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Introduction
The debate regarding the factors affecting the price of securities has persisted for a long 
time among academics and practitioners. Although the presence of arbitrage opportuni-
ties as well as noise traders are theoretically accepted feats, a commonly accepted theory 
among academics and practitioners is that efficient markets are populated by well-
informed, rational investors. Yet, arbitrage, which aligns asset prices to actual values and 
corrects the damage caused by market anomalies, is regarded as a factor mitigating such 
damage. As long as arbitrage opportunities circulate among investors, it is impossible 
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to generate abnormal profits consistently. On the contrary, should one agent display a 
permanent advantage over all other participants, the game would no longer be fair, and 
markets would cease to be efficient. This phenomenon has been taking place over the 
last two decades as a result of the introduction of high-frequency trading (HFT). For-
tunately, for market fairness, it is never just one player who enjoys high-frequency (HF) 
capabilities. Although they are a minority, several trading firms access exchange servers 
at subsecond speed. This phenomenon ensures a clear advantage over traders that oper-
ate at “human” speed. However, competition is still possible; HFT is simply a different 
way of trading. Slower traders exploit their superior capabilities in market analysis and 
hope to achieve long-term profitability, whereas fast traders act upon other parameters 
to win a short-term game.

Gaps identified in the current literature

The main reason to propose a theory of Very Short-Time Price Changes (VSTPC) is the 
lack of a comprehensive and coherent theory to explain their characteristics. Numer-
ous hypotheses and vast knowledge about price changes are scattered sparsely among 
several papers, books, and conference proceedings, but they do not constitute a unified 
theory. According to the findings of this research, some well-established price change 
factors do not carry much weight when observed at a Very Short Time (VST) interval, 
whereas other important factors are often overlooked. Academic research has produced 
a large body of literature about price changes, yet it fails to differentiate generic price 
changes from the much more peculiar field of VSTPC or systematize the currently avail-
able research into a coherent and comprehensive theory. Indeed, as will be discussed 
below, most widely mentioned factors are irrelevant at VST. This theory attempts to 
demonstrate that very often, only four factors affect price changes at VST—volatility, 
liquidity, volume, and stop-loss (SL) orders. The main hypothesis states that the nonlin-
ear combination of otherwise tolerable factors may lead to a nonlinear outcome, poten-
tially causing financial instability, extreme events, and crises.

Drivers of very short time price changes (VSTPC)
Price changes of financial securities are usually considered a symptom of market volatil-
ity that are usually computed as the standard deviation of the price over a certain period. 
Although this currently holds true, the trading environment created by algorithms dif-
fers from the traditional one in many respects (Kou et al. 2021a): the ultrafast environ-
ment precipitated by HFT has changed the rules of the game. Speed has always been 
a competitive advantage on the trading floor. With each technological innovation, the 
“same old movie” has been played faster and faster until something broke the metaphor. 
Computer-based trading displays “the potential to lead to a qualitatively different and 
more obviously nonlinear financial system” (Foresight 2012, p. 73). Recent studies have 
started raising doubts about market efficiency: abnormal price patterns have begun 
appearing at higher frequencies, and at higher frequencies, the more numerous are the 
anomalies. Johnson and Zhao (2012) focused on extreme events causing price changes 
greater than 0.8%, which were observed for at least 10 up or down ticks with no opposite 
movements in between and lasting no longer that 1500 ms over the 2006–2011 period. 
Their study found more than 18,520 qualifying events, that is, more than 10 anomalous 
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events per trading day. But the most revealing finding relates to the distribution of such 
events over a certain duration: plotting the number of events against the event duration 
depicts an exponentially down-sloping curve. The shorter the time window is, the more 
extreme are the events. Nothing similar can be observed at “human” frequencies. This 
certainly does not look like “the same old movie” played faster: it is a brand-new movie. 
Summarizing a conspicuous set of studies, Foresight (2012, p. 85) concluded that “an 
important speed limit has been breached" and at subsecond level, a phase transition has 
occurred. One of those studies by Cartlidge and Cliff stated that “[a]t subsecond time-
scales, below the robot transition, the robot-only market exhibits ‘fractures’—ultra-fast 
swings in price akin to mini flash crashes” (2012, p. 3). It is then imperative to under-
stand what happens at such timescales and, more importantly, why.

The purpose of this study is to identify the main drivers of market price changes in the 
recently established VST environment and verify whether they differentiate themselves 
from traditional drivers.

Generic drivers of stock price changes

The first 250 academic articles sorted in order of relevance appearing in a Google 
Scholar search performed in June 2018 for “stock price change” yielded the following 
nondisjointed list of items: business and macroeconomic news, fundamental analysis, 
corporate, accounting and tax policies, market regulations, correlation between securi-
ties on the same venue, alternative venues dealing with the same securities, technical 
analysis, arbitrage, the random walk model (RWM), previous volatility, liquidity, vol-
umes exchanged, bid–ask book order imbalances, transaction costs, the total number 
of investors on the market, market manipulation, speculation, strategies of large inves-
tors, investors’ feelings, margin calls, and noise trading. Most of the Googled papers 
consider the factors that affect how investors evaluate stock value as exogenously driven. 
Instead, the VST impact on prices, as this research investigates, is driven by endogenous 
factors, irrespective of any external intervention. It must be said that ultrafast agents 
occasionally exploit exogenous factors thanks to their superior speed, yet it is endog-
enous parameters that lead to frequent subsecond swings, establishing themselves as 
the main features of algorithmic trading. All the factors found by the Google Scholar 
search potentially affect price changes, but only a few of them are relevant at VST. Busi-
ness news, macroeconomic news, and fundamental analysis of company-related news 
are traditional price movers. However, as far as the impact of automated, ultrafast news 
trading on a VSTPC is concerned, news arrival is certainly too rare an event to be sig-
nificant for theory. Corporate, accounting, and tax policies seldom change and therefore 
do not impact VSTPC. Similarly, changes to market regulations occur infrequently and 
therefore do not meet the requirements of a VSTPC parameter. Market inefficiencies do 
occur, but they are rare events if compared to the frequency of subsecond trading. Arbi-
trage and margin calls are certainly factors affecting price changes at VST but given their 
quantitative impact over the total number of transactions, they can be safely assumed to 
have a negligible impact on the theory. Indeed, their occurrence is only occasional. It is 
true that under some exceptional conditions, arbitrage and margin calls might impact 
price but, on average, this occurs rather seldomly and inconsistently on the subsecond 
scale.
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Volume exchanged

The volume exchanged is nearly unanimously considered a factor of price changes. 
Market shocks are often accompanied by peaks in transactions. Stickel and Verrecchia 
(1994) mentioned the Wall Street wisdom that “volume is the fuel for stock prices.” Their 
hypothesis is that an increase in trading volume is due to a greater probability of transac-
tions being conducted by informed rather than uninformed traders. The consequence is 
that volume-driven price changes reflect the “real” price and are unlikely to be reversed 
in the future. On the contrary, large price variations supported by weak volumes tend to 
regress to the mean over the long term. Gündüz and Hatemi (2005) tested Granger-cau-
sality in emerging markets and found inconclusive evidence in the Czech Republic but 
unidirectional or bidirectional relationships in the other markets surveyed. Therefore, as 
a first attempt, volume exchanged will be considered a candidate driver of VSTPC.

Volatility

Volatility is at the very core of price changes. The two terms could be deemed to be one 
and the same, but a subtle distinction is worth making. A price change usually represents 
the difference between the initial and final price over a certain time period. Alternatively, 
as in the simulation presented later, a price change could be computed as the differ-
ence between the maximum and minimum price over the same period. The difference 
between the maximum and minimum prices (MAX–MIN price) is an interesting param-
eter as it indicates the greatest price change displayed by an asset over a certain period of 
time, usually days or, in case of HF data, hours, or minutes. This could be called “global 
volatility.” However, there is another nuance of volatility that could be called “local vola-
tility,” that is, the price change over a VST. This will certainly stay within the MAX–MIN 
range, yet it has an impact on price and returns at a VST. The question that this study 
will attempt to answer is whether preexisting volatility may lead to further volatility, that 
is, if at a VST, price changes are affected by volatility in the previous seconds or frac-
tions of seconds. A high level of volatility makes markets nervous, and several studies 
have adopted the autoregressive conditional heteroskedasticity (ARCH) and generalized 
autoregressive conditional heteroskedasticity techniques to detect whether volatility 
comes in bursts, creating clustering effects (Kou et  al. 2014; Li et  al., forthcoming) in 
which volatility at the beginning of the burst influences volatility throughout. Previous 
volatility is a candidate parameter for studying how prices change over a VST.

Liquidity

Liquidity also affects market prices, both at VST and otherwise. Indeed, liquidity is 
a sought-after feature of markets as it can smooth out excess volatility. On the con-
trary, if liquidity is thin, even a low volume of transactions has the potential to cause 
a sharp increase in volatility, with unforeseen consequences. Liquidity is therefore a 
candidate parameter for a VSTPC theory.

Stop‑loss (SL) orders

Although the 250 papers used as the main references for identifying the drivers of 
price changes mention a wide range of possible causes of price changes, none of them 
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deals with the SL mechanism. Instead, the impact of SL orders on price changes is 
both direct and intuitive. The SL mechanism is a “mechanical” driver of prices; 
risk and uncertainty are the conceptual price drivers related to it. If a price drops 
(increases) at or below (above) a certain level and if, corresponding to that level, 
there are SL orders, they will automatically be converted into market orders by the 
exchange server before adding any new limit order to the books or executing new 
market orders. If the number of SL orders is great or liquidity is low or both, the exe-
cution of SL orders turned into market orders is likely to consume the liquidity avail-
able at that price level, potentially changing the price even more.

Conclusions regarding the drivers of stock price changes

This analysis prompts us to conclude that among the several factors potentially affecting 
VSTPC, those most directly involved in the price formation process can be limited to the 
following four parameters: substantial volatility in the very recent past, scarce liquidity, 
a high volume of trades, and many SL orders. No other market parameters are assumed 
to directly take part in the process. These will be considered the pillars of the theory and 
discussed throughout the remainder of this article.

The remainder of this paper is organized as follows.   “Literature review” section 
reviews the literature on the four parameters assumed to influence VSTPC; “Methodol-
ogy” section describes the methodologies used to verify the influence of such param-
eters;   “Theoretical foundations of very short time price changes (VSTPC)” section 
proposes a mathematical model; “Results of the data analysis” section analyzes audit-
trail data at VST;  “Results of the granger-causality test” section demonstrates the results 
of Granger-causality tests applied to real data; and   “Results of the agent-based model 
(ABM) experiment” section presents the results of a computer simulation using an 
agent-based model (ABM).  “Discussion” section discusses the results, and  “Conclusion” 
section concludes.

Literature review
The existing literature on the drivers of market prices is abundant. Discovering what 
could generate the mythical alpha is the ultimate dream of traders, speculators, arbitra-
geurs, and academics alike. Yet, as stated earlier, most existing literature focuses on slow 
markets, so missing to investigate the drivers of HFT that, according to several authors, 
account for 50% or more of all transactions: Of course, a copious literature exists on this 
timely topic, but a comprehensive theory of price drivers at the subsecond scale has not 
yet been established. This paper attempts to fill this gap by incrementally building on 
previous studies while leaving aside those factors that display little impact at VST and 
interpreting the remaining drivers in the light of their capability to affect ultrafast price 
swings.

Volatility (V)

Market price volatility is nearly unanimously considered a measure of risk (Wen et al. 
2019; Kou et al. 2021b), and it is often calculated as the standard deviation of the price 
over the time horizon under analysis. Many studies focus on the impact that volatil-
ity at time t has on volatility at time t + 1, finding a strong relationship. Some of the 
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most widely used models relate today’s price to yesterday’s. The standard RWM can be 
described as follows:

In this model, the price on day t is equal to the previous day’s price, with the addition 
of a random disturbance, εt. The basis of the efficient market hypothesis is that the dis-
turbance εt is totally random, and there is therefore no hope to gain an abnormal return 
by speculating on the stock market. This is a questionable statement, otherwise several 
thousand investors and speculators around the world would not attempt to make a living 
doing so. Whatever the truth, Eq. (1) is developed as follows (Gujarati and Porter 2009):

and therefore,

Equation  (4) shows that in case of the RWM, the expected price over time is equal 
to the initial price, but its variance increases indefinitely as t grows (Eq.  5). Since all 
disturbances occurring at the generic time t are stored in price values for higher val-
ues of t via the summation element, the RWM is said to have an infinite memory: it is 
a nonstationary stochastic process. However, at VST, things are no longer so clear-cut, 
and the threshold seems to again be the barrier of the psychological time below which 
the human brain cannot grasp physical events. The math is similar, as in the RWM 
presented earlier, there is no reference to the length of time t, and therefore, months 
or microseconds do not affect the mathematical treatment of the equations. Yet, when 
the formulas are filled with real-world data, they show different behaviors according to 
the data frequency (Johnson and Zhao 2012). Zigrand et al. (2012) failed to find direct 
evidence of a positive impact of HFT on volatility, and inconclusive results were also 
claimed by Zervoudakis et al. (2012) and Brogaard (2010). Myers and Gerig (2014) stud-
ied the consequences of low-latency activity on a market, and their findings displayed a 
reduction in volatility. Similarly, Hasbrouck and Saar (2013) noticed that HFT tends to 
reduce short-term volatility. On the opposite side, Abrol et al. (2016) admitted that posi-
tive feedback loops driven by HFT activity can exacerbate price shocks and may increase 
systemic risk when certain events occur at a speed below human reaction time. Zhang 
(2010) positively correlated HFT with volatility, and research by Aldridge and Krawciw 
(2015) also correlated aggressive HFT strategies with volatility.

Liquidity (L)

After the May 6, 2010 so-called “Flash Crash,” practitioners swiftly found an ideal cul-
prit in HFT for charges of excessive liquidity consumption and withdrawal from liquidity 

(1)Pt = Pt−1 + εt

(2)P1 = P0 + ε1; P2 = P1 + ε2 = P0 + ε1 + ε2
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provision under severe stress conditions. Yet, at the academic level, Groth (2011) found 
weak or no evidence of HFT withdrawing liquidity during periods of high volatility, and 
Myers and Gerig (2014) determined that higher liquidity was provided when HFT activ-
ity flourished. The study also reported more probabilities of transactions, which the 
authors interpret as a further indication of abundant liquidity directly linked to HFT 
activity. Benos and Sagade (2016) and Hagströmer and Nordén (2013) concluded that, in 
general, HF traders supply more liquidity than they consume. Jarnecic and Snape (2014) 
even found that HFT is capable of resolving temporary liquidity imbalances. Yet not all 
scholars share the same view of HFT on market parameters. Baron et al. (2012) inves-
tigated the profitability and HFT and found significantly higher earnings when trading 
aggressively and thus consuming liquidity than when quoting passive orders and, in 
so doing, providing liquidity. The motivation therefore seems strong for HF traders to 
absorb liquidity rather than provide it. Cvitanić and Kirilenko (2010) developed a math-
ematical model showing that HF traders tend to withdraw from providing liquidity dur-
ing critical times. Buchanan (2015) took a balanced stance by stating the advantages and 
disadvantages of HFT: on one hand, the research highlights the bad practice of fleeting 
liquidity (i.e., liquidity that suddenly disappears after a transaction takes place), while on 
the other hand, it recognizes the deeper markets that HFT generates. Overall, the litera-
ture does not seem to agree regarding the effects of HFT on the supply of liquidity.

Volume or quantity1 (Q)

The price–quantity relationship is important, according to Karpoff (1987), for four rea-
sons: (1) better understanding market structure; (2) it supports drawing inferences about 
informational content; (3) insights about the empirical distribution of speculative prices; 
and (4) price variability affects the quantities traded in futures markets. Among the 
many papers he researched, Ying found that “(1) A small volume is usually accompanied 
by a fall in price. (2) A large volume is usually accompanied by a rise in price. (3) A large 
increase in volume is usually accompanied by either a large rise in price or a large fall 
in price.” (1966, p. 676). Karpoff (1987) found that most articles written between 1964 
and 1987 supported a positive correlation between the absolute value of a price change 
and quantities exchanged. Overall, it seems that in times certainly not affected by HFT, 
quantities exchanged showed an influence over price changes. Godfrey et  al. (1964) 
identified SL orders, together with buy-above-market orders, as causes of the correla-
tion between quantities exchanged and the squared value of the daily open minus the 
close price. Tauchen and Pitts (1983) assume that the correlation between Q and |Δp| 
increases with the variance of the daily rate of information flow. All the papers men-
tioned so far in this section attribute great importance to information. However, at a 
VST, information is not the main price change driver because the arrival of information 
is a rare event compared to their total number over the timespan of the observed period 
(whatever it is). At a VST, the only price drivers are those that impact the price directly 
(e.g., liquidity and SL orders) or those that depend on the trader but information about 

1 Since the initial “V,” introduced in Volatility (V)” section, refers to “Volatility,” to avoid confusion in the following, 
traded volumes will be referred to as “traded quantities” or “Q” with the same meaning of “volume” in this context.
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which can be found directly in the market books, as is the case for volatility and quanti-
ties exchanged. Overall, Q is a potential VST price driver worth investigating further.

Stop‑loss orders (S)

Despite having been criticized for presenting the Findings Regarding the Market Events 
of May 6, 2010 (“Final Report” CFTC-SEC 2010b) 6 months after the Flash Crash, it only 
took 12 days for the two Commissions to complete the Preliminary Report (CFTC-SEC 
2010a) on the events of May 6, 2010. Being “preliminary,” it did not reach definitive con-
clusions but highlighted several possible causes that, in some cases, further research at 
governmental and academic levels confirmed. One of the parameters identified by the 
Preliminary Findings Regarding the Market Events of May 6, 2010 (“Preliminary Report” 
CFTC-SEC 2010a) as a possible driver of the Flash Crash was the impact of SL orders. 
Some academic studies (Angel 2011; Leland 2011; Zigrand 2011 and other papers con-
tributing to Foresight 2012) seriously considered the matter, although without in-depth 
quantitative analysis. As the Preliminary Report (CFTC-SEC 2010a) pointed out, “[a]
n additional hypothesis as to why some securities suffered more severe declines than 
the broader market on May 6 is that they were particularly affected by stop-loss mar-
ket orders” (p. 5) and “during times of extreme market volatility, the use of market 
orders when stop-loss levels are triggered could result in executions at aberrant prices 
if all other liquidity has already been exhausted” (p. A-12). The time seems right for 
investigating this issue in more depth. Unfortunately, the major stock exchanges make 
commercial information about SL orders unavailable; therefore, direct audit-trail data 
analysis seems impossible. Yet, there are two other ways to approach a solution, namely, 
an indirect data analysis and a computer-based simulation. Neither is as reliable as direct 
data analysis but, lacking the required data, they provide an acceptable approximation, 
as will be explained later.

Why a theory on VSTPC is important: threats to financial stability

VSTPC have a substantial effect on various aspects of the financial markets. Aside from 
allowing HF traders to accrue great and perhaps abnormal profits, financial authori-
ties, regulators, and exchange executives worry about the threats that HFT may pose to 
financial stability. In the era of subsecond trading when things happen below the thresh-
old of people’s perception, financial stability is the most sought-after parameter. When 
stocks were exchanged under an oak, prices were written in chalk on a blackboard, and 
open-outcry floor-based trading was the norm, a well-trained eye could control all major 
aspects of the market. This is no longer the case. Much more is happening behind the 
scenes, either in dark pools or on the subsecond scale, such that no one possesses global 
oversight. During her testimony on severe market disruption before the governmental 
subcommittee in charge of investigating the Flash Crash, Mary Shapiro, the chair of 
the Securities and Exchange Commission (SEC), framed it most clearly (Shapiro 2010): 
trading technology has progressed far too and too fast for regulatory authorities to keep 
apace. If markets are not under the control of the surveillance authorities, any devia-
tion from market stability may easily develop into a major crisis. Various countries have 
developed financial cultures that are heavily influenced by their history, so the concept 
of financial stability is defined differently by central banks around the world. However, 
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without entering the debate about the subtleties of financial stability, a few parameters 
can be agreed upon as constituting the core of the matter.

Market efficiency

Although the theory states that future market prices cannot be known in advance, many 
market participants spend a lot of time attempting to falsify them: the RWM is a man-
tra only in academia; nobody really believes in it on the trading floor, otherwise, being 
a trading professional would be pointless. This is the “trader’s paradox”—traders seek 
financial stability to carry out their strategies, but the very existence of a trading strategy 
implies that future prices can be foreseen—something that would deny market efficiency 
and therefore financial stability. The matter has been exacerbated by today’s ultrafast 
trading.

Quick price discovery

The price must be right, as dealing at the wrong price might be risky. Yet, in recent times, 
trading at the right speed has been more important than knowing the right price. The 
process of price formation must be quick; noise is a disturbance. Yet, trading on noise 
could be profitable, even though instability could ensue (Burton and Sunit 2013).

Reasonable volatility

The financial market would not exist without volatility. Nobody would buy an asset 
knowing that he or she could only resell it later at the exact same price, yet financial 
regulators worldwide have the goal of preventing excessive volatility, as this is a major 
threat to financial stability. Anderson et al. stated that “although episodes of heightened 
volatility and short-term illiquidity are not necessarily threats to financial stability, they 
could become so if they were to persist, amplify or spill over” (2015, p. 4). A moderate 
level of volatility is what policymakers, exchanges, and nonspeculating investors seek.

Sufficient liquidity

Unlike volatility, liquidity is never too abundant a parameter: it indicates the ease of 
asset-to-cash conversion. Since investors consistently look for liquid assets, liquid mar-
kets attract clients—and their fees. In recent years, some newly created exchanges have 
proposed fee structures that are specifically designed to attract HF traders, which often 
play the role of liquidity suppliers. Deep markets are capable of mitigating price shocks, 
so depth is therefore a market stabilizer. Yet, ultrafast trading also has the capability of 
enabling ultrafast liquidity consumption, which may have unforeseen consequences on 
market stability.

Nonlinear sensitivities

Zigrand et  al. (2012) identified three mechanisms that may generate instability: “[N]
onlinear sensitivities to change (where small changes can have very big effects), incom-
plete information (where some agents in the market have more, or more accurate, 
knowledge than others), and internal “endogenous” risks based on feedback loops within 
the system” (p. 8). According to the authors, such mechanisms are particularly effective 
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“when financial markets involve significant proportions of CBT” (p. 8), where CBT 
stands for “computer-based trading,” a prerequisite of HFT.

Methodology
This research will proceed as follows: it will (1) establish a theoretical foundation, (2) 
conduct audit-trail data analysis, (3) perform Granger-causality tests, and (4) perform an 
ABM simulation.

Theoretical foundations of very short time price changes (VSTPC)

The four parameters identified as the pillars of the theory interact with each other either 
directly or indirectly. In the model, all changes in a variable and its consequences on the 
other variables will be discussed. It is therefore possible to gauge the direct or indirect 
relationship between cause and effect according to the following scheme.

(a) Direct relationship: A change in the denominator causes a change in the nomina-
tor. For example, an increase in the traded quantity causes liquidity to shrink, as the 
former directly acts on the latter.

(b) Indirect relationship: An increase in the number of SL orders executed augments 
the quantities exchanged and, because of (a) above, higher quantities traded dimin-
ish liquidity.

(c) Behavioral relationship: Cause and effect is mediated by the will or preferences of 
investors. When volatility is high, liquidity suppliers usually refrain from quoting 
limit orders because of the risk of being picked off by more informed investors. 
That diminishes the liquidity supplied. However, not all investors may share the 
same opinion; some may behave differently.

(d) The most indirect relationship occurs when cause and effect is mediated through 
more than one behavioral connection.

Data analysis

Data analysis must first define its object of study. A decision was made to restrict the 
simulation to one of the most significant markets—one that can display situations in 
which very large volatility spikes happened at VSTs. As the Flash Crash was charac-
terized by the volatility spikes required to examine this phenomenon, the analysis of 
data from May 6, 2010 prompted the authors to select the E-Mini Standard & Poor’s 
(S&P) 500 futures June 2010 contracts at the Chicago Mercantile Exchange (CME) 
as its object of study. On that day, many U.S. exchanges displayed erratic behavior, 
and, according to the Commodities and Futures Trading Commission (CFTC) and 
the SEC (CFTC-SEC 2010a, b), the CME was where it all began. Several authoritative 
studies (Kirilenko et  al. 2017; Menkveld and Yueshen 2018) have also assigned the 
CME a central role in the crisis. From a practical viewpoint, the CME seems to be an 
appropriate choice as the object for this research as E-Mini S&P 500 futures are only 
traded on that market, which limits possible interactions with other venues. Moreo-
ver, the maximum price change at the CME on that day was around 9%, a significant 
drop, but nothing as extreme as what happened to other securities traded on other 
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markets. Lastly, this study restricts the analysis to the 3.5 min between 18:42:00 GMT 
(the beginning of the sharpest drop) and 18:45:28.115 GMT (when the 5-s stop logic 
at the CME started) on May 6, 2010. Using a longer period may divert the focus from 
VST features and using a shorter one might overlook significant events.

Granger‑causality tests

The correlation between variables only observes the link between data but does not 
accomplish the main task required by a theory, which is establishing a causal relation-
ship between a phenomenon and its effect(s), which is the ultimate way to acquire 
knowledge about an event. Although statistics provides some causal models, their link 
to “causation” in the common sense of the word is doubtful, and the authors them-
selves insist on qualifying causation so that no one can mistake a statistical causal 
relationship for the one referenced in common language. To avoid confusion, Die-
bold (2007) prefers to call it “predictive causality” and Edward Leamer (cited in Guja-
rati and Porter 2009, p. 653) leans toward the term “precedence over causality.” The 
same authors recognize that “the question of causality is deeply philosophical with 
all kinds of controversies. At one extreme are people who believe that “everything 
causes everything” and at the other are people who deny any existence of causation 
whatsoever. This text will not delve into such a philosophical debate. The definition 
of a Granger test states that if a regression including one more independent variables 
provides a better explanation of the dependent variable than the regression that does 
not include it, then the added variable “Granger-causes” the dependent one (Granger 
1969). Granger tests will be run between (lower) volatility in an earlier period versus 
(higher) volatility in a later period, and then, one at a time, between liquidity, quan-
tities exchanged, and SL orders versus volatility. This will make it possible to verify 
whether the independent variables Granger-cause the dependent one (i.e., volatility). 
Once again, the financial market analyzed is the CME on the date and time described 
in the Data Analysis section. The test regresses volatility during the first half of the 
period under observation (18:42:00.001 to 18:43:44.057) onto the second half of the 
period (18:43:44.058 to 18:45:28.114), whereas liquidity, exchanged quantities, and SL 
orders will be regressed over the whole period. All times are given in Universal Time 
Coordinated or Greenwich Mean Time (GMT).

Agent‑based modeling: a simulation

Simulations are characterized by several desirable features. Computer science has 
developed rapidly over the last 50  years, and algorithms are known to be rigorous 
mathematical abstractions (Knuth 1985). This experiment has been divided in two 
scenarios: a slow market with no HFT activity (i.e., 0%) and a rapid market with 
increasing percentages of HFT (i.e., 33%, 50%, 67%, 75%, and 90% of all activity). 
These simulations are run under eight different conditions: (1) a random walk (RW); 
(2) a trend (i.e., high volatility); (3) a RW with a quantity (QTY) effect; (4) a trend 
with a QTY effect; (5) a RW with an SL effect; (6) a trend with an SL effect; (7) a RW 
with both a QTY and an SL effect; and (8) a trend with both a QTY and an SL effect.
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Theoretical foundations of very short time price changes (VSTPC)
The equations for liquidity, quantity, SL orders, and volatility at VSTs are described 
below.

Liquidity [L = L (Q, S, V, t)]

Liquidity is mostly relevant at the “top of book,” that is, at lowest ask and highest bid 
prices. However, in the case of stressed markets, liquidity at higher ask and lower bid 
levels may also be relevant.

(a) A high quantity exchanged drives liquidity down, as each trade will reduce liquidity 
to a greater extent than in the case of a low quantity exchanged, as follows:

(b) Volatility is a diminishing factor for liquidity, as a high level of volatility tends to 
scare investors and drive them away from quoting limit orders (which increase 
liquidity). It must be said that, both in general and at VSTs, traders welcome a cer-
tain degree of volatility as it will facilitate their ability to close a position profitably. 
However, given the tiny profits with which HF traders are content, a low level of 
volatility will suffice. When volatility grows substantially, risk-averse liquidity sup-
pliers step back, shrinking liquidity, regardless of trading speed.

(c) SL orders, which are converted into market orders when the price reaches the trig-
ger level, will increase the quantity traded (see  “Quantity exchanged [Q = Q (L, S, 
V, t)]” section) and therefore consume liquidity.

 Liquidity displays an inverse relationship with the three other market parameters.

Quantity exchanged [Q = Q (L, S, V, t)]

(a) SL orders directly increase the quantity traded since when the price reaches the 
trigger level, they would automatically be transformed into market orders that, on 
execution, increase the quantity traded.

(b) The quantity exchanged has a direct relationship with liquidity, as well as a behav-
ioral one: a low level of liquidity discourages trading high quantities, as the trading 
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price would penalize large orders, and a high level of liquidity would precipitate the 
opposite effect.

(c) The matter is less clear-cut regarding the implications of volatility on Q. Unidirec-
tional volatility, which is regarded as risky, would discourage large trading quan-
tities, whereas bidirectional volatility would encourage a high level of trading, as 
market orders are more likely to be profitable, especially at VSTs. But, again, as 
in the case of liquidity, a high level of volatility, even though bidirectional, might 
reduce both limit and market orders, as turbulent markets tend to repel investors. 
Again, the relationship is mainly behavioral.

Stop‑loss orders [S = S (L, Q, V, t)]

(a) When volatility is high, the trigger price of SL orders is more likely to get hit. It 
can be argued that volatile markets tend to scare investors, whereas SL is a safe, 
risk-averse measure, and this may support the thesis of the behavioral relationship 
between the two market parameters. However, there is a difference between exe-
cuted SL orders (those considered in Eq. 12) and quoted SL orders, which certainly 
depend on behavioral factors but are not considered by any of the equations that 
describe VSTPC.

 The relationship between SL orders and volatility is direct.
(b) The relationship between liquidity and SL orders is indirect, in as much as a low 

level of liquidity leads to greater volatility (as will be seen in  “Volatility [V = V (L, 
Q, S, t)]” section), which, in turn, triggers outstanding SL orders.

(c) Similarly, exchanging high quantities consumes liquidity, and the scenario described 
by Eq. (13) repeats. These are two examples of triangular relationships, so it can be 
concluded that SL orders depend directly only on volatility; the other two depend-
encies are indirect.
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Volatility [V = V (L, Q, S, t)]

Volatility is often calculated as the standard deviation of price. Yet, the change of 
a variable over a small change in another variable (whether it is time or otherwise) 
leads to the concept of the first derivative. Since the focus of algorithmic trading rests 
with the price change over a short time, it makes sense to consider the first derivative 
of the price over time as the most appropriate definition of price volatility. In the fol-
lowing, the terms “volatility” and “price movement” will be used interchangeably.

(a) Volatility depends inversely on liquidity, as a lower level of liquidity is more likely to 
move the price.

(b) Volatility depends indirectly on the quantity exchanged as it tends to change the 
price by consuming liquidity (Eqs. (6) and (15)).

(c) Many outstanding SL orders that are converted into aggressive orders when the 
price reaches the trigger level precipitates greater traded quantities, which, in turn, 
affects existing liquidity, the reduction of which may potentially move the price.

Cause–effect relationship

Table 1 summarizes the equations above and categorizes them according to the four 
degrees of directness/indirectness defined above (i.e., direct, indirect, behavioral, 
indirect behavioral).

From Table  1, it appears that only relationships (1) to (4) are direct, all others 
are either a combination of direct relationships (indirect relationships), depend on 
human judgment, tastes, preferences, or a risk-averse attitude (behavioral), or repre-
sent a combination of behavioral relationships (indirect behavioral). This means that 
relationships (1) to (4) suffice to explain “mechanical” market dynamics that are not 
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mediated by other factors. Figure 1 depicts an equilibrium status, as represented by 
Points A, B, C, and D.

Should any one of the four parameters change, a new equilibrium status will be 
reached. If, for example, investors decide to increase the amount of their market 
orders, represented by ΔQ, this change will cause liquidity to diminish (Point E), with 
the consequence of making price jumps more frequent and increasing volatility by 
ΔV (Point F). More price jumps will trigger more SL executions (under the ceteris 
paribus assumption, quoted SL orders remain constant), ΔS (Point G), and the sys-
tem will settle at a new equilibrium quantity of trades at Point H. A change in the 
value of a parameter causes a shift from one equilibrium to another in the case of an 
equal change in both variables, which is depicted by unitary elasticity. However, uni-
tary elasticity is a rather rare occurrence that cannot be taken for granted. An endog-
enous change (a change in the value of the variable on either axis) will result in a shift 
of the point along the line, but an exogenous change will display a different behavior. 
Investors can act on market parameters in several ways. Large orders can be split into 

Fig. 1 Reaching a new equilibrium in case of change in one market parameter

Fig. 2 Converging to the old equilibrium in case of rotation of the Q-L line



Page 16 of 34Virgilio  Financial Innovation            (2022) 8:66 

several smaller ones with the purpose of impacting liquidity and therefore market 
price less. This results in a smaller negative value in the slope of the Q–L line (Fig. 2).

The rationale behind the line rotation is that at the same level of quantity traded, 
liquidity will suffer less, as more time will be given to market-makers to provide it. If, 
from the equilibrium status A–B–C–D, the mood of investors shifts and they decide 
to increase the size of their market orders by ΔQ, new dynamics develop by lowering 
liquidity (Point E) and increasing volatility (Point F), which raises SL order execution 
(Point G). However, the new level of quantity traded (Point H) is lower than the origi-
nal value plus ΔQ. Thus, liquidity increases again to Point J, volatility decreases to K, 
as does SL executions (Point M). The cycle starts again, going through Points N, P, R, 
S, and T until eventually the original equilibrium (A–B–C–D) is reached again. This 
scheme works in both directions with opposite results. It does not make much sense 
to investigate the opposite Q–L scenario as it would imply that several investors joined 
their market orders with the purpose of negatively impacting liquidity, which is clearly 
unrealistic. A more realistic double-sided scenario materializes when considering SL 
order quoting. Optimistic investors may decide not to protect their trades with SL 
orders as they believe that even adverse price movements will only be temporary and 
that in the longer term (albeit, still at the subsecond scale), their trading will be profit-
able. This scenario may be represented by a V–S line with a lower slope, as in Fig. 3.

The clockwise rotation of the V–S line implies that an increase in volatility, ΔV, 
would result in a lower number of SL executions (Point E) and therefore in a smaller 
traded quantity (Point F). This results in lower liquidity (Point G), yet it is higher than 
in the case of unitary V–S elasticity. A new cycle then begins, going through Points H, 
J, K, M, and N, getting closer and closer to the original A–B–C–D cycle.

Quite a different scenario is depicted in the case of pessimistic investors that expe-
rience more uncertainty and therefore decide to protect their trades by quoting more 
SL orders (Fig. 4).

Fig. 3 Converging to old equilibrium in case of clockwise rotation of the V-S line
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An initial increase in volatility, ΔV, as in the previous case, leads to even higher SL 
order execution (Point E) and equally higher quantities traded (Point F). The resulting 
lower liquidity (Point G) would cause volatility to increase even more (Point H), generat-
ing an outward-spiraling sequence.

Results of the data analysis
Audit-trail data show that volatility did occur in bursts. Table 2 displays the results of an 
ARCH(p) model with lags 1 to 5; volatility bursts appear when regressing the model up 
to three lags.

Some studies (CFTC-SEC 2010a and a few papers in the Foresight 2012 set) men-
tioned SL orders in the context of the severe liquidity shortage and the surge in 
abnormal volatility experienced on May 6, 2010. Direct SL observation is not possible 
as the required level of detail is not publicly available. However, it is possible to use a 
proxy to estimate the impact of SL orders on extreme volatility. A suitable proxy is the 
length of a “run” —a run is an uninterrupted series of homogeneous trades—and its 
length is the number of trades occurring within that run.2 To evaluate the likelihood 
of the role played by SL orders in trade runs, it is appropriate to compare two runs of 

Fig. 4 Diverging parameters in case of anti-clockwise rotation of the V-S line

Table 2 ARCH(p) model detecting volatility clustering on the day/time of audit trail data

Results for lags = 1 to 3 display volatility clustering (at 1%, indicated as ***) whereas at higher lags ARCH yields oscillating 
results (sign changes) and significance only at 5% (indicated as **). Since the number of observations is 208,114, critical 
t‑values are: 2.576 (at 1%) and 1.96 (at 5%)

Lags (Xt−1)
2 (Xt−2)

2 (Xt−3)
2 (Xt−4)

2 (Xt−5)
2

1 18.869*** 17.745*** 14.511*** 14.569*** 14.468***

2 17.489*** 14.116*** 13.862*** 13.082***

3 91.218*** 90.914*** 90.631***

4 − 1.989** − 2.180**

5 2.503**

2 For a more detailed description see Virgilio (2020).



Page 18 of 34Virgilio  Financial Innovation            (2022) 8:66 

length 8 that occurred on 5/5/2010 on the E-Mini S&P 500 futures contracts with an 
expiration date of June 2010 on the CME. The first run started at 18:45:51.319 GMT 
and lasted 75  ms, whereas the second run started and terminated at 18:27:27.115. 
Although, as a matter of principle, it is not possible to rule out investor’s orders in 
both cases, it seems unlikely to categorize eight trades occurring within the same mil-
lisecond as exogenous. In the same way, it seems unreasonable to identify an endog-
enous mechanism, such as a sequence of SL order executions, that is spread over a 
75-ms period. Therefore, the assumption is that runs spanning a short amount of time 
were SL-driven and those distributed over comparably longer periods experienced 
external intervention. In any case, even long runs do not necessarily imply an increase 
in volatility if all or most of the quantities traded are absorbed by existing liquidity.

Number of trade runs

As seen above, long trade runs over a VST provide an indication of SL orders being 
executed. Table 3 shows the number of runs executed over the same number of events 
(580,864 at around the same time) on five consecutive days between May 3 and May 
7, 2010.

The day affected by the highest volatility (May 6) not only experienced the most 
runs, but also the greatest run/second rate. This confirms the close relationship 
between SL orders and volatility, especially when liquidity is scarce, and it also sug-
gests performing further tests to verify the cause–effect relationship between SL 
orders and abnormal volatility (this will be the subject of the next section). Table  4 
displays a comparison of liquidity (at the same time) on different days in the same 
week.

In all tables shown in this chapter, May 7 was not a business-as-usual day as inves-
tors were understandably still shocked by the previous day’s events.

Table 3 Run rates

Date 03‑May 04‑May 05‑May 06‑May 07‑May

Runs 11,399 9293 8843 12824 6656

Runs/sec 1.7 2.6 3.0 33.1 3.1

Table 4 Comparison of liquidity

Date 03‑May 04‑May 05‑May 06‑May 07‑May

Contracts 17,433 15,303 12,359 310 2659

USD value 1,045,293,463 893,156,475 715,793,213 16,638,063 147,680,563

Table 5 Large price movements within a run on May 6, 2010

Delta price 4.50 4.00 3.50 3.25 2.75 2.50 2.25 1.75 1.75 1.50 1.25

Occurrences 1 1 1 2 1 2 3 3 6 9 9
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Max price drop within a run

It is interesting to analyze the price differences within a run. As shown in Table 5, on 
the most illiquid day (May 6), the maximum price drop was 4.5 index points (one occur-
rence) for a value of 225 US dollars (USD) (1 E-Mini index point = 50 USD), followed by 
other large price movements. On the remaining days of the same week, the maximum 
price drop was 0.25 (on May 3, 4, and 5) or 0.5 index points (on May 7).

This suggests that the combination of scarce liquidity and SL orders might unchain 
volatility spikes.

Number of runs showing price jumps

A further confirmation of the above is provided by Table 6, which displays the number 
of runs that experienced a price change. Again, the day displaying the highest illiquidity 
and most SL activity experienced, by far, the most price movements within a run.

This analysis shows, once again, that substantial SL activity and scarce liquidity are 
strongly correlated to volatility, in this case, as described by the number of price changes 
that occurred within runs.

Discussion

The analysis in this section is affected by a lack of detailed data and therefore approxima-
tion was unavoidable to estimate SL activity. Considering this, the results indicate that 
the events experienced during the time characterized by abnormal volatility are related 
to SL orders and decreasing liquidity. Going one step further, it is possible to argue that 
volatility spikes can be caused by a combination of three apparently innocuous factors: 
falling prices, scarce liquidity, and heavy SL activity. Each of these is a relatively common 
occurrence in the market without necessarily giving rise to a memorably volatile day, 
and two such conditions can appear simultaneously without leading to a critical situa-
tion. But when all three conditions appear simultaneously, the chances seem better that 
a volatility crisis will materialize. To verify the existence of a cause–effect relationship, it 
is necessary to perform a formal causal test. This is the topic of the next section.

Results of the granger‑causality test
This section investigates Granger-causality between the four variables identified and 
excess volatility. As in most time series, all the variables used for these tests are nonsta-
tionary; therefore, first differences have been used. The first differences for all four data-
sets displayed stationary behavior.

Test the Granger‑causality of volatility on extreme volatility

Volatility has been computed using the top-of-book price differences reported at 1-ms 
(msec) intervals. The hypothesis is that between 18:42:00.000 and 18:45:28.114, volatility 
in the first half of the period (18:42:00.000 through 18:43:44.057) somehow influenced 

Table 6 Price changes within runs

Date 03‑May 04‑May 05‑May 06‑May 07‑May

Runs showing price change 6 27 26 476 62
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volatility in the second half (18:43:44.058 through 18:45:28.114). This means that all 
traders, both slow and fast, noticed that volatility was high for 1 min and 44 s, and this 
caused them to become nervous during the remaining 1 min and 44 secs before the exe-
cution of stop logic. This is intuitive and confirmed by common experience: the price of 
the E-mini dropped 14.50 index points (725 USD per contract, or more than 1.3%, in less 
than 2 min) in the first period, and this allegedly led to a further drop of nearly 4% (43.50 
index points, or 2175 USD per contract) in the second period. Although it may not be 
surprising that a drop over a short time leads to a larger drop in a subsequent short 
period, the figures demonstrate a dramatic event unfolding. According to the Granger 
test, the hypothesis of Granger causality at the millisecond level with 8-lag cannot be 
rejected (Table 7). Correspondingly, at a hundredth of a second, Granger causality yields 
the same result as at 2-lag (when the first four lags are displayed in Table 8). Both tests 
show Granger causality between a previous period’s volatility and the later period, as per 
the equations below.

Test the Granger causality of a liquidity shortage on extreme volatility

Yet, further investigation showed that volatility during the previous minutes was not 
the only cause of the extreme volatility experienced later. Scarce liquidity was another 

(18)Vt =

t/2
∑

i=1

αiVt−i + ut; Vt =

t/2
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i=1

αiVt−i +

t−1
∑

j=t/2+1

βjVt−j + ut

Table 7 Granger-causality test on volatility at  10–3 s

Lag F‑value p‑value Adj.  R2 Null hypothesis 
of NO Granger 
causation

Volatility at 1/1000 s

1 1.14118 0.28541 0.00166 CANNOT reject at 25%

2 1.36304 0.25589 0.00294 CANNOT reject at 25%

3 1.29382 0.27456 0.00761 CANNOT reject at 25%

4 0.97760 0.41828 0.00759 CANNOT reject at 25%

5 0.79484 0.55314 0.00837 CANNOT reject at 25%

6 1.60233 0.14189 0.00871 CANNOT reject at 25%

7 1.44409 0.18252 0.00925 CANNOT reject at 25%

8 5.88033 0.00000 0.00985 REJECT at 1%

Table 8 Granger-causality test on volatility at  10–2 s

Lag F‑value p‑value Adj.  R2 Null hypothesis of NO Granger causation

Volatility at 
1/100 s

1 3.01818 0.08237 0.02048 CANNOT reject the null hypothesis at 5%

2 4.72813 0.00886 0.02682 REJECT the null hypothesis at 1%

3 4.37457 0.00439 0.03174 REJECT the null hypothesis at 1%

4 3.45788 0.00788 0.03307 REJECT the null hypothesis at 1%
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strong candidate to share responsibility for the event. Therefore, another Granger test 
was run on the liquidity values between 18:42:00.000 and 18:45:28.114, considering 
liquidity at the top 3, top 5, top 7, and top 10 levels of the bid book. The results are 
reported in Tables 9, 10, 11 and 12, respectively. The results show that liquidity did 
Granger-cause a peak in volatility. The equations are as follows:

Table 9 Granger-causality test on liquidity-to-volatility at 3 liquidity levels

Lag F‑value p‑value Adj.  R2 Null hypothesis of NO Granger causation

Liquidity   → volatil-
ity (3 levels)

1 2139.38867 0.00000 0.01215 REJECT the null hypothesis at 5%

2 1203.54114 0.00000 0.01472 REJECT the null hypothesis at 1%

3 813.52325 0.00000 0.01900 REJECT the null hypothesis at 1%

4 610.98523 0.00000 0.01901 REJECT the null hypothesis at 1%

Table 10 Granger-causality test on liquidity-to-volatility at 5 liquidity levels

Lag F‑value p‑value Adj.  R2 Null hypothesis of NO Granger causation

Liquidity →   volatil-
ity (5 levels)

1 2321.79102 0.00000 0.01300 REJECT the null hypothesis at 5%

2 1221.69885 0.00000 0.01489 REJECT the null hypothesis at 1%

3 834.84369 0.00000 0.01930 REJECT the null hypothesis at 1%

4 626.72125 0.00000 0.01931 REJECT the null hypothesis at 1%

Table 11 Granger-causality test on liquidity-to-volatility at 7 liquidity levels

Lag F‑value p‑value Adj.  R2 Null hypothesis of NO Granger causation

Liquidity →   volatil-
ity (7 levels)

1 2266.32373 0.00000 0.01274 REJECT the null hypothesis at 5%

2 1214.91748 0.00000 0.01482 REJECT the null hypothesis at 1%

3 826.32660 0.00000 0.01918 REJECT the null hypothesis at 1%

4 620.29791 0.00000 0.01919 REJECT the null hypothesis at 1%

Table12 Granger-causality test on liquidity-to-volatility at 10 liquidity levels

Lag F‑value p‑value Adj.  R2 Null hypothesis of NO Granger causation

Liquidity   → volatil-
ity (10 levels)

1 1886.33667 0.00000 0.01096 REJECT the null hypothesis at 5%

2 1044.57202 0.00000 0.01323 REJECT the null hypothesis at 1%

3 710.26221 0.00000 0.01755 REJECT the null hypothesis at 1%

4 533.07294 0.00000 0.01756 REJECT the null hypothesis at 1%
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Table 13 Granger-causality test on volatility-to-liquidity at 3 liquidity levels

Lag F‑value p‑value Adj.  R2 Null hypothesis of NO Granger causation

Volatility   → liquid-
ity (3 levels)

1 4.75698 0.02918 0.00584 REJECT the null hypothesis at 5%

2 6.59386 0.00137 0.00686 REJECT the null hypothesis at 1%

3 6.73184 0.00015 0.00762 REJECT the null hypothesis at 1%

4 6.95852 0.00001 0.00823 REJECT the null hypothesis at 1%

Table 14 Granger-causality test on volatility-to-liquidity at 5 liquidity levels

Lag F‑value p‑value Adj.  R2 Null hypothesis of NO Granger causation

Volatility   → liquid-
ity (5 levels)

1 18.41980 0.00002 0.004444 REJECT the null hypothesis at 1%

2 31.42196 0.00000 0.00600 REJECT the null hypothesis at 1%

3 27.73387 0.00000 0.674 REJECT the null hypothesis at 1%

4 23.12213 0.00000 0.007466 REJECT the null hypothesis at 1%

Table 15 Granger-causality test on volatility-to-liquidity at 7 liquidity levels

Lag F‑value p‑value Adj.  R2 Null hypothesis of NO Granger causation

Volatility   → liquid-
ity (7 levels)

1 8.74758 0.00310 0.00679 REJECT the null hypothesis at 1%

2 21.10105 0.00000 0.00954 REJECT the null hypothesis at 1%

3 17.99542 0.00000 0.00975 REJECT the null hypothesis at 1%

4 15.44412 0.00000 0.01032 REJECT the null hypothesis at 1%

Table 16 Granger-causality test on volatility-to-liquidity at 10 liquidity levels

Lag F‑value p‑value Adj.  R2 Null hypothesis of NO Granger causation

Volatility →   liquidity 
(10 levels)

1 5.66481 0.01731 0.00661 REJECT the null hypothesis at 5%

2 7.06459 0.00086 0.00737 REJECT the null hypothesis at 1%

3 5.91824 0.00049 0.00755 REJECT the null hypothesis at 1%

4 6.17625 0.00006 0.00823 REJECT the null hypothesis at 1%

 and

(19)Vt =

t−1
∑

i=1

αiVt−i + ut; Vt =

t−1
∑

i=1

αiVt−i +

t−1
∑

j=1

βjLt−j + ut

(20)Lt =

t−1
∑

i=1

αiLt−i + ut; Lt =

t−1
∑

i=1

αiLt−i +

t−1
∑

j=1

βjVt−j + ut
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Although the tests provide evidence that liquidity Granger-caused the increase in vol-
atility, this is not the end of the story.

The same test should be performed in the other direction to verify whether there exists 
a bidirectional Granger causation effect. Should that be the case, the possibility of a third 
factor causing both effects examined would be a serious possibility. Granger tests claim 
success only in the case of one-directional Granger causation. Tables 13, 14, 15 and 16 
show the results of Granger tests on the volatility-to-liquidity regression for 3, 5, 7, and 
10 liquidity levels, respectively.

The volatility-to-liquidity tests also suggest Granger causality. However, a deeper anal-
ysis should dispel all doubts about the actual directionality of the Granger causation: this 
is provided by the F-value statistics. The comparison between the two sets of tests is 
unambiguous: F-values for the liquidity-to-volatility tests range from 2139 (at three lev-
els of liquidity) to 2322 (at five liquidity levels), to 2266 (at seven levels), to 1886 (at 10 
levels). The strongest Granger causation occurs at five liquidity levels. The opposite case 
is much less clear-cut. It still displays Granger causation, but the F-values range from 
4.76 (at three liquidity levels), to 18.42 (at five levels), to 8.75 (at seven levels), to 5.66 (at 
10 levels). Again, the strongest result corresponds to five liquidity levels, somehow con-
firming the result of the previous case. The two sets of F-values are scarcely comparable; 
the ratio between the F-values at the same liquidity level always yields results with two 
orders of magnitude: 450 at three liquidity levels, 126 at five levels, 259 at seven, and 333 
at 10. It can therefore be stated that liquidity does Granger-cause volatility.

Test the Granger causality of quantity exchanged on extreme volatility

The quantity exchanged is another potential driver of VSTPC. A Granger test has been 
run on quantity and volatility to verify if any type of Granger causality exists using the 
following equations.

The results of testing whether quantity exchanged Granger-caused volatility in the 
period between 18:42:00.000 and 18:45:28.114 for lags 1 through 4 are shown in Table 17.

(21)Vt =

t−1
∑

i=1

αiVt−i + ut; Vt =

t−1
∑

i=1

αiVt−i +

t−1
∑

j=1

βjQt−j + ut

(22)Qt =

t−1
∑

i=1

αiQt−i + ut; Qt =

t−1
∑

i=1

αiQt−i +

t−1
∑

j=1

βjVt−j + ut

Table 17 Granger-causality test on quantity exchanged-to-volatility

Lag F‑value p‑value Adj.  R2 Null hypothesis of NO Granger causation

Quantity →   
volatility

1 21.06322 0.00000 0.01453 REJECT the null hypothesis at 1%

2 12.93685 0.00000 0.01871 REJECT the null hypothesis at 1%

3 10.66973 0.00000 0.01989 REJECT the null hypothesis at 1%

4 9.04931 0.00000 0.02146 REJECT the null hypothesis at 1%
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Again, running the same test in the opposite direction provides a useful indicator 
against the robustness of the result. Table 18 displays the outcome of such tests.

In this case, contrary to testing previous volatility or liquidity, the result is not defini-
tive. Quantity exchanged seems to Granger-cause volatility and the volatility-to-quantity 
relationship also seems true. Whereas in the liquidity case, the F-values were always two 
orders of magnitude greater than the liquidity-to-volatility causal direction, in the quan-
tity exchanged case, the ratio is just 1.4. This does not suggest as strongly as in the previ-
ous case a unidirectional Granger causation between quantity exchanged and volatility. 
Therefore, based on this test, it cannot be stated that quantity exchanged Granger-causes 
volatility, nor the other way around. A third factor is the likely cause of the quantity-to-
volatility relationship.

Test the granger causality of trade runs on extreme volatility

Another factor that may have significantly contributed to the volatility spike on the day 
under observation is the triggering of numerous SL orders. This is a delicate issue, as com-
mercially available data provided by the main exchanges do not report postings of SL orders 
or the trading orders generated by SL triggering. Therefore, the existence of SL orders can 
only be deduced by other indicators. As in the Data Analysis section, the indicator used in 
this research is the length of a “run.” As seen earlier, a “run” is an uninterrupted sequence 
of trades, all in the same direction (i.e., all buy, or all sell). A run could simply be the out-
come of many human- or computer-generated aggressive orders all arriving at the exchange 
within a VST span. Alternatively, it could be the consequence of several SL orders being 
triggered because the price had reached an established level, coupled with insufficient 
liquidity to absorb the market orders generated by the SL mechanism. Lacking informa-
tion in the audit-trail data about SL orders, it can only be inferred heuristically whether a 
run was SL-generated, and the only available discriminating criterion is the run length—the 
number of trades within a run. This is by no means a precise discriminating criterion, and 
there is no “critical” number above which it can be surely stated that the SL mechanism was 
triggered; therefore, the Granger test takes into consideration several different run lengths, 
ranging from 5+ to 10+ . It uses the following equations:

(23)Vt =

t−1
∑

i=1

αiVt−i + ut; Vt =

t−1
∑

i=1

αiVt−i +

t−1
∑

j=1

βjSt−j + ut

Table 18 Granger-causality test on volatility-to-quantity exchanged

Lag F‑value p‑value Adj.  R2 Null hypothesis of NO Granger causation

Quantity   → vol-
atility

1 14.83718 0.00012 0.01453 REJECT the null hypothesis at 1%

2 9.34719 0.00009 0.01871 REJECT the null hypothesis at 1%

3 7.35734 0.00006 0.01989 REJECT the null hypothesis at 1%

4 5.53375 0.02154 0.02146 REJECT the null hypothesis at 1%
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Tables 19, 20, 21, 22, 23 and 24 show results of Granger tests on SL orders to volatil-
ity for different run lengths.

In this case, the outcome is unambiguous, as the volatility-to-SL orders parameter 
results in no Granger causality, as shown in Tables 25, 26, 27, 28, 29 and 30.

(24)St =

t−1
∑

i=1

αiSt−i + ut; St =

t−1
∑

i=1

αiSt−i +

t−1
∑

j=1

βjVt−j + ut

Table 19 Granger-test on stop-loss orders-to-volatility at run length > 10

Lag F‑value p‑value Adj.  R2 Null hypothesis of NO Granger causation

Stop-loss assumed at 
run length > 10

1 14.44016 0.00017 0.21697 REJECT the null hypothesis at 1%

2 7.94687 0.00042 0.26988 REJECT the null hypothesis at 1%

3 5.45041 0.00112 0.28749 REJECT the null hypothesis at 1%

4 2.76547 0.02736 0.32958 REJECT the null hypothesis at 1%

Table 20 Granger-test on stop-loss orders-to-volatility at run length > 9

Lag F‑value p‑value Adj.  R2 Null hypothesis of NO Granger causation

Stop-loss assumed at 
run length > 9

1 15.84370 0.00008 0.22649 REJECT the null hypothesis at 1%

2 7.94347 0.00041 0.27563 REJECT the null hypothesis at 1%

3 6.42414 0.00029 0.30054 REJECT the null hypothesis at 1%

4 3.41960 0.00912 0.33316 REJECT the null hypothesis at 1%

Table 21 Granger-test on stop-loss orders-to-volatility at run length > 8

Lag F‑value p‑value Adj.  R2 Null hypothesis of NO Granger causation

Stop-loss assumed at 
run length > 8

1 14.38607 0.00017 0.21663 REJECT the null hypothesis at 1%

2 7.88797 0.00043 0.27396 REJECT the null hypothesis at 1%

3 6.53369 0.00025 0.30157 REJECT the null hypothesis at 1%

4 3.34332 0.01030 0.33745 REJECT the null hypothesis at 1%

Table 22 Granger-test on stop-loss orders-to-volatility at run length > 7

Lag F‑value p‑value Adj.R2 Null hypothesis of NO Granger causation

Stop-loss assumed at 
run length > 7

1 13.00856 0.00034 0.17530 REJECT the null hypothesis at 1%

2 7.48942 0.00062 0.22547 REJECT the null hypothesis at 1%

3 5.54560 0.00094 0.24020 REJECT the null hypothesis at 1%

4 3.33697 0.01031 0.24406 REJECT the null hypothesis at 1%
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Although Tables 19, 20, 21, 22, 23 and 24 and Tables 25, 26, 27, 28, 29 and 30 only 
display results for the first four lags, Granger tests have been executed for up to 32 
lags with consistent outcomes.

Table 23 Granger-test on stop-loss orders-to-volatility at run length > 6

Lag F‑value p‑value Adj.  R2 Null hypothesis of NO Granger causation

Stop-loss assumed at 
run length > 6

1 13.46431 0.00026 0.10511 REJECT the null hypothesis at 1%

2 6.63166 0.00141 0.18795 REJECT the null hypothesis at 1%

3 4.79999 0.00259 0.19730 REJECT the null hypothesis at 1%

4 4.53995 0.00128 0.25952 REJECT the null hypothesis at 1%

Table 24 Granger-test on stop-loss orders-to-volatility at run length > 5

Lag F‑value p‑value Adj.  R2 Null hypothesis of NO Granger causation

Stop-loss assumed at 
run length > 5

1 15.40207 0.00010 0.10890 REJECT the null hypothesis at 1%

2 8.20498 0.00030 0.17590 REJECT the null hypothesis at 1%

3 5.74544 0.00069 0.17985 REJECT the null hypothesis at 1%

4 4.83712 0.00074 0.21412 REJECT the null hypothesis at 1%

Table 26 Granger-test on stop-loss orders-to-volatility at run length > 9

Lag F‑value p‑value Adj.  R2 Null hypothesis of NO Granger causation

Stop-loss assumed at 
run length > 9

1 0.37895 0.53850 0.00000 CANNOT reject the null hypothesis at 25%

2 0.43564 0.64714 0.00000 CANNOT reject the null hypothesis at 25%

3 0.42503 0.73516 0.00000 CANNOT reject the null hypothesis at 25%

4 0.28310 0.88891 0.00000 CANNOT reject the null hypothesis at 25%

Table 27 Granger-test on stop-loss orders-to-volatility at run length > 8

Lag F‑value p‑value Adj.  R2 Null hypothesis of NO Granger causation

Stop-loss assumed at 
run length > 8

1 0.55911 0.45500 0.00000 CANNOT reject the null hypothesis at 25%

2 0.51377 0.59858 0.00000 CANNOT reject the null hypothesis at 25%

3 0.57382 0.63247 0.00000 CANNOT reject the null hypothesis at 25%

4 0.37309 0.82785 0.00000 CANNOT reject the null hypothesis at 25%
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Conclusions on the granger‑causality tests

Although Granger testing is subject to criticism (as is any econometric tool), it is still 
one of the best indicators of causality that econometrics provides. Clive Granger was 
awarded the Nobel Prize in Economics Sciences in 2003. The analyses carried out in the 
previous sections prove beyond any doubt the existence of Granger causality between 

Table 25 Granger-test on stop-loss orders-to-volatility at run length > 10

Lag F‑value p‑value Adj.  R2 Null hypothesis of NO Granger causation

Stop-loss assumed at 
run length > 10

1 0.00266 0.95886 0.00000 CANNOT reject the null hypothesis at 25%

2 0.31532 0.72975 0.00000 CANNOT reject the null hypothesis at 25%

3 0.20240 0.89471 0.00000 CANNOT reject the null hypothesis at 25%

4 0.22671 0.92339 0.00000 CANNOT reject the null hypothesis at 25%

Table 28 Granger-test on volatility-to-stop-loss orders at run length > 7

Lag F‑value p‑value Adj.  R2 Null hypothesis of NO Grangercausation

Stop-loss assumed at 
run length > 7

1 0.60693 0.43629 0.00000 CANNOT reject the null hypothesis at 25%

2 0.45862 0.63241 0.00000 CANNOT reject the null hypothesis at 25%

3 0.33869 0.79737 0.00000 CANNOT reject the null hypothesis at 25%

4 0.29109 0.88378 0.00000 CANNOT reject the null hypothesis at 25%

Table 29 Granger-test on volatility-to-stop-loss orders at run length > 6

Lag F‑value p‑value Adj.  R2 Null hypothesis of NO Granger causation

Stop-loss assumed at 
run length > 6

1 0.00833 0.92729 0.00000 CANNOT reject the null hypothesis at 25%

2 0.11251 0.89361 0.00000 CANNOT reject the null hypothesis at 25%

3 0.06385 0.97892 0.00000 CANNOT reject the null hypothesis at 25%

4 0.15505 0.96071 0.00000 CANNOT reject the null hypothesis at 25%

Table 30 Granger-test on volatility-to-stop-loss orders at run length > 5

Lag F‑value p‑value Adj.  R2 NULL HYPOTHESIS of NO Granger causation

Stop-loss assumed at 
run length > 5

1 0.00168 0.96727 0.00000 CANNOT reject the null hypothesis at 25%

2 0.28135 0.75484 0.00000 CANNOT reject the null hypothesis at 25%

3 0.38169 0.76623 0.00000 CANNOT reject the null hypothesis at 25%

4 0.29139 0.88245 0.00000 CANNOT reject the null hypothesis at 25%
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previous volatility and excess volatility within a relatively short period and between SL 
orders and excess volatility. Furthermore, quite certainly, there is a Granger-causal rela-
tionship between scarce liquidity and excess volatility, whereas there is no evidence of 
such a relationship between a high quantity of securities exchanged and excess volatility.

Results of the agent‑based model (ABM) experiment
The next tool used to verify the impact of previous volatility, scarce liquidity, a high 
quantity exchanged, and SL orders on excess volatility is an ABM simulation. As was 
expected from previous simulation-based research, the percentage of HFT participation 
influences volatility since a moderate level of HFT activity propels volatility, whereas 
when most market agents are homogeneous (i.e., when they are all slow or all fast), 
volatility tends to behave according to the RWM and no unexpected excessive volatility 
appears. Volatility varies according to other parameters, but it usually reaches its maxi-
mum level when HFT activity compared to all market activity is in the 33% to 75% range. 
In the simulation, volatility is defined in two ways: maximum price less minimum price 
over the observation period and as the standard deviation of the price over the same 
period. The results are shown in Table 31.

The simulation displays results generally compliant with the other methodolo-
gies presented earlier. The only exception is the scenario “SL BASE,” where the Delta 
Price rises as HFT participation increases, reaches a maximum corresponding to 50%, 
as in several other scenarios, and then declines for higher percentages of HFT partici-
pation. The exception is the peak at 90% participation (4.37 versus 3.99 at 75%), which 
does not appear in the other cases. As expected, the trend case shows higher volatil-
ity than the base case because of the definitive direction that the algorithm imposed to 
aggressive orders (either upward or downward). This confirms that preexisting volatility 
increases volatility after a VST interval. Moreover, when the market experiences a rise 

Table 31 Volatility expressed as Delta Price (MAX – MIN) and Standard Deviation of price at different 
ratio of HF traders’ participation, and different scenarios

0% 33% 50% 67% 75% 90%

RANDOM WALK (RW) Delta price 0.63 1.18 1.23 1.15 1.02 0.82

Std. dev 0.20 0.25 0.28 0.29 0.27 0.23

TREND Delta price 0.93 1.84 2.99 2.41 2.03 1.32

Std. dev 0.28 0.56 0.89 0.72 0.61 0.39

RW + QUANTITY (QTY) Delta price 0.7 1.62 1.86 1.84 1.69 1.61

Std. dev 0.21 0.36 0.42 0.44 0.39 0.38

TREND + QTY Delta price 0.96 3.04 3.88 3.71 3.63 2.99

Std. dev 0.29 0.96 1.13 1.09 1.06 0.87

RW + STOP-LOSS (SL) Delta price 4.39 4.41 4.21 4.03 3.99 4.37

Std. dev 0.88 1.06 1.03 0.97 0.94 0.94

TREND + SL Delta price 4.41 4.55 5.22 5.09 4.71 4.64

Std. dev 1.08 1.29 1.32 1.30 1.22 1.20

RW + QTY + SL Delta price 4.38 4.48 4.79 4.51 4.37 4.35

Std.dev 0.91 1.06 1.01 1.04 1.01 0.96

TREND + QTY + SL Delta price 4.44 4.89 5.70 6.26 6.24 6.2

Std. dev 1.13 1.34 1.38 1.59 1.59 1.52
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in the quantity exchanged, volatility is augmented, as it is when investors make use of 
SL orders to protect their limit orders. Again, as expected, the combination of these fac-
tors accumulates as volatility increases. Small discrepancies are expected because of the 
heavy use of random number generation in ABM. Yet, the combination of one or more 
factors does not result in an exponential peak in volatility. This should not surprise us. 
Not all butterfly’s wings flapping in Beijing cause a hurricane in the Caribbean, therefore 
it is normal to expect that in most cases, causes do accumulate linearly even though they 
may occasionally accumulate nonlinearly, sometimes with disastrous consequences. The 
unpredictability of nonlinear behavior is the greatest risk factor. Indeed, as was expected, 
in Table 31, volatility grows as the quantity effect is added to the simulation (both in the 
base and trend cases), and it grows even more when SL orders are included in the sys-
tem, and it grows even further when both effects are combined. The ABM simulation 
confirms that excess volatility is a possible consequence of the four drivers identified 
above.

Discussion
VSTPC have been evaluated using a mathematical model and three practical techniques: 
audit-trail data, Granger testing, and ABM simulation. The Granger tests provide strong 
evidence of previous volatility Granger-causing higher volatility within a VST period. 
Granger testing also displays the Granger causality of SL orders or liquidity to high vola-
tility. All previous results match common sense and are in accordance with the math-
ematical model. Volatility causes concern among investors and is likely to cause higher 
volatility either directly or through liquidity reduction due to uncertainty (a behavio-
ral effect). The quantities exchanged do not show Granger causality to high volatility 
equally clearly. In a similar fashion, the audit-trail data analysis matches the results of 
the Granger tests as far as volatility-to-volatility, liquidity-to-volatility, and SL-orders-
to-volatility are concerned. The ABM simulation also demonstrates a definitive impact 
of SL orders on volatility, whereas the influence of quantity exchanged does not seem as 
clear and fails to exhibit definitive results.

Overall, the analyses performed in the previous sections strongly suggest a combina-
tion of previous volatility, scarce liquidity, and SL orders to be prerequisites of high vola-
tility at VST, where the impact of large quantities, although reasonable, is not supported 
by the evidence.

The results presented in the previous section, although very suggestive, cannot be 
taken as conclusive. Each of the approaches used can be criticized from either a theo-
retical or practical perspective. The data analysis restricted its horizon to one market, 
a limited period, and on a few days only. Granger causality is not, neither does it pre-
tend to be, causality in the common sense of the word. ABM simulation is an artificial 
construction that forces the real world into a model that is simpler than the reality. Yet, 
all the techniques used point in the same direction: excess volatility appears when mar-
kets show previous volatility, scarce liquidity, and a considerable number of SL orders 
or a combination thereof. The opposite is obviously not true: volatility does not neces-
sarily appear if and only if the three drivers are present. There is no mechanical cause–
effect relationship. Trading is not mechanical since it depends on human behavior or, 
slightly differently but perhaps not so much, on human-programmed algorithms. Some 
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level of unpredictability is unavoidable. The main issue about the approaches used in this 
research concerns the possibility of VSTPC being caused by something other than the 
drivers identified in this study and all the techniques adopted being “fooled” by some 
“invisible hand.” Although this is possible in principle, this seems a rather remote pos-
sibility. The techniques used enjoy a good scientific reputation and, unless grossly mis-
used, are expected to yield sound results. Indeed, all the results converge to the same 
conclusion. Moreover, although usually not considered a good argument at the academic 
level, common sense seems to align itself with the outcome of the scientific results. 
Informal behavioral analysis would confirm that, at least in principle, previous volatil-
ity has the potential to provoke nervous reactions among traders, to generate fear and 
anguish and sometimes even panic, exacerbating the volatility already present in the 
market. Scarce liquidity is a mechanical factor leading to an easily understandable con-
sequence on price volatility. Practitioners fear low liquidity as do exchange managers and 
regulatory authorities. If liquidity is low, minor trading activity has the potential to move 
prices abruptly in the same way that a small movement may cause dramatic vibrations 
in a glass of water while a small disturbance will not display the same effect in the open 
sea. Finally, SL orders could trigger large price movements if enough of them, ready to 
be fired, unchain a sequence of events. This explanation does not aim to replace contrary 
scientific evidence, but the underlying point is that in this case, scientific evidence—as 
demonstrated by Granger testing, audit-trail data analysis, and simulation—confirms 
and corroborates common sense.

Conclusion
The goal of this paper is to identify the main driver of price changes at VST. Although 
finance research has long attempted to spot unambiguous market drivers, research on 
drivers at VST seems to be missing in the existing literature. Therefore, we assumed 
that establishing a theory dealing with such a topic in a market in which speed is 
more and more important would fill this gap. Along with well-known financial cri-
ses, a new kind of market disruption has emerged: flash crashes. Academic research 
needs to carefully investigate the causes of such phenomena if future crises are to be 
prevented. Indeed, the relatively recent entrance of HFT into the marketplace has fur-
ther decoupled finance from the economy, a relationship assumed to hold until then, 
although with exceptions. Ultrafast financial trading denies all relations to economic 
variables, and when the three main causes investigated earlier are nonlinearly com-
bined, it further reduces any residual hope of market equilibrium and stability. Obvi-
ously, not all three factors carry the same weight and play the same role in an excess 
volatility crisis. Out of the three simultaneous conditions identified as the main con-
tributors to VSTPC, SL orders are the most common in day-to-day operations; they 
are normal practice, and no regulatory authority is concerned about them. Neverthe-
less, they can be important contributors, especially when many of them accumulate, 
ready to be triggered as price movements take a definitive direction. It is also intuitive 
that in a nervous market, most investors would be cautious enough to protect their 
trading with SL orders, even against small swings. Volatility is also a not an uncom-
mon occurrence. Sharply falling as well as rising prices are occasional but not infre-
quent events; they are intrinsic to market practice and fortunately so—frozen markets 



Page 31 of 34Virgilio  Financial Innovation            (2022) 8:66  

are not desirable from any participant’s perspective. Investors look for price dynam-
ics and a lack of them would make financial activities unappealing. Scarce liquidity 
is a different kind of beast; it is widely considered a major threat in itself. Regulators 
and exchanges are engaged in a full-time struggle to ensure more and more abundant 
liquidity and fight illiquidity.

HFT has found several supporters, even within the academic community, on the 
basis that this practice tends to increase market liquidity. However, even scarce 
liquidity in itself is not the automatic cause of a major crisis: if prices are stable, the 
macro effect would scarcely be noticeable, for example, when prices move up one tick 
and then down one tick and then up one again, and so forth. There are securities and 
even entire markets that are frequently or permanently affected by scarce liquidity, 
but they do not necessarily experience daily crises. From all previous considerations, 
it sounds sensible to state that the nonlinear input–output transformation effect is 
the real cause of excess volatility at VST. Had markets been capable of preventing 
apparently innocuous causes to become violent outcomes, volatility would not have 
become a critical event causing, according to some authors, daily mini flash crashes. 
The butterfly effect seems to be at the root of most unsolved problems that the mar-
kets are currently facing. Systems have apparently grown too complex and too rap-
idly for systems theory to cope with them. The VSTPC theory is an attempt to better 
understand their behavior.

Appendix: Description of the simulation
The simulation can either run under the Base Case or the Trend Case. In the for-
mer, all simulation parameters follow a completely random path whereas in the Trend 
Case certain values of the parameters occur with more or less probabilities and so 
cause prices to follow an either upward or downward trend.

The simulation runs for a certain number of cycles in order to produce sufficient 
data for statistical purposes (100 in the case of this simulation). At each time unit the 
algorithm executes an order.

At each cycle the simulation produces 2500 orders to be executed in sequence. 
For each order the algorithm randomly selects a BookType (either Bid or Ask), an 
OrderType (either Limit or Market), and a TraderType (either Slow or HFT). There 
are 15 fast traders and 11,859 slow traders (source: CFTC-SEC 2010a). Moreover, if 
OrderType is Market, the algorithms also select the trade Volume, which can either 
be equal to 1 or 10 securities (with 250-to-1 probabilities). If Volume is equal to 10, 
then execution of the Market order repeats 10 times. Moreover, in the following trade 
Volume will be equal to 5 and the one following this, it will be equal to 3. This simu-
lates a wave of high, yet decreasing, volume of trades.

Yet, two consecutive Market orders are never allowed.
If the routine runs under the Trend condition, it generates a trade direction (either buy 

or sell) and in case of Market orders the trade direction is selected with higher probabil-
ity (60% in this simulation).
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If the TraderType is HFT then the order is being executed immediately, otherwise it 
is queued for a predetermined number of time units (650 in this simulation) in order to 
simulate latency due to slowness of the human trader, hardware, software and network-
ing. Then, at each repetition, the queue advances one step and when the queueing time 
expires the slow order is being executed as well.

If OrderType is Limit and the book depth is less than maximum (in this simulation 
the maximum depth was set to 5), then the routine adds one order to the book at the 
highest Bid or lowest Ask (according to the value of BookType). If the depth is already 
at the maximum, this condition is being interpreted as sufficient consensus by the inves-
tor community of the soundness of the price such that a jump to the next price level is 
acceptable. This mechanism allows to move the limit order book to the next available 
price but only if the bid-ask spread is greater than one tick. Otherwise, the new order is 
ignored. Under the modality SL, a Limit order also insert a StopLoss order in the appro-
priate StandBy book.

If OrderType is Market, then the order is executed against the best price on the oppo-
site book (a Bid Market order is executed against the lowest price on the Ask book and 
viceversa). If the modality SL is active, execution of a Market order triggers activation of 
StopLoss orders linked to that order. A StopLoss order gets activated by moving it from 
the StandBy book to the Executable book. StopLoss orders in the Executable book are 
associated with a stop-loss execution price, in this case 2 ticks below or above trade exe-
cution (according to whether the corresponding Limit order is either a Bid or Ask order). 
When a new execution price is reached, all outstanding StopLoss orders activated at that 
price get executed at the best available price as Market orders. Market orders consume 
liquidity and potentially decrease the best Bid or increase the best Ask price. This means 
that, if more than 5 active StopLoss orders exist at a certain price level, as soon as that 
price level is reached, the StopLoss orders get immediately executed as Market orders. 
Therefore, the first StopLoss orders will be executed at the expected price whereas the 
remaining ones might executed at the same or at a worse price, Let us suppose that 7 
outstanding StopLoss orders are active at price 100. If trading price drops to 100, they all 
become executable. The first 4 will execute at 100 but the remaining 3 will no longer find 
a Limit Bid order at 100. At that point the best Bid will be 99.75. However, since price 
has dropped to 99.75, all active StopLoss orders at that price will also turn to executable, 
potentially reducing the price even further and executing more StopLoss orders at 99.50, 
and so on. All this is being executed automatically by the rules of the exchange, with 
no external intervention, either human or silicon. This explains the impact of StopLoss 
orders as a factor of VSTPC.

Every operation is being logged onto the database so that at the end of each cycle it is 
possible to collect information about volatility and later on comparing the measurement 
between runs of the simulation at different levels of HFT activity and for different com-
bination of the parameters (Random Walk vs. Trend; Volume bursts, Stop Loss orders).

Abbreviations
ABM  Agent-based model
QTY  Quantity
SL  Stop-loss
HFT  High-frequency trading
RW  Random walk
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V  Volatility (in formulae)
L  Liquidity (in formulae)
RWM  Random walk model
VST  Very-short time
Q  Quantity (in formulae)
S  Stop-loss (in formulae)
VSTPC  Very short-time price change

Acknowledgements
Not applicable.

Author contributions
The only author of this research is Gianluca P. M. Virgilio (ORCID: 0000-0002-1616-0557). No one else contributed to it. 
Gianluca P. M. Virgilio author read and approved the final manuscript.

Funding
No funding has been used for the production of this research.

Availability of data and materials
The dataset supporting the conclusions of this article is available for a fee from the CME Group, Chicago, Illinois, USA. It is 
propriety of the CME Group and therefore cannot be disclosed without the authorization. Data can be purchased from 
https:// www. cmegr oup. com. All software used throughout this research has been developed by the author in Microsoft 
Excel Visual Basic language and is available upon request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 12 August 2021   Accepted: 30 May 2022

References
Abrol S, Chesir B, Mehta N (2016) High frequency trading and US stock market microstructure: a study of interactions 

between complexities, risks and strategies residing in U.S. equity market microstructure. Financ Mark Inst Instrum 
25(2):107–165

Aldridge I, Krawciw S (2015) Aggressive high-frequency trading in equities. Huffington Post Business
Anderson N, Webber L, Noss J, Beale D, Crowley-Reidy L (2015) The resilience of financial market liquidity. Financial Stabil-

ity paper no. 34, Bank of England
Angel J (2011) Impact of special relativity on securities regulation. Foresight Driver Review DR15. UK Government Office 

for Science
Baron M, Brogaard J, Kirilenko A (2012) The trading profits of high frequency traders. Working paper. Princeton University
Benos E, Sagade S (2016) Price discovery and the cross-section of high-frequency trading. J Financ Mark 30:54–77
Brogaard J (2010) High frequency trading and its impact on market quality. Working paper. Northwestern University
Buchanan M (2015) Trading at the speed of light. Nature 518(7538):161–163
Burton E, Shah S (2013) Behavioral finance: understanding the social, cognitive, and economic debates. Wiley, Hoboken
Cartlidge J, Cliff D (2012) Exploring the ‘robot phase transition’ in experimental human-algorithmic markets. Foresight 

driver review DR25. UK Government Office for Science
CFTC-SEC (2010a) Preliminary findings regarding the market events of May 6, 2010a. Commodity Futures Trading Com-

mission, Securities and Exchange Commission
CFTC-SEC (2010b) Findings regarding the market events of May 6, 2010b. Commodity Futures Trading Commission, 

Securities and Exchange Commission
Cvitanić J, Kirilenko A (2010) High frequency traders and asset prices. Working paper. California Institute of Technology
Diebold FX (2007) Elements of forecasting, Thomson South-Western, Mason
Foresight (2012) The future of computer trading in financial markets. Final Project Report. UK Government Office for 

Science, London
Godfrey MD, Granger CWJ, Oskar M (1964) The random walk hypothesis of stock market behavior. Kyklos 17(1):1–30
Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 

37(3):424–438
Groth SS (2011) Does algorithmic trading increase volatility? Empirical evidence from the fully-electronic trading plat-

form Xetra. Wirtschaftsinformatik Proceedings Paper 112, Goethe Universität
Gujarati D, Porter D (2009) Basic econometrics. McGraw-Hill/Irwin, New York
Gündüz L, Hatemi JA (2005) Stock Price and volume relation in emerging markets. Emerg Mark Finance Trade 41(1):29–44
Hagströmer B, Nordén L (2013) The diversity of high frequency traders. J Financ Mark 16(4):741–770
Hasbrouck J, Saar G (2013) Low-latency trading. J Financ Mark 16(4):646–679
Jarnecic E, Snape M (2014) The provision of liquidity by high-frequency participants. Financ Rev 49:371–394
Johnson N, Zhao G (2012) Brave new world: quantifying the new instabilities and risks arising in subsecond algorithmic 

trading. Foresight Driver Review DR27. UK Government Office for Science
Karpoff JM (1987) The relation between price changes and trading volume: a survey. J Financ Quant Anal 22(1):109–126

https://www.cmegroup.com


Page 34 of 34Virgilio  Financial Innovation            (2022) 8:66 

Kirilenko A, Kyle AS, Samadi M, Tuzun T (2017) The flash crash: high-frequency trading in an electronic market. J Financ 
72(3):967–998

Knuth D (1985) Algorithmic thinking and mathematical thinking. Am Math Mon 92(3):170–181. https:// doi. org/ 10. 2307/ 
23228 71

Kou G, Peng Y, Wang G (2014) Evaluation of clustering algorithms for financial risk analysis using MCDM methods. Inf Sci 
275:1–12. https:// doi. org/ 10. 1016/j. ins. 2014. 02. 137

Kou G, Akdeniz Ö, Dinçer H, Yüksel S (2021a) Fintech investments in European banks: a hybrid IT2 fuzzy multidimensional 
decision-making approach. Financ Innov. https:// doi. org/ 10. 1186/ s40854- 021- 00256-y

Kou G, Xu Y, Peng Y, Shen F, Chen Y, Chang K, Kou S (2021b) Bankruptcy prediction for SMEs using transactional data and 
two-stage multiobjective feature selection. Decis Support Syst. https:// doi. org/ 10. 1016/j. dss. 2020. 113429

Leland H. (2011) Leverage, forced asset sales, and market stability: lessons from past market crises and the flash crash. 
Foresight Driver Review DR9. UK Government Office for Science

Li T, Kou G, Peng Y, Yu P (forthcoming) An integrated cluster detection, optimization, and interpretation approach for 
financial data. IEEE Trans Cybern. https:// doi. org/ 10. 1109/ TCYB. 2021. 31090 66

Menkveld A, Yueshen BZ (2018) The flash crash: a cautionary tale about highly fragmented markets. Manag Sci (pub-
lished online on 5 Nov 2018)

Myers B, Gerig A (2014) Simulating the synchronizing behavior of high-frequency trading in multiple markets. In: Bera A, 
Ivliev S, Lillo F (eds) Financial econometrics and empirical market microstructure. Springer, Berlin, pp 207–213

Shapiro M (2010) Testimony concerning the severe market disruption on May 6, 2010 - before the subcommittee on 
capital markets insurance and government sponsored enterprises of the United States House of Representatives 
Committee on Financial Services. United States House of Representatives, Washington

Stickel SE, Verrecchia RE (1994) Evidence that trading volume sustains stock price changes. Financ Anal J 50(6):57–67
Tauchen GE, Pitts M (1983) The price variability-volume relationship on speculative markets. Econometrica 51:485–505
Virgilio GPM (2020) You need three butterflies to cause a Hurricane. Sci Ann Econ Bus 67(1):139–155
Wen F, Xu L, Ouyang G, Kou G (2019) Retail investor attention and stock price crash risk: evidence from China. Int Rev 

Financ Anal. https:// doi. org/ 10. 1016/j. irfa. 2019. 101376
Ying CC (1966) Stock market prices and volumes of sales. Econometrica 34:676–686
Zervoudakis F, Lawrence D, Gontikas G, Al Merey M (2012) Perspectives on high-frequency trading. Working paper. 

University College London
Zhang F (2010) High-frequency trading, stock volatility, and price discovery. Working paper. Yale School of Management
Zigrand JP (2011) Feedback effects and changes in the diversity of trading strategies. Foresight driver review DR2. UK 

Government Office for Science
Zigrand JP, Cliff D, Hendershott T (2012) Financial stability and computer based trading. Foresight driver review WP2. UK 

Government Office for Science

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.2307/2322871
https://doi.org/10.2307/2322871
https://doi.org/10.1016/j.ins.2014.02.137
https://doi.org/10.1186/s40854-021-00256-y
https://doi.org/10.1016/j.dss.2020.113429
https://doi.org/10.1109/TCYB.2021.3109066
https://doi.org/10.1016/j.irfa.2019.101376

	A theory of very short-time price change: security price drivers in times of high-frequency trading
	Abstract 
	Introduction
	Gaps identified in the current literature

	Drivers of very short time price changes (VSTPC)
	Generic drivers of stock price changes
	Volume exchanged
	Volatility
	Liquidity
	Stop-loss (SL) orders

	Conclusions regarding the drivers of stock price changes

	Literature review
	Volatility (V)
	Liquidity (L)
	Volume or quantity1 (Q)
	Stop-loss orders (S)
	Why a theory on VSTPC is important: threats to financial stability
	Market efficiency
	Quick price discovery
	Reasonable volatility
	Sufficient liquidity
	Nonlinear sensitivities


	Methodology
	Theoretical foundations of very short time price changes (VSTPC)
	Data analysis
	Granger-causality tests
	Agent-based modeling: a simulation

	Theoretical foundations of very short time price changes (VSTPC)
	Liquidity [L = L (Q, S, V, t)]
	Quantity exchanged [Q = Q (L, S, V, t)]
	Stop-loss orders [S = S (L, Q, V, t)]
	Volatility [V = V (L, Q, S, t)]
	Cause–effect relationship

	Results of the data analysis
	Number of trade runs
	Max price drop within a run
	Number of runs showing price jumps
	Discussion

	Results of the granger-causality test
	Test the Granger-causality of volatility on extreme volatility
	Test the Granger causality of a liquidity shortage on extreme volatility
	Test the Granger causality of quantity exchanged on extreme volatility
	Test the granger causality of trade runs on extreme volatility
	Conclusions on the granger-causality tests

	Results of the agent-based model (ABM) experiment
	Discussion
	Conclusion
	Acknowledgements
	References


