 2018, to May 31, 2021, for a total of 1,999,953 market 
observations along 1247 trading days.

For each cryptocurrency, we transform the price time series into the arithmetic return 
time series, whose use is extended and consolidated due to its more suitable statistical 
properties and better comparability (Gilli et  al. 2019). The arithmetic returns for the 
cryptocurrency i at time t are:

where Pi(t) is the daily cryptocurrency price for crypto-asset i at day t and T is the time 
series sampling.

Regarding data cleaning, we remove the observations with duplicated rows and NaN 
or Inf values for Rt,i.

Furthermore, we filter out the cryptocurrencies with heavier tails in the return dis-
tribution because it implies relatively frequent extreme price fluctuations and affects 
the consistency of the results, particularly the estimation of the returns and covariance 
matrix for the portfolio optimization.

Heavy-tail behavior in a return distribution is related to the finite-size effects in the 
number of active agents linked to the liquidity and volume of the market (Watorek et al. 
2020). According to Newman (2005), a distribution has a heavy-tail behavior if the tail 
index is lower than 2. In our case, we discard cryptocurrencies with heavier tails, that is, 
those with a tail index higher than 2.3. In this way, we ensure the existence of the two-
moment expectation and covariance matrix required for risk-based models. We apply 
this filter only to the first two-years of data, that is, before the simulation starts. In this 
way, we avoid the look-ahead bias. The results are reported in Table 1.

Stationarity is another important property of the underlying process in a return time 
series, especially if we are interested in forecasting or pricing. Random walk theory 
allows us to test the weak form of the EMH (Samuelson 1965; Fama 1965) within a series 
of asset returns. The key principle of EMH is that asset prices reflect all information, 
making it impossible for investors to derive benefits through trying to predict their 
behavior. The weak form of efficiency can be expressed as an autoregressive random 
walk model of stock returns:

(1)Rt,i =
Pt,i − Pt−1,i

Pt−1,i
=

Pt

Pt−1
− 1, t = 1, ...T , i = 1, ...,m

(2)Rt = ρRt−1 + et , t = 1, 2, ...,T and et ∼ N (0, σ 2)

4 https:// www. crypt ocomp are. com/.

https://www.cryptocompare.com/
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From Eq.  2, the stock return series, Rt , is considered a random walk only if ρ = 1 , 
whereas if |ρ| < 1 , then the series is a stationary and predictable process, which violates 
the weak-form EMH. We apply the Kapetanios, Shin, and Snell (KSS) nonlinear unit 
root test (Kapetanios et al. 2003), which is more robust when there are market frictions 
(i.e., transaction costs) as it is proposed in Apopo and Phiri (2021) for cryptocurrency 
markets. We use the test implementation in the R package by Guris (2021). The null 
hypothesis is that the raw time series of log returns is a random-walk type against the 
alternative of a stationary process. Results applied to the 2018-19 window are reported 
in Table 1 and we demonstrate that we cannot discard the null hypotheses with a p-value 
higher than 0.01 in approximately 50% of the cryptos. These results are aligned with oth-
ers in the cryptocurrency market (Kyriazis 2019).

The resulting number of eligible cryptocurrencies for portfolios is 534. Additionally, 
we also consider two smaller sets with 250 and 175 cryptocurrencies with the highest 
market capitalization among the eligible ones.

Simulation

In this section, we describe our methodology. We perform a Monte Carlo experiment 
repeating each simulation 1500 times to better assess the outcome of the different 
investment methods considered. The simulation period is 17 months, from January 2020 
to May 2021. In each simulation, we run a sequence of investments known as a Random 
Investment Path (RIP) that consists of a sequence of tw days where it will be considered 
entering the market.

The RIPs are the same for all the investment methods under analysis: the ones pro-
posed and those used for benchmarking. For each investment at time tw , we consider 
a 2-year estimation window (730 days) from tw−729 to tw , which is used to estimate the 
portfolio. If an investment is made, the investing window will always be held for 30 days, 
that is, from tw+1 to tw+30.

The investment path is created as follows. For each of the 17 months of the simulation 
period, there is a 50% probability of investing in that month. If the month is selected, we 
randomly select the day tw when the investment will be made. Since the holding period 
of an investment is 30 days, we ensure that there is no overlap between the holding 
period of tw and the next investment day tw + 1.

The flowchart in Fig. 1 summarizes the investment process, which consists of the fol-
lowing steps: 

1 Data selection As explained, for each investment time tw , we use a two-year slid-
ing window for the estimation of the optimal portfolio, and 30-days as the holding 
period for the investment.

2 Market segmentation At this stage, we use a prototype-based clustering algorithm to 
segment the market. In particular, we use a k-medoids algorithm and a quality index 
to automatically set the k value. We repeat the process 50 times to remove the uncer-
tainty of the initialization of the algorithm. Each partition is denoted as Pn in the 
chart.

3 Prototype selection strategy Given the prototypes of the 50 segmentations of the pre-
vious step, we apply a heuristic to select the most suitable cluster for later portfo-
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lio optimization. In particular, we consider four different strategies, three of which 
are related to risk measures and another based on the well-known Sharpe ratio. If 
no prototype matches the strategy requirements, then no cluster is selected and no 
investment will be made at tw . For a given strategy and an investment time tw , we 
select a cluster i of the partition Pn denoted as CPn

w,i.
4 Portfolio allocation The MVO method is applied to the cryptocurrencies that belong 

to the cluster CPn
w,i selected for each strategy once the risk filter is applied to remove 

Fig. 1 Flowchart of the algorithm for portfolio allocation
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extremely volatile cryptocurrencies. It may be the case that the portfolio optimiza-
tion produces no result, in such case, no investment is made. The reason behind this 
fact can be due to the covariance matrix being non-symmetric positive definite and 
hence not invertible or because the optimization problem is ill-conditioned and it 
does not find a solution. It should be noted that the quadratic function to minimize 
in our model as defined in Eq. 8 is convex and reaches a global optimum solution if 
and only if the covariance matrix is semi-definite positive.

 Before applying the portfolio optimization method, we apply a risk filter to remove 
the cryptocurrencies with extreme volatility in the last month.

5 Performance assessment This last step is carried out once the investment path is exe-
cuted. We then measure the performance of the MV model with four of the pro-
posed strategies and of the benchmarks. The performance is measured using profit, 
risk, and profit-risk indicators. As benchmarks, we use well-known portfolio opti-
mization models over all the cryptocurrencies, that is, with no market segmentation 
and prototype selection. In particular, the mean-variance (MV), the risk parity (RPP), 
and the hierarchical risk parity (HRP). In addition, we also apply the random invest-
ment paths on the market index CCI30 to compare the strategies against the main 
market trend.

Sampling strategy and data selection

Our dataset ranges from 1st January, 2018 to 30th May, 2021. For each investment at 
time tw , we consider a 2-year estimation window (730 days) from tw−729 to tw ; this data 
is used to estimate the portfolios. The investing period is 30 days, that is, from tw+1 to 
tw+30 . At this stage, we apply the so-called filter risk to remove cryptocurrencies with 
extreme volatility in the last month of the estimation window from those considered. 
In particular, we remove those with σ > 1 in the last 30 daily returns. We also remove 
cryptocurrencies with missing data or that were no longer traded during the estimation 
period.

Market segmentation

First, we describe each cryptocurrency in our dataset using the average and standard 
deviation ( σ ,µ ) of the daily returns (Eq. 1) computed along the estimation window. This 
representation is used later for the automatic selection of the cluster, according to the 
investment strategy and is also consistent with the MV portfolio optimization. In addi-
tion, it succinctly summarizes the profitability and volatility of each asset and has been 
successfully used for clustering cryptocurrencies (Lorenzo and Arroyo 2022). While 
more sophisticated representations are previous reference, the ( σ ,µ ) variables make 
a faster computation possible, which is crucial due to the intensive calculations of the 
simulations.

For market segmentation, we use a partitional prototype-based clustering algorithm. 
We need the algorithm to produce a partition of disjoint subsets of assets (cryptocur-
rencies in our case) and we need a prototype representing each subset for some of the 
investment strategies explained below.
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In clustering, the prototype represents the cluster elements optimally, that is, it typ-
ically minimizes the total distance between all the cluster objects and itself. The pro-
cess is usually (Henning et al. 2016) formalized as the minimization of S(D,m1, ...,mk) 
as follows by choice of the prototype m1, ...,mk,

where n in Eq. 3 is the total number of objects in the space D , d is the dissimilarity meas-
ure function, and K is the number of clusters. The prototypes m1, ...,mk may be required 
to be objects in D . d may be the given distance between the observation xi and the clus-
ter centroids or prototypes mc.

We use Euclidean Distance (ED) d2(xi, xj) = �xi − xj�
2 where � · � is the Euclid-

ean norm in Rn because it is both simple and meaningful where the resulting space 
meets the appropriate mathematical properties. Furthermore, it has also been used in 
a similar application for prototype-based clustering of cryptocurrencies represented 
as the average return and volatility (Lorenzo and Arroyo 2022; Mattera et  al. 2021; 
Nguyen Cong et al. 2014), as in our case.

In some clustering algorithms, for example, in the K-means, the prototype is the 
mean of the objects. However, we want the prototype to be an observed object, so we 
use a K-medoids or Partition Around Medoids (PAM) algorithm.

Owing to the intensive use of the clustering algorithm in our simulations, we use 
a computationally-efficient version of the PAM algorithm called CLARA (Clustering 
LARge Applications). The difference is that these algorithms use only random sam-
ples of the dataset (instead of the entire dataset) to compute the medoids. However, 
it is important to note that the resulting partition includes all the elements of the 
dataset.

The CLARA algorithm belongs to the family of prototype-based clustering algorithms 
(Kaufman 1986; Kaufman and Rousseeuw 1990). It is a PAM algorithm adapted to large 
datasets. Readers interested in an in-depth analysis of the PAM-CLARA/CLARANS 
algorithm can refer to the work by Schubert and Rousseeuw (2019).

In the CLARA algorithm, we have to determine three parameters: the size of the ran-
dom sample sampsize, the minimum cluster cardinality, and the number of clusters K.

In our case, sampsize vary in each execution from 50 to 100, so 50 partitions are gen-
erated. These are the aforementioned executions of the clustering algorithm. In each 
execution, the resampling changes and therefore slightly changes the outcome of the 
clustering.

For each sampsize iteration, we save all the clusters with a cardinality higher than 10 
ensuring that the cluster is sufficiently large to run the portfolio allocation algorithms 
efficiently.

There has been extensive research on cluster detection and evaluation (Kou et  al. 
2014; Li et  al. 2021). In this case, we rely on an automatic process that consists of 
computing different Cluster Validity Indices (CVIs) for crisp partitions (Arbelaitz 
et al. 2013), including Silhouette, Dunn, COP Davies-Bouldin, Calinski-Harabasz, or 

(3)
S(D,m1, ...,mk) =

n

i=1

d(xi,mc(i)), where

c(i) = arg min
j∈(1,...,K )

d(xi,mj), j = 1, ..., n
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the score function, and then apply the majority rule to select the number of clusters K 
that is best according to more CVIs.

The outcomes of clustering algorithms for different runs are groups or clusters of 
cryptocurrencies, each represented by a prototype. In the next subsection, we explain 
how we select the cluster that is used to optimize our portfolio.

Prototype selection strategies

Our method proposes clustering as a way to partition the cryptocurrency market 
according to the financial behavior of the cryptocurrencies. Once we have the parti-
tions, we need a criterion to select the portion of the market that most interests us. 
At this point, the medoids or prototypes of the clusters will be the inputs for a simple 
heuristic algorithm of cluster selection according to the different investing strategies. 
Only clusters with cardinality equal to or higher than 10 are considered interesting 
for the investor. These cardinality criteria are applied to ensure that the portfolio allo-
cation algorithms work more efficiently. The strategies that are described next are 
summarized in Table 2.

Strategy 1: Sharpe ratio. The Sharpe ratio is the average excess risk-free return by 
volatility unit or total risk. The ratio determines the risk of the investment concerning 
the return of an investment with zero risk:

where rP in Eq. 4 is the portfolio return, rf  is the risk-free rate and σP is the portfolio risk 
(standard deviation or the volatility of the portfolio). For rf  reference, we consider the 
daily of the annualized T-Bill over 90 days obtained from the Federal Reserve Economic 
Database (FRED) hosted by the Federal Reserve Bank of St. Louis. The greater the value 
of the Sharpe ratio, the more attractive the risk-adjusted return of the portfolio.

In this strategy, we compute the annualized Sharpe ratio of the MV portfolios con-
sidering the cryptocurrencies during the estimation window. This strategy is repre-
sented with the Sharpe ratio (SR) label in the following tables and charts.

Strategy 2: Prototype selection by a risk-aversion criteria strategy. First, we compute 
the volatility ( σ ) for all cryptocurrencies traded in the estimation window and com-
pute the quartiles of the distribution that will serve as a reference for the volatility of 
the period and allow us to classify the cluster prototypes. Accordingly, we consider 
three different risk-aversion profiles for investors following (Goetzmann et al. 2014). 
In particular, the profiles are: 

(4)SRc =
rP − rf

σP
,

Table 2 Strategies for prototype selection

Name Strategy ID Type Description

Sharpe ratio Strategy 1 Highest sharpe ratio Cluster with the higher training portfolio sharpe ratio

Risk-aversion criteria Strategy 2a Risk-averse Cluster with the lower volatility-centroid values

Strategy 2b Risk-neutral Cluster with average volatility-centroid values

Strategy 2c Risk-seeking Cluster with the higher volatility-centroid values
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1. Strategy 2a represents the utility function of a risk-averse investor as it chooses the 
prototypes whose volatility is within the 1st quartile. Represented by the Low-Risk 
(LR) label in the following tables and charts.

2. Strategy 2b represents the utility function of a risk-neutral investor as it chooses the 
prototypes that are between the 2nd and the 3rd quartile of the volatility distribution. 
Represented by the Mean-Risk (MR) label.

3. Strategy 2c represents the utility function of a risk-seeking investor as it chooses the 
prototype over the 3rd quartile of the volatility distribution. Represented by the High-
Risk (HR) label.

Since the prototype is described by two variables of average return and volatility, if more 
than one prototype is selected, we choose the one with the highest average return.

Portfolio allocation

In our proposal, once we select the most suitable partition according to our strategy, we 
run portfolio allocation using the well-known MV optimization. One of its drawbacks 
is its tendency to maximize the effects of errors in the input assumptions on return and 
volatility estimations. This means that small changes in the expected returns or the com-
puted covariance matrix can produce very different results.

Mean‑variance model assumptions

We summarize some of its main assumptions below for a single-period MV model 
(Steinbach 2001): 

1. The existence of the two-moments expectation ( ̄r ) and covariance matrix ( � ) being 
the apostrophe ( ′ ) transpose vector: 

2. The returns (r) are assumed to follow a normal distribution
3. The investors have MV preferences and thus ignore skewness

where r is a return vector. We also consider the following definitions:

• Definition 1.1 (reward). The reward ( γ ) of a portfolio is the mean if its returns (r) by 
the corresponding weights (w) 

• Definition 1.2 (risk). The risk (R) of a portfolio is the variance of the returns 

MV models require a risk measure as we see in Eq. 7 computed as a covariance matrix 
that at some point in the optimization process must be inverted, for which certain 

(5)r̄ := E(r); � := E[(r − r̄)(r − r̄)′] = E[rr′] − r̄r̄
′

(6)γ (w) := E(r′w) = r̄
′
w

(7)

R(w) := σ 2(r′w)

= E[(r′w − E(r′w))2]

= E[w′(r − r̄)(r − r̄)′w]

= w
′�w
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properties in the matrix are necessary; otherwise the matrix may not be invertible 
and the solution obtained may have too much error. The presence of noise in the 
series (Pafka and Kondor 2003) and the requirements of the covariance estimator 
itself force us to take care when optimizing the portfolio (Ledoit and Wolf 2003). In 
general, the sample covariance matrix is considered suitable for applications where its 
inverse is not required (Gatheral 2008), so there is a problem with risk-based portfo-
lio selection because when the matrix is inverted, the noise is amplified (Ledoit and 
Wolf 2004). The sample covariance matrix contains substantial statistical noise that 
is amplified when it is inverted and in the same way, since the return matrix contains 
noise, the former may not estimate the true covariance matrix. An understanding of 
the estimation error of the covariance is important if we want to ensure better out-of-
sample performance of the optimization model. The problem arises from the fact that 
the covariance matrix is calculated over a finite window length T, with T being the 
sampling of the time series and this inevitably leads to the appearance of noise (meas-
urement error) in the estimator itself; this effect is greater as T approaches the value 
of N, the number of time-series. This is something that must be taken into consid-
eration by applying appropriate estimators (we use cov.trob function in R MASS 
package (Venables and Ripley 2002)) given the narrowness of the time window (T) 
and considering the high number of cryptocurrencies (N). From matrix theory, the 
condition number of a matrix A provides a measure of the sensitivity of the solution 
x of the system Ax = b to perturbations in b. In many situations with time series, the 
ill-conditioned matrix is caused because N > T  . Even when T > N  , the eigenstruc-
ture tends to be systematically distorted unless T ≫ N  , resulting in a numerically 
ill-conditioned estimator for � . From a different perspective, a strong correlation 
between some time series corresponds with a rank deficiency as well as with non-
unique solutions in MV optimization. Hence, for the stability of the solution of a risk-
based model, we definitely need invertible and well-conditioned covariance matrices.

We expect that we can enhance the performance of the portfolios thanks to a better 
estimation of the covariance matrices by reducing the cryptocurrency space by select-
ing the partitions according to investor goals.

Mean‑variance (MV) model

The optimization goal for the MV model is to determine the best trade-off between 
return and risk, subject to a set of constraints assuming that the investor knows 
the value of the expected return vector µ and covariance matrix � . Rational inves-
tors always pursue the lowest risk under a specific expected return or the highest 
return under a particular risk. The risk measure developed by Markowitz is an asset-
weighted covariance matrix, w′�w , where � in Eq. 8 is the covariance matrix and w is 
the portfolio weights vector. The optimization solution is obtained by setting a target 
portfolio return r̄ discounting transaction costs aligned with the model proposed by 
Wang et al. (2014) but considering, in our case, a fixed amount per portfolio, allowing 
only long positions and full invested conditions with maximum and minimum hold-
ing sizes ω ∈ [0.001, 0.5] , such that:
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where µ̂ is the estimated mean return vector of the cryptocurrencies computed on his-
torical return values and µ̄ is the target required return. After portfolio optimization, we 
invest the remaining budget not allocated in cryptos due to portfolio weight constraints 
in risk-free security ( xf ).

The vectors wmin and wmax in Eq.  8 are the hold lower and upper position bounds 
where w = [ω0,ω1, ...,ωN ]

′ . Under a basic constraint, the weights for allocated assets in 
the portfolio model Eq. (8) lie between 0 and 1 (long positions), and they sum up to 1 
(fully invested portfolio). TC in Eq. 9 is the Transaction Cost as defined in Eq. (9).

In the presence of market friction, there are transaction costs paid by the investor to 
trade on the market.5 For the MV model, transaction costs are computed as follows,

where N is the number of cryptocurrencies allocated into the portfolio and Ci is the 
Costs (C) expressed in basis points ( 1 bps = 1/100% = 1/10000 $ ). In our case, for com-
putation of Eq. 9, we simply consider 5 bps per portfolio, which transforms Eq. 9 in a 
constant γ.

The following is an explanation of the key terms in Eq. 8:

• The targeted portfolio return ( ̄µmin ) is computed based on the MAR of the last 
30-days of historical returns for the H × n matrix R where n is the variable number 
of cryptoassets allocated into the portfolio during the holding period H. The assump-
tion is that the market will behave during the holding period at least as well as the 
last 30 days taken from the estimation window 

• The portfolio variance ( σ ) for the objective function 

A Quadratic Program (QP) is an optimization problem whose objective is to minimize 
or maximize a quadratic function subject to a finite set of linear equality and inequality 
constraints. QP models are applied for solving many problems including most of mean-
variance models Markowitz (Cornuejols and Tütüncü 2006) where � is part of the objec-
tive function as in Eq.  8. The R package selected to solve the quadratic programming 
problem is quadprog that implements the dual method of Goldfarb and Idnani (1983).

(8)

minimize
w

w
′�w,Covariance Risk ,

subject to w
′µ̂ ≥ µ̄min + γ , Target Return

w
′
1+ xf = 1, Full investment

wmin ≥ w ≥ wmax, Holding sizes for long − only positions

(9)TC(w) =

N
∑

i=0

Ci(wi) ≡ γ ,

(10)µ̄min = E(Rw)30d = w
′
E(R)30d = (w′µ)30d

(11)σw = Var(Rw) =
∑

i,j

Cov(ri, rj)wiwj = w
′�w

5 https:// www. blues kycap italm anage ment. com/ how- to- trade- hedge- crypto- and- relat ed- trans action- cost- analy sis- tca/.

https://www.blueskycapitalmanagement.com/how-to-trade-hedge-crypto-and-related-transaction-cost-analysis-tca/
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The optimal solution to 8 is a weight vector w that will produce the optimal portfolio 
financial return ( rp ) at time t when applied to the allocated cryptocurrencies:

where r is a n× 1 vector crypto-asset returns for n crypto assets allocated for the port-
folio, and wi is the weights of the crypto-asset i with a return ri . In our case, consider-
ing the aforementioned maximum and minimum holding sizes, we only consider those 
cryptocurrencies with weights strictly higher than 0.001 and lower than 0.5, and con-
sider a free-risk asset until 100% of the investment is complete. In this way, we aim to 
obtain portfolios with a reasonable cardinality.

The cumulative portfolio return (Rp) at the end of the holding period H days applying 
Eq. 12 is

We evaluate the performance of the investment methods using different return indica-
tors based on Eq.  13 throughout the investing period. Regarding profit indicators, we 
use the arithmetic cumulative return ( rA =

∑T
t=1 Rp ) and the geometric compound-

ing return ( rG = (
∏T

t=1(1+ Rp))− 1 ); for the arithmetic average or average return per 
period (e.g., one year), we have ( ̄rA = 1

T

∑T
t=1 Rp ) and the geometric average return 

( ̄rG = (
∏T

t=1(1+ Rp))
1
T − 1 ), the compound annual return or annualized return for 

the annualized returns ( rannG = (
∏T

t=1(1+ Rp))
n
T − 1 ), and the annualized arithmetic 

average return ( rannA = n
T

∑T
t=1 Rp ). In all cases, Rp is computed based on Eq. 13, T is 

the number of periods under analysis and n is the number of periods within the year 
(monthly n = 12 ). Arithmetic ratios reflect the additive relationship and geometric ones 
reflect compounding relationships. Compounding rates apply to investors that reallocate 
the funds obtained after one investment period into the next one.

Benchmarking of different portfolio allocation models

We benchmark the proposed investing strategies with other portfolio allocation models 
well stated in the financial literature applied to the whole market.

• Mean-Variance (MV) (Markowitz 1952a, 1959).
• Hierarchical Risk Parity (HRP) (De Prado 2016).
• Risk Parity Portfolio (RPP) (Roncalli 2013).

In addition, we also compare the performance of the methods against investing in the 
market index CCI30, a weighted market cap index launched on January 1, 2017. This 
price index is a weighted average of the 30 largest cryptocurrencies by market capitaliza-
tion, and it is a good representative of the market’s overall growth and daily and long-
term movement. We briefly present the HRP and the RPP models that are risk-based 
portfolio methods below.

(12)rpt =

n
∑

i=1

wi · Rti = w
′
rt

(13)Rp =

H
∏

t

(1+ rpt )− 1
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Risk Parity Portfolio (RPP). A key concept in RPP model is the Marginal Risk Contri-
bution (MRC) defined as follows:

where ωi in Eq. 14 is the weight of the cryptocurrency i, σP is the portfolio volatility, and 
σi,j is the covariance between crypto i and j. The Total Risk Contribution (TRC) of the ith 
cryptocurrency to portfolio risk is

Hence, the portfolio risk is computed as follows:

For RPP model implementation, we apply the R package riskParityPortfolio (Cardoso 
and Palomar 2021; Feng and Palomar 2015).

Hierarchical Risk Parity (HRP). This model merges hierarchical clustering and portfo-
lio allocation procedures and is based on three main steps:

• Step 1: It determines the hierarchical relationships between the assets using the 
recursive cluster formation scheme Hierarchical Tree Clustering algorithm. Spe-
cifically, the algorithm calculates tree clusters based on the T × N  matrix of asset 
returns, where T represents the number of samples for a due time frame and N is 
the number of assets. The correlation-distance matrix D, where ρi,j is the correlation 
between time series i and j, is as follows 

 and Eq. 17 is transformed in D̂ by taking the ED between all the columns in a pair-
wise manner as follows 

• Step 2: Quasi-Diagonalization, which is a seriation algorithm that rearranges the data 
to show the inherent clusters more clearly. The algorithm rearranges the rows and 
columns of the covariance matrix of assets so that similar investments are placed 
together and dissimilar investments are placed apart.

• Step 3: Recursive bisection is a top-down approach to split portfolio weights between 
sub-groups obtained by recursively bisecting the rearranged covariance matrix from 
the second step based on inverse proportion to their aggregated variances.

For HRP model implementation, we apply the R functions available in https:// rdrr. io/ 
github/ jacky lauu/ hiera rchic alPor tfoli os/ src/R/ HRP.R.

(14)MRCi =
∂σP

∂ωi
=

ωiσ
2
i +

∑

i �=j ωjσi,j

σP

(15)TRCi = σP,i = ωi
∂σP

∂ωi

(16)σP =

N
∑

i=1

σP,i =

N
∑

i=1

ωi
∂σP

∂ωi
=

N
∑

i=1

TRCi

(17)D(i, j) =
√

0.5× (1− ρ(i, j))

(18)D̂(i, j) =

√

√

√

√

N
∑

k=1

(D(k , i)− D(k , j))2

https://rdrr.io/github/jackylauu/hierarchicalPortfolios/src/R/HRP.R
https://rdrr.io/github/jackylauu/hierarchicalPortfolios/src/R/HRP.R
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Performance assesment

In addition to the different return indicators, we apply some evaluation measurement 
for portfolios to assess different aspects of the financial performance of the investment, 
namely:

• Value-at-risk (VaR) measures the worst expected loss over a given interval under 
normal market conditions at a given confidence level (the lower the better).

• Conditional VaR (CVaR) or Expected Short Fall (ETL) is the expected loss tail VaR 
and tail loss that takes the shape of the tail (the lower the better) into account.

• Maximum drawdown ( DmaxorMDD ): Percent the greatest fall from peak to valley on 
the return series (the lower the better). Drawdowns are measured as a percentage of 
that maximum cumulative return.

• Annualized sharpe ratio ( SRann ) is a reward-to-variability ratio already defined by 
Eq. 4 but for benchmark between strategies taken σP as the standard deviation of the 
annualized series (the higher the better).

• Calmar ratio (CAL) is the annualized return over the absolute value of the maximum 
drawdown of an investment. It is a Sharpe-type measure that uses maximum draw-
down rather than standard deviation to reflect the investor’s risk: 

 where rT is the minimum target return that we consider equal to zero.
• Omega ratio (OME) is a weighted risk-return ratio for a given level of expected 

return set to zero in our case, which helps us to identify the chances of winning in 
comparison to losing (the higher the better): 

Results
We analyze the performance of the different strategies based on some descriptive statis-
tics and from a financial perspective applied to different cryptocurrency spaces, the full 
market with 534 cryptocurrencies, and the top 250 and 175 ones according to market 
capitalization. Additionally, we apply different visual representations to highlight some 
of our findings. We complement our analysis with an exhaustive study of the outcomes 
of MC simulations.

Performance of monthly portfolios

In this section, we compare the investment strategies and benchmark methods by 
aggregating the everyday results of all the investments at day tw during the simula-
tion window for each method or strategy. The descriptive analysis is a standard way to 
illustrate the performance of asset allocation models where each method is compared 
with the other. In Table 3, we compute the basic descriptive statistics of the portfolio 
returns ( Rpt ) obtained every day for each strategy and method, broken-down by mar-
ket size. Figures 2, 3, and 4 represent the portfolio cumulative return ( rA ). In the same 

(19)CR =
rp − rT

Dmax

(20)� =
1
n

∑i=n
i=1 max(ri − rT , 0)

1
n

∑i=n
i=1 max(rT − ri, 0)

.
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way, Table 4 presents the more important ratios for each model, also broken-down by 
market sizes. From these, we can draw the main conclusions:

• Considering the Mean Return values in Table  3, the SR (0.315, 0.300, and 0.931 
values) and MR (0.304, 0.339, and 1.296) strategies outperform the others in terms 
of average values independently of the considered market size. However, as stated 
in the financial literature, median return value is considered a more representative 
indicator of the performance of the model when there is a heavy-tail effect on the 
return distribution. For median values, SR and MR perform slightly worse than 
RPP for the smaller market size (0.295).

• There are differences in the result of the benchmark approaches (MV, HRP, and 
RPP) depending on the market size. The impact on the performance of the models 
indicates that the advantage of the clustered MV model increases as the market 
size becomes larger. This supports our hypothesis that covariance misspecification 
is more likely as market size increases.

Fig. 2 Time series of the daily and cumulative returns for each method for market size 175. Mean-variance 
(MV), Hierarchical Risk Parity (HRP), Risk Parity Portfolio (RPP), Index CCI30 (IdX), Sharpe Ratio strategy (SR), 
Low-Risk strategy (LR), Mean-Risk strategy (MR) and High-Risk strategy (HR)
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• In terms of the financial ratios in Table  4, we appreciate a similar result. As we 
increase the market size, SR and MR strategies more clearly outperform any of the 
benchmarks in terms of CumRet, AnnRet, and AnnSR, where SR strategy outper-
forms the others in terms of Sharpe Ratio measure (4.089), for instance.

• The HR strategy exhibits no investments (zero values on the HR columns on Tables 3 
for the lower market sizes (175 and 250) and a flat red line in Figs. 2 and 3). It means 
that the HR strategy for the cluster prototype allocation has not found a suitable 
cluster in the highest risk quartiles of the market or the cardinality of the cluster is 
lower than 10, meaning that any cluster with fewer than 10 cryptos is not considered 
by any strategy). HR centroids are only selected when we consider the whole market 
size.

• Examining the figures of the Cumulative Returns, the MV strategy outperforms the 
others in the first half of the investing period for market size 175 as seen in Fig. 2 
and only at the very beginning for market size 250 as shown in Fig. 3. However, in 
these cases, the superiority of the MV is due to one or two very profitable periods 
that occur on consecutive investment days. However, the MR and SR strategies have 
more sustained slopes, which suggests better financial behavior. In addition, the MR 
and SR strategies are better when considering the whole market in Fig. 4.

Fig. 3 Time series of the daily and cumulative returns for each method for market size 250
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Fig. 4 Time series of the daily and cumulative returns for each method for the whole market (534 cryptos)

Table 3 Descriptive statistics of the cumulative portfolio returns (Rp) for each strategy

MV, mean-variance model; HRP, hierarchical risk parity; RPP, risk parity portfolio; IdX, Index CCI30; SR, sharpe ratio strategy; 
LR, low-risk strategy, MR, mean-risk strategy; HR, high-risk strategy

MkSize Stat MV HRP RPP IdX SR LR MR HR

175 Mean 0.265 0.283 0.283 0.180 0.315 0.172 0.304

Stdev 0.603 0.596 0.267 0.268 0.493 0.307 0.454

Minimum − 0.101 − 0.606 − 0.550 − 0.590 − 0.619 − 0.592 − 0.564

Median 0.076 0.120 0.295 0.194 0.205 0.148 0.212

Maximum 4.878 8.589 1.065 1.185 2.521 1.470 2.147

250 Mean 0.162 0.236 0.263 0.180 0.300 0.162 0.339

Stdev 0.542 0.432 0.281 0.268 0.440 0.328 0.415

Minimum − 0.094 − 0.556 − 0.545 − 0.590 − 0.520 − 0.559 − 0.508

Median 0.055 0.123 0.223 0.194 0.233 0.084 0.303

Maximum 6.756 2.192 1.037 1.185 2.674 2.085 1.593

Whole market Mean 0.057 0.205 0.268 0.180 0.931 0.026 1.296 0.150

Stdev 0.113 0.660 1.049 0.268 0.789 0.148 1.468 0.387

Minimum − 0.035 − 0.480 − 0.477 − 0.590 − 0.403 − 0.609 − 0.456 − 0.403

Median 0.024 0.036 0.000 0.194 0.815 0.011 0.816 0.000

Maximum 1.409 9.262 6.676 1.185 7.548 1.259 9.574 2.252
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• In general, the MV strategy outperforms the others in the risk indicators (MDD, 
ETL, and VaR) for all market sizes. However, SR and MV present a better trade-off 
between risk and returns as we can see in the combined indicators (AnnSR, CAL, 
and OME) for the market size 250 and the whole market.

• The flat lines on the Cumulative Returns curves for MV, RPP, and HRP models for 
the whole market highlight the case that the allocation models are not working prop-
erly when the market size is large. The optimization algorithms probably do not con-
verge to a feasible solution due to covariance misspecification, which causes a zero 
portfolio return for that holding period.

Financial comparison of the simulations

We now compare the aggregated results of the random investment paths for all the 
methods considered and the benchmarks in the three market sizes (175, 250, and the 
whole market).

In Figs. 5, 6, and 7, we present the aggregation graphically by means of the Cumulative 
Distribution Function of the Annualized Sharpe Ratio. In these figures, we present the 
distributions of the 1500 values that correspond to the realization of the simulation.

Table 4 Financial ratios of daily returns (Rp) for each method

CumRet is cumulative return ( rA ), AnnRet is annualized return ( rann
A

 ), MDD is the maximum drawdown ( Dmax ), ETL is the 
Conditional VaR, AnnSR is the annualized Sharpe ratio ( SRann ), CAL is the Calmar ratio and OME is the Omega ratio

Mksize FinPerf MV HRP RPP IdX SR LR MR HR

175 CumRet 128.613 137.745 137.470 87.414 153.087 83.576 147.806

AnnRet 96.592 103.450 103.244 65.650 114.973 62.768 111.006

MDD 0.035 0.682 0.269 1.078 0.555 1.346 0.527

ETL − 0.070 − 0.326 − 0.264 − 0.417 − 0.367 − 0.393 − 0.357

VaR − 0.053 − 0.221 − 0.128 − 0.302 − 0.246 − 0.308 − 0.242

AnnSR 1.521 1.648 3.673 2.327 2.214 1.941 2.321

CAL 0.268 0.204 0.254 0.146 0.238 0.133 0.235

OME 8.351 5.650 13.546 7.617 7.827 5.394 7.102

250 CumRet 78.607 114.900 128.052 87.414 145.823 78.774 164.843

AnnRet 59.036 86.293 96.171 65.650 109.517 59.162 123.802

MDD 0.026 0.417 0.358 1.078 0.607 2.073 0.569

ETL − 0.070 − 0.347 − 0.295 − 0.417 − 0.375 − 0.393 − 0.386

VaR − 0.052 − 0.259 − 0.188 − 0.302 − 0.268 − 0.310 − 0.286

AnnSR 1.033 1.896 3.248 2.327 2.363 1.714 2.829

CAL 0.141 0.174 0.231 0.146 0.234 0.121 0.273

OME 7.186 6.195 11.466 7.617 8.244 4.867 8.739

Whole market CumRet 27.593 99.847 130.337 87.414 452.611 12.655 629.661 72.812

AnnRet 20.723 74.988 97.887 65.650 339.924 9.504 472.894 54.684

MDD 0.004 0.183 0.349 1.078 0.058 2.050 0.039 0.114

ETL − 0.014 − 0.305 − 0.285 − 0.417 − 0.163 − 0.308 − 0.204 − 0.188

VaR − 0.004 − 0.217 − 0.144 − 0.302 − 0.008 − 0.170 − 0.017 0.000

AnnSR 1.746 1.079 0.886 2.327 4.089 0.608 3.057 1.341

CAL 0.569 0.130 0.122 0.146 0.832 0.015 1.011 0.106

OME 21.729 4.116 17.000 7.617 35.699 3.628 36.576 17.298
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For the smaller market size (175 cryptos), Table  5 and Fig.  5 reveal that the RPP 
method outperforms the rest in terms of annualized return and annualized Sharpe ratio, 
according to the central tendency measures followed by SR and MR strategies.

In terms of drawdown, the classical MV obtains the lowest median value with 0.043, 
followed by RPP value in Table 6. However, the other methods obtain similar drawdown 
values between 0.219 and 0.301.

Fig. 5 Cumulative distribution of annualized sharpe ratio ( SRann ) of the simulations (1500 random investing 
paths) for 175 higher marketcap cryptos

Fig. 6 Cumulative distribution of annualized sharpe ratio ( SRann ) of the simulations (1500 random investing 
paths) for 250 higher marketcap cryptos
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In terms of ETL, MV again clearly outperforms the others with -0.039 ETL value 
in Table 7. LR and IdX are the riskier models (-0.274 and -0.270) with RPP again per-
forming better than the others but worse than the MV model.

Regarding the Sharpe ratio, a measure that balances risk and returns, RPP clearly 
outperforms the other models with a Sharpe ratio value of 2.238 in Table 8. MR and 
SR models keep a good trade-off between risk and returns with values of 1.637 and 
1.601, respectively, which is better than the others except for RPP.

When the market size is increased from 175 to 250 cryptos, we observe a clear impact 
on the Annualized Return performance of MR that is improved up to 3.815 (median)), 
while that of the MV is reduced up to 0.826 (see in Table 5). For the 250 market size, 
MR outperform the other models, followed by SR and the RPP. We observe no relevant 
differences in terms of Drawdown when the market size increases from 175 to 250. 
Similarly, we find no relevant differences for ETL when comparing 175 and 250 market 
sizes (see Table 7). However, for the Sharpe ratio indicator, MV and MR models clearly 
improve with values 1.449 of and 1.847, respectively, in Table 8 and Fig. 6 when the mar-
ket size is greater. The RPP method outperforms the others with a value of 2.062 fol-
lowed by MR according to the statistics presented.

If we investigate the financial performance for the whole market size, we can see 
that the annualized returns of the MR and SR strategies increase dramatically, while 
that of the benchmarking approaches is slightly reduced. The proposed clustered 
methods seem to make profit from those cryptocurrencies with smaller market capi-
talization, while the benchmarks seem to suffer in correctly computing the estima-
tors when the market size increases. For Annualized Returns, the MR outperforms 
the other models reaching 88.360 value in Table  5, followed by SR with 40.747. In 
terms of Drawdown, MV outperforms the others with the lowest value followed by 
MR, SR and HR. At this point and referring to Drawdown, we have to take the fact 

Fig. 7 Cumulative distribution of annualized sharpe ratio ( SRann ) of the simulations (1500 random investing 
paths) for the whole market
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that for many iterations of MV and RPP, models are not able to converge on the due 
training window into account; the outcome of the model is zero and that explains the 
medium value zero. The worst performance for the Drawdown corresponds to IdX, 
HRP, and LR with 0.281, 0.207, and 0.172 of median values, respectively. The riskier 
model according to ETL is the IdX benchmark and the riskless corresponds to MV 
model with a value of 0.0 in Table 7. In terms of Sharpe ratio, the SR strategy again 
outperforms the others with a median value of 2.469 in Table 8 followed by MR with a 
value of 2.078. The worst Sharpe ratio performance corresponds to LR and RPP with 
values of 0.680 and 0.979, respectively.

Table 5 Annualized returns ( rann
G

 ) of the simulations (1500 random investing paths) for the different 
strategies and market sizes

MkSize Stat MV HRP RPP IdX SR LR MR HR

175 Mean 2.808 3.023 4.106 1.779 4.051 1.580 3.883

Stdev 2.635 3.839 2.421 1.192 3.347 1.170 3.526

Minimum − 0.020 − 0.645 0.197 − 0.309 − 0.233 − 0.432 − 0.202

Median 1.955 2.095 3.603 1.576 3.057 1.344 2.894

Maximum 16.268 78.651 16.645 9.674 27.429 8.304 49.893

250 Mean 1.434 2.546 3.649 1.779 4.045 1.299 4.920

Stdev 1.400 2.984 2.113 1.192 3.568 1.108 3.948

Minimum 0.035 − 0.510 0.173 − 0.309 − 0.273 − 0.439 − 0.143

Median 0.826 1.730 3.270 1.576 3.046 1.075 3.815

Maximum 8.455 38.607 19.421 9.674 29.719 8.522 47.773

Whole market Mean 0.452 2.014 2.199 1.779 72.908 0.180 252.135 1.432

Stdev 0.316 2.723 2.375 1.192 93.082 0.293 630.091 0.984

Minimum 0.055 − 0.493 − 0.096 − 0.309 1.124 − 0.574 1.448 0.032

Median 0.356 1.235 0.874 1.576 40.747 0.164 88.360 1.176

Maximum 2.172 29.621 12.365 9.674 956.979 1.626 11283.591 8.654

Table 6 Maximum Drawdown ( Dmax ) of the simulations (1500 random investing paths) for the 
different strategies

MkSize Stat MV HRP RPP IdX SR LR MR HR

175 Mean 0.046 0.226 0.118 0.257 0.238 0.250 0.235

Stdev 0.036 0.152 0.143 0.170 0.155 0.160 0.149

Minimum − 0.000 − 0.000 − 0.000 − 0.000 − 0.000 − 0.000 − 0.000

Median 0.043 0.219 0.073 0.281 0.239 0.301 0.243

Maximum 0.196 0.748 0.556 0.630 0.698 0.638 0.687

250 Mean 0.052 0.255 0.156 0.257 0.243 0.257 0.254

Stdev 0.036 0.149 0.139 0.170 0.152 0.159 0.154

Minimum − 0.000 − 0.000 − 0.000 − 0.000 − 0.000 − 0.000 − 0.000

Median 0.049 0.262 0.143 0.281 0.257 0.288 0.262

Maximum 0.177 0.715 0.545 0.630 0.666 0.636 0.650

Whole market Mean 0.008 0.220 0.133 0.257 0.065 0.206 0.071 0.074

Stdev 0.012 0.142 0.148 0.170 0.108 0.146 0.132 0.114

Minimum − 0.000 − 0.000 − 0.000 − 0.000 − 0.000 − 0.000 − 0.000 − 0.000

Median 0.000 0.207 0.042 0.281 0.000 0.172 0.000 0.000

Maximum 0.048 0.796 0.477 0.630 0.403 0.710 0.469 0.403
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In general, independently of the method or strategy, we observe a change in the 
performance ratios when we compare 175/250 market sizes with the whole market 
in Tables  5, 6, 7, and 8. The portfolio models behave depending on the market size 
and we see that the standard methods misbehave for the higher market size where we 
find room for our proposal. If we exclusively take simulation results for SRann for the 
whole market represented in Fig. 7, we find that the SR strategy outperforms the oth-
ers followed by MR.

In terms of the centroid strategies, we observe that MR and SR strategies over-per-
form compared to the others (LR, HR). Thinking exclusively in terms of returns, MR 
over-performs compared to SR for similar Max. Drawdown and CVaR. However, in 

Table 7 Conditional VaR (CVaR or ETL) of the simulations (1500 random investing paths) for the 
different strategies

MkSize Stat MV HRP RPP IdX SR LR MR HR

175 Mean − 0.041 − 0.207 − 0.117 − 0.251 − 0.224 − 0.237 − 0.221

Stdev 0.029 0.140 0.142 0.168 0.150 0.156 0.144

Minimum − 0.101 − 0.606 − 0.550 − 0.590 − 0.619 − 0.592 − 0.564

Median − 0.039 − 0.200 − 0.073 − 0.270 − 0.215 − 0.274 − 0.215

Maximum 0.000 0.000 0.000 0.000 0.000 0.000 0.000

250 Mean − 0.043 − 0.228 − 0.155 − 0.251 − 0.239 − 0.242 − 0.249

Stdev 0.028 0.133 0.138 0.168 0.148 0.154 0.151

Minimum − 0.094 − 0.556 − 0.545 − 0.590 − 0.520 − 0.559 − 0.508

Median − 0.042 − 0.219 − 0.143 − 0.270 − 0.257 − 0.272 − 0.258

Maximum 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Whole market Mean − 0.007 − 0.182 − 0.133 − 0.251 − 0.065 − 0.182 − 0.071 − 0.074

Stdev 0.010 0.115 0.148 0.168 0.108 0.137 0.132 0.114

Minimum − 0.035 − 0.480 − 0.477 − 0.590 − 0.403 − 0.609 − 0.456 − 0.403

Median 0.000 − 0.164 − 0.042 − 0.270 0.000 − 0.161 0.000 0.000

Maximum 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 8 Annualized sharpe ratio ( SRann ) of the simulations (1500 random investing paths) for the 
different strategies

MkSize Stat MV HRP RPP IdX SR LR MR HR

175 Mean 1.398 1.370 2.264 1.624 1.594 1.424 1.617

Stdev 0.351 0.510 0.548 0.572 0.418 0.530 0.451

Minimum − 0.103 − 1.991 0.590 − 0.378 0.180 − 0.842 − 0.282

Median 1.349 1.389 2.238 1.623 1.601 1.440 1.637

Maximum 2.758 2.793 4.638 3.408 2.836 3.370 3.226

250 Mean 1.496 1.327 2.082 1.624 1.684 1.232 1.850

Stdev 0.441 0.570 0.494 0.572 0.468 0.537 0.493

Mininimum 0.287 − 1.731 0.483 − 0.378 − 0.146 − 1.134 0.131

Median 1.449 1.379 2.062 1.623 1.681 1.251 1.847

Maximum 3.489 3.524 4.033 3.408 3.712 2.752 3.590

Whole market Mean 1.672 1.163 0.965 1.624 2.488 0.628 2.116 1.105

Stdev 0.376 0.554 0.262 0.572 0.508 0.675 0.467 0.260

Minimum 0.678 − 1.859 − 0.101 − 0.378 1.085 − 1.527 1.051 0.303

Median 1.662 1.194 0.979 1.623 2.469 0.680 2.078 1.121

Maximum 3.168 3.131 1.800 3.408 4.340 2.395 3.553 1.865
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terms of the Annualized Sharpe Ratio, the SR strategy (median value 2.469) beats all 
the other strategies and models.

For the MR strategy, via the simulations, we confirm the same results as for the 
monthly portfolios, that is, a lack of centroids for lower market sizes so no simulations 
either. In general HR when centroids exist perform better than LR.

Conclusion
We propose a methodology that, combined with the assumptions required for a good 
performance of MV models, allows us to extend the use of portfolio optimization models 
to the cryptocurrency market regardless of its size and volatility. Its usefulness extends 
to any portfolio management model that requires a covariance-based measure of market 
risk, and it is particularly suitable for managing streaming market data flows.

Our methodology proposes a clustering stage to reduce the problem of the dimen-
sionality. It reveals how the performance of the model can be improved by reducing the 
number of assets considered and focusing on those that best fit the investor criteria. The 
results are similar to those obtained by an appropriate feature selection in prediction 
problems (Kou et al. 2021). Clustering reduces the space where the optimization models 
work, creating more accurate estimations of the different factors and mitigating possible 
errors. This methodology can be applied to other financial markets and other portfolio 
optimization models. It is specially indicated when both a large number of assets and a 
long time window are considered.

Based on the results, we draw the following conclusions:

• First, we present a smart way to use the prototypes from clusters to automatize the 
selection of the more suitable partitioning of the market. The proposed methodology 
works dynamically with streaming price data of cryptos that, in our case, change on 
a daily basis although it can be easily adapted to other data periodicities. In this way, 
market partitions and portfolio generations work in concurrent mode autonomously 
once we set the criteria for cluster pre-selection based on the risk-aversion profiles of 
the investors.

• The range of performance values when applied to cryptocurrency portfolios exceeds 
any comparison with traditional markets and this becomes more evident as the size 
of the market itself grows. Cumulative returns, risk, and drawdowns are significantly 
higher in cryptocurrency markets. For example, the steep upward trend of the cumu-
lative yield curves means it is not comparable to any growth in traditional financial 
markets.

• We demonstrate that the performance of the standard model Mean-Variance (MV) 
applied to the whole market with no partitions is not very different in magnitude to 
other results derived by other research (Petukhina et al. 2021; Liu 2019; Culjak et al. 
2022) which make us confident regarding the results.

 In general,
• Sharpe ratio (Strategy 1) and Mean-Risk (Strategy 2b) outperform all the other strat-

egies in terms of Cumulative, Annualized Returns and Annualized Sharpe Ratio as 
the market size increases. At this point, we have to discard High-Risk (Strategy 2c) 
for standard investors as most of the time, there are no centroids available on the 
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higher rank of volatility, which means this strategy has low suitability for the investor 
that frequently needs to take a position on the market.

• We observe that strategies based on extreme values centroids (LR and HR) under-
perform the others along the out-of-sample window. In other words, centroids allo-
cated into the interquartile distribution for estimation windows behave much bet-
ter along the holding periods. The explanation is aligned with the 2nd and 3rd MV 
assumptions , which means that in general, risk-based models will perform better 
when we choose cryptos allocated in the mean region closer to the center of a nor-
mal distribution.

• One of the drawbacks of the proposed strategies is the higher drawdown and risk 
compared with the classical MV, which is the more evident weakness of the pro-
posed strategies, so it is comparable to the HRP model. We consider that SR and MR 
strategies independent of market size offer a good trade-off between returns, risk, 
and drawdown.

As we demonstrate, the results are sensitive to the number of cryptocurrencies consid-
ered. The smaller the space of cryptocurrencies with more restrictive thresholds during 
data pre-processing, the higher the chances to exclude the cryptocurrencies with explo-
sive behavior, and the financial performance indicators that are obtained in these cases 
are more similar to those of traditional markets.

Finally, we have to consider that not all 534 cryptocurrencies considered in this 
research can be directly traded on the market. Depending on the selected exchange, 
some can be traded and for others, we should find on other exchanges; for instance, we 
can trade up to 124 crypto assets (we use the terms crypto asset and cryptocurrency 
interchangeably) in Coinbase6 or 380 crypto assets in Binance7 In other cases, some 
cryptocurrencies could require some days to reach a consensus8 before incorporating 
to the portfolio, which introduces additional frictions on the market not considered in 
our model. Liquidity pools bring a solution to such frictions in creating a decentralized 
finance (DeFi) facilitating the turning of assets into cash and vice versa by applica-
tion of smart contracts. The counterpart is an increase in the transaction complexity 
and associated risk together with the high turnover of investors providing that liquid-
ity.9 In addition, there are different liquidity approaches depending, for instance, on 
whether there are centralized or decentralized exchanges with different spread mecha-
nisms that impact the performance of the trading models. Further work could con-
sider adding a liquidity criterion to the Prototype Selection Strategy stage in Fig. 1. For 
instance, this could be based on a spread measure together with the risk criteria that 
we have already used in the cryptocurrency pre-selection stage to improve the perfor-
mance of the Mean-Variance portfolios considering the conditions of crypto markets 
in real-life.

6 https:// www. coinb ase. com/ price/s/ listed.
7 https:// www. binan ce. com/ en.
8 https:// blog. nano. org/ crypt ocurr ency- fee- compa rison- which- crypto- has- the- lowest- fees- 4e911 8590e 1f.
9 https:// www. nansen. ai/ resea rch/ all- hail- maste rchef- analy sing- yield- farmi ng- activ ity? roist at_ visit= 10188 55.

https://www.coinbase.com/price/s/listed
https://www.binance.com/en
https://blog.nano.org/cryptocurrency-fee-comparison-which-crypto-has-the-lowest-fees-4e9118590e1f
https://www.nansen.ai/research/all-hail-masterchef-analysing-yield-farming-activity?roistat_visit=1018855
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