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Introduction
In this study, we have used recurrence plots (RPs) and performed recurrence quantifica-
tion analysis (RQA) to investigate the dynamics of the United States Divisia monetary 
aggregates, initially developed by Barnett (1980) and currently maintained at the Center 
for Financial Stability (CFS) in New York City. In this regard, Barnett and Chen (1988) 
claimed a successful chaos detection in Divisia monetary aggregates. Their conclusion 
was further confirmed by DeCoster and Mitchell (1991, 1994). This published claim of 
successful chaos detection has generated considerable controversies, as in Ramsey and 
Rothman (1994) and Ramsey et al. (1988). It has also motivated further investigations, as 
in Barnett et al. (1995, 1997), Serletis (1995), and Serletis and Andreadis (2000). In the 
study conducted by Barnett and Serletis (2000), they provided extensive discussions of 
controversies that have arisen as regards available tests and results (see also Serletis and 
Shintani 2006).
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In this study, we aim to construct RPs and conduct RQA to investigate the dynamics 
of Divisia monetary aggregates. In recent years, there have been many applications of 
RPs, introduced by Eckmann et al. (1987), and RQA, introduced by Zbilut and Webber 
(1992) and Marwan (2003), in the analysis of economic and financial time series (e.g., 
Strozzi et al. 2002; Fabretti and Ausloos 2005; Barkoulas 2008; Faggini 2013, 2014; and 
Han 2019). Moreover, RPs have been used in the analysis of nonstationary time series 
(e.g., Facchini et al. 2005).

As Fabretti and Ausloos (2005, p. 671) put it, “Recurrence Plot (RP) and Recurrence 
Quantification Analysis (RQA) are signal numerical analysis methodologies able to work 
with nonlinear dynamical systems and nonstationarity.” RPs are known as graphical tools 
based on phase space reconstruction (Eckmann et  al. 1987), and RQA is a statistical 
quantification of RPs (Zbilut and Webber 1992). These methodologies do not intend to 
provide chaos evidence and are used with nonstationary and noisy time series to detect 
phase transitions and rare events.

We use the latest vintage of Divisia aggregates, maintained within the CFS program 
Advances in Monetary and Financial Measurement called CFS Divisia aggregates and 
documented in detail in Barnett et al. (2013). We use monthly data, from January 1967 to 
December 2020, which is a sample period that includes the extreme economic events of 
the 2007–2009 global financial crisis and part of the coronavirus disease 2019 (COVID-
19) pandemic. We make comparisons between narrow Divisia money measures (those at 
the M1, M2, M2M, MZM monetary aggregation levels) and broad Divisia money meas-
ures (those at M3, M4-, M4 monetary aggregation levels).

Barnett (1978, 1980) developed Divisia monetary aggregates. In contrast to the simple 
sum monetary aggregates constructed by most central banks, Divisia monetary aggre-
gates are found to be consistent with economic aggregation theory. Specifically, simple 
sum monetary aggregates are consistent with economic aggregation theory only if liquid 
assets are perfect substitutes with the same user cost. However, monetary assets yield 
interest, whereas currency does not; thus, the assumption that simple sum monetary 
aggregates are based on is deemed unreasonable. Divisia monetary aggregates do not 
assume perfect substitutions among component assets and hence permit different user 
costs of component assets. Barnett (1978, 1980) also demonstrated that Divisia aggre-
gates represent superior measurements of liquidity services as compared with simple 
sum monetary aggregates. As a result, all modern formal investigations of the impact of 
money on economic activities are performed using Divisia aggregates.

Our results are consistent with Barkoulas (2008) and supportive of a high-order deter-
ministic structure for each CFS Divisia monetary aggregate. We have also utilized the 
moving window and epoch methodologies of Trulla et al. (1996) and Bastos and Caiado 
(2011) to the growth rates of Divisia monetary aggregates and identified the effects of 
changes in monetary policy strategies and various innovations in the US financial ser-
vice landscape on the dynamics of Divisia monetary aggregates.

This paper is organized as follows: The “Divisia monetary aggregates” section briefly 
provides the theoretical foundations of Divisia monetary aggregates. The “Data” section 
discusses CFS data and provides graphical representations of narrow and broad Divisia 
monetary aggregates, in logarithms and in growth rates. In “RPs” and “RQA” sections 
we  present the RPs and RQA of Divisia aggregates. In “Epochs in the growth rates of 
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Divisia monetary aggregates” section we present the application of the moving window 
method to the growth rates of narrow and broad Divisia monetary aggregates. In “Con-
clusion” section provides the conclusion.

Divisia monetary aggregates
Unlike the simple sum monetary aggregates currently used by most central banks world-
wide, Divisia monetary aggregates, invented by Barnett (1978, 1980), do not assume per-
fect substitutability among their component assets and allow for different user costs of 
their components. The formula for the user cost (in real terms) of asset i, denoted by πit, 
was derived by Barnett (1978) and is given as follows:

where Rt is the rate of return on the benchmark asset and rit is the rate of return on asset 
i. The user cost can be interpreted as the interest foregone by holding a dollar’s worth of 
liquid asset i.

With data on user costs and quantities of component assets, one can calculate the 
expenditure share of asset i as follows:

where mit is the balance (in real terms) of asset i in period t. Then, the (discrete time) 
growth rate of a Divisia aggregate is given by the weighted average of its component 
growth rate, with the weight being the expenditure share of the respective component, 
as follows:

Divisia share weights are deemed significant. They depend on all prices and quantities 
and weight component growth rates to give the growth rates of Divisia aggregates.

Over the years, Barnett (1978, 1980), Belongia (1996), Hendrickson (2014), Serletis 
and Gogas (2014), Belongia and Ireland (2014, 2015, 2016), Ellington (2018), Dai and 
Serletis (2019), Serletis and Xu (2020, 2021), and Xu and Serletis (2022) have demon-
strated the superiority of Divisia monetary aggregates over simple sum aggregates. In 
fact, these authors revealed that Divisia aggregates are superior to the simple sum aggre-
gates currently used by central banks. Moreover, Barnett (2016), Jadidzadeh and Serletis 
(2019), and Dery and Serletis (2021) argued that we should be using broad monetary 
aggregates, as opposed to the narrow ones.

In this study, we provide further evidence in support of broad Divisia monetary aggre-
gates by applying moving window and epoch theories (see Trulla et al. 1996 and Bastos 
and Caiado 2011) to the growth rates of the aggregates.

πit =
Rt − rit

1+ Rt
,

sit =
πitmit
n
i=1 πitmit

,

dlogMt =

n
∑

i=1

sitdlogmit .
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Data
We use monthly United States data, from January 1967 to December 2020. This sample 
period includes the global financial crisis and part of the coronavirus recession. It is also 
dictated by the availability of Divisia monetary aggregates. The aggregates are maintained 
within CFS. In this research, we have compared narrow Divisia aggregates (at M1, M2, 
M2M, MZM aggregation levels) and broad Divisia aggregates (at M3, M4-, and M4 levels). 
For a detailed discussion of the data and methodology for the calculation of Divisia aggre-
gates, see Barnett et al. (2013) and http://​www.​cente​rforf​inanc​ialst​abili​ty.​org.

In Figs. 1 and 2, we present the logged levels (in Panel (a)) and the growth rates (in Panel 
(b)) of all aggregates. We observe that they all trend steadily upwards but also follow slightly 
distinct paths. The general pattern in all graphs is the persistent upward trend in logarith-
mic levels and the significant variability in growth rates (changes in logarithmic levels); see 
Dery and Serletis (2021) for detailed discussions of these differences.

RPs
RPs were first introduced by Eckmann et al. (1987) to extract the qualitative characteristics 
of a dynamical system. They are described to be a graphical tool associated with the trajec-
tory of the phase space of an underlying system. Since their introduction, RPs have been 
utilized in various areas (for a review, see Marwan et al. 2008). The purpose of RPs is to 
extract qualitative characteristics of a dynamical system based on the texture appearing on 
them and locate transitions of its dynamical behavior. Based on the texture, one can identify 
random-like, periodic, and chaotic behaviors. The RPs of random systems show a cloud of 
points, which are opposite to the RPs of systems that emanate from deterministic, either 
chaotic or nonchaotic behaviors where various patterns appear (for detailed descriptions 
of these patterns and their significance, we refer to Marwan et al. 2015). Moreover, a set of 
tools have been developed to quantify the above behaviors of RPs, such as DET, RR, and TT 
indexes, which are described in the above reference and briefly below in the section cor-
responding to RPs. Changes in visual structures and modifications in measured quantities 
can help effectively and objectively identify transitions in system behaviors.

Initially, we recall the method of creating a recurrence plot (see Eckmann et  al. 
1987 and Marwan 2006 for further details). Consider time series T  with K points, 
denoted as T = {T1,T2, . . . ,TK } , with Ti ∈ R , and 1 ≤ i ≤ K  . We define an embedding 
of time series T (see Packard et  al. (1980) and Takens (1981)) by fixing embedding 
dimension dE,T  and delay time τT  . We define the reconstructed time series S that pos-
sesses LT  points, LT = K −

(

dE,T − 1
)

τT , as S =
{

S1, S2, . . . , Si, . . . , SLT
}

 , with 

Si =
(

Ti,Ti+τT , . . . ,Ti+(dE,T−1)τT

)

∈ RdE,T , 1 ≤ i ≤ LT  . Then, we choose threshold 

value r, which is also well known as a cut-off distance. Next, we consider the recur-
rence plot Lattice LT × LT  with points 

(

i, j
)

, 1 ≤ i, j ≤ LT  . Finally, for each value of 
(

i, j
)

 of the recurrence plot Lattice and a positive threshold value r , we define function 
f : L× L → {1, 0} as follows:

f
(

i, j
)

=
1, Sj ∈ B(Si, r) i, jrecurrent
0, Sj /∈ B(Si, r), otherwise

http://www.centerforfinancialstability.org
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where B (Si, r) denotes the neighborhood with center Si and threshold r ; it consists of 
all the points that are within distance r from center Si.

In the recurrence plot Lattice, we plot with black the recurrent points and with white 
the nonrecurrent points. The distribution of these black and white points in RPs creates 

Fig. 1  Logarithmic values (in Panel a) and growth rates (in Panel b) of narrow Divisia monetary aggregates
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various patterns called textures that reflect various dynamical system properties (see 
Eckmann et al. 1987). In this work, we use the MATLAB (MATLAB, 2008) software to 
plot the RPs.

In Table 1, we present the values for embedding dimension, delay time, and threshold 
that are used to construct RPs for narrow aggregates (Divisia M1, Divisia M2M, Divi-
sia MZM, Divisia M2, Divisia ALL) and of their growth rates. To estimate embedding 
dimension, we apply the false nearest neighbor method using a criterion of below 10% 
falseness of nearest neighbors (see Kennel et al. 1992). For the calculation of the optimal 
delay time, we use the first minimum of the average mutual information as in Fraser 
and Swinney (1986). Finally, as regards the recurrence plot threshold, we select a recur-
rence rate of 3% when we use growth rates and 2% when we use logged aggregate lev-
els, ensuring the recurrence matrix to be sparse enough to succeed in retaining system 
information, as suggested by Zbilut et al. (1992). The selection of these values is done by 
fixing the recurrence rate at 3%. Table 2 provides similar information for broad mon-
etary aggregates (Divisia M3, Divisia M4-, and Divisia M4).

The RPs of narrow Divisia monetary aggregates are illustrated in Fig. 3, and those of 
broad Divisia monetary aggregates are shown in Fig. 4. We show the RPs of the logged 
series in Panel (a) and of their growth rate series in Panel (b).

Fig. 2  Logarithmic values (in Panel a) and growth rates (in Panel b) of broad Divisia aggregates
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As can be seen from the RPs in Panel (a) of Figs.  3 and 4, for narrow and broad 
Divisia aggregates, the recurrent points are concentrated around the main diagonal 
with high density. This observation is consistent with the logged series that present 
a constant trend (mainly increasing) because they are monthly and do not present 
particular variations. Thus, values quite close seem to be related; thus, points (i, j) 
and (i + 1, j + 1) on RPs seem to be related with a kind of law. This case is valid over a 
short time frame because after some steps (several months), values vary in important 
ways and seem unrelated. However, RPs using growth rates in Panel (b) of Figs. 3 and 
4 indicate different behaviors. We observe in many cases some short diagonal lines, 
which indicate deterministic behaviors because successive points in the phase space 
are linked to one another. These regions are separated by white regions of variable 
lengths indicating considerable abrupt system perturbations due to external reasons, 
as can be seen in several periods and may be attributed to significant financial events 
of short or long durations.

We have also observed that the RPs of Divisia time series contain large white areas 
starting from the upper left and lower right corners to the main diagonal (drift). These 
recurrence plot textures appear due to continuous slowly increasing values with almost 
no fluctuations. Thus, a drift depicts slowly varying system parameters.

Finally, an interesting observation is that the RPs of broad Divisia monetary aggregates 
had an additional drift structure around 2008, which is the time of the global financial 
crisis.

Table 1  Parameter values for the constructions of RPs of narrow aggregates

Parameter M1 M2 M2M MZM ALL

(a) Logged Series

Delay time 25 23 24 25 24

Embedding dimension 2 2 2 2 2

Threshold 0.075 0.063 0.067 0.068 0.062

(b) Growth rate Series

Delay time 2 2 3 2 3

Embedding dimension 5 5 5 6 4

Threshold 0.0055 0.004 0.0049 0.0054 0.0033

Table 2  Parameter values for the constructions of RPs of broad aggregates

Parameter Divisia M3 Divisia M4- Divisia M4

(a) Logged Series

Delay time 24 24 24

Embedding dimension 2 2 2

Threshold 0.06 0.059 0.061

(b) Growth rate Series

Delay time 2 2 2

Embedding dimension 5 5 6

Threshold 0.0045 0.0045 0.0054
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Fig. 3  RPs of narrow Divisia monetary aggregates: Logarithmic values in Panel (a) and growth rates in Panel 
(b)
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RQA
ZBILUT and Webber (1992) proposed various statistical measures to quantify pattern 
presence in RPs. The statistical quantification of RPs is known as RQA. It provides a 
good insight on the way that recurrence points are distributed in RPs. RQA measures 
are used as deterministic or chaotic behavior indicators. These measures are defined in 
Table 3 (see Fabretti and Ausloos 2005 and Bastos and Caiado 2011 for further details).

In Tables  4 and 5, we present the RQA for logged Divisia monetary aggregates and 
their growth rates, respectively. According to the RQA (using a recurrence rate of 
around 2%), the values of measures in Table 4 for the logged series are noted to be high; 

Fig. 4  RPs of broad Divisia monetary aggregates: Logarithmic values in Panel (a) and growth rates in Panel 
(b)
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dense structures form dense horizontal and diagonal lines. However, the values of the 
same measures for the growth rates of aggregates in Table 5 are low, which indicates a 
process in which periodicities do not dominate; sharp fluctuations and possible changes 
occur in the series dynamics.

The high laminarity values for broad Divisia monetary aggregates can be considered 
strong indications of nonlinear deterministic behaviors. The RR values for logged Divisia 
aggregates (in Table 4) and their growth rates (in Table 5) are nearly equal. The LAM val-
ues are higher than the DET values for the logged Divisia series, which presents trend-
like behaviors with continued increases and nearly constant regions in contrast to their 
growth rates, which then present significant variations, especially in several regions.

As the Divisia M4 monetary aggregate has attracted attention in recent empiri-
cal investigations (e.g., Jadidzadeh and Serletis 2019 and Dery and Serletis 2021), 
we elaborate briefly below a detailed analysis of the Divisia M4 monetary aggregate 
based on the results in Tables 4 and 5, keeping in mind that our results do not favor 
the Divisia M4 aggregate over the other broad Divisia aggregates. In the case of the 
logged Divisia M4 monetary aggregate, we observe a high DET value (0.9910) and 
an average line length L (27.17), referring to diagonal lines, and a high LAM value 
(0.9974) and a trapping time TT value (17.29), referring to vertical lines. These val-
ues depict a strong deterministic process, that is, the values of the logged Divisia M4 
monetary aggregate present periodicities during time evolution. Moreover, high TT 
values reveal states that are trapped in time, suggesting that the Divisia M4 aggregate 
is relatively stable. Moreover, laminarity values are higher than determinism values, 
providing the information of a more time-trapped dynamic process.

Table 3  RQA measures

Definition Notation Explanation

Recurrence Rate 
(RR) or %recur-
rence

RR =
1

N2

N
∑

i,j=1

Ri,j

Ri,j =

{

1, (i, j)recurrent
0, otherwise

High Recurrence Rate values indicate recur-
rent states that could be due to a determin-
istic behavior while chaotic states are associ-
ated with low values of the Recurrence Rate

Determinism (DET)
DET =

∑N
l=lmin

l·Pd(l)
∑N

i,j Ri,j

where Pd(l) is the histogram of the lengths l 
of the diagonal lines

The presence of diagonal lines indicates the 
existence of a deterministic structure. DET 
reveals also information relevant to the dura-
tion of a stable interaction

Average Length (L)
L =

∑N
l=lmin

l·Pd(l)
∑N

l=lmin
Pd(l)

This measure refers to the diagonal line 
length. Small L values reveal processes with 
stochastic or chaotic behavior while big 
values indicate a deterministic process. The 
L value is related to the DET value, as both 
count the number of recurrent points on the 
diagonal structures

Laminarity (LAM)
LAM =

∑N
l=lmin

l·Pv(l)
∑N

l=1 lPv(l)

where Pv(l) is the histogram of the lengths 
of the vertical lines included in the recur-
rence plot

Laminarity is a measure of the appearance 
of laminar states indicative of intermittency. 
The lower the LAM value, the more stable the 
system is

Trapping Time (TT)
TT =

∑N
l=lmin

lPv(l)
∑N

l=lmin
Pv(l)

Wh where Pv(l) is the histogram of the 
lengths of the vertical lines

The Trapping Time measure indicates the 
slowing variation of the values of the time 
series through time. High TT values indicate a 
non-fluctuating, slow changing series
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These observations are further supported with the similar behavior of the Divisia M4 
growth rate series with a LAM value, which is higher than its DET value. In addition, a 
high TT value for the Divisia M4 growth rate series further supports the stability of the 
Divisia M4 monetary aggregate.

In what follows, we investigate the deterministic structures of narrow and broad Divi-
sia monetary aggregates by applying the moving window method (see Trulla et al. 1996).

Epochs in the growth rates of Divisia monetary aggregates
In this section, we closely look into the RPs of the logged levels and growth rates of Divi-
sia aggregates. As illustrated in Figs. 3 and 4, a concentration of recurring points is noted 
to occur around the main diagonal with various areas of different behaviors. This mor-
phology indicates a nearly continuous and monotonic variation, which is true because 
we have a continuous increase in time series values, and due to this increase, various 
regions become uncorrelated, reflected by the large white areas for the rest of its recur-
rence plot. These different structures show us that the system under study is subject to 
phase transitions. The RPs of their growth rates present quite different behaviors as far 

Table 4  RQA of Divisia aggregates (in log levels)

Aggregate RR DET LAM L TT

Narrow monetary aggregates

Divisia M1 0.0309 0.9800 0.9974 30.13 18.92

Divisia M2 0.0308 0.9928 0.9986 32.42 18.07

Divisia M2M 0.0302 0.9951 0.9987 27.85 17.37

Divisia MZM 0.0308 0.9923 0.9987 28.76 18.02

Divisia All 0.0307 0.9910 0.9977 25.49 17.05

Broad monetary aggregates

Divisia M3 0.0306 0.9914 0.9972 26.98 17.27

Divisia M4- 0.0307 0.9910 0.9971 25.49 17.05

Divisia M4 0.0301 0.9910 0.9974 27.17 17.29

Table 5  RQA of Divisia aggregates (in growth rates)

Aggregate RR DET LAM L TT

Narrow monetary aggregates

Divisia M1 0.03171 0.1858 0.3763 3.437 2.798

Divisia M2 0.0323 0.1897 0.3751 3.249 2.891

Divisia M2M 0.0316 0.2648 0.4284 2.352 2.707

Divisia MZM 0.0306 0.1894 0.4222 4.027 3.120

Divisia All 0.0319 0.1739 0.3373 2.165 2.357

Broad monetary aggregates

Divisia M3 0.0323 0.2580 0.4494 3.832 3.027

Divisia M4- 0.0307 0.2335 0.4160 3.860 2.919

Divisia M4 0.0307 0.2305 0.4239 3.837 2.726



Page 12 of 17Andreadis et al. Financial Innovation  2023, 9(1):16

as the structures are concerned. The structures are different with small parallel lines 
interrupted quite often by large white vertical regions, which are representative of the 
fluctuating behavior of the series; the white areas correspond to large perturbations.

Although visual inspection is deemed useful, we follow Marwan et  al. (2007) and 
employ an epoch analysis, which is also known as a moving window (see Trulla et  al. 
1996), to localize in a detailed way the series dynamics. Epochs are equidistant periods 
that are calculated along the main diagonal of the recurrence plot and help us locate pos-
sible phase transitions during system evolution (see Bastos et al. 2011). We calculate the 
values of various RQA measures discussed in Sect. 5, over sliding windows with succes-
sive points of RPs, that is, densities of recurrent points (recurrence rates) and densities 
of recurrent points in diagonal structures (determinism) and in horizontal structures 
(laminarity and trapping time). Significant variations of these quantities from one win-
dow to another can help detect abrupt changes in system dynamics. Exploring various 
values of equidistant periods, we choose a moving window of 36 observations, corre-
sponding to a 3-year period. We choose the length of 36 through visual inspections, as 
suggested in Facchini et al. (2007), because for small values, points in corresponding RPs 
are found insufficient to extract significant values for RQA measures. The corresponding 
results appear in Figs. 5 and 6.

We plot the growth rates of narrow (in Fig.  5) and broad (in Fig.  6) Divisia mone-
tary aggregates. Panel (a) presents 611 quarterly rolling windows (the estimated dates 
(month/year) of phase transitions are shown on the top), whereas Panel (b) shows their 
RPs with regions. We indicate seven regions, namely, A, B, C, D, E, F, and H, in chrono-
logical order. These regions stay the same for broad Divisia monetary aggregates (see 
Panel (a) of Fig. 6); in contrast to the case of narrow Divisia monetary aggregates, see 
Panel (a) of Fig. 5.

In Table 6, we present the dates around which the growth rates of narrow and broad 
Divisia monetary aggregates exhibit significant dynamical changes.

As per our findings, in June 1980, January 1997, and October 2001, almost all eight 
Divisia monetary aggregates were subject to changes. In this regard, the time around 
1980 is a transition period for the Federal Reserve monetary policy. In the 1970s, the 
operating target of the US monetary policy was the federal funds rate with the monetary 
aggregates serving as intermediate targets. However, the Fed switched to a monetary 
policy targeting in October 1979, using nonborrowed reserves as the primary operating 
instrument and monetary aggregates as intermediate targets. This policy was abandoned 
3 years later, in October 1982, and the Fed returned to a smoothing interest rate policy.

Changes in January 1997 and October 2001 may be related to innovations in the 
financial service industry and the financial deregulation that took place around that 
time (e.g., Calmès and Théoret 2020a; 2020b; 2021). Specifically, in the mid-1990s, a 
financial innovation known as “sweep technology” enabled banks in the United States 
to avoid “taxes” from reserve requirements. At the end of a business day, commercial 
banks could sweep out of the checking account of a corporation any balances above 
a certain amount and invest in overnight securities in the overnight interbank mar-
ket. The swept-out funds were not subject to reserve requirements because they were 
unclassified as checkable deposits. Sweep accounts then became popular by the end 
of the 1990s and early 2000s in the United States.
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Fig. 5  RQA of the growth rates of narrow Divisia monetary aggregates in Panel (a) in 611 quarterly rolling 
windows (the estimated dates (month/year) of phase transitions are shown on the top) and in Panel (b) in 
their RPs with regions
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Broad Divisia monetary aggregates exhibit similar dynamics because their transi-
tions take place at about the same time. By contrast, we observe different dynam-
ics in narrow Divisia aggregates. Moreover, we find that broad Divisia aggregates 
exhibit dynamical changes more often than their narrow counterparts. These results 
are consistent with the analysis by Dery and Serletis (2021) who provided compari-
sons between narrow and broad Divisia monetary aggregates, using different meth-
ods from ours, in their investigation of the information content of Divisia aggregates. 
They used the methodology suggested by Kydland and Prescott (1990) and produced 
cyclical components using the Hamilton (2018) and Hodrick and Prescott (1980) fil-
ters. They found that all narrow Divisia monetary aggregates are acyclical, whereas 
broad Divisia monetary aggregates are weakly procyclical. Our results, however, do 

Fig. 6  RQA of the growth rates of broad Divisia monetary aggregates in Panel (a) in 611 quarterly rolling 
windows (the estimated dates (month/year) of phase transitions are shown on the top) and in Panel (b) in 
their RPs with regions



Page 15 of 17Andreadis et al. Financial Innovation  2023, 9(1):16	

not speak for, or against, any of the Divisia monetary aggregates as preferred meas-
ures of money, as we only focused on dynamic aggregate behaviors.

Conclusion
We use RPs and RQA to investigate the dynamics of Divisia monetary aggregates. Evi-
dence indicates a nonlinear dynamical process in which periodicities do not domi-
nate, further supporting the result of (Barkoulas 2008) on a reservation of a possible 
chaotic explanation of Divisia money measures.

We also apply the moving window method of Trulla et al. (1996) to the growth rates 
of narrow and broad Divisia monetary aggregates. Our results reveal their changes 
during the study period. The epochs method highlights the full dynamic behavior of 
the system under study because it identifies with relative precision the times when 
phase transitions take place. Our analysis reveals the effects of changes in monetary 
policy strategies and various innovations in the US financial services landscape that 
take place over the sample period.

Motivated by the need to solve the “Barnett critique,” we have completely ignored the 
simple sum aggregates provided by the Fed. We only utilized new CFS Divisia monetary 
aggregates and made comparisons between narrow and broad measures. In this regard, 
as noted by Barnett et  al. (2013), the components of Divisia aggregates closely mirror 
their simple sum counterparts provided by the Fed. However, the Fed stopped report-
ing the (simple sum) M3 monetary aggregate in March 2006, and the broadest aggregate 
that is currently reported is (simple sum) M2, which excludes a great deal of the quantity 
of financial intermediation in the economy.

Abbreviations
CFS	� Center for financial stability
DET	� Determinism
US	� United States
L	� Average length

Table 6  Dates when the dynamics of the growth rates of Divisia monetary aggregates exhibit 
significant dynamical changes

Narrow monetary aggregates Broad monetary 
aggregates

Date M1 M2 M2M MZM All M3 M4- M4

Jun. 1980 YES YES YES YES YES YES YES YES

Jan. 1984 YES YES YES YES YES

Oct. 1988 YES YES

Jun 1990 YES YES

Oct. 1990 YES YES YES

Jan. 1997 YES YES YES YES YES YES YES

Oct. 2001 YES YES YES YES YES YES YES

Sept. 2005 YES YES

Dec. 2005 YES YES YES

Aug. 2008 YES YES

Jan. 2009 YES YES YES

Oct 2017 YES YES YES
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LAM	� Laminarity RPs
RPs	� Recurrence plots
RQA	� Recurrence quantification analysis
RR	� Recurrence rate
TT	� Trapping time
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