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Abstract 

Full electronic automation in stock exchanges has recently become popular, generat-
ing high-frequency intraday data and motivating the development of near real-time 
price forecasting methods. Machine learning algorithms are widely applied to mid-
price stock predictions. Processing raw data as inputs for prediction models (e.g., 
data thinning and feature engineering) can primarily affect the performance of the 
prediction methods. However, researchers rarely discuss this topic. This motivated 
us to propose three novel modelling strategies for processing raw data. We illustrate 
how our novel modelling strategies improve forecasting performance by analyzing 
high-frequency data of the Dow Jones 30 component stocks. In these experiments, 
our strategies often lead to statistically significant improvement in predictions. The 
three strategies improve the F1 scores of the SVM models by 0.056, 0.087, and 0.016, 
respectively.

Keywords:  High-frequency trading, Machine learning, Mid-price prediction strategy, 
Raw data processing, Multi-class prediction, Ensemble learning

High-frequency trading (HFT) arises from increased electronic automation in stock 
exchanges, which features the use of extraordinarily high-speed and sophisticated com-
puter programs for generating, routing, and executing orders (Securities Commission 
2010; Menkveld 2013). Investment banks, hedge funds, and institutional investors design 
and implement algorithmic trading strategies to identify emerging stock price surges 
(Parlour and Seppi 2008). The increase in transaction efficiency increases the complexity 
of limit order book (LOB) data. Compared with stock trading before electronic automa-
tion, more quote data are generated in the LOB during the high-frequency trading pro-
cess. Extracting useful information and modelling the complexity of massive LOB data 
for precise stock mid-price predictions are empirical big data challenges for traditional 
time-series methods. For instance, Qian and Gao (2017) suggests that classical machine 
learning methods actually surpass traditional models in precision for financial time-
series predictions compared to the ARIMA and GARCH models. As computational 
resources, sophisticated datasets, and larger datasets continue to expand in the financial 
field, scholars and practitioners have developed increasingly elaborate methods for ana-
lyzing complex financial markets. In particular, machine learning has gained popularity 
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in the finance industry because of its ability to capture nonlinearity, effectiveness, and 
strong predictive power. Innovative studies have demonstrated promising results for a 
variety of tasks. For example, machine learning and other advanced models have been 
employed for financial data mining (Li et  al. 2021), financial market microstructure 
investigations (Qiao and Beling 2016; Huang et al. 2017), and stock price analysis (Chen 
et al. 2003; Wen et al. 2019).

Quantitative analyses of financial price predictions are important because more accu-
rate predictions lead to higher profits from trading strategies (Fletcher and Shawe-Taylor 
2013; Kercheval and Zhang 2015). The quality of the prediction depends on two major 
factors: (1) the choice of statistical learning method used to train the prediction model 
and (2) the choice of input for machine learning methods, i.e., the extraction of infor-
mation from large raw data, such as input variables (predictors) and subsets of train-
ing samples. The majority of the literature (Arévalo et al. 2016; Dixon 2016; Kong and 
Zhu 2018) focuses on enhancing prediction accuracy with advanced machine learn-
ing or deep learning models, which address the first factor discussed above. However, 
to the best of our knowledge, little attention has been paid to the second factor. This 
issue motivated us to study how to extract useful information from large amounts of raw 
data as inputs for machine learning methods. Next, we explain the importance of pre-
processing raw data as input predictors, common practices to extract features from raw 
data, and the issues we want to address.

Although high-frequency data offer new opportunities to learn high-resolution 
information at the nanosecond level for financial analysis, it creates new challenges in 
acquiring and utilizing massive amounts of information. Given the vast amount of high-
frequency data records, it is impossible to consider the entire dataset because it is too 
computationally expensive. Furthermore, close observations in high-frequency data are 
highly correlated (Campbell et al. 1992; Campbell et al. 2012), which violates the inde-
pendence assumption of most machine-learning models. Hence, it is critical to prop-
erly process the raw data and convert them into meaningful inputs for machine learning 
models. To address this issue, the common practice in the literature to process high-
frequency raw data is to apply the event-based protocol (Ntakaris et  al. 2018; Nousi 
et al. 2019) together with the sampling strategy, which randomly sub-samples raw data 
at fixed events. Both the event-based protocol and the sampling strategy are forms of 
data thinning. Such approaches substantially reduce the size of the dataset and weaken 
the correlation among observations. However, this widely used data thinning approach 
has three disadvantages. First, data thinning compromises the advantage of high resolu-
tion high-frequency trading data. While reducing the data density, data thinning (i.e., 
event protocol and subsampling process) discards the inherent information between 
fixed events. Second, randomness in the data thinning procedure (e.g., different starting 
points of events and sampling strides) affects the models’ robustness and reproducibility. 
Third, long-term trends in price history could provide useful information for prediction, 
but they are rarely used in current models. High-frequency data over a long historical 
period are difficult to handle by most models because this leads to numerous correlated 
predictor variables, which dilutes the impact of all predictors in the model and creates 
severe collinearity problems. Researchers tend to construct scalar variables based on 
data at or close to a specific timestamp without leveraging information over a long-time 
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scope (Kercheval and Zhang 2015; Ntakaris et al. 2019; Nousi et al. 2019; Ntakaris et al. 
2020). In this study, we propose three novel modelling strategies that aim to address 
these disadvantages to alleviate the insufficient use of high-frequency data and improve 
mid-price prediction performance.

To overcome the first disadvantage, we devise Strategy I, which uses a collection of 
variables that summarize and recover useful information discarded during data thin-
ning. In response to the second disadvantage, our second strategy proposes a stock price 
prediction framework called ‘Sampling+Ensemble’. This framework consists of two 
steps: the first step fits training models on many random subsets of original samples, and 
the second step integrates results from all models fitted in the first step and subsequently 
generates the final prediction through a voting scheme. This strategy combines the ‘Sam-
pling’ step to reduce between-sample correlation and computational load in each subset, 
and the ‘Ensemble’ step to increase precision and robustness of predictions. This strat-
egy is flexible, as users can choose from a wide range of machine learning models as their 
processors (base learners) to analyze each data subset generated in the ‘Sampling’ step. 
In real data experiments, we used the support vector machine (SVM) and elastic net 
(ENet) models as the base learners to obtain benchmark results for performance com-
parison. Owing to the ENet model’s automatic feature selection property, we identified 
the importance of the predictor variables by ranking the total number of times each pre-
dictor was selected in the ‘Sampling’ step. Finally, our third novel strategy introduces a 
new feature to high-frequency stock price modelling, which emphasizes the importance 
of considering longer-term price trends. The implementation of the functional principal 
component analysis (FPCA) method (Ramsay 2004) helps compress information in his-
torical prices from a long and ordered list of correlated predictors into a few orthogonal 
predictors. We customize features that capture long-term price patterns over the past 
day, and examine whether they improve the prediction model.

The proposed method can be applied to high-frequency trading algorithms to achieve 
improved forecasting performance and informational efficiency. We illustrate the per-
formance improvements of our three novel strategies using high-frequency intraday data 
on Dow Jones 30 component stocks from the New York Stock Exchange (NYSE) Trade 
and Quote (TAQ) database. Following the problem set up in previous work (Kercheval 
and Zhang 2015), we treat mid-price movement prediction as a three-class classifica-
tion problem (i.e., up, down, or stationary mid-price states) for every next 5th event in 
each random subset of training data. We forecast the Dow Jones 30 stock prices using 
various machine learning methods with and without each of our novel strategies and 
evaluate the improvement in prediction performance using our novel strategies. We 
used precision, recall, and F1 score as performance metrics, which are widely used in 
the machine learning community. To investigate the uncertainty of our comparison, we 
repeated our experiments 100 times on different random subsets of the original data 
and compared the performance metrics (e.g., F1 scores) using the non-parametric Wil-
coxon signed-rank test. Evaluation results of SVM models show that our second strategy 
(Sampling+Ensemble) is ‘consistently’ helpful, significantly outperforming the original 
models without this strategy in all 30 stocks, with up to a 0.23 increase in F1 scores. Our 
first strategy (recovering the discarded information by the data thinning process) is often 
helpful, significantly improving the prediction performance in 27 out of 30 stocks. Our 
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third strategy (modelling long-term price trends by FPCA) can sometimes help signifi-
cantly improve prediction performance in 3 out of 30 stocks. Note that whether our first 
or third method helps depends on the characteristics of the data. If the last observa-
tion of event windows always carries most of the information of the window, recovering 
the loss during data thinning cannot help. If the long-term trends of a stock are unsta-
ble, modelling longer-term trends cannot be helpful. Finally, the ENet models provide 
us with the most frequently selected features for predicting each mid-price direction, 
which is novel knowledge for extending the existing features set for high-frequency mid-
price prediction for further studies.

In the remainder of this study, we describe the setup of our research problem and pro-
pose novel strategies for data preprocessing. Then, we provide a brief introduction to 
two machine learning methodologies that are used to illustrate our novel strategies. We 
demonstrate how our novel strategies improve the prediction performance using the 
TAQ data analysis results. Finally, we conclude the study and discuss its limitations.

Problem setup
This section introduces the research questions and defines the notations and evaluation 
criteria of model performance.

In this study, our goal is to predict mid-price changes based on high-frequency LOB 
data. A limit order involves buying or selling security at a specific price or better. A buy 
limit order is an order to buy at a current or lower price, while a sell limit order sells 
security at no less than a specific price. The LOB accepts both buy and sell limit orders 
and matches buyers and sellers in the market. The highest bid price, denoted by Pbid , is 
the best bid price, whereas the lowest ask price, denoted by Pask , is the best ask price. 
Their average price defines the so-called mid-price, namely Pmid = (Pbid + Pask)/2 , 
whose movement is predicted. Every new limit order submission from either the buyer 
or seller creates and updates a new entry in the limit order book. More specifically, if 
the best bid price or best ask price is updated in the LOB, our mid-price will be updated 
accordingly, which we define as a trading event.

Assume that a dataset consists of chronologically recorded LOB events with an index 
ranging from 1 to N. The occurrence of N events (i.e., quotes) depends on the market. 
They do not have a steady inflow rate, i.e., the time intervals between two consecu-
tive events vary tremendously from nanoseconds to minutes. Following the literature 
on event-based inflow protocols, we grouped every k consecutive events in a window, 
which leads to N/k windows for downstream analysis. Previous studies (Ntakaris et al. 
2018; Kercheval and Zhang 2015) proposed various choices for the value of parameter k, 
ranging from 2 to 15. Such a value is not critical to illustrate the performance of our pro-
posed novel strategies; therefore, we set k = 5 for simplicity in our discussion. To han-
dle the window-based data structure, as illustrated in Fig. 1, we used a two-dimensional 
index system (i, j) as the subscript for each event, where i = 1, . . . ,N/k denotes the i-th 
window and j = 1, . . . , k denotes the event’s position within the window. For example, 
the first LOB event in the 4-th window occurred at time t4,1 and had mid-price Pmid

4,1  . To 
forecast this mid-price, we can use information from the previous windows.

The input data formats for supervised machine learning methods are significantly 
different from those for time-series methods. Time series methods consider data as 
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a time-ordered vector of length N, whereas the input of machine learning methods 
consists of an N-dimensional outcome vector (same as a time series) and a predictor 
matrix of dimension N × p . That is, each row of machine learning input data consists 
of an outcome (mid-price at a certain time-point), and p predictors/features created 
from historical mid-price information before that time point (e.g., mid-prices of the 
last five trading events or two weeks of historical mid-prices traced back from the 
current time point).

Information on the relationship between consecutive observations of a time series 
is the most critical. Such information is equivalent to the outcome-predictor relation-
ship within each row of machine learning input data. Hence, the order of the rows is 
not critical for machine learning methods. Moreover, the correlation between con-
secutive observations of time series methods is helpful for prediction, whereas cor-
relations between rows in the machine learning data matrix void the independence 
assumptions of most machine learning methods. Therefore, the decorrelation among 
rows of the data matrix is important for machine learning methods.

We defined three types of predictor variables to summarize the high-frequency his-
torical information at different resolution levels under our proposed strategies. The 
first type consists of variables at the window level, which are fetched using one event 
(usually the last one) in each window as the standard classic features used in the lit-
erature. The details of this type of variable are presented in Table 3 in the Data Clean-
ing and Multi-resolution Features Construction section. The second type consists of 
variables that capture micro-trends within each window and will be discussed in the 
section on our proposed Strategy I. The third type consists of variables that capture 
the trend of price change in long-term history and is discussed in the section on our 
proposed Strategy III.

Following (Ntakaris et al. 2019), we define the outcome variable based on the mid-price 
ratio between the average mid-price of all events in the current window k

j=1 P
mid
i,j /k 

and the last observed mid-price in its history Pmid
i−1,k . Using threshold values, we convert 

this ratio into a three-class categorical variable that represents three possible stock mid-
price movement states: upwards, downwards, and stationary. Specifically, the outcome 
variable Yi of the ith record (or window) is defined as follows:

Fig. 1  Illustration of event-based inflow framework with the length of each window k=5 events
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where α is the parameter that determines the significance of the mid-price movement. 
In practice, we suggest choosing the value for α using two rules. (1) The value should 
be large enough to make it meaningful in practice so that high-frequency trading deci-
sions based on such α values can make a profit. (2) The value cannot be too large, so 
we have enough training data to model the “upwards” and “downwards” movements of 
stock prices.

Machine learning methods require a different data format than time-series methods 
do. The time series involves handling an N-dimensional vector indexed by time order. 
Time order is essential for time series forecasting because it predicts future values based 
on previously observed values. In contrast, machine learning methods predict future 
responses based on input features. In machine-learning methods, the temporal informa-
tion contained in the time order of observations (of time-series methods) is converted 
into an outcome-predictor relationship within each row of the input predictor matrix (of 
machine-learning methods). In other words, the historical information is included in the 
predictor matrix with various resolutions, as stated above. Therefore, machine-learning 
methods do not require correlation information between consecutive observations. 
A strong correlation between the rows of the data matrix should be avoided to satisfy 
the independence requirements of most machine learning models. However, when the 
window size is not sufficiently large, the mid-price or converted categorical outcome Yi 
might be highly correlated with their adjacent records. We propose our first two strate-
gies to address this issue, and discuss these strategies in the Novel Strategy section.

To evaluate whether our novel strategies can improve prediction performance, for 
each fitted model, we calculated its recall, precision, and F1 score, which are widely used 
performance metrics by the machine learning community. Our novel strategy is consid-
ered helpful if it leads to a positive change in performance metrics. The recall and preci-
sion metrics are defined as follows:

where TP is the number of true-positive predictions (e.g., correctly predict ‘upwards’ 
as ‘upwards’), FN is the number of false-negative predictions (e.g., incorrectly predict 
‘upwards’ as ‘not upwards’), and FP is the number of false-positive predictions (e.g., 
incorrectly predict ‘not upwards’ as ‘upwards’). Both recall and precision are perfor-
mance metrics that are commonly used in classification tasks. Recall denotes the propor-
tion of true-positive cases that are correctly labelled as positive, while precision denotes 
the proportion of predicted-positive cases that are correctly labeled as true-positive. A 
good classification model performance aims to achieve a relatively high recall and pre-
cision simultaneously. Usually, when we analyze the results, we can either investigate 
and compare one measure when the other measure is at a fixed level or we can combine 
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these two metrics into one. In this study, we used F1 score, the harmonic average of pre-
cision and recall, as a single measurement of the classification task:

Novel strategies
In this section, we propose three novel strategies, describe the issues that they resolve, 
and explain the mechanisms behind them. Our objective is to preprocess high-frequency 
raw data into appropriate inputs for machine learning methods. All three novel strat-
egies are independent of each other and can be applied separately or in combination. 
These strategies are not limited to mid-price prediction, but open avenues for high-fre-
quency data applications in other fields.

Strategy I: recover information in data thinning

The aforementioned event-based inflow serves as a data-thinning strategy for high-reso-
lution observations, which uses only one event (usually the last event) within each win-
dow. Using fewer events weakens the correlation between successive observations and 
reduces computational costs by shrinking the size of the dataset. However, each window 
carries much more useful information that can be captured by only one record. In par-
ticular, the records in the last window provide the most useful information for forecast-
ing future prices. Using only one record in that window can result in significant loss of 
information.

Our first strategy is to define a few new variables to recover discarded useful informa-
tion within each window. Although observations within an event window can be highly 
correlated and carry redundant information, their trend can be helpful in predicting the 
movement of the next mid-price. Instead of using the features solely built by the “record” 
events, we included new variables to extract and generalize summary features within 
each window. More specifically, we proposed an extensive collection of input features 
based on information that can be extracted from events within each window, as depicted 
in Fig.  1. The feature set contains features such as mean, variance, range mid-price 
observations, trade intensity, volatility, market depth, and bid-ask spread. As it summa-
rizes the financial characteristics within each window, we call the new set of features as 
“within-window high-frequency variables”. Detailed descriptions and calculation formu-
las of these variables are summarized in Table 1.

This new collection of features can capture more temporal information and comple-
ment the variable set that is constructed based on the “record” observations. V1 and 
V2 are two types of returns, aiming to measure the percentage of price changes in the 
best bid price and the best ask price compared to the counterparts of their previous 
“record” event. V3 denotes the bid-ask spread crossing return, which is an indicator of 
potential arbitrage profits. For example, a trader makes a profit when he buys the asset 
at time ti−1,1 with the lowest ask price and sells it at time ti−1,k with the highest bid price. 
V4, V5 and V6 are the mean values of the best ask price, best bid price, and mid-price, 
respectively, among the five events within a window. The summed quantity quoted at 
the best bid and ask prices, revealing the market depth, is calculated in V7 and V8 . The 

(3)F1 =
2× Recall × Precision

Recall + Precision
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standard deviation of mid-price changes is also known as price volatility. In V9 , we meas-
ure within-window volatility by calculating the standard deviation among all events in 
the two previous windows. The utilization of events from two windows is preferable 
because the computed standard deviations of the events from only one window are most 
likely to be zero because of subtle volatility. The time length of the (i − 1)-th window 
is determined by the time difference between the first and last events in that window, 
namely, ti−1,k − ti−1,1 . This represents the actual trading time for five events to occur 
prior to the given “record” event in ith window. Therefore, its reciprocal, as computed in 
V10 , manifests the transaction intensity of the given window.

Strategy II: “sampling + ensemble” model

The characteristics of high-frequency trading data lie in their massive trading volume 
and high data dependence among observations. Although it provides us with high-reso-
lution data to train our models, high-frequency data also lead to challenges in analyzing 
such data. The massive amount of data is not manageable by most modern comput-
ers, and the high correlation among adjacent observations violates the independence 
assumptions of most machine-learning models. To address these challenges, the cur-
rent standard approach is data thinning by randomly sampling event windows. However, 
such a sampling approach leads to further information loss and reduces the reliability of 
the results (i.e., depending on the random subset selected for data analysis). To improve 
robustness and address information loss, we propose a second strategy that combines 
the sampling approach with ensemble machine learning. Specifically, we used the bag-
ging approach (a popular ensemble machine learning method) to combine many models 
fitted on various random subsets of the original training data.

We propose our second modelling strategy, “Sampling+Ensemble”, which retains the 
benefits of the sampling approach discussed above and addresses its robustness and 
information loss issue. Specifically, we randomly generated 100 subsets of training data, 
fitted a prediction model on each data subset, and used the average prediction of all 100 
models as our final output. Each training subset uses only a portion of the original data, 

Table 1  Definition of Within-window variables with illustration of the feature extraction to predict 
the mid-price movement of the i-th window, i = 3, . . . ,N/k , where Pmid

i,·  indicates the mid-price 
sequence within the i-th window, (Pmid

i,1 , . . . , Pmid
i,k ) . Each window contains k=5 events

Definition Description

V1 = (Pbidi−1,k − Pbidi−1,1)/P
bid
i−1,1

best bid price difference return

V2 = (Paski−1,k − Paski−1,1)/P
ask
i−1,1

best ask price difference return

V3 = (Pbidi−1,k − Paski−1,1)/P
ask
i−1,1

bid-ask spread crossing return

V4 =
∑k

j=1 P
ask
i−1,j/k

mean best ask price

V5 =
∑k

j=1 P
bid
i−1,j/k

mean best bid price

V6 =
∑k

j=1 P
mid
i−1,j/k

mean mid-price

V7 =
∑k

j=1 V
ask
i−1,j

best ask price market depth

V8 =
∑k

j=1 V
bid
i−1,j

best bid price market depth

V9 =

√

Var(Pmid
i−2,· , P

mid
i−1,·)

within-window volatility of 
two previous windows

V10 = 1/(ti−1,k − ti−1,1) trade intensity
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but the union of 100 subsets can cover the majority of the original data to avoid informa-
tion loss. Integrating prediction results from models fitted on various subsets of original 
data can average the impact of subset selection, provide more robust results, and utilize 
more information/data than a model fitted on a single subset.

Note, using ‘100’ random subsets is our empirical choice after testing it on many data 
sets. Using too many subsets can substantially slow down the analysis but results in lit-
tle improvement in prediction performance. Using too few subsets cannot achieve the 
desired robustness, and more information is lost in the data. Users can adjust this setting 
according to their specific problems, if needed.

Strategy III: combination of long‑term and short‑term resolution

The essential information used for predicting future mid-price movements is historical 
observations of mid-prices. In most prediction models, modelling a longer history of 
mid-prices requires including more historical observations as model predictors. Most 
machine learning models only fit a limited number of predictors, and hence cannot 
model how long-term history affects future mid-prices. This disadvantage is worse when 
analyzing high-frequency trading data because higher frequency data leads to redundant 
events observed over a long period. Thus, most current prediction models for high-fre-
quency trading data in the literature utilize only information from a short-term history. 
This motivated us to propose a third strategy that considers long-term price effect fea-
tures to enhance information capacity in the current feature set.

Strategy III uses Functional Principal Component Analysis (FPCA) to reduce the 
dimensions of long-term history data before including them in the prediction model. 
FPCA is a dimension-reduction method similar to the Principal Component Analysis 
(PCA) method. PCA considers observations as vectors whose order is interchangeable, 
whereas FPCA handles observations as functions with interchangeable time orders. 
In other words, FPCA can utilize information from the mid-price sequence. We chose 
FPCA instead of PCA because the temporal information in the mid-price history plays 
a critical role in its prediction. In the prediction model, we represented the trends in 
the long-term history using a few FPCA scores instead of a long list of predictors (raw 
observed mid-prices).

In this study, we consider the long-term price effect of one-day history based on our 
empirical results and calculate the top Functional Principal Components (FPC) scores 
that account for 99.9% of information in these historical trends. Users can use histori-
cal data of customized durations (e.g., 3-days or one week) according to their research 
objectives. Note that we expect that the long-term impact variables will uplift the pre-
diction performance if the trajectory of the mid-price movement has low volatility. 
By contrast, if the mid-price movement trajectory is unstable and has rapid reversal 
or momentum, incorporating long-term impact variables in the prediction model will 
backfire. We could include both long- and short-term variables in the preliminary model 
and use machine learning methods to decide whether to retain the long-term variable 
in the final model. For example, the elastic net model has feature selection functionality 
and is suitable for this type of task. Users can also decide whether to include long-term 
variables manually, according to the stocks’ recent qualitative characteristics.
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A detailed description of FPCA can be found in Ramsay (2004), Ramsay and Silver-
man (2007) and Kokoszka and Reimherr (2017). In this study, we briefly introduce the 
key concept of FPCA. The FPCA projects the input trajectories of mid-price history 
to the functional space spanned by orthogonal FPC, and functional scores are the cor-
responding coordinates in the transformed functional space. Each component of the 
functional score vector is related exclusively to one FPC. The first FPC accounts for the 
largest proportion of variance in the data. By analogy, the next FPC explains the pro-
portion of the rest of the variance after excluding previously generated FPCs. Based 
on our empirical findings, the first few FPCs account for most of the variance in the 
one-day historical data. Therefore, we reduce the dimensionality of data by choos-
ing a few top FPCs that explain the majority of variance in the data and use the corre-
sponding FPC scores to replace raw data with a long history of mid-prices. We denote 
sij (i = 1, . . . ,N ; j = 1, . . . ,K ) the jth FPC score of the ith trajectory in the data, which is 
defined by

subjected to constraints

where t is the continuous timestamp, Xi(t) is the mid-price of the ith trajectory at time 
t, and X̄(t) =

∑N
i=1 Xi(t)/N  is the point-wise mean trajectory of all samples in the data. 

The first principal component as the weight function is specified by δ1(t) , which maxi-
mizes the variance of the functional scores si1 subject to Eq (5). The second-, third-, and 
higher-order principal components δj(t) are defined in the same way, but each of them 
explains the variance of the data in addition to the previously established ones, and they 
also need to meet the same constraint that requires all the functional principal compo-
nents to be orthogonal.

Using proposed strategies with machine learning methods

Our proposed novel strategies focus on preprocessing raw HFT data into input data for 
machine-learning methods. In this study, we used two machine-learning methods to 
illustrate the application of our strategies. In this study, we illustrate the application of 
our strategies using the two most popular machine learning methods: Supporting Vector 
Machines (SVM) (Tay and Cao 2001; Huang et al. 2005; Chalup and Mitschele 2008) and 
Elastic Net (ENet) (Zou and Hastie 2005).

The SVM model categorizes the response variables into two classes according to their 
input features. To achieve this goal, the SVM maps training samples to space and con-
structs a hyperplane along with two supporting vectors based on the training data. SVM 
further separates samples from the two classes using the hyperplane by maximizing both 
margins between the two supporting vectors. The new data points were then mapped 
into the same space and classified according to their position on the hyperplane. The 
ENet is a regularized linear regression model. It has a LASSO penalty and a Ridge pen-
alty on the regression coefficients. The LASSO penalty can force irrelevant predictor 

(4)sij =

∫

δj(t)
[

Xi(t)− X̄(t)
]

dt

(5)
∫

δj(t)δh(t)dt =

{

1, j = h
0, j �= h
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coefficients to zero, thereby achieving automated feature selection. The Ridge penalty 
can shrink all predictor coefficients towards zero, which helps to address the collinearity 
and overfitting problems. The ENet model has two parameters that control the strength 
of two penalties: � controls the overall strength, and α∗ controls the weights between two 
penalties. In the Empirical Application section, we provide details on how to select the 
values of these two parameters. In Section 1 of the supplementary document, we pro-
vide a more detailed description of the two methods.

Next, we used real data to show how our novel strategies improve the prediction per-
formance of these two machine learning models.

Empirical application
Data

To illustrate the prediction performance improved by each of our novel strategy, we 
acquired data from the New York Stock Exchange (NYSE) Daily Trade and Quote data-
base (TAQ), which consists of high-frequency intra-day quote and trade data for NYSE-
traded securities in all public exchanges nationwide. The intraday order-level data 
comprise the continuous trading time between 9:30 am to 4:00 pm every trading day 
from June to August 2017 (64 trading days), with nanosecond (one billionth of a second) 
timestamps (e.g., HHMMSSxxxxxxxxx). We focused on the component stocks of Dow 
Jones 301. The Dow Jones 30 includes the most prominent publicly traded companies in 
the U.S., representing a strong assessment of the market’s overall health and tendencies. 
The details of these 30 stocks are listed in Appendix Table 4, which consists of different 
industry sectors such as conglomerates, financial services, and information technology.

We plot the daily adjusted closing stock price of the Dow Jones 30 index during our 
sample period in Fig. 2. The Dow Jones 30 index increased by 3.42% during the three-
month study period. There were no extreme price movements in the Dow Jones 30 index 
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Fig. 2  2017 daily adjusted closing stock price of Dow Jones 30

1  WBA replaced GE on June 28, 2018; DOW replaced DWDP, on March 27, 2019
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during our sample period. In Table 2, we present the summary statistics of market cap-
italization, trading volume, bid-ask spread, mid-price, and market depth. The average 
market capitalization of the Dow Jones 30 stock at the beginning of our sample period 
was USD 368 billion. The Dow Jones 30 stocks are highly liquid with an average bid-ask 
spread of 1.637 basis points and an average market depth of 2950 shares.

We turn the response variable (i.e., stock mid-price) into a three-class categorical vari-
able for the prediction. We used a small value α = 10−5 in Eq (1) to ensure that the sta-
tionary state has a similar sample size to the two other states and to make the upward or 
downward movements noticeable changes in stocks’ mid-prices. The α value depends on 
stock volatility. We also experimented with two other values, 10−6 and 10−4 . We found 
that a value around the 10−5 threshold is suitable for most of our categorical responses 
to obtain a balance. The value α = 10−4 leads to an extreme imbalance in most stocks, 
whereas α = 10−6 leads to similar imbalance as our choice of α = 10−5 , but it is less 
financially significant. For more details on the proportion of response Y based on α , 
please refer to Additional file  1. Moreover, we used a stratified sampling approach to 
construct our training datasets and kept the ratio of labels for mid-price (i.e., upward, 
downwards, and stationary) 1:1:1 in each training subset of data. This manipulation 
approach improves the data balance and makes it easier to compare the prediction 
performance.

Data cleaning and multi‑resolution features construction

Following (Hendershott and Moulton 2011), we cleaned our data to ensure legitimacy 
and consistency using four steps. (i) Eliminate records beyond the exchange opening 
time from 9:30 am to 4 pm; (ii) Eliminate quotes with negative price, size, or bid price 
greater than the ask price; (iii) Eliminate trades with zero quantities; (iv) Eliminate trades 
with prices more than (less than) 150% (50% ) of the previous trade price; and exclude 
quotes when the quoted spread exceeds 25% of the quote midpoint or when the ask price 
exceeds 150% of the bid price.

Next, we standardize the variables using winsorization and normalization. The 
main purpose of winsorization and normalization is to remove extreme values and 
alleviate the impacts of different scales or units of the predictors. In the winsoriza-
tion step, we removed extreme values detected by the same approach as used in the 
box plot method. We first computed the first and third quantiles (Q1 and Q3) of our 
training sample and calculated the interquartile range (IQR) equals to Q3-Q1. Next, 
we replaced the observations falling outside [Q1-1.5IQR, Q3+1.5IQR] with the lower 

Table 2  Summary statistics for the full sample period

MktCap Volume Spread Midprice Depth
($billion) (million) (bps) ($ per share) (shares)

Mean 367.878 9.801 1.637 98.296 2950.071

Median 232.265 6.430 1.253 87.985 1200.000

Std Dev 534.232 9.188 4.322 45.439 5795.606

Min 37.162 0.955 0.000 30.320 200.000

Max 2405.000 75.611 2196.646 246.415 580200.000
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bound Q1-1.5IQR and upper bound Q3+1.5IQR, respectively. The normalization 
step standardizes each variable using its mean values and standard deviations from 
the training samples.

From the cleaned HFT data, we constructed features at three different resolutions 
for the prediction models based on machine learning methods: (1) window-level fea-
tures used by standard methods in the literature, (2) within-window features pro-
posed in Strategy I listed in Table 1, and (3) long-term history represented by FPCA 
scores as proposed in Strategy III.

The window-level variables are presented in Table  3. Variables V11 to V15 are the 
best bid price/volume, best ask price/volume, and mid-price, respectively, which are 
fetched directly from the LOB data. These are classic economic variables that meas-
ure changes in commonly used financial indicators before the “record” event. V16 is 
an indicator of the bid-ask spread return. The bid-ask spread refers to the difference 
between the best ask price and the best bid price at the same timestamp. Typically, 
a narrow bid-ask spread exhibits a high volume of demand. On the contrary, a wide 
bid-ask spread may imply a low demand; therefore, it has an impact on the discrep-
ancy in the asset price. Moreover, we measure the stock spike in features V17 to V21 
through the average time derivatives of price and volume computed over the most 
recent second (Kercheval and Zhang 2015). This helps us track whether there are rela-
tively large upward or downward changes in trading prices and volumes within a very 
short period of time. Similarly, we measured the short-term average arrival rate by 
counting the number of quotes from both sides during the most recent second in fea-
ture V22.

Note that compared with variables used in other popular methods, such as (Kerche-
val and Zhang 2015), we did not include window-level variables that require depth 
levels larger than 1. Because our LOB records from the NYSE dataset only provide 
information about the best bid and ask, i.e., depth= 1 , these variables cannot be 
derived from our data.

Table 3  Definition of standard variables with illustration of the feature extraction to predict the 
mid-price movement of the i-th window, i = 3, . . .N/k . Each window contains k=5 events

Definition Description

V11 = Paski−1,k
best ask price

V12 = Pbidi−1,k
best bid price

V13 = Pmid
i−1,k

mid-price

V14 = Vask
i−1,k

best ask volume

V15 = Vbid
i−1,k

best bid volume

V16 = (Paski−1,k − Pbidi−1,k)/P
mid
i−1,k

bid-ask spread return

V17 = dPask/dt best ask price derivative

V18 = dPbid/dt best bid price derivative

V19 = dPmid/dt mid-price derivative

V20 = dVask/dt best ask volume derivative

V21 = dVbid/dt best bid volume derivative

V22 = # of events in the last second arrival rate
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Design of benchmark study using real data

We conducted a benchmark study to evaluate the prediction performance of each of 
the proposed strategies. This study uses all component stocks of Dow Jones 30 from 
our NYSE data. From each stock, we randomly sampled 8000 records as training sets to 
train the prediction model and 2000 records as the testing set to evaluate the prediction 
performance. The evaluation results can be severely affected by sampling bias, i.e., the 
records were randomly selected in this experiment. To remove unwanted selection bias, 
we repeated this experiment 100 times by drawing 100 different random training and 
testing sets. We conclude based on 100 experiments, by averaging the sampling bias and 
learning the uncertainty in our evaluation.

In the training sets, we fitted four types of models to investigate the prediction per-
formance improvement made by each of the predicted strategies. First, we fit an SVM 
model using all predictor variables at three different resolutions, including the standard 
window-level feature set (shown in Table 3), the “within-window” feature set (shown in 
Table 1), and the FPCA scores discussed above. This model utilizes Strategies I and III. 
We considered this model as a baseline and compared it with the other three models. 
Next, we fit two reduced SVM models by removing the “within-window” features (Strat-
egy I) and FPCA scores (Strategy III) from the baseline model, respectively. Comparing 
these two reduced models to the baseline model, we can evaluate the change in predic-
tion performance caused by Strategies I and III. Finally, we utilized 100 baseline models 
on different random subsets of data to construct an ensemble model and compared it 
with the baseline model to evaluate the usefulness of Strategy II. In summary, our exper-
iment consists of four types of models. They are the baseline model (Strategies I, III), the 
ensemble model (Strategies I, II, III), the“within-window” model (Strategy I), and the 
FPCA model (Strategy III).

In the testing sets, we applied the trained SVM models to predict the mid-price move-
ment of each record using historical trade data. Then, we compared the predicted move-
ment with the observed movement to calculate the prediction performance criteria: 
recall, precision, and F1 score. We used the F1 score as the major criterion. To evaluate 
the performance improvement of the proposed strategy on each testing dataset, we cal-
culated the F1 score difference of the two corresponding models (with and without that 
strategy). For example, the performance of Strategy I can be evaluated by the F1 differ-
ence between the baseline model (Strategies I and III) minus the FPCA model (Strategy 
III). In total, this leads to 9000 F1 score differences obtained from combinations of the 
3 strategies, 30 stocks, and 100 experiments. Furthermore, to learn the performance of 
our strategy with other machine-learning methods, we repeated these experiments with 
a different learner, ENet models, and all SVM models were replaced.

When training the SVM models, the kernel function used in this study was the poly-
nomial kernel κ(xi, xj) = (xi · xj + 1)d with d = 2 and the constraint parameter C = 0.25 
as suggested in Kercheval and Zhang (2015). When training the ENet model, we chose 
the values of parameters � and α∗ in Eq.   (8) of the supplementary document using a 
two-layer cross-validation (CV) approach. We applied a 5-folds CV grid search to each 
training sample. The regularization parameter � is evenly spaced on the log-scale range 
of 10−8 and 5 at 100 values, meanwhile, with a fixed � , we searched for α∗ values from 
a sequence of 4 values ranging from 0.2 to 0.8 with a stride of 0.2. We evaluated each 
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combination of the two parameters and then determined the � and α∗ that yield the best 
model performance (Friedman et al. 2010).

The evaluation results are presented in the following subsections and Appendix. In 
addition to the prediction performance, we also evaluated the importance of each hand-
crafted feature for the mid-price movement prediction task according to its frequency of 
being selected by the ENet model, the details of which are provided in Fig. 4.

Performance evaluation of proposed strategies

We conducted experiments using the component stocks of Dow Jones 30 from the 
NYSE data. For each prediction performance criteria (precision, recall, and F1 scores), 
we obtained 24,000 scores from combinations of the 2 methods (SVM and Enet), 4 
models, 30 stocks, and 100 random repeats. For each setting, the median performance 
scores of 100 random repeats are provided in Appendix Tables  6 (SVM models) and  7 
(ENet models). In the remainder of the discussion, we focused on the F1 score, as it is 
the most popular classification performance criteria used in the machine learning com-
munity. In each setting, we take the difference in F1 scores between the baseline model 
and the remaining three models to evaluate performance improvement based on their 
corresponding strategies. This led to 180,000 F1 score differences. We visualized these 
F1 score differences in Fig. 3, which comprises six panels. The top three panels show the 
results of the SVM models, and the bottom three panels show the results of the ENet 
models. From left to right, the panels show the F1 score improvement by each of the 
three proposed strategies. The results of the 30 stocks are represented by boxes from 
top to bottom of each panel, and each box represents 100 F1 score differences obtained 
from repeated experiments. Positive values in the F1 score differences indicate that the 
corresponding strategy improves the prediction performance; hence, we named it F1 
improvement in the panel titles. The dashed vertical line is positioned at zero, which 
serves as a boundary to distinguish stocks whose mid-price prediction can be improved 
by the proposed strategy, i.e., boxes on the right-hand side of the boundary. To infer the 
significance of the improvement represented by each box, we calculated the raw p-value 
of the Wilcoxon sign rank test and applied the false discovery rate adjustment (Benja-
mini and Hochberg 1995) for multiple testing to avoid inflated Type-I error by multi-
ple tests. Appendix Table 8 presents the adjusted p-values corresponding to each box in 
Fig. 3. The boxes corresponding to small adjusted p-values (less than 0.05) are colored 
dark gray, which indicates that a strategy significantly improves the prediction of that 
stock, whereas the light gray boxes represent no significant improvements.

With SVM, the average improvement in the F1 score over 30 stocks brought by Strate-
gies I, II, and III are 0.02, 0.018, and 0.00036, respectively. The highest improvements 
of the three strategies were 0.056 (Strategy I on Stock GS), 0.087 (Strategy II on Stock 
DOW), and 0.016 (Strategy III on Stock PFE). Likewise, regarding ENet model perfor-
mance, the average improvement in the F1 score through Strategies I, II, and III are 
0.016, 0.019, and 0.00046, respectively. The highest improvements of the three strategies 
are 0.058 (Strategy I on Stock GS), 0.2 (Strategy II on Stock PG), and 0.026 (Strategy III 
on Stock PG).

We summarize and visualize the performance of our proposed strategies based 
on the dark grey boxes observed in Fig.  3. Strategy I (variables of ‘within-window’ 
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trends) significantly improved the prediction performance in 27 out of 30 stocks for 
both the SVM and ENet models. Ensemble learning based on models fitted on many 
random subsets (Strategy II) significantly improved prediction performance consist-
ently for all stocks, except that the ENet model has one stock showing a positive but 
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(b) Results with utlization of the ENet model
Fig. 3  The boxplots show F1 score improvements made by each of our proposed three modelling strategies, 
when they are used in SVM models (the top panel) and Elastic net models (the bottom model). Each box 
summarize F1 score improvements in 100 experiments conducted on different random subsets of the full 
data. A positive value in F1 score change indicates the strategy improve prediction performance. Hence, 
a box on the right hand side of the vertical dashed line (positioned at zero) indicate proposed strategy 
is helpful. To inference the significancy of improvement represented by each box, we calculate the raw 
p-value of Wilcoxon sign rank test, and applied the false discovery rate adjustment (Benjamini and Hochberg 
1995) for multiple testing to avoid inflated Type-I error by multiple tests. The boxes corresponding to small 
adjusted p-values (less than 0.05) are colored in dark gray, which indicate a strategy significantly improve with 
prediction of that stock, whereas the light gray boxes represent no significant improvements



Page 17 of 25Zhang et al. Financial Innovation            (2023) 9:39 	

non-significant trend. Note that ENet models are not guaranteed to converge. A sub-
stantial portion of the ENet model failed to converge in analyzing stocks PG, DOW, 
and AAPL, which may explain why we have light-gray boxes in Fig. 3 for Strategies 
I and II in the ENet model. Therefore, we conclude that the first two strategies are 
useful for most applications. In contrast, the FPCA of the one-day historical trading 
record (Strategy III) only helps the SVM models in the three stocks and shows no 
help in the rest of the predictions. We find that FPCA features are helpful only when 
daily historical mid-prices are relatively stable. We suggest that users use Strategy III 
with caution because it only works in specific situations. Users should test Strategy 
III on their data with various history lengths (e.g., one week, one day, etc.), and use it 
only if the FPCA of a certain length history seems helpful for prediction of the data.

Appendix Table 5 shows the median computing times of the ENet and SVM models 
and their corresponding ensemble versions. We found that ENet models were much 
shorter than SVM models, especially with regard to the ensemble strategy. Thus, we rec-
ommend the ENet model, given that it requires fewer computing resources and does not 
sacrifice much prediction performance. In real-life applications such as HFT, decision 
time is critical, which makes ENet models more favorable.

Importance of the predictors

The ENet model automatically selects important predictors by assigning zero coefficients 
to the unimportant predictors. Therefore, we can summarize the importance of the pre-
dictors from the above experiment as a by-product. For each stock, we fit numerous 
ENet models. We consider a predictor to have a high impact if it was selected (i.e., with 
non-zero coefficients) by 80% of the fitted elastic net models. We believe that the most 
useful predictors consistently have a high impact on many stocks. Fig. 4 summarizes the 
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Fig. 4  Histogram of total count of high-impact variables of the 30 Dow Jones component stocks in each 
mid-price movement direction
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frequency of each variable that has a high impact on the 30 component stocks of the 
Dow Jones 30 index. Because there are 30 stocks, the frequency is in the range [0, 30].

From the observed frequencies, we found that for most component stocks, the best bid 
volume has a high impact in predicting the mid-price movement states of Downwards, 
the within-window standard deviation has a high impact on predicting the stationary 
state, and the best asset volume variable has a high impact on predicting the upward 
state. Many factors, especially from the collection of “within-window” high-frequency 
variables set, are widely chosen to help predict the mid-price movement stationary state, 
whereas the upwards and downwards states relate more directly to the price differences 
or the quote volumes from the ask/bid sides. Furthermore, the FPCA scores variables 
are popular among the prediction of “stationary” direction, which confirms that long-
term mid-price movement trajectories are useful for predicting stable stock mid-price 
movement.

Conclusion
This study proposes three novel strategies to address common issues in predicting high-
frequency stock prices using machine learning methods. Our data preprocessing strate-
gies can extract more information from raw data and feed machine learning algorithms 
with high-quality data input, which is of interest to high-frequency investors. As our first 
strategy summarizes and introduces the “within-window” variables into the model, it 
recovers the discarded information lost in the event-based inflow protocol during the 
data thinning process. The second strategy combines a random sampling approach with 
ensemble machine learning. The sampling method alleviates correlation issues between 
consecutive observations, while the ensemble method addresses the shortage of poten-
tial selection bias caused by random sampling and therefore improves the robustness of 
the prediction results. Our third strategy sheds light on the effect of long-term trading 
history on our model. The FPCA reduction of variable dimensionality allows us to model 
longer-term price curves with few FPCA scores and avoids long vector variables of the 
sequence data.

We evaluated the performance of our three proposed strategies using intraday high-
frequency trade and quote data from the NYSE and found that Strategies I and II signifi-
cantly improve prediction performance in most applications. However, Strategy III helps 
only in certain situations. All three strategies are independent and can be used separately 
or in combination depending on users’ needs. We recommend using Strategies I and II 
in all applications with high-frequency data that require data-thinning, but only employ 
Strategy III after testing its performance and carefully exploring the length of history to 
be utilized in FPCA. Additionally, our strategies are add-ons for use in conjunction with 
machine-learning models. We illustrate our strategies using SVM and ENet models, and 
ENet models are preferable because they are computationally faster without sacrificing 
too much prediction performance.

The proposed method has three limitations. Next, we discuss the study’s limitations and 
potential solutions. First, Strategy II could be time consuming if excessive ensemble learning 
is involved, which is problematic in some real-life settings. In cases where the complexity of 
methods is not linear to the sample size, we may borrow the concept of federated learn-
ing (Li et al. 2020; Kairouz et al. 2021), in which the model divides data into many smaller 
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samples, learns, and integrates information by updating its parameters. Second, we used 
FPCA on the hourly resolution to illustrate our strategy, but it might not be the best resolu-
tion to reflect the stock’s long-term history. We suggest that users explore different resolu-
tions (such as daily or by the minute) and select the best one before applying it to a new 
stock. The third limitation is that we set model parameters for all stocks using the same rule 
for illustration purposes, so the performance achieved by an individual stock might not be 
as ideal as possible. In practice, we recommend that users fine-tune all the relevant model 
parameters and those in our three strategies for a particular stock. For example, readers can 
customize any detail in these strategies, which includes the choice of machine learning base 
learner, the number of trained models to ensemble, the voting scheme in ensemble learn-
ing, etc.. Thus, we can obtain the best model performance for each stock.

Appendix

Table 4  Components stocks of Dow Jones 30

Abbreviation Company  Sector

MMM  3M  Conglomerate

AXP  American Express  Financial services

AAPL  Apple  Information technology

BA  Boeing  Aerospace and defense

CAT​  Caterpillar  Construction and Mining

CVX  Chevron  Petroleum industry

CSCO  Cisco  Information technology

KO  Coca-Cola  Food industry

DIS  Disney  Broadcasting and entertainment

DOW  Dow Chemical  Chemical industry

XOM  Exxon Mobil  Energy

GS  Goldman Sachs  Financial services

HD  Home Depot  Retailing

IBM  IBM  Information technology

INTC  Intel  Information technology

JNJ  Johnson & Johnson  Pharmaceutical industry

JPM  JPMorgan Chase  Financial services

MCD  McDonald’s  Food industry

MRK  Merck  Pharmaceutical industry

MSFT  Microsoft  Information technology

NKE  Nike  Apparel

PFE  Pfizer  Pharmaceutical industry

PG  Procter & Gamble  Fast-moving consumer goods

TRV  Travelers Companies Inc  Financial services

UTX  United Technologies  Conglomerate

UNH  UnitedHealth  Managed health care

VZ  Verizon  Telecommunication

V  Visa  Financial services

WMT  Wal-Mart  Retailing

WBA  Walgreen  Retailing
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Table 5  Median model fitting time (in second) among 100 experiments of pre-defined SVM model 
and ENet model with 5-folds CV grid search for parameters tuning; median prediction time (in 
second) among 100 experiments of the ensembled SVM model and ensembled ENet model

SVM ENet Ensemble SVM Ensemble ENet

AAPL 15.399 64.308 9229.379 308.853

MSFT 409.004 62.733 6402.511 308.500

MMM 73.617 61.480 9448.499 321.302

AXP 49.939 71.618 7918.229 270.069

BA 38.789 56.841 8553.776 304.796

CAT​ 15.442 55.063 10010.095 228.732

CVX 14.317 69.050 10069.264 183.757

CSCO 487.956 65.405 7224.831 309.895

KO 29.856 63.751 7675.374 291.537

DOW 163.295 74.951 8767.993 86.906

XOM 36.768 61.862 7506.909 198.883

WBA 19.297 83.645 10241.134 166.405

GS 53.651 46.112 10038.149 315.930

HD 18.539 54.100 10581.459 297.982

INTC 477.318 66.402 6714.089 321.268

IBM 27.033 56.349 8356.416 311.348

JNJ 21.766 63.325 8789.505 303.007

JPM 22.327 56.358 7436.894 262.190

MCD 22.888 56.083 8704.121 183.412

MRK 54.528 59.175 7593.471 318.102

NKE 23.965 64.067 7366.485 295.981

PFE 39.267 65.228 6652.149 323.481

PG 94.659 86.800 7569.769 175.051

TRV 54.066 69.333 9042.629 296.062

UNH 48.844 54.428 8685.283 296.102

UTX 35.731 65.212 8672.759 213.724

VZ 22.513 60.783 6900.441 295.320

V 37.877 64.143 7624.429 275.839

WMT 31.197 60.831 7600.762 305.127

DIS 14.818 62.748 9714.119 272.908

Table 6  Median Recall (R), Precision (P) and F1 score (F1) of SVM model for the Dow Jones 30 
component stocks among 100 independent experiments under four model setups

Baseline SVM Ensemble SVM in-window SVM FPCA SVM

(Strategy I, III) (Strategy I, II, III) (Strategy I only) (Strategy III only)

P R F1 P R F1 P R F1 P R F1

AAPL 0.572 0.563 0.567 0.586 0.577 0.581 0.572 0.563 0.567 0.573 0.553 0.562

MSFT 0.730 0.728 0.729 0.734 0.732 0.733 0.731 0.728 0.729 0.725 0.718 0.722

MMM 0.457 0.448 0.451 0.467 0.462 0.465 0.457 0.448 0.452 0.422 0.414 0.419

AXP 0.550 0.499 0.524 0.595 0.580 0.587 0.544 0.504 0.520 0.494 0.489 0.487

BA 0.471 0.470 0.471 0.479 0.481 0.480 0.472 0.471 0.472 0.433 0.410 0.420

CAT​ 0.465 0.466 0.466 0.475 0.478 0.477 0.465 0.467 0.466 0.438 0.433 0.436

CVX 0.522 0.518 0.520 0.533 0.531 0.532 0.524 0.518 0.521 0.518 0.501 0.509

CSCO 0.754 0.745 0.749 0.762 0.755 0.759 0.755 0.746 0.751 0.749 0.733 0.741

KO 0.642 0.629 0.629 0.662 0.663 0.663 0.640 0.621 0.628 0.655 0.653 0.654

DOW 0.504 0.486 0.494 0.584 0.589 0.586 0.494 0.484 0.491 0.488 0.478 0.480

XOM 0.657 0.654 0.656 0.672 0.672 0.672 0.652 0.648 0.650 0.632 0.627 0.630
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Baseline SVM Ensemble SVM in-window SVM FPCA SVM

(Strategy I, III) (Strategy I, II, III) (Strategy I only) (Strategy III only)

P R F1 P R F1 P R F1 P R F1

WBA 0.540 0.531 0.536 0.549 0.542 0.546 0.541 0.531 0.536 0.533 0.518 0.525

GS 0.448 0.444 0.446 0.464 0.459 0.461 0.451 0.445 0.448 0.396 0.387 0.391

HD 0.465 0.458 0.462 0.477 0.474 0.475 0.466 0.462 0.464 0.433 0.429 0.431

INTC 0.738 0.727 0.732 0.744 0.733 0.739 0.738 0.727 0.732 0.732 0.716 0.724

IBM 0.451 0.450 0.451 0.461 0.463 0.462 0.452 0.451 0.452 0.424 0.417 0.421

JNJ 0.511 0.512 0.512 0.524 0.526 0.525 0.513 0.513 0.513 0.492 0.488 0.489

JPM 0.655 0.654 0.655 0.665 0.665 0.665 0.655 0.653 0.654 0.649 0.644 0.646

MCD 0.453 0.454 0.454 0.467 0.470 0.468 0.454 0.456 0.455 0.435 0.425 0.430

MRK 0.439 0.381 0.406 0.484 0.385 0.429 0.425 0.365 0.397 0.436 0.363 0.398

NKE 0.662 0.657 0.660 0.675 0.671 0.672 0.663 0.658 0.661 0.652 0.642 0.646

PFE 0.657 0.647 0.653 0.702 0.695 0.699 0.641 0.613 0.628 0.644 0.629 0.637

PG 0.502 0.495 0.492 0.499 0.512 0.506 0.492 0.490 0.488 0.480 0.456 0.467

TRV 0.437 0.434 0.435 0.450 0.451 0.451 0.439 0.435 0.438 0.417 0.409 0.412

UNH 0.448 0.446 0.447 0.457 0.459 0.458 0.447 0.447 0.447 0.420 0.403 0.412

UTX 0.471 0.469 0.470 0.483 0.482 0.482 0.473 0.470 0.471 0.450 0.439 0.444

VZ 0.703 0.701 0.702 0.716 0.717 0.716 0.703 0.700 0.701 0.692 0.688 0.690

V 0.603 0.595 0.599 0.618 0.611 0.614 0.603 0.593 0.597 0.591 0.576 0.583

WMT 0.632 0.625 0.629 0.643 0.637 0.640 0.635 0.626 0.631 0.623 0.613 0.618

DIS 0.564 0.553 0.557 0.575 0.565 0.570 0.564 0.552 0.558 0.561 0.540 0.550

Table 6  (continued)

Table 7  Median Recall (R), Precision (P) and F1 score (F1) of ENet model for the Dow Jones 30 
component stocks among 100 independent experiments under four model setups

Baseline ENet Ensemble ENet in-window ENet FPCA ENet

(Strategy I, III) (Strategy I, II, III) (Strategy I only) (Strategy III only)

P R F1 P R F1 P R F1 P R F1

AAPL 0.402 0.335 0.369 0.542 0.541 0.542 0.350 0.334 0.344 0.434 0.344 0.381

MSFT 0.722 0.720 0.721 0.722 0.720 0.721 0.722 0.719 0.721 0.715 0.710 0.713

MMM 0.450 0.444 0.447 0.456 0.451 0.453 0.449 0.444 0.446 0.410 0.408 0.409

AXP 0.561 0.559 0.560 0.569 0.568 0.569 0.562 0.558 0.559 0.555 0.553 0.554

BA 0.464 0.459 0.461 0.468 0.462 0.466 0.464 0.459 0.461 0.418 0.414 0.416

CAT​ 0.450 0.449 0.449 0.455 0.454 0.454 0.452 0.450 0.450 0.433 0.432 0.433

CVX 0.492 0.489 0.488 0.516 0.517 0.516 0.487 0.473 0.473 0.386 0.339 0.361

CSCO 0.750 0.740 0.745 0.752 0.742 0.747 0.749 0.739 0.745 0.747 0.736 0.742

KO 0.675 0.672 0.674 0.677 0.675 0.676 0.675 0.673 0.674 0.661 0.659 0.660

DOW 0.352 0.334 0.344 0.368 0.339 0.354 0.347 0.334 0.344 0.348 0.334 0.343

XOM 0.644 0.644 0.644 0.649 0.647 0.648 0.645 0.645 0.645 0.623 0.626 0.625

WBA 0.521 0.518 0.519 0.531 0.528 0.529 0.521 0.518 0.520 0.518 0.515 0.517

GS 0.448 0.440 0.443 0.453 0.444 0.448 0.448 0.440 0.445 0.387 0.385 0.387

HD 0.459 0.455 0.458 0.464 0.460 0.462 0.458 0.455 0.457 0.433 0.431 0.432

INTC 0.730 0.723 0.726 0.733 0.724 0.729 0.730 0.724 0.727 0.729 0.719 0.724

IBM 0.439 0.436 0.437 0.446 0.444 0.445 0.439 0.436 0.437 0.422 0.418 0.420

JNJ 0.500 0.500 0.500 0.507 0.506 0.507 0.501 0.502 0.502 0.493 0.493 0.493

JPM 0.631 0.628 0.630 0.634 0.633 0.633 0.630 0.629 0.629 0.614 0.614 0.614

MCD 0.445 0.443 0.444 0.453 0.450 0.452 0.446 0.444 0.445 0.424 0.421 0.421

MRK 0.638 0.632 0.635 0.642 0.636 0.640 0.640 0.633 0.637 0.628 0.622 0.625

NKE 0.640 0.636 0.638 0.644 0.641 0.642 0.639 0.636 0.638 0.623 0.619 0.621
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Table 8  Summary of fdr adjusted p-values of three modelling comparison groups with SVM model 
(left) and ENet model (right) as the base learner respectively

F1 Improvement (SVM) F1 Improvement (ENet)

Strategy I Strategy II Strategy III Strategy I Strategy II Strategy III

AAPL 1.11e-07 1.12e-17 1.00e+00 7.46e-01 2.31e-15 1.00e+00

MSFT 5.35e-15 1.01e-13 2.52e-01 1.16e-16 7.14e-04 6.56e-01

MMM 7.79e-18 1.69e-16 1.00e+00 2.55e-13 2.01e-08 1.00e+00

AXP 7.51e-06 2.90e-17 1.00e+00 1.03e-03 9.29e-10 1.00e+00

BA 7.79e-18 4.01e-16 1.00e+00 2.89e-17 1.44e-05 1.00e+00

CAT​ 7.79e-18 4.01e-16 1.00e+00 1.31e-06 4.21e-06 1.00e+00

CVX 2.74e-14 1.98e-17 1.00e+00 4.47e-02 1.70e-11 1.00e+00

CSCO 3.67e-16 6.39e-17 1.00e+00 1.88e-08 2.16e-05 1.00e+00

KO 9.98e-01 4.63e-17 2.89e-02 1.36e-16 8.07e-03 1.00e+00

DOW 3.50e-03 1.12e-17 1.00e+00 9.39e-02 1.30e-01 1.00e+00

XOM 2.14e-12 1.12e-17 3.16e-01 6.79e-13 5.73e-07 1.00e+00

WBA 4.51e-14 1.41e-17 1.00e+00 2.38e-03 1.92e-08 1.00e+00

GS 7.79e-18 1.41e-17 1.00e+00 2.89e-17 2.66e-09 1.00e+00

HD 7.79e-18 8.15e-17 1.00e+00 9.56e-16 2.95e-07 1.00e+00

INTC 6.06e-17 3.37e-16 1.00e+00 2.90e-05 3.67e-03 1.00e+00

IBM 7.79e-18 2.27e-16 8.96e-01 2.35e-11 2.01e-11 1.00e+00

JNJ 7.79e-18 2.90e-17 1.00e+00 3.94e-06 4.92e-10 1.00e+00

JPM 5.70e-16 1.41e-17 1.00e+00 3.56e-15 1.21e-05 1.00e+00

MCD 8.23e-18 1.41e-17 1.00e+00 6.21e-09 2.16e-06 1.00e+00

MRK 5.78e-02 3.99e-03 4.27e-01 3.56e-15 4.04e-08 1.00e+00

NKE 2.72e-17 1.12e-17 1.00e+00 1.23e-14 1.92e-08 1.00e+00

PFE 8.72e-02 2.43e-16 3.83e-02 2.89e-17 8.66e-06 1.00e+00

PG 3.62e-04 9.02e-04 1.00e+00 5.86e-01 2.01e-11 7.50e-01

TRV 7.79e-18 2.90e-17 1.00e+00 2.58e-06 1.87e-13 1.00e+00

UNH 7.79e-18 8.15e-17 1.00e+00 2.63e-15 1.70e-10 1.00e+00

UTX 7.79e-18 1.59e-17 1.00e+00 3.10e-04 1.26e-09 1.00e+00

VZ 2.93e-12 1.12e-17 2.89e-02 5.26e-17 1.03e-09 7.50e-01

V 2.13e-11 1.41e-17 1.07e-01 9.11e-14 5.15e-04 6.56e-01

WMT 3.49e-12 1.12e-17 1.00e+00 2.01e-14 8.66e-06 6.56e-01

DIS 6.80e-15 1.32e-15 1.00e+00 1.20e-08 3.11e-03 1.00e+00

Baseline ENet Ensemble ENet in-window ENet FPCA ENet

(Strategy I, III) (Strategy I, II, III) (Strategy I only) (Strategy III only)

P R F1 P R F1 P R F1 P R F1

PFE 0.718 0.716 0.717 0.720 0.719 0.719 0.719 0.718 0.719 0.695 0.695 0.695

PG 0.317 0.334 0.330 0.581 0.476 0.524 0.314 0.335 0.324 0.294 0.334 0.314

TRV 0.438 0.438 0.437 0.449 0.449 0.449 0.440 0.438 0.438 0.418 0.416 0.416

UNH 0.439 0.437 0.439 0.448 0.448 0.448 0.440 0.440 0.440 0.411 0.409 0.410

UTX 0.452 0.450 0.451 0.464 0.462 0.463 0.454 0.451 0.452 0.443 0.438 0.440

VZ 0.693 0.691 0.692 0.697 0.695 0.696 0.694 0.691 0.693 0.657 0.657 0.657

V 0.579 0.578 0.578 0.582 0.580 0.581 0.577 0.576 0.576 0.568 0.568 0.569

WMT 0.604 0.602 0.603 0.608 0.605 0.606 0.605 0.603 0.604 0.595 0.592 0.593

DIS 0.540 0.540 0.539 0.543 0.541 0.542 0.541 0.540 0.541 0.533 0.533 0.533

Table 7  (continued)
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HFT	� High-frequency trading
LOB	� limit order book
NYSE	� New York stock exchange
TAQ	� Trade and quote
CV	� cross-validation
PCA	� Principal component analysis
FPCA	� Functional data analysis
FPC	� functional principal component
OLS	� ordinary least square
IQR	� interquartile range
ENet	� Elastic net model
SVM	� Supporting vector machine
R	� Recall
P	� Precision
F1	� F1 score
MMM	� 3M
AXP	� American express
AAPL	� Apple
BA	� Boeing
CAT​	� Caterpillar
CVX	� Chevron
CSCO	� Cisco
KO	� Coca-Cola
DIS	� Disney
DOW	� Dow chemical
XOM	� Exxon mobil
GS	� Goldman sachs
HD	� Home depot
IBM	� IBM
INTC	� Intel
JNJ	� Johnson & Johnson
JPM	� JPMorgan chase
MCD	� McDonald’s
MRK	� Merck
MSFT	� Microsoft
NKE	� Nike
PFE	� Pfizer
PG	� Procter & gamble
TRV	� Travelers companies Inc
UTX	� United technologies
UNH	� United health
VZ	� Verizon
V	� Visa
WMT	� Wal-Mart
WBA	� Walgreen
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