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Abstract 

Convertible bonds are an important segment of the corporate bond market, however, 
as hybrid instruments, convertible bonds are difficult to value because they depend 
on variables related to the underlying stock, the fixed-income part, and the interac-
tion between these components. Besides, embedded options, such as conversion, call, 
and put provisions are often restricted to certain periods, may vary over time, and are 
subject to additional path-dependent features of the state variables. Moreover, the 
most challenging problem in convertible bond valuation is the underlying stock return 
process modeling as it retains various complex statistical properties. In this paper, we 
propose DeepPricing, a novel data-driven convertible bonds pricing model, which is 
inspired by the recent success of generative adversarial networks (GAN), to address 
the above challenges. The method introduces a new financial time-series generative 
adversarial networks (FinGAN), which is able to reproduce risk-neutral stock return 
process that retains the unique statistical properties such as the fat-tailed distributions, 
the long-range dependence, and the asymmetry structure etc., and then transit to its 
risk-neutral distribution. Thus it is more flexible and accurate to capture the dynamics 
of the underlying stock return process and keep the rich set of real-world convertible 
bond specifications compared with previous model-driven models. The experiments 
on the Chinese convertible bond market demonstrate the effectiveness of DeepPricing 
model. Compared with the convertible bond market prices, our model has a better 
convertible bonds pricing performance than both model-driven models, i.e. Black-
Scholes, the constant elasticity of variance, GARCH, and the state-of-the-art GAN-based 
models, i.e. FinGAN-MLP, FinGAN-LSTM. Moreover, our model has a better fitting capac-
ity for higher-volatility convertible bonds and the overall convertible bond market 
implied volatility smirk, especially for equity-liked convertible bonds, convertible bonds 
trading in the bull market, and out-of-the-money convertible bonds. Furthermore, the 
Long-Short and Long-Only investment strategies based on our model earn a significant 
annualized return with 41.16% and 31.06%, respectively, for the equally-weighted port-
folio during the sample period.
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Introductions
As an important part of the corporate bond market, convertible bonds with both 
equity- and debt-like properties have grown in popularity in the financial market. 
However, compared with the nearly 150-years industry practice of convertible bonds, 
the development of convertible bond pricing theory lags behind. This is not surpris-
ing as convertible bonds cannot simply be considered as a combination of equity and 
bonds but various terms of realistic convertible bonds, such as the possibility of early 
conversion, the callability by the issuer, and the putability by the holder, making it dif-
ficult to value.

Traditional theoretical research on convertible bond pricing can be roughly divided 
into three categories. The first pricing approach implies finding a closed-form solution 
to the valuation equation. It was initiated by Ingersoll (1977) who applies the contingent 
claims approach to the valuation of convertible bonds. Lewis (1991) develops a closed-
form solution for convertible bonds that accounts for more complex capital structures. 
This kind of valuation model was established with the option pricing models of Black 
and Scholes (1973) and Merton (1973, 1974) and value the convertible bonds based on 
their firm value or stock value (McConnell and Schwartz 1986) as the underlying state 
variable. Later, Nyborg (1996) obtained a closed-form solution for most basic convert-
ible bonds, where conversion is only allowed at maturity, while Zhu (2006) presented 
an analytical solution for the convertible bonds, which can be converted at any time on 
or before maturity. Although fast in computation, closed-form solutions are not suit-
able for empirical studies because they fail to account for several real-world specifica-
tions. Especially, dividends and coupon payments are often modeled continuously 
rather than discretely, early-exercise features are omitted, and path-dependent features 
are excluded. The second pricing approach values convertible bonds numerically, using 
lattice-based methods. In general, among lattice-based methods, there are finite differ-
ence methods (e.g. Brennan and Schwartz 1977; Tsiveriotis and Fernandes 1998; Taka-
hashi et al. 2001; Ayache et al. 2003; Zhu et al. 2018; Lin and Zhu 2020), finite element 
method (e.g. Barone-Adesi et al. 2003), tree model (e.g. Hung and Wang 2002; Chambers 
and Lu 2007; Yagi and Sawaki 2010; Ma et al. 2020); some of the lattice-based models 
provide sophisticated pricing and calibration solutions. Besides, in the face of practical 
problems related to real convertible-bond specifications and limited data availability, the 
proposed approaches turn out to be practicable only in very few cases. The third class of 
convertible bond pricing method uses least-squares Monte Carlo (LSM) simulation (e.g. 
Buchan 1997; Ammann et al. 2008; Fan et al. 2017; Batten et al. 2018). LSM proposed 
by Longstaff and Schwartz (2001) is suitable for modeling discrete coupon and dividend 
payments, including dynamics of the underlying state variables, taking into account 
path-dependent option features, and overcoming many of the drawbacks of lattice-based 
methods. The most important input in LSM is the assumption and generation of under-
lying stock return process, such as the Black-Scholes (BS) model, the constant elasticity 
of variance (CEV) model, or the GARCH model. However, building on the limitation of 
explicit mathematical formulations, the models are difficult to recover all unique statis-
tial properties such as the leverage effects, the coarse-fine volatility correlation, and the 
gain/loss asymmetry of financial time-series (Malmsten and Teräsvirta 2010; Takahashi 
et al. 2019; Dogariu et al. 2022).
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Considering the difficulties of the existing pricing approaches, it is desirable to develop 
an alternative data-driven path simulator that has a high reproducibility of stylized facts 
and can be built without many assumptions. Deep learning, especially generative adver-
sarial networks (GAN), proposed by Goodfellow et al. (2014), which bears the potential 
of being able to model complicated statistical (perhaps unknown) dynamic may provide 
such a solution. GAN-based methods have already shown spectacular ability in the gen-
eration of data including realistic image (Radford et al. 2015; Karras et al. 2021), audio 
(Donahue et al. 2018), natural language text (Zhang et al. 2016; Garbacea et al. 2019) and 
have expanded to sequence generation, such as physics (Farimani et  al. 2017; Li et  al. 
(2019), music (Yang et al. 2017; Gan et al. 2020), medical time-series (Esteban et al. 2017; 
Sun et al. 2020), DNA sequences (Killoran et al. 2017; Gupta and Zou 2019) and financial 
time-series (Takahashi et al. 2019; Wiese et al. 2020). Moreover, the GAN architectures 
also show the benefits in the financial time-series representation learning, such as stock 
price prediction (Zhang et al. 2019; Dogariu et al. 2022), disentangle market behaviors 
from the price movement of stocks (Hadad et al. 2018), and systematic trading strategies 
(Koshiyama et  al. 2021). As it remains the problem of transiting the real (observable) 
financial time series to its risk-neutral distribution, the GAN-based approaches have not 
been successfully applied to classical LSM to generate stock return process and solve the 
problem of derivatives pricing (Wiese et al. 2020).

In this paper, we propose DeepPricing, a novel financial time-series generative adver-
sarial networks (FinGAN) based convertible bonds pricing model in the framework of 
LSM to address the challenges above. Our primary contributions are twofold. First, 
we extend the literature on derivatives pricing, especially convertible bonds pricing, 
by showing that GAN-based approaches can be successfully applied to the framework 
of LSM. The model is more flexible and accurate to capture the temporal structures of 
financial time-series so as to generate the major stylized facts of the underlying stock 
returns, including the linear unpredictability, the fat-tailed distribution, the volatility 
clustering, the leverage effects, the coarse-fine volatility correlation, and the gain/loss 
asymmetry, and then transit to its risk-neutral distribution. Second, a new mechanism, 
FinGAN, is explicitly constructed to generate stochastic underlying stock return process 
and transit to its risk-neutral distribution. We introduce an encoder network to provide 
a mapping between feature and neutral space, thereby separating the features of volatil-
ity and drift in the adversarial learning space. This capitalizes on the fact that during the 
risk-neutral measure transformation process, the volatility features have been retained 
while the drift features have been changed to the risk-free rate (Shreve 2004). Moreover, 
the supervised loss is minimized by jointly training both the embedding and generator 
networks, so that the neutral space not only serves to promote parameter efficiency but 
is also specifically conditioned to facilitate the generator in learning volatility features.

Empirically, we evaluate the capacity of the DeepPricing in the Chinese convertible 
bonds market in two steps. First, the statistical properties of the generated time-series 
from FinGAN and other baseline generators are analyzed and compared with the real 
financial time-series, and then the convertible bond pricing performances test is con-
ducted across the DeepPricing and other baseline convertible bond valuation models. 
Several important conclusions can be drawn from the empirical results. First, the Fin-
GAN model achieves consistent improvements over both traditional and state-of-the-art 
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benchmarks in generating major statistical properties of stock returns, including the 
linear unpredictability, the fat-tailed distributions, the volatility clustering, the lever-
age effects, the coarse-fine volatility correlation, and the gain/loss asymmetry. Second, 
compared with real convertible bonds market prices, the DeepPricing model has a bet-
ter convertible bonds pricing performance than both model-driven models, i.e. BS, CEV 
(β = 1) , GARCH (1,1) and data-driven models, i.e. FinGAN-MLP, FinGAN-LSTM. 
Third, we have broken down convertible bonds according to their equity component lev-
els, market states, and moneyness levels to investigate the ability of the models to fit the 
structure of the convertible bonds market. The empirical results show that the DeepPric-
ing model has a better fitting capacity for the equity-liked, trading in the bull market and 
out-of-the-money convertible bonds. Generally speaking, the results indicate that due to 
the FinGAN generator’s higher reproducibility of stylized facts, the DeepPricing model 
is more flexible and consistent to capture the volatility and high-dimensional features of 
the underlying stock process thus outperforming other models in fitting higher volatility 
convertible bonds and the overall convertible bond market implied volatility smirk. The 
results also demonstrate the simulation of the dynamic process of the underlying stock 
return has a significant effect on the efficiency of convertible bond pricing, which is 
consistent with the empirical conclusion of Batten et al. (2018) in U.S. convertible bond 
market.

Furthermore, we analyze the factors affecting the pricing of Chinese convertible 
bonds. Empirical results show that convertible bonds which are higher-liquidity, riskier 
(longer time to maturity, lower quality credit rating, higher volatility), equity-liked, trad-
ing in the bull market and out-of-the-money tend to be more likely to be mispriced. The 
results are consistent with the convertible bond pricing performance, and further illus-
trate the importance of accurately characterizing the volatility and high-dimensional fea-
tures for the pricing of convertible bonds. Besides, considering the Chinese convertible 
bond market is a weak efficient market, thus, we propose investment strategies based on 
the DeepPricing model. Both Long-Short Strategy and Long-Only Strategy earn a signifi-
cant annualized return with 41.16% and 31.06%, respectively, for the equally-weighted 
portfolio during January 01, 2018 to June 30, 2021, respectively.

The rest of the paper is organized as follows. "Preliminaries" section gives the basic 
terms and payoff structure of convertible bonds. "The DeepPricing model" section devel-
ops the methods used in the paper. "Data and experiment" section provides the descrip-
tive statistics of the Chinese convertible bond market and empirical results across the 
DeepPricing model and the baseline models. "Investment strategies" section intro-
duces the investment strategies based on the DeepPricing model. "Conclusion" section 
concludes.

Preliminaries
Convertible bonds are corporate debt securities that give the holder the right to forego 
future coupon and/or principal payments and receive (i.e., convert to) a prespecified 
number of shares of common stock instead. In principal, a convertible bond is hybrid 
security consisting of a straight bond and a call on the underlying equity, but various 
terms of realistic convertible bonds make it impossible to decouple the stock option 
from the bond part. Furthermore, due to the existence of these special terms, the payoff 
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structure of convertible bonds is really complicated. Thus, before introducing the pricing 
model, we first give the basic terms of convertible bonds in "Basic terms" section, and 
then present the payoff structure of convertible bonds in "Payoff structure" section.

Basic terms

Generally speaking, taking the Chinese convertible bonds as an example, convertible 
bonds mainly have the following four types option terms:

Conversion terms: Investors can execute conversion rights within a certain period of 
time ( t ∈ �conv ). In case of conversion, the investor receives ntSt , where St is the under-
lying stock price at time t, nt = Bt/Kt is the conversion ratio (the number of stocks avail-
able per unit of bonds exchanged), Kt is the conversion price, and Bt is the face value of 
the convertible bond.

Conditional redemption terms: This term allows the issuer to demand premature 
redemption in exchange for the redemption price Ct applicable at time t under certain 
conditions (usually, if St is not less than 130% of the ntSt for at least 15 trading days in 
any 30 consecutive trading days and t ∈ �call ). The issuer is obliged to announce his/her 
intention to redemption a certain period in advance, referred to as the call notice period. 
If the convertible bond is premature redemption, the investor may want to exercise his/
her conversion option at any time during the call notice period to receive the conversion 
value instead of the redemption price.

Repurchase terms: This term entitles the investor to force the issuing firm to prema-
turely repurchase the convertible bonds for a certain predefined price Pt under certain 
conditions (usually, if St is lower than 70% of the ntSt for 30 consecutive trading days and 
t ∈ �put).

Conversion price revision terms: This term entitles the company’s board of directors 
the right to propose a downward revision plan for the conversion price from Kt to K∗

t  to 
avoid trigger repurchase under certain conditions (usually, if St is lower than 85% of the 
ntSt for at least 10 trading days in any 20 consecutive trading days and t ∈ �conv).

Payoff structure

The payoff of a convertible bond depends on whether and when the investor and the 
issuer decide to exercise their options and trigger the termination of the convertible 
bond. Let τ ∗ be the optimal stopping time, i.e. the time at which it is optimal for either 
the issuer or the investor to terminate the convertible bond.

The resulting action may either be conditional redemption, forced conversion, 
voluntary conversion, repurchase, regular redemption when the bond matures or 
default. Formally, the optimal stopping time of the convertible bond is defined as 
τ∗ = min{t : ψ(Xt , t) �= 0} , where ψ(Xt , t) is the payoff resulting from the convertible 
bond in state Xt at time t, given the optimal option-exercise behavior of both investor 
and issuer.

The alternatives presented in Table 1 stand for all events that will cause the convertible 
bond to be terminated and reflect boundary conditions that impede arbitrage opportuni-
ties. The optimal exercise decision critically depends on the value of continuation Vt , i.e. 
the conditional expected value of the convertible bond if it is not exercised immediately.
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In addition to the payoff at the time of termination, the investor receives all coupon 
payments that occurred prior to the time of termination from his/her convertible bond 
investment. Formally, the function �(Xτ∗ , τ

∗) represents the total payoff from a convert-
ible bond in state Xτ∗ and at time τ ∗:

where ψ(Xτ∗ , τ
∗) is the payoff from the convertible bond at the optimal stopping time τ ∗ 

and η(τ ∗) is the present value at time τ ∗ of all coupon payments accumulated during the 
existence of the bond, i.e. before τ ∗.

The DeepPricing model
In this section, we propose a generative adversarial networks (GAN) based model called 
DeepPricing to price convertible bonds. As shown in Fig.  1, the DeepPricing model 
mainly contains two components. The first component is a novel Financial time-series 
Generative Adversarial Networks (FinGAN). For each convertible bond i, we use the 

(1)�(Xτ∗ , τ
∗) = ψ(Xτ∗ , τ

∗)+ η(τ ∗)

Table 1  Payoff structure of convertible bonds

Table 1 summarizes the payoff structure of convertible bonds at maturity and prior to maturity subject to the boundary 
conditions. Time Restriction indicates the set of times in which conversion can be exercised, as stated in the issuance 
contract. And State lists the optimal strategies to be undertaken when the boundary conditions are met. Where Vt is the 
conditional expected value of continuation, Ct is the redemption price when the Conditional Redemption Terms is triggered, 
ntSt is the conversion value, Pt is the repurchase price when the Repurchase Terms is triggered, κB is a pre-specified amount 
when convertible bond is redeemed at the time of maturity, B is the face value of the convertible bond and κ is the final 
redemption ratio of the face value, θ is the recovery rate when the convertible bond defaults

Payoff Boundary condition Time restriction State

Ct Vt > Ct
and Ct > ntSt

For t ∈ �conv ∩�call Conditional redemption

ntSt Vt > Kt
and ntSt > Kt

For t ∈ �conv Forced conversion

ntSt ntSt > Ct
and Pt < ntSt

For t ∈ �conv Voluntary conversion

0 Vt < Ct ; Vt > ntSt
and Vt < Pt

For t ∈ �conv Continuation

Pt Pt > Vt
and ntSt < Pt

For t ∈ �put Repurchase

κB ntSt < κB For t = T ∈ �put Redemption at maturity

θκB Vt < θκB For t ∈ [0, T ] Default

Fig. 1  The framework of the DeepPricing model
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FinGAN model to generate several underlying stock return processes r(k)i  , and then tran-
sit them to their risk-neutral distribution r̃(k)i  . The second component is the least-squares 
Monte Carlo (LSM) approach, which was proposed by Longstaff and Schwartz (2001). 
For each generate and transit underlying stock path S̃(k)i  , we use the least-squares to esti-
mate the conditional expected payoff �(X

(k)

τ (k)∗
, τ (k)∗) to the optimal exercise strategy of 

the investor and the issuer from continuation. Then, the price of convertible bond i at 
time t in path k can be obtained by discounting all future cash flows under risk-neutral 
measure. Given a risk-neutral probability space (�,F ,Q) and information filtration Ft , 
the value of convertible bond i is given by:

where V(k)
it  is the value of the convertible bond i at time t in path k, τ (k)∗ is the optimal 

stopping time taking values in the finite set {0, 1, · · · ,T } , and the function �(X
(k)

τ (k)∗
, τ (k)∗) 

represents the total payoff from a convertible bond i in path k defined in Eq.  1. The 
expectation r(X(k)

s , s) is the interest rate of the time interval [s, s + 1] in state Xs , and is 
also applicable for discounting cash flows from time s + 1 to s. Finally, we average the 
value of convertible bond along each path ( V(k)

it  ) as the final value of convertible bond i 
( Vit).

Stock dynamic simulation: FinGAN

The most important input in convertible bonds valuation is the assumption of the 
underlying stock process, especially the volatility of the underlying stock returns under 
risk-neutral probability space (Ammann et al. 2008, Batten et al. 2018). However, mod-
eling financial time-series is a challenging task as it retains various complex statistical 
properties such as the linear unpredictability, the fat-tailed distributions, the volatility 
clustering, the leverage effects, the coarse-fine volatility correlation, and the gain/loss 
asymmetry, it is desirable to develop an alternative approach that has a high reproduc-
ibility of stylized facts and can be built without a number of assumptions. In this section, 
we propose FinGAN, a novel deep neural networks based approach which can capture 
the temporal structures of financial time-series so as to generate major stylized facts of 
stock process mentioned above, and then transform them into risk-neutral probability 
space. We first give the network framework of FinGAN model in "Network architecture" 
section. Furthermore, we introduce the derivation process from FinGAN to the stock 
price process in "Theoretical basis" section to strengthen the theoretical interpretation 
of our model.

Network architecture

FinGAN consists of four network components: an encoder function, decoder function, 
Risk-Neutral Networks (RiNN) generator, and discriminator. The key insight is that the 
auto-encoding components (first two) are trained jointly with the risk-neutral adversar-
ial components (latter two), such that FinGAN simultaneously learns to encode features, 
generate and transfer representations, and iterate across time. The encoder-decoder 
network provides the latent neutral space, the adversarial network operates within this 
space, and the latent dynamics of both neutral and synthetic data are synchronized 

(2)V
(k)
it = EQ

[
e−

∑τ(k)∗−1
s=t r(X

(k)
s ,s)�(X

(k)

τ (k)∗
, τ (k)∗)|Ft

]
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through a supervised loss. The detailed architecture is shown in Fig. 2 and we describe 
each in turn1.

Encoder and decoder functions: The encoder and decoder functions provide map-
pings between the real sequence space and the latent risk-neutral sequence space, 
allowing the adversarial generative network to transfer the real stock return process 
to its risk-neutral distribution. The encoder function extracts the volatility ( σt ), drift 
( µt ), and innovation ( ǫt ) terms from the real log-return series, and then we use Eq. 20 
to reconstruct the risk-neutral series ( ̃rt ). Specifically, σt and µt at time t are generated 
by r(t−T ):(t−1) through the embedding network enh for the volatility and drift features, 
while ǫt is generated by rt through the embedding network enǫ for the innovation fea-
tures. As shown in the Fig.  3, we choose temporal convolutional networks (TCN) 
as the basic network compositions of the encoder2, which is particularly suited for 

Fig. 2  Structure of the FinGAN architecture

1  Notice that throughout this section, n,m ∈ N . r , r̃ , r̂ and ˆ̃r  are Rn-valued random variables, Z is Rm-valued random 
variable.
2  Empirical results suggest that TCN is able to capture long-range dependencies in sequences more effectively than 
well-known recurrent architectures (Goodfellow et al. 2016) such as the gated recurrent unit (GRU, Chung et al. 2014) 
or the long short-term memory (LSTM, Zhang et al. 2019). One of the main advantages of TCN is the absence of expo-
nentially vanishing and exploding gradients through time (Pascanu et  al. 2013), which is one of the main issues why 
recurrent neural networks (RNN) are difficult to optimize. Although LSTM addresses this issue by using gated activa-
tions, empirical studies show that TCN performs better on supervised learning benchmarks (Bai et al. 2018).
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modeling long-range dependencies, allows for parallelization, and guarantees station-
arity. The definition of the encoder is given by Def. 1,

Definition 1  (Encoder) Let input rin,t be Rn-valued, enh : Rn×T ×�
(h)
en → R2n be an 

encoder network with receptive field size T and enǫ : Rn ×�
(ǫ)
en → Rn be a network. 

Furthermore, α ∈ �
(h)
en  and β ∈ �

(ǫ)
en  denote some parameters. The log-return neural pro-

cess r̃ in feature spaces is defined by:

where ⊙ denotes the Hadamard product and

Notably, the encoder network separate the log-return process into volatility and drift fea-
tures and transit them to risk-neutral distribution. The neural process σt,α := (σt,α)t∈R , 
µt,α := (µt,α)t∈R , rf (t,α) := (rf (t,α))t∈R and ǫt,β := (ǫt,β)t∈R and are called volatility, drift, 
risk-neutral and innovation neural process, respectively.

In the opposite direction, the decoder function transforms the risk-neutral series 
( ̃rt ) back to the estimated original market data ( ̂rt ). Notice that, just as the long-range 
dependencies of the encoder is emphasized before, the network of decoder needs to 
satisfy such properties as well. Thus, we also implement decoder by TCNs. The defini-
tion of the decoder is given by Def. 2,

Definition 2  (Decoder) Let l ∈ N , and de : Rn×l ×�de → Rn×l be a network with 
parameter space �de . The time-series r̂ out feature spaces is defined by

(3)
r̃ : �× Rn×T ×�(h)

en ×�(ǫ)
en → Rn

(ω, t,α,β) �→ [σt,α ⊙ ǫt,β + µt,α](ω)

(4)

ht := enh(rin,(t−T):(t−1)),

σt,α := |ht,1:n|,
µt,α := ht,n+1:2n,

ǫt,β := enǫ(rin,(t)).

r̂t = deθ (r̃t) for t ∈ {1, · · · , l}

Fig. 3  Stucture of the TCN architecture with receptive field size T = 8
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where θ ∈ �de , and the network de is the decoder function. The decoder function takes 
risk-neutral process r̃ back to estimated realistic time-series r̂.

Generator and discriminator: In the adversarial modeling framework two agents, the 
generator and the discriminator, are contesting with each other in a game-theoretic zero-
sum game. Roughly speaking, the generator aims at generating samples such that the dis-
criminator cannot distinguish whether the realizations were sampled from the target or 
the generator distribution. Different from other GAN-based models, the RiNN generator 
first outputs σ̂t,γ ⊙ ǫ̂t,η into the latent risk-neutral space instead of producing synthetic 
sequence directly. To ensure that the produced sequences retain causal ordering (i.e. out-
put at each step can only depend on preceding information), we build the generator with 
the same structure as the encoder. Here we give the definition of the RiNN generator,

Definition 3  (RiNN Generator) Let Z = (Zt)t∈Z be Rm-valued i.i.d. Gaussian noise, 
gh : Rm×T ×�

(h)
g → R2n and gǫ : Rm ×�

(ǫ)
g → Rn be networks. Furthermore, let 

γ ∈ �
(h)
g  and η ∈ �

(ǫ)
g  denote some parameters. A stochastic process ˆ̃r , defined by

and

is called log-return risk-neutral process. The generator architecture defining the 
log-return risk-neutral process is called RiNN. Consistently, the neural process 
σ̂t,γ := (σ̂t,γ )t∈Z , µ̂t,γ := (µ̂t,γ )t∈Z , r̂f (t,γ ) := (r̂f (t,γ ))t∈Z and ǫ̂t,η := (ǫ̂t,η)t∈Z are called 
volatility, drift, risk-neutral and innovation neural process, respectively.

Notice that Z(t−T ):(t−1) can be sampled from a distribution of choice, and Zt fol-
lows a stochastic process, here we assume that Zt is a Wiener process. Finally, the 
discriminator function d determine whether the input data is from the risk-neutral 
space extracted by the encoder ( ̃rt ) or synthesized by the RiNN generator ( ̂̃r ). Here is 
our definition of the discriminator,

Definition 4  (Discriminator) Let d̃ : Rn ×�d → R be a network with parameters 
ξ ∈ �d and σ : R → [0, 1] defined by x  → 1/(1+ e−x) be the sigmoid function. A func-
tion d : Rn ×�d → [0, 1] defined by d : (r, ξ) �→ σ ◦ d̃ξ (r) is called a discriminator.

Jointly learning to encode, generate, transfer and iterate: First, purely as a reversible map-
ping between real log-return space and neutral spaces, the encoder and decoder func-
tions should be able to extract neutral representations r̃ from the real log-return sequence 

(5)ˆ̃r : �× Z×�(h)
g ×�(ǫ)

g → Rn

(6)(ω, t, γ , η)  → [σ̂t,γ ⊙ ǫ̂t,η + µ̂t,γ ](ω)

(7)

ĥt := gh(Z(t−T ):(t−1))

σ̂t,γ := |ĥt,1:n|
µ̂t,γ := ĥt,n+1:2n
ǫ̂t,η := gǫ(Zt)
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r and accurately reconstruct r̂ of the real market sequence from their neutral representa-
tions. Therefore, our first objective function is the reconstruction loss LR defined by,

In FinGAN, the discriminator receives input from the risk-neutral sequence r̃ extracted 
by encoder and the risk-neutral sequence ˆ̃r synthesized by generator. First, the discrimi-
nator acts as a binary classifier, assigning a probability to each sample as a realization 
from the real risk-neutral distribution. This is as one would expect-that is, to maximize 
the likelihood that the discriminator will label r̃ as training data samples and ˆ̃r as genera-
tion samples,

However, relying solely on the discriminator’s binary adversarial feedback may not be 
enough to motivate the generator to capture the distribution of risk-neutral sequences. 
To achieve this more efficiently, we propose an additional loss function LS based on the 
volatility and innovation terms. The stochastic gradient can now be calculated on the 
loss of capturing the difference between σt ⊙ ǫt and σ̃t ⊙ ǫ̃t in the distributions, allowing 
the generator to improve its synthesis capabilities. Thus our third objective function is 
the supervised loss,

where DKL is the Kullback-Leibler divergence.
In sum, at any step in a training sequence, we assess the difference between the actual 

next-step risk-neutral latent vector (from the encoder function) and synthetic next-step 
risk-neutral latent vector (from the RiNN generator). While LD pushes the RiNN gen-
erator to create risk-neutral sequences (evaluated by an imperfect adversary), LS further 
ensures that it produces similar stepwise transitions (evaluated by ground-truth targets).

Optimization: The overall training objective is a min-max game played among the 
encoder, decoder, generator and discriminator. The first two components are trained on 
both the reconstruction and supervised losses,

where � ≥ 0 is a hyperparameter that balances the two losses.
Next, as FinGAN receives an error signal from both LD and LS , we use another param-

eter γ to weight the ability to reconstruct vs. fooling the discriminator. That is, in addi-
tion to seeking a balancing point in the binary game of generator and discriminator, the 
generator will follow the encoder’s style. Rather than applying γ to the entire model, we 
perform the weighting only when updating the parameter of the generator,

where γ ≥ 0 . Therefore, the generator and discriminator networks are trained adversari-
ally as follows,

(8)LR = Er

[∑
t�rt − r̂t�2

]
.

(9)
LD = E[ln(d(r̃))] + E[ln(1− d(g(Z)))]

= E[ln(d(r̃))] + E[ln(1− d( ˆ̃r))].

(10)LS = DKL(σt ⊙ ǫt � σ̂t ⊙ ǫ̂t),

(11)min
�en,θde

(�LS + LR),

(12)θg
+←−−∇θg (γLS + LD),
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Notably, LD is the determinant of how effectively the FinGAN is trained. If we consider 
LD as a convex function of θg , then supD LD(θg ) has a unique global optima. Conse-
quently with sufficiently small updates of θg , and θg converges to optima. This is equiva-
lent to computing a gradient descent update for θg at the optimal discriminator given the 
corresponding generator. Pseudocode 1 show the pseudocode of FinGAN. We use Adam 
as the optimizer with learning rate of 1e-5 with � = 0.1 and γ = 0.1 . More architecture 
details can be found in Appendix.

(13)min
�g

max
�d

(γLS + LD).
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Theoretical basis

Considering a one-dimensional log-return neural process, where the innovation neural 
process is constrained to represent a standard normal distributed random variable.

where, ǫt,θ ∼ N (0, 1) for all t ∈ Z.
Then, the underlying stock prices are defined recursively by Eq. 15,

where S0,θ = S0 denotes the current price of the underlying stock.
Moreover, we assume a constant interest rate rf  and denote the discounted stock price 

(S
(d)
t,θ )t∈N in Eq. 16,

The discounted asset price is given in Eq. 17,

As we cannot value options under a log-return neural process, but need to convert it to 
its risk-neutral distribution. Given a risk-neutral probability space (�,F ,Q) and infor-
mation filtration {Ft} , the discounted stock price process is a martingale. Therefore, we 
have,

We denote the conditional expectation given in Eq.  18 by 
h(σt,θ ,µt,θ ) := EQ[exp(σt,θ ǫt,θ + µt,θ )|Ft−1] . As the Ft−1-measurable volatility and drift 
neural process, ǫt,θ ∼ N (0, 1) and the independent of Ft−1 , h(σt,θ ,µt,θ ) can be calculated 
explicitly:

Now, we denote the risk-neutral log return neural process by 
r̃t,θ := rt,θ − ln(h(σt,θ ,µt,θ ))+ rf  , and the risk-neutral log return neural process is given 
by:

and the discounted risk-neutral price process is given by:

(14)rt,θ = σt,θ ǫt,θ + µt,θ

(15)St,θ = St−1,θ exp(rt,θ ) for all t ∈ N

(16)S
(d)
t,θ := St,θ

exp(rf t)

(17)S
(d)
t,θ = S

(d)
t−1,θ exp(rt,θ − rf )

(18)
EQ[S(d)t,θ |Ft−1] = EQ[S(d)t−1,θ exp(rt,θ − rf )|Ft−1]

= S
(d)
t−1,θ exp(−rf ) E

Q[exp(σt,θ ǫt,θ + µt,θ )|Ft−1]

(19)

h(σt,θ ,µt,θ ) =EQ[exp(σt,θ ǫt,θ + µt,θ )]

=exp

(
µt,θ +

σ 2
t,θ

2

)

(20)r̃t,θ = σt,θ ǫt,θ −
σ 2
t,θ

2
+ rf
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in particular, the discounted risk-neutral spot price process is given by:

Interest rate

The interest rate in this study is assumed as a constant rf  , and all interest rate data 
employed is obtained from the China Central Depository and Clearing Co., Ltd.. 
The time-series of the risk-free interest rates are extracted from the Chinese treas-
ury bond and cover maturities from 3 months to 10 years on a daily basis. We obtain 
through Hermite interpolation the complete term structure of spot rates at any time.

Credit risk

We account for credit risk in the spirit of Tsiveriotis and Fernandes (1998) and dis-
count the cash flows subject to credit risk with the appropriate interest rate. We cali-
brate the probability of default from the spread between the risk-free interest rate and 
the yield of company bond. If the issuer’s bond yield is not available, we can use the 
yield for the company bond with the same rating. Coupon payments, the redemption 
payment κN , the call price in the event of a conditional redemption Ct and the put 
price in the event of a repurchase Pt are subject to credit risk. The stock price St , on 
the other hand, is not and should therefore be discounted with the risk-free interest 
rate.

Data and experiment
In this section, we empirically evaluate our DeepPricing model by the data in the 
Chinese convertible bond market. We examine the Chinese convertible bond mar-
ket for three main reasons. Firstly, China has the fastest growing convertible bond 
market in the past decade, the number of convertible issuance has increased from 
8 in 2010 to 186 in 2020 and the scale has increased from 71,730.00 CNY million in 
2010 to 230,064.20 CNY million in 2020. Secondly, some special terms of the Chinese 
convertible bond, such as the Conditional Redemption Term, Conversion Price Revi-
sion Terms, cause huge difficulty in the valuation, thus, there is not much literature 
focusing on the Chinese convertible bond market. Thirdly, due to the unique trading 
constraints such as price-limit rules and short-sale restrictions in the Chinese stock 
market, any assumptions about the distribution of the underlying stock return pro-
cess cannot completely conform to its real return distributions, thus the alternative 
data-driven path simulator is much more needed.

This section is divided into five parts. "Data description" section gives a brief intro-
duction of the descriptive statistics of convertible bond data. "Baseline methods" 
section introduces several baseline models of generating dynamic underlying stock 
return process. "Comparisons with different stock return generators" section reviews 

(21)S̃t,θ = S̃t−1,θ exp

(
σt,θ ǫt,θ −

σ 2
t,θ

2

)

(22)S̃t,θ = S0 exp

(
t∑

s=1

(
σt,θ ǫt,θ −

σ 2
t,θ

2

))
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major statistical properties of the underlying stock return process and compares the 
statistical properties of the generated underlying stock return process between the 
FinGAN and other baseline generation models. "Model performance and Robustness 
test" section provides the main empirical results and robustness tests on convertible 
bonds pricing performances across DeepPricing and baseline valuation models. "Anal-
ysis of mispricing" section further analyzes the potential influencing factors on the 
mispricing of convertible bonds.

Data description

For the empirical investigations, we obtain daily returns and the basic terms for all 
Chinese convertible bonds listed on the Shanghai and Shenzhen stock exchanges 
from the Wind Database. Besides, to ensure the consistency and reliability of the data, 
we use Bloomberg Database for cross-validation. Within this sample, those that were 
non-publicly raised and lacked an active underlying common stock were excluded 
from the sample. Based on these criteria, our data sample covers a total of 579 con-
vertible bonds and 125,306 observations from January 01, 2010 to June 30, 2021.

To provide additional details, the sample is divided into several categories according to 
either the equity component levels or market states. Following Burlacu (2000), the equity 
component level is classified by � (defined in Eq. 23), the sensitivity of the convertible 
bond value to its underlying common stock. And the debt-liked convertible bonds, the 
balanced convertible bonds, and the equity-liked convertible bonds is determined by its 
belongingness to the intervals [0, 0.33]; [0.33, 0.66]; and [0.66, 1], respectively.

where St is the current price of the underlying stock, Kt is the conversion price, rf  is the 
risk-free rate estimated from Chinese treasury bonds on the issue date, σ is the standard 
deviation of the continuously compounded underlying stock returns, τ is the number 
of years to maturity, δ is the continuously compounded dividend yield, and N(.) is the 
cumulative probability under a standard normal distribution function. The market states 
is classified by the bull market (including subperiod from January 01, 2014 to June 12, 
2015 and subperiod from January 01, 2019 to June 30, 2021), the bear market (including 
subperiod from January 01, 2010 to December 31, 2013; subperiod from June 15, 2015 to 
January 29, 2016; subperiod from January 01, 2018 to December 31, 2018) and the direc-
tion-less market (including subperiod from February 01, 2016 to December 31, 2017).

Table 2 reports some key summary statistics for the sample. Panel A summarizes the 
statistics of the whole sample, Panels B.1, B.2, B.3 provides the information on the sub-
samples by the equity component levels of convertible bonds, and Panels C.1, C.2, C.3 
provides the information on the subsamples across different convertible bond market 
states.

Panel A of Table 2 shows that the mean maturity of all convertible bonds at issuance 
is 5.93 years with 6-years being the longest maturity. Industry, material, and informa-
tion technology accounted for 145 (25.04%), 129 (22.28%), and 89 (15.37%) of the bonds, 
respectively. Consumer discretionary, healthcare, and consumer stables accounted for 

(23)� = e−δτN

(
ln(St/Kt)+ (rf − δ + σ 2/2)τ

σ
√
τ

)
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70 (12.09%), 42 (7.25%), and 37 (6.39%) bonds. Financial corporations accounted for 
34 (5.87%) of the bonds, and the remaining 34 bonds were issued by firms from other 
industries including public utilities (20 or 3.45%), energy (7 or 1.21%), and real estate (6 
or 1.04%)3. The highest credit rating in our sample of bonds was AAA (15.13% of 125,306 
observations) and the lowest was A (0.24% of 125,306 observations). Notice that con-
trary to the US convertible market4, due to the strict issuance conditions, there is almost 
no credit risk in the Chinese convertible bond market. The average convertible bond can 
be converted at a conversion price of 14.70 CNY per share and a conversion premium5 
of 26.38%. The mean total issuance is approximately 259,263.94 CNY million. The daily 
average trading amount and the turnover rate is 103.07 CNY million and 7.66%, respec-
tively, however, the standard deviation of daily average amount and the turnover rate is 
153.90 CNY million and 15.23%, which indicate that the liquidity of individual bonds in 
the Chinese convertible bond market is very different. Panels B.1, B.2 and B.3 show that 
the equity-liked convertible bonds have relatively lower conversion premium ( Brown 
et  al. 2012), higher underlying stock volatility, higher liquidity (higher daily average 
amount and turnover rate). Whereas the debt-liked convertible bonds exactly show the 
opposite features. Moreover, Panels C.1, C.2 and C.3 show that the average conversion 
premium in the bull market is lower than bear market, which indicates that the convert-
ible bond is more equity-liked in the bull market. Meanwhile, convertible bonds in the 
bull market are more liquid than in the bear market.

Baseline methods

As we mentioned in "The DeepPricing model" section, the most important input in con-
vertible bonds valuation framework is the simulation of underlying stock return process. 
In this section, we first introduce three commonly used traditional models to generate 
underlying stock return dynamics, i.e., the Black-Scholes (BS) model, the constant elas-
ticity of variance (CEV) model, the GARCH model. In addition, we also consider two 
state-of-the-art networks, i.e. multilayer perceptron (MLP) and LSTM, to solve the 
time-series simulation problem. For fair comparison, we use the same architecture as the 
FinGAN model shown in Fig. 2 and the MLP and LSTM are only used to instead TCN 
networks.

BS model BS model assumes the underlying stock price St follows the geometric 
Brownian motion in Eq. 24. The volatility is constant and are independent of time and 
the current St.

The volatility σ is measured by the standard deviation defined in Eq. 25, estimated on a 
historical basis, using the time-series data of the underlying stock. The volatility for each 
convertible bond is calculated using daily individual stock returns for 20 trading days 
prior to the first real-time trade data reported to WIND and is assumed to be constant.

(24)dSt = µStdt + σStdBt (t > 0)

3  Not reported in the table.
4  US convertible market is more accessible for issuers who have difficulty entering the traditional bond market due to 
restrictive rating requirements ( Batten et al. 2018).
5  The conversion premium measures the excess of the conversion price over the stock price at issuance as a percentage 
of the stock price.
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Table 2  Summary statistics of the sample

Mean SD Min Q1 Median Q3 Max

Panel A. All convertible bonds

Maturity (years) 5.93 1.15 1.00 4.00 5.00 6.00 6.00

Credit rating 2.72 0.97 1.00 2.00 3.00 3.00 6.00

Conversion price (CNY) 14.70 14.79 2.27 6.88 9.99 16.83 158.00

Conversion premium 
(%)

26.38 31.22 −34.22 7.61 18.06 33.12 356.43

Underlying stock 
volatility

0.40 0.15 0.07 0.29 0.38 0.49 1.30

Total issuance (CNY’ 
Mil.)

259,263.94 596,140.28 18,500.00 62,000.00 98,000.00 215,300.00 5,000,000.00

Daily average amount 
(CNY’ Mil.)

103.07 153.90 3.06 23.75 46.25 109.89 1,440.43

Daily average turnover 
(%)

7.66 15.23 0.34 1.66 3.46 7.15 148.99

Panel B.1. Equity-liked convertible bonds

Maturity (years) 5.72 0.98 1.00 5.00 5.00 6.00 6.00

Credit rating 2.86 0.94 1.00 2.00 3.00 3.00 6.00

Conversion price (CNY) 18.12 19.96 2.27 6.98 11.20 19.75 158.00

Conversion premium 
(%)

8.65 17.41 −34.22 0.27 4.53 11.17 297.58

Underlying stock 
volatility

0.49 0.16 0.10 0.39 0.49 0.59 1.30

Total issuance (CNY’ 
Mil.)

201,029.91 410,261.08 19,157.00 53,800.00 94,183.00 180,000.00 4,000,000.00

Daily average amount 
(CNY’ Mil.)

211.86 379.06 5.24 50.83 93.30 198.31 3,002.40

Daily average turnover 
(%)

16.32 37.03 0.40 3.24 5.37 12.40 408.09

Panel B.2. Balanced convertible bonds

Maturity (years) 5.89 1.02 1.00 4.00 5.00 6.00 6.00

Credit rating 2.72 1.00 1.00 2.00 3.00 3.00 6.00

Conversion price (CNY) 13.56 12.19 2.27 6.15 9.71 16.72 83.85

Conversion premium 
(%)

20.32 18.83 −5.50 11.59 16.95 24.06 344.59

Underlying stock 
volatility

0.37 0.11 0.10 0.30 0.37 0.45 0.94

Total issuance (CNY’ 
Mil.)

255,681.93 547,929.89 18,500.00 60,000.00 98,000.00 230,000.00 4,000,000.00

Daily average amount 
(CNY’ Mil.)

81.67 268.66 2.04 14.60 27.05 54.07 3,182.42

Daily average turnover 
(%)

5.73 18.08 0.20 1.23 1.93 4.24 263.91

Panel B.3. Bond-liked convertible bonds

Maturity (years) 5.62 1.24 1.00 3.00 4.00 5.00 6.00

Credit rating 2.61 0.97 1.00 2.00 3.00 3.00 6.00

Conversion price (CNY) 12.49 9.79 2.27 7.04 9.76 14.74 81.49

Conversion premium 
(%)

48.90 36.75 0.27 25.98 38.26 58.97 356.43

Underlying stock 
volatility

0.32 0.11 0.07 0.24 0.30 0.38 0.86

Total issuance (CNY’ 
Mil.)

318,043.98 760,364.97 18,500.00 71,700.00 100,000.00 241,300.00 5,000,000.00

Daily average amount 
(CNY’ Mil.)

3.51 21.75 0.00 0.24 0.59 1.58 2,973.45
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Table 2 reports the summary statistics of the observed characteristics for the sample of 579 convertible bonds. Maturity 
is the convertible bond’s time to maturity at issuance in years. Rating information is collected from WIND. The numerical 
values for credit ratings are: AAA = 1 , AA+ = 2 , AA = 3 , AA− = 4 , A+ = 5 , A = 6 . The conversion price is the 
prespecified price per share of the underlying stock when conversion takes place. Conversion premium measures the 
percentage by which the conversion price exceeds the underlying stock price. Initial issuance is the convertible bond’s 
issuance size (face value). Daily average amount and turnover is the average daily trading amount and turnover for 
convertible bond i. Panel A reports the statistics of the whole sample, Panels B.1, B.2, B.3 reports the statistics categorized 
by the equity component levels of convertible bonds, and Panels C.1, C.2, C.3 reports the statistics categorized by market 
states. The sample period is from January 01, 2010 through June 30, 2021 and includes 125,306 observations

Table 2  (continued)

Mean SD Min Q1 Median Q3 Max

Daily average turnover 
(%)

2.41 7.06 0.07 0.60 0.84 1.41 83.03

Panel C.1. Bull market

Maturity (years) 5.62 1.18 1.00 4.00 5.00 6.00 6.00

Credit rating 2.81 0.96 1.00 2.00 3.00 3.00 6.00

Conversion price (CNY) 15.20 15.81 2.27 6.78 10.29 16.81 158.00

Conversion premium 
(%)

25.49 32.05 −34.22 6.76 17.16 31.32 356.43

Underlying stock 
volatility

0.41 0.15 0.10 0.30 0.39 0.50 1.30

Total issuance (CNY’ 
Mil.)

213,281.06 499,770.47 18,500.00 59,575.00 92,800.00 187,522.00 5,000,000.00

Daily average amount 
(CNY’ Mil.)

110.10 167.43 1.59 24.41 47.07 114.29 1,440.43

Daily average turnover 
(%)

8.05 15.79 0.21 1.72 3.48 7.41 149.78

Panel C.2. Direction-less market

Maturity (years) 5.87 0.96 2.00 5.00 5.00 6.00 6.00

Credit rating 2.56 0.90 1.00 2.00 3.00 3.00 4.00

Conversion price (CNY) 11.87 6.73 4.26 7.74 9.40 15.25 45.48

Conversion premium 
(%)

32.78 20.72 −4.56 16.24 29.65 46.85 114.30

Underlying stock 
volatility

0.32 0.14 0.11 0.22 0.29 0.39 0.83

Total issuance (CNY’ 
Mil.)

297,016.59 524,006.69 18,500.00 81,366.00 120,000.00 410,558.00 3,000,000.00

Daily average amount 
(CNY’ Mil.)

77.54 77.66 7.58 16.45 59.17 101.17 301.45

Daily average turnover 
(%)

4.79 5.02 0.85 1.19 2.72 6.81 23.98

Panel C.3. Bear market

Maturity (years) 5.74 1.05 1.00 4.00 5.00 6.00 6.00

Credit rating 2.38 1.00 1.00 1.00 3.00 3.00 4.00

Conversion price (CNY) 13.22 10.99 2.40 6.88 9.15 17.47 81.49

Conversion premium 
(%)

28.63 29.39 −10.49 9.74 19.58 36.63 231.42

Underlying stock 
volatility

0.35 0.14 0.07 0.26 0.34 0.43 1.08

Total issuance (CNY’ 
Mil.)

453,004.13 892,501.73 18,500.00 71,700.00 140,000.00 340,000.00 4,000,000.00

Daily average amount 
(CNY’ Mil.)

59.67 125.40 2.06 9.85 23.72 52.33 1,028.21

Daily average turnover 
(%)

2.93 4.15 0.39 0.89 1.51 3.17 26.32
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CEV model CEV model extends the BS model to include the observed inverse depend-
ence of volatility and implied volatility skew (Christie 1982; Cox 1996). The CEV model 
assumes the underlying stock price St take the following form:

The value of β is estimated via the following equation:

where ν = ln σ and κ = β−2
2  . The β for each convertible bond’s issuer is estimated from 

the daily stock returns of 20 trading days prior to the first real-time trade price reported 
to WIND, which is similar to the estimation of volatility discussed earlier.

GARCH (1,1) model GARCH (1,1) model is the simplest way to extend the BS model’s 
constant volatility assumption to GARCH (1,1), in order to capture the volatility patterns 
present in the data, in particular volatility clustering ( Bollerslev (1986)). Following Boller-
slev (1986) and Duan (1995), the conditional variance of the GARCH (1,1) evolves as

where α0 > 0 , α1 ≥ 0 , β1 ≥ 0 and the ǫt are the return residuals, in which ǫt = σtZt with 
Zt ∼ N(0, 1) . σ is estimated from the daily underlying stock returns of 20 trading days 
prior to the first real-time trade price reported to WIND.

FinGAN-MLP model In the FinGAN-MLP model, we use the MLP networks to replace 
the original TCN networks in FinGAN. For a neuron in the MLP, the output oi is defined by 
Eq. 29:

where d is the length of the input rt , ri is the single instance of the input vector, and bj 
and wij are the bias and weights associated with each ri.

FinGAN-LSTM model In the FinGAN-LSTM model, we use the LSTM networks to 
replace the original TCN networks in FinGAN. At each time step, an LSTM maintains a 
hidden vector h and a memory vector c responsible for controlling state updates and out-
puts. More concretely, the operations performed by an LSTM unit at time step t as follows:

(25)σ =

√√√√ 1

N− 1

N∑

t=1

(Rt − R̄)2

(26)dSt = µStdt + σS
β
2
t dBt (t > 0, 0 ≤ β < 2)

(27)ln | ln St+1

St
| = ν + κ ln St + ǫt

(28)σ 2
t = α0 + α1ǫ

2
t−1 + β1σ

2
t−1

(29)oi = φ




d�

j=1

(riwij + bj)




(30)it = σ(Uirt +Wiht−1 + bi)
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where rt denotes the input, W∗ and U∗ are weight matrices, b∗ are the vectors of bias 
term, σ is the sigmoid function, and the operator ⊙ denotes component-wise multiplica-
tion. Finally, the output of the memory cell is calculated by

For more details on LSTM processes, see Zhang et al. (2019).

Comparisons with different stock return generators

In this section, we take Sun Paper (stock code: 002078.SZ), the underlying stock of the 
Sun Convertible Bond (convertible bond code: 128029.SZ), as an example to compare the 
ability of different generation models to characterize the main statistical properties of the 
underlying stock returns process. First, stylized facts of real financial time-series (Cont 
2001; Chakraborti et al. 2011; Takahashi et al. 2019) are reviewed to assess the quality of 
generated data. Second, the reproducibility of statistical properties of different generators 
is analyzed and compared with real financial time-series. Finally, the robustness of training 
process of GAN-based models is reported.

Statistical properties of financial time‑series

The main statistical properties of real stock returns including the linear unpredictability, the 
fat-tailed distribution, the volatility clustering, the leverage effects, the coarse-fine volatility 
correlation, and the gain/loss asymmetry (in the first line of Fig. 4 and Table 3), we give a 
short introduction of each in turn.

Linear unpredictability (LU) linear unpredictability is quantified by the diminishing auto-
correlation function of stock returns, defined in Eq. 36. Empirically, there is no autocorrela-
tion in daily frequency return series (Chakraborti et al. (2011)).

where r̄ and σ are the mean and the standard deviation of the stock return. Figure 4(i-a) 
shows the decay of the autocorrelation of the Sun Paper in daily scale.

Fat-tailed distribution (FTD) fat-tailed distribution is characterized by a higher probabil-
ity density of outliers than the normal distribution. The probability of distribution Pr(rt) 
consistently has a power-law decay in the tails defined in Eq. 37 (Liu et al. 1999). Empiri-
cally, for normal distribution the power law asymptotic exponent α ≥ 5 , and real stock 
return distribution range 3 ≤ α < 5 . The positive-tail ( α = 3.4924 ) of the Sun Paper of 3, 
556 data points in Fig. 4(i-b) is observed.

(31)ft = σ
(
Ug rt +Wght−1 + bg

)

(32)c∗t = tanh (Ucrt +Wcht−1 + bc)

(33)ct = gt ⊙ ct−1 + it ⊙ c∗t

(34)ot = σ(Uort +Woht−1 + bo)

(35)ht = ot ⊙ tanh(ct)

(36)Corr
(
rt , rt+k

)
=

E
[
(rt − r̄)

(
rt+k − r̄

)]

σ 2
≈ 0, for k ≥ 1
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Volatility clustering (VC) volatility clustering refers to the fact that the large/small stock 
return fluctuations tend to cluster together temporally, which indicates the presence of 
the long-range temporal dependence in financial time-series. Quantitatively, volatility 
clustering is characterized with the power law decay of the autocorrelation function of 
the absolute stock returns, defined in Eq. 38 (Cont 2007). The slow and power decay up 
to k ≈ 102 ( β = 1.1194 ) of the Sun Paper of 3,556 data points in Fig. 4(i-c) is observed.

Leverage effect (LE) Leverage effects refer to the tendency that the past stock return has 
a correlation with future volatility6. Quantitatively, leverage effect is characterized with 
the lead-lag correlation function defined in Eq. 39 (Bouchaud et al. 2001; Qiu et al. 2006). 
In the case of the Sun Paper, the positive correlation is found for 1 < k < 10 as shown in 
Fig. 4(i-d).

Coarse-fine volatility correlation (CFVC) Coarse-fine volatility correlation refer to fine 
volatility has the power of predicting coarse volatility. Quantitatively, coarse-fine volatil-
ity correlation is characterized with the negative asymmetry of the lead-lag correlation 
defined in Eq. 40 (Müller et al. 1997; Gavrishchaka and Ganguli (2003).

where the lead-lag correlation of two different time scales volatility ρcf τ (k) is defined in 
Eq. 41,

vτc (t) = |
∑τ

i=1 rt−i| is coarse volatility and vτf (t) =
∑τ

i=1 |rt−i| is fine volatility.
The negative �ρcf τ (k) indicates that fine volatility has the power of predicting coarse 

volatility. Figure 4(i-e) shows the coarse-fine volatility correlation ρcf τ (k) in blue points and 
the lead-lag correlation asymmetry �ρcf τ (k) in orange points. The asymmetry is present in 
the Sun Paper as the value deviates from the zero level indicated by the black dashed line.

Gain/loss asymmetry (GLA) Gain/loss asymmetry refers to the speed of the stock price 
fall is faster than the stock price rise. Quantitatively, gain/loss asymmetry is characterized 
with the probability distribution of Tt

wait(θ) relating to the speed of stock price movement 
to reach the certain positive and negative change ±θ , defined in Eq. 42 (Jensen et al. 2003).

(37)Pr(rt) ∝ r−α
t

(38)Corr
(
|rt |, |rt+k |

)
∝ k−β

(39)L(k) = E[rt |rt+k |2] − rt |rt |2
E[|rt |2]2

(40)�ρcf
τ (k) = ρcf

τ (k)− ρcf
τ (−k)

(41)ρcf
τ (k) = Corr(vτc (t + k), vτf (t))

(42)Tt
wait(θ) =

{
inf{k|r[t,t+k] ≥ θ , k > 0} (θ > 0)

inf{k|r[t,t+k] ≤ θ , k > 0} (θ < 0)

6  Notice that this property is market dependent (Qiu et  al. (2006)). While the negative correlation (leverage effect) is 
observed in German DAX, the positive correlation (anti-leverage effect) is detected in Chinese market.
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Figure  4(i-f ) shows the probability distribution of Tt
wait(θ = 0.1) in red and 

Tt
wait(θ = −0.1) in blue for the Sun Paper. The peak of the positive returns comes before 

the peak of negative returns, indicating the presence of asymmetry in price up/down.

Experiment results

The reproducibility of statistical properties with different models are summarized in 
Fig. 4 and Table 37. The empirical results show that the time-series generated by the Fin-
GAN model satisfies all six major statistical properties of the Sun Paper return series. In 
comparison, the traditional generator such as BS, CEV, GARCH outputs time-series that 
satisfies the stylized facts of the fat-tailed distribution, however, does not successfully 
reproduce the the leverage effect, the asymmetry in coarse-fine volatility correlation 
and the gain/loss asymmetry. While for more state-of-art approaches such as FinGAN-
MLP and FinGAN-LSTM generators outputs time-series also satisfy major statistical 

Fig. 4  Statistical properties for the return process of the Sun Paper and return process generated by BS, CEV, 
GARCH, FinGAN-MLP, FinGAN-LSTM and FinGAN models. (a) Linear unpredictability is shown as the zero 
level of the auto-correlation function of the price return is at zero level for all lags. (b) Fat-tailed distribution 
is demonstrated by the power-law decay of the tails of the probability distribution. (c) Volatility clustering 
is expressed by the slow decay of the auto-correlation function for the absolute values of the price return. 
(d) Leverage effects are shown as the lead-lag correlation of the price return and the price volatility. (e) 
Coarse-fine volatility correlation is shown as the lead-lag correlation of the coarse and the fine volatility. (f) 
Gain/loss asymmetry is shown in the difference of the probability distributions for the time-step required to 
reach a certain positive (red) and negative (blue) price change. The sample period is from November 16, 2006 
through June 30, 2021 and includes 3,556 observations

7  For fair comparison, the FinGAN-MLP and FinGAN-LASM models have been trained with the same optimizer 
(Adam) and learning rate of 1e-5 as FinGAN.
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properties, however, the FinGAN model shows more high-quality synthetic data in com-
parison to real data set based on both visualization (in Fig. 4) and the parameter scope 
(in Table 3).

Robustness of training

It was reported that GANs are difficult to converge during the training process (Sali-
mans et  al. 2016), in this section, the robustness of different GAN-based models are 
tested. Figure 5 shows the loss of the generator and the discriminator in FinGAN-MLP, 
FinGAN-LSTM and FinGAN, respectively. With the same optimizer and learning rate, 
the FinGAN model converges faster than others and converges toward a minimum as 
the network trains. In comparison, the loss of FinGAN-MLP and FinGAN-LSTM mod-
els do not show a stable trend as iterations increase.

Model performance and Robustness test

We conduct empirical studies to discuss the convertible bonds pricing results pro-
duced by DeepPricing and other baseline valuation models. In order to be more com-
parable with baseline models, we use the uniform pricing framework as the DeepPricing 
model. The main difference among the valuation models are the generation models of 
the underlying stock returns. Daily model prices are compared against daily convertible 
bond market prices to determine whether there is fair pricing, overpricing or under-
pricing. Then, the results are pooled to determine the average mispricing for the sample 
using the mean absolute percentage error (MAPE) defined in Eq. 43:

Table 3  Reproducibility of statistical properties with different generators

Table 3 reports the statistical properties for the daily stock returns of the Sun Paper and different stock return generators. LU 
stands for linear unpredictability, I(k) denotes the interval of the diminishing auto-correlation defined in Eq. 36. FTD stands 
for fat-tailed distribution, α is the exponent of the power-law decay defined in Eq. 37. VC stands for volatility clustering, β 
is the exponent of the power-law decay of the auto-correlation function defined in Eq. 38. LE stands for leverage effect, 
L(k) is the range of lead-lag correlation function defined in Eq. 39. CFVC stands for coarse-fine volatility correlation, ρτ

cf (k) 
is defined in Eq. 41, and �ρτ

cf (k) is defined in Eq. 40. GLA stands for gain/loss asymmetry, T twait(θ) is defined in Eq. 42. The 
sample period is from November 16, 2006 through June 30, 2021 and includes 3,556 observations

Model σ LU FTD VC LE CFVC GLA

I(k) α β L(k) ρτ
cf (k) �ρτ

cf (k) T
t

wait

(θ = 0.1)

T twait(θ = −0.1)

Sun 
Paper

0.0293 [−0.0581, 
0.0603]

3.4924 1.1194 [−3.7770, 
3.5193]

[0.0949, 
0.6391]

[−0.0883, 
0.0321]

6 7

BS 1.4418 [−0.3411, 
0.9979]

23.6205 1.3601 [0.1566, 
0.2481]

[0.8256, 
1.0000 ]

[0.0000, 
0.0000]

0 0

CEV 0.9011 [−0.2036, 
0.9988]

5.5313 1.3448 [0.1150, 
0.1298]

[0.9037, 
1.0000 ]

[0.0000, 
0.0000]

0 0

GARCH 0.0005 [−0.0582, 
0.0604]

3.4920 1.0852 [−72.3026, 
51.9073]

[−0.0376, 
0.7069]

[−0.0897, 
0.0230]

0 25

FinGAN-
MLP

0.0347 [−0.0711, 
0.0656]

5.4085 1.0844 [−3.7114, 
5.0010]

[−0.0714, 
0.6410 ]

[−0.0652, 
0.0843]

6 10

FinGAN-
LSTP

0.0312 [−0.0647, 
0.0620]

6.4557 1.0835 [−3.1369, 
3.1684]

[−0.0777, 
0.6003 ]

[−0.0821, 
0.0825 ]

3 3

FinGAN 0.0288 [−0.0627, 
0.0593]

4.8038 1.1061 [−2.7933, 
4.3075]

[−0.0265, 
0.5292 ]

[−0.0865, 
0.0567]

6 7
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where N denote the number of convertible bonds in the daily sample, VMkt
i  is the closed 

prices of convertible bonds; and VModel
i  is the model determined prices for the given 

model.
Moreover, to measure the extent to which one model is better or worse than another, 

we compute pricing differences between two models. Let �MAPEi|j denote the pricing 
difference of a model i over a model j. �MAPEi|j is defined in Eq. 44:

where MAPEi and MAPEj denote the MAPE implied by models i and j, respectively. A 
negative (positive) value of �MAPEi|j means that model i yields lower (higher) pric-
ing errors than model j, implying that the pricing performance of the former is better 
(worse) than that of the latter by a percentage of that value.

Besides, the mean absolute error (MAE) defined in Eq.  45 and �MAEi|j defined in 
Eq. 46 are used for robustness test.

Tables 4 and 5 detail MAPE and MAE pricing performance and improvements across 
different models respectively. The main results for all convertible bonds are offered in 

(43)MAPE = 1

N

N∑

i=1

∣∣∣∣∣
VModel
i − VMkt

i

VMkt
i

∣∣∣∣∣

(44)�MAPEi|j = 100× ln(MAPEi/MAPEj)

(45)MAE = 1

N

N∑

i=1

∣∣∣VModel
i − VMkt

i

∣∣∣

(46)�MAEi|j =100× ln(MAEi/MAEj)

Fig. 5  The loss of FinGAN-MLP, FinGAN-LSTM, FinGAN generator (blue) and discriminator (red) in training are 
presented respectively. The sample period is from November 16, 2006 through June 30, 2021 and includes 
3556 observations
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the first line, moreover, the convertible bonds are respectively broken down by equity 
component levels, market states and moneyness levels in lines 2-5, lines 6-8 and lines 
9-11.

Several important conclusions can be drawn from the MAPE performance metrics89. 
First, for all convertible bonds in the sample, the DeepPricing model has a MAPE of 
0.0721. Based on �MAEi|DeepPricing metrics, the DeepPricing model has a better pric-
ing performance than both model-driven models, i.e. BS, CEV ( β=1), GARCH (1,1) and 
data-driven models, i.e. FinGAN-MLP, FinGAN-LSTM. Secondly, we have broken down 
convertible bonds’ pricing error according to their equity component levels and mar-
ket states to investigate the ability of the models to fit the structure of the convertible 
bonds market. Generally speaking, the equity-liked convertible bonds are more likely to 
be mispriced for all models, as their underlying stock return processes are more vola-
tile and difficult to capture stylized facts. Compared with BS, CEV ( β=1), GARCH (1,1), 
FinGAN-MLP and FinGAN-LSTM models, DeepPricing model much better improves 
the pricing of equity-liked convertible bonds by 26.51%, 23.90%, 17.71%, 12.15%, and 
6.86%; and for bull market by 33.97%, 29.33%, 20.51%, 15.83%, and 6.88%. But for lower 
underlying stock volatility conditions, such as bond-liked convertible bonds or direc-
tion-less market, the results are only by 19.14%, 14.24%, 9.56%, 8.37%, and 4.73%; and 
14.56%, 13.45%, 8.42%, 4.92%, and 2.04%. The results give evidence that the better fitting 
performance of our model stems from the improved modeling of the volatility stylized 
facts of the underlying stock return process. Lastly, we have broken down convertible 
bonds pricing error according to moneyness levels10. Compared with other baseline 
models, the DeepPricing model better improves the pricing of out-of-the-money con-
vertible bonds by 16.99%, 12.82%, 10.50%, 7.54%, and 4.50%, the evidence indicates that 
the DeepPricing model is more flexible to capture the high-dimensional features of the 
stock return process, outperforming other models in fitting the convertible bond market 
implied volatility smirk, especially for out-of-the-money convertible bonds. As the main 
difference between the DeepPricing model and other baseline models is the generation 
methods of the underlying stock return process, i.e. the FinGAN model reproduces more 
accurately stock return series than other generation models, the results also demonstrate 
the simulation of the dynamic process of the underlying stock return has a better effect 
on the efficiency of convertible bond pricing, which is consistent with the empirical con-
clusion of Batten et al. (2018) in USA convertible bond market.

Analysis of mispricing

As the overall pricing efficiency of the Chinese convertible bond market is low, we 
further analyze the factors affecting the pricing of convertible bonds. The empiri-
cal results is provided in Table 6. The dependent variable is the average DeepPricing 
model mispricing degree using the MAPE defined in Eq. 43. The potential influence 

8  The MAE performance metrics for robustness test in Table 5 has also shown the efficiency of the DeepPricing model 
compared to other baseline models.
9  Notice that all our empirical results are due to the fact that the real daily convertible bonds trading prices are used as 
a baseline.
10  Moneyness is defined as the ξ = St/Kt , where Kt is the conversion price and St is the close price of the underlying 
stock. A convertible bond is said to be out-of-the-money if its ξ < 0.99 ; at the money if ξ ∈ [0.99, 1.01] ; in-the-money if 
ξ > 1.01.
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Table 4  Pricing performance across different models: MAPE

BS CEV(β = 1) GARCH(1,1) FinGAN-MLP FinGAN-LSTM DeepPricing

Panel A. MAPE

All 0.0934 0.0924 0.0893 0.0831 0.0797 0.0721

Equity-liked 0.1009 0.0983 0.0924 0.0874 0.0829 0.0774

Balanced 0.0908 0.0827 0.0783 0.0773 0.0746 0.0712

Bond-liked 0.0874 0.0832 0.0794 0.0785 0.0757 0.0722

Bull market 0.1302 0.1243 0.1138 0.1086 0.0993 0.0927

Direction-less market 0.0619 0.0612 0.0582 0.0562 0.0546 0.0535

Bear market 0.0879 0.0874 0.0821 0.0791 0.0769 0.0724

In-the-money 0.0932 0.0926 0.0914 0.0891 0.0862 0.0824

At-the-money 0.0731 0.0713 0.0704 0.0693 0.0681 0.0676

Out-of-the-money 0.0953 0.0914 0.0893 0.0867 0.0841 0.0804

Panel B. �MAPEi|CEV(β=1)

All 1.07 0.00 −3.41 −10.61 −14.79 −24.81

Equity-liked 2.61 0.00 −6.19 −11.75 −17.04 −23.90

Balanced 9.31 0.00 −5.47 −6.75 −10.31 −14.97

Bond-liked 4.90 0.00 -4.67 -5.81 -9.47 -14.24

Bull market 4.64 0.00 −8.83 −13.50 −22.46 −29.33

Direction-less market 1.12 0.00 −5.03 −8.52 −11.41 −13.45

Bear market 0.52 0.00 −6.26 −9.98 −12.80 −18.83

In-the-money 0.64 0.00 −1.30 −3.85 −7.16 −11.67

At-the-money 2.48 0.00 −1.27 −2.85 −4.59 −5.33

Out-of-the-money 4.17 0.00 −2.32 −5.28 −8.32 −12.82

Panel C. �MAPEi|GARCH(1,1)
All 4.49 3.41 0.00 −7.20 −11.37 −21.39

Equity-liked 8.80 6.19 0.00 −5.56 −10.85 −17.71

Balanced 14.78 5.47 0.00 −1.29 −4.84 −9.51

Bond-liked 9.58 4.67 0.00 −1.14 −4.77 −9.56

Bull market 13.46 8.83 0.00 −4.68 −13.63 −20.51

Direction-less market 6.14 5.03 0.00 −3.50 −6.39 −8.42

Bear market 6.77 6.26 0.00 −3.72 −6.54 −12.57

In-the-money 1.95 1.30 0.00 −2.55 −5.86 −10.37

At-the-money 3.75 1.27 0.00 −1.57 −3.32 −4.06

Out-of-the-money 6.49 2.32 0.00 −2.95 −6.00 −10.50

Panel D. �MAPEi|FinGAN-MLP

All 11.68 10.61 7.20 0.00 −4.18 −14.20

Equity-liked 14.36 11.75 5.56 0.00 −5.29 −12.15

Balanced 16.10 6.75 1.29 0.00 −3.56 −8.22

Bond-liked 10.74 5.81 1.14 0.00 −3.63 −8.37

Bull market 18.14 13.50 4.68 0.00 −8.95 −15.83

Direction-less market 9.66 8.52 3.50 0.00 −2.89 −4.92

Bear market 10.55 9.98 3.72 0.00 −2.82 −8.85

In-the-money 4.50 3.85 2.55 0.00 −3.31 −7.82

At-the-money 5.34 2.85 1.57 0.00 −1.75 −2.48

Out-of-the-money 9.46 5.28 2.95 0.00 −3.04 −7.54

Panel E. �MAPEi|FinGAN-LSTM
All 15.86 14.79 11.37 4.18 0.00 −10.02

Equity-liked 19.65 17.04 10.85 5.29 0.00 −6.86

Balanced 19.65 10.31 4.84 3.56 0.00 −4.66

Bond-liked 14.37 9.45 4.77 3.63 0.00 −4.73
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factors including time to maturity ( maturity ), credit spread ( credit ), liquidity, underly-
ing stock volatility ( volatility ), the equity component levels, market state, moneyness 
levels and industry. Notice that we employ two proxies to measure the liquidity of 
convertible bonds: amount (the daily average trading amount) and turnover (daily 
average turnover).

Table 6 reports the regression analysis. A positive coefficient is observed between 
amount and turnover , in which convertible bonds with higher liquidity are more 
likely to be mispriced. This is likely due to there are large number of sentiment-driven 
investors in Chinese capital market, especially in even less mature convertible bond 
market (Zhou et al. 2013), Tan et al. 2021). Convertible bonds with higher liquidity 
are much easier to be hyped by speculative traders, thus, cause market prices deviate 
from their fundamentals values (Keynes 2018).

Consistently, riskier convertible bonds are more likely to be mispriced as indicated 
by positive coefficient with maturity , credit and volatility . Convertible bonds with a 
longer time to maturity, higher rating code (lower quality credit rating), and higher 
volatility are perceived to be riskier by the market and are expected to be mispriced 
(Batten et al. 2018).

Table 4  (continued)

BS CEV(β = 1) GARCH(1,1) FinGAN-MLP FinGAN-LSTM DeepPricing

Bull market 27.09 22.46 13.63 8.95 0.00 −6.88

Direction-less market 12.55 11.41 6.39 2.89 0.00 −2.04

Bear market 13.37 12.80 6.54 2.82 0.00 −6.03

In-the-money 7.81 7.16 5.86 3.31 0.00 −4.51

At-the-money 7.09 4.59 3.32 1.75 0.00 −0.74

Out-of-the-money 12.50 8.32 6.00 3.04 0.00 −4.50

Panel F. �MAPEi|DeepPricing
All 25.88 24.81 21.39 14.20 10.02 0.00

Equity-liked 26.51 23.90 17.71 12.15 6.86 0.00

Balanced 24.28 14.97 9.51 8.22 4.66 0.00

Bond-liked 19.14 14.24 9.56 8.37 4.73 0.00

Bull market 33.97 29.33 20.51 15.83 6.88 0.00

Direction-less market 14.56 13.45 8.42 4.92 2.04 0.00

Bear market 19.35 18.83 12.57 8.85 6.03 0.00

In-the-money 12.31 11.67 10.37 7.82 4.51 0.00

At-the-money 7.81 5.33 4.06 2.48 0.74 0.00

Out-of-the-money 16.99 12.82 10.50 7.54 4.50 0.00

Table 4 shows the MAPE performance metrics across the different models. The metric MAPEi stands for the percentage error 
of a model i as given by Eq. 43. The metric �MAPEi|j measures the pricing performance difference of a model i relative to 
a model j, which is defined by Eq. 44. The debt-liked convertible bonds, the balanced convertible bonds and the equity-
liked convertible bonds is determined by the sensitivity of the convertible bond value to its underlying common stock and 
defined as � (Eq. 23) belongingness to the intervals [0, 0.33]; [0.33, 0.66]; and [0.66, 1], respectively. Market states is classified 
by bull market including subperiod from January 01, 2014 to June 12, 2015 and subperiod from January 01, 2019 to June 
30, 2021, bear market including subperiod from January 01, 2010 to December 31, 2013; subperiod from June 15, 2015 to 
January 29, 2016; subperiod from January 01, 2018 to December 31, 2018 and direction-less market (including subperiod 
from February 01, 2016 to December 31, 2017. Moneyness is defined as the ξ = St/Kt , where Kt is the conversion price and 
St is the close price of underlying stock. A convertible bond is said to be out-of-the-money if its ξ < 0.99 ; at the money if 
ξ ∈ [0.99, 1.01] ; in-the-money if ξ > 1.01 . The sample period is from January 01, 2010 through June 30, 2021 and includes 
125,306 observations
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Table 5  Pricing performance across different models: MAE

BS CEV(β = 1) GARCH(1,1) FinGAN-MLP FinGAN-LSTM DeepPicing

Panel A. MAE

All 12.0287 11.8763 11.1084 10.8231 10.2431 9.8903

Equity-liked 16.188 15.0215 13.4516 11.4863 10.8942 10.1721

Balanced 9.6481 8.1742 7.6872 7.6196 7.3534 7.0184

Bond-liked 9.325 8.0184 7.4203 7.3255 7.1573 6.9218

Bull market 12.8915 11.7632 10.7654 10.1951 9.7792 9.1293

Direction-less market 6.6288 5.9824 5.7324 5.4552 5.2999 5.1932

Bear market 11.9657 10.9873 9.8935 8.8601 8.6137 8.1097

In-the-money 9.7683 8.2943 7.6729 7.4353 7.1933 6.8762

At-the-money 8.7610 7.4985 7.9832 6.9882 6.5759 6.3291

Out-of-the-money 15.4354 14.8621 14.9824 11.8153 11.4910 10.0295

Panel B. �MAEi|CEV(β=1)

All 1.27 0.00 −6.68 −9.29 −14.79 −18.3

Equity-liked 7.48 0.00 −11.04 −26.83 −32.13 −38.98

Balanced 16.58 0.00 −6.14 −7.03 −10.58 −15.24

Bond-liked 15.1 0.00 −7.75 −9.04 −11.36 −14.71

Bull market 9.16 0.00 −8.86 −14.31 −18.47 −25.35

Direction-less market 10.26 0.00 −4.27 −9.23 −12.11 −14.15

Bear market 8.53 0.00 −10.49 −21.52 −24.34 −30.37

In-the-money 16.36 0.00 −7.79 −10.93 −14.24 −18.75

At-the-money 15.56 0.00 6.26 −7.05 −13.13 −16.95

Out-of-the-money 3.79 0.00 0.81 −22.94 −25.73 −39.33

 Panel C. �MAEi|GARCH(1,1)
All 7.96 6.68 0.00 −2.60 −8.11 −11.61

Equity-liked 18.52 11.04 0.00 −15.79 −21.09 −27.94

Balanced 22.72 6.14 0.00 −0.88 −4.44 −9.1

Bond-liked 22.85 7.75 0.00 −1.29 −3.61 −6.95

Bull market 18.02 8.86 0.00 −5.44 −9.61 −16.48

Direction-less market 14.53 4.27 0.00 −4.96 −7.84 −9.88

Bear market 19.02 10.49 0.00 −11.03 −13.85 −19.88

In-the-money 24.15 7.79 0.00 −3.15 −6.45 −10.96

At-the-money 9.3 −6.26 0.00 −13.31 −19.39 −23.22

Out-of-the-money 2.98 −0.81 0.00 −23.75 −26.53 −40.13

Panel D. �MAEi|FinGAN-MLP

All 10.56 9.29 2.60 0.00 −5.51 −9.01

Equity-liked 34.31 26.83 15.79 0.00 −5.29 −12.15

Balanced 23.60 7.03 0.88 0.00 −3.56 −8.22

Bond-liked 24.13 9.04 1.29 0.00 −2.32 −5.67

Bull market 23.47 14.31 5.44 0.00 −4.16 −11.04

Direction-less market 19.49 9.23 4.96 0.00 −2.89 −4.92

Bear market 30.05 21.52 11.03 0.00 −2.82 −8.85

In-the-money 27.29 10.93 3.15 0.00 −3.31 −7.82

At-the-money 22.61 7.05 13.31 0.00 −6.08 −9.91

Out-of-the-money 26.73 22.94 23.75 0.00 −2.78 −16.39

Panel E. �MAEi|FinGAN-LSTM
All 16.07 14.79 8.11 5.51 0.00 −3.50

Equity-liked 39.60 32.13 21.09 5.29 0.00 −6.86

Balanced 27.16 10.58 4.44 3.56 0.00 −4.66

Bond-liked 26.46 11.36 3.61 2.32 0.00 −3.35
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Moreover, the positive sign of Dequity , Dbull and Dotm indicates that equity-liked, 
trading in bull market and out-of-the-money convertible bonds tend to be more likely 
to be mispriced. The results is consistent with the empirical results presented in 
Tables 4 and 5, and this further illustrates the importance of accurately characterizing 
the volatility and high-dimensional features of the underlying stock return process for 
the pricing of convertible bonds.

Investment strategies
In this section, we introduce the investment strategies based on DeepPricing model. As 
the regression results in "Analysis of mispricing" section indicate that the Chinese con-
vertible bond market is a weakly efficient market, with the market-wide variations in 
investor sentiment, the convertible bond prices deviate from their fundamental values 
temporarily. Therefore, the arbitrageurs will benefit from the arbitrage strategy (Long-
Only Strategy) - to long underestimated convertible bonds and short overestimated con-
vertible bonds (Keynes 2018). Moreover, as there exits short-sale constraints in Chinese 
market, we also propose the Long-Only Strategy for more practical application. We first 
introduce the financial concepts used in the process of constructing the strategies, and 
then the Long-Short Strategy and Long-Only Strategy are formally proposed. Finally, the 

Table 5  (continued)

BS CEV(β = 1) GARCH(1,1) FinGAN-MLP FinGAN-LSTM DeepPicing

Bull market 27.63 18.47 9.61 4.16 0.00 −6.88

Direction-less market 22.37 12.11 7.84 2.89 0.00 −2.03

Bear market 32.87 24.34 13.85 2.82 0.00 −6.03

In-the−money 30.60 14.24 6.45 3.31 0.00 −4.51

At-the-money 28.69 13.13 19.39 6.08 0.00 −3.83

Out-of-the-money 29.51 25.73 26.53 2.78 0.00 −13.60

 Panel F. �MAEi|DeepPricing
All 19.57 18.3 11.61 9.01 3.50 0.00

Equity-liked 46.46 38.98 27.94 12.15 6.86 0.00

Balanced 31.82 15.24 9.1 8.21 4.66 0.00

Bond-liked 29.8 14.71 6.95 5.67 3.35 0.00

Bull market 34.51 25.35 16.48 11.04 6.88 0.00

Direction-less market 24.41 14.15 9.88 4.92 2.03 0.00

Bear market 38.9 30.37 19.88 8.85 6.03 0.00

In-the-money 35.11 18.75 10.96 7.82 4.51 0.00

At-the-money 32.52 16.95 23.22 9.91 3.83 0.00

Out-of-the-money 43.11 39.33 40.13 16.39 13.60 0.00

Table 5 shows the MAE performance metrics across the different models for robustness test. The metric MAEi stands for 
the percentage error of a model i as given by Eq. 45. The metric �MAEi|j measures the pricing performance difference of a 
model i relative to a model j, which is defined by Eq. 46. The debt-liked convertible bonds, the balanced convertible bonds 
and the equity-liked convertible bonds is determined by the sensitivity of the convertible bond value to its underlying 
common stock and defined as � (Eq. 23) belongingness to the intervals [0, 0.33]; [0.33, 0.66]; and [0.66, 1], respectively. 
Market states is classified by bull market including subperiod from January 01, 2014 to June 12, 2015 and subperiod from 
January 01, 2019 to June 30, 2021, bear market including subperiod from January 01, 2010 to December 31, 2013; subperiod 
from June 15, 2015 to January 29, 2016; subperiod from January 01, 2018 to December 31, 2018 and direction-less market 
(including subperiod from February 01, 2016 to December 31, 2017. Moneyness is defined as the ξ = St/Kt , where Kt is 
the conversion price and St is the close price of underlying stock. A convertible bond is said to be out-of-the-money if its 
ξ < 0.99 ; at the money if ξ ∈ [0.99, 1.01] ; in-the-money if ξ > 1.01 . The sample period is from January 01, 2010 through 
June 30, 2021 and includes 125,306 observations
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evaluation measures have been presented and we show the performance of the strategies 
in Chinese convertible bond market.

Financial concepts

Following Wang et al. (2019), we introduce some basic financial concepts before propos-
ing investment strategies.

Definition 5  (Holding period) A holding period is a minimum time unit to invest a 
convertible bond. In this work, we divide the time axis as sequential holding periods 
with fixed length - one day. We call the starting time of the t-th holding period as the 
time t.

Definition 6  (Long (Short) position) The long (short) position is the trading operation 
that buys (sells) a convertible bond at time t1 first and then sells (buys) it at t2 . The profit 
of a long position during the period from t1 to t2 for convertible bond i is vi(p(i)t2 − p

(i)
t1
) , 

while the profit of a short position is vi(p(i)t1 − p
(i)
t2
) , where vi is the buying (selling) vol-

ume of convertible bond i and p(i) is the price of convertible bond i at time t.

Table 6  Analysis of mispricing

Table 6 reports the results of the regression analysis. The mispricing is measured by MAPE defined in Eq. 43. maturity is the 
time to maturity in years, the numerical values for credit ratings are: AAA = 1 , AA+ = 2 , AA = 3 , AA− = 4 , A+ = 5 , 
A = 6 , amount is the daily average trading amount and turnover is the daily average turnover. volatility ) is the volatility 
of underlying stock return. Dequity is a dummy variable that equals one for an equity-liked convertible bond and zero 
otherwise. Dbalanced is a dummy variable that equals one for a balanced convertible bond and zero otherwise. Dbond is 
a dummy variable that equals one for an bond-liked convertible bond and zero otherwise. Dbull is a dummy variable that 
equals one if the trade is executed in bull market and zero otherwise. Dbear is a dummy variable that equals one if the trade 
is executed in bear market and zero otherwise. Ddirectionless is a dummy variable that equals one if the trade is executed 
in direction-less market and zero otherwise. Ditm is a dummy variable that equals one for a in-the-money convertible bond 
and zero otherwise. Datm is a dummy variable that equals one for a at-the-money convertible bond and zero otherwise. 
Dotm is a dummy variable that equals one for an out-of-the-money convertible bond and zero otherwise. Dfin is a dummy 
variable that equals one if the issuer is a financial firm and zero otherwise. ***, ** and * denote significance at 1%, 5%, and 
10%, respectively. The sample period is from January 01, 2010 through June 30, 2021 and includes 125,306 observations

Variables MAPE t-value

constant −0.0037** (−2.25)

maturity 0.0012*** (3.01)

credit 0.0107*** (28.11)

amount 0.0001*** (26.28)

turnover 0.0025** (2.05)

volatility 0.1617*** (59.30)

Dequity 0.0128*** (14.28)

Dbalanced 0.0027*** (3.89)

Dbond −0.0119*** (−20.99)

Dbull 0.0143*** (18.87)

Ddirectionless −0.0202*** (−11.46)

Dbear 0.0309*** (29.62)

Ditm −0.0001 (0.59)

Datm 0.0001*** (2.80)

Dotm 0.0034*** (−34.93)

Dfin −0.0163 (−13.54)
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Definition 7  (Investment portfolio) Given a convertible bond pool with I convertible 
bonds, a portfolio is defined as a vector c = (c(1), ..., c(i), ..., c(I))⊤ , where c(i) is the pro-
portion of the investment on convertible bond i, with 

∑I
i=1 c

(i) = 1.

Definition 8  (Zero-investment portfolio) A zero-investment portfolio is a collec-
tion of convertible bonds portfolios that has a net total investment of zero when the 
portfolios are assembled. Assume we have a collection of convertible bonds portfolios 
{c(1), ..., c(j), ..., c(J )} . The investment on portfolio c(j) is M(j) , with M(j) ≥ 0 when taking a 
long position on and M(j) ≤ 0 when taking a short position. Then, for a zero-investment 
portfolio containing J portfolios, the total investment 

∑J
j=1M

(j) = 0.

Investment strategies

Long‑short strategy

We execute long-short strategy as a zero-investment portfolio consisting of two portfo-
lios: a long portfolio for underestimated convertible bonds and a short portfolio for over-
estimated convertible bonds. Given a sequential investment with T periods, we denote 
the short portfolio for the t-th period as c−t  and the long portfolio as c+t , t = 1, ...,T .

At time t, we first rank the convertible bonds in ascending order in accordance with 
the mispricing for the sample using the percentage error (PE) based on the DeepPricing 
model price defined in Eq. 47 and partition them into deciles.

where VMkt
it  is the closed prices of convertible bond i at time t, and VModel

it  is the prices 
determined by DeepPricing model. Notice that PEit > 0 means the convertible bond i is 
underestimated at time t, while PEit < 0 means the convertible bond i is overestimated 
at time t.

Then, given a budget constraint M̄ , we short the convertible bonds ranked in bottom 
decile in according to the equal or value weighted investment proportion in c−t  from bro-
kers. The volume of convertible bond i that we can short is

where c−(i)
t  is the proportion of convertible bond i in c−t  . After that, we use M̄ to long 

the convertible bonds ranked in top decile in according to the equal or value weighted 
investment proportion in c+t  . The volume of convertible bond i that we can long at time 
t is

The money M̄ we used to long stocks is the proceeds of short selling, so the net invest-
ment on the portfolio {c+t , c−t } is zero.

Finally, at the end of the t-th holding period, we sell convertible bonds in the long 
portfolio. The money we can get is the proceeds of selling convertible bonds using new 
prices at t + 1 for all convertible bonds, i.e.,

(47)PEit =
VModel
it − VMkt

it

VMkt
it

(48)v
−(i)
t = M̄ · c−(i)

t /p
(i)
t

(49)v
+(i)
t = M̄ · c+(i)

t /p
(i)
t
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Also, we buy the convertible bonds in the short portfolio back and return them to the 
broker. The money we spend on buying the short convertible bonds is

The ensemble profit earned by the long and short portfolios is Mt = M+
t −M−

t  . Let 
z
(i)
t = p

(i)
t+1/p

(i)
t  denote the price rising rate of convertible bonds i in the t-th holding 

period. Then, the rate of return of the ensemble portfolio is calculated as

Long‑only strategy

We execute long-only strategy at a given budget constraint M̄ and long underes-
timated convertible bonds. Given a sequential investment with T periods, the long 
portfolio is donated as c+t , t = 1, ...,T .

At time t, we first rank the convertible bonds in ascending order in accordance with 
the mispricing for the sample using the percentage error (PE) based on the DeepPric-
ing model price defined in Eq. 47 and partition them into deciles.

Then, we only long the convertible bonds ranked in top decile in according to the 
equal or value-weighted investment proportion in c+t  s. The volume of convertible 
bond i that we can long at time t is

At the end of the t-th holding period, we sell convertible bonds in the long portfolio. The 
money we can get is the proceeds of selling convertible bonds using new prices at t + 1 
for all convertible bonds, i.e.,

Let z(i)t = p
(i)
t+1/p

(i)
t  denote the price rising rate of convertible bonds i in the t-th holding 

period. Then, the rate of return is calculated as

(50)M+
t =

I∑

i=1

v
+(i)
t p

(i)
t+1 =

I∑

i=1

M̄ · c+(i)
t

p
(i)
t+1

p
(i)
t

(51)M−
t =

I ′∑

i=1

v
+(i)
t p

(i)
t+1 =

I ′∑

i=1

M̄ · c−(i)
t

p
(i)
t+1

p
(i)
t

(52)Rt =
Mt

M̄
=

I∑

i=1

c
+(i)
t z

(i)
t −

I ′∑

i=1

c
−(i)
t z

(i)
t

(53)v
+(i)
t = M̄ · c+(i)

t /p
(i)
t

(54)M+
t =

I∑

i=1

v
+(i)
t p

(i)
t+1 =

I∑

i=1

M̄ · c+(i)
t

p
(i)
t+1

p
(i)
t

(55)Rt =
M+

t

M̄
=

I∑

i=1

c
+(i)
t z

(i)
t
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Evaluation measures

We select several important evaluation metrics to evaluate the model performance on 
a standard back-rest platform, including profitability - annualized return, risk - annu-
alized volatility, the maximum drawdown and downside deviation, and performance 
ratios - Sharpe Ratio, Sortino Ratio and Calmar ratio.

Annualized return (AR) annualized return is an annualized average of return rate. It 
is defined as ART = AT ×NY  , where NY  is the number of holding periods in a year.

Annualized volatility (AVOL) annualized volatility is an annualized average of vola-
tility. It is defined as AVOLT = VT ×

√
NY  and is used to measure the average risk of 

a strategy during an unit time period.
Max drawdown (MDD) max drawdown is the maximum loss from a peak to a 

trough of a portfolio, before a new peak is attained. It is the other way to measure the 
investment risk. The formalized definition of MDD is

Downside deviation (DD) downside deviation ratio measures the downside risk of 
a strategy as the average of returns when it falls below a minimum acceptable return 
(MAR). The formalized definition of DD is given as

Annualized sharpe ratio (ASR) Annualized sharpe ratio is a risk-adjusted profit measure 
based on AR and AVOL.The formalized definition of ASR is ASRT = ART /AVOLT .

Sortino ratio (STR): Sortino ratio is a risk-adjusted profit measure based on AR and 
DD. The formalized definition of STR is STRT = ART /DDT .

Calmar ratio (CR): Calmar ratio is a risk-adjusted profit measure based on AR and 
MDD. The formalized definition of CR is CRT = ART /MDDT .

Strategy performance

Figure  6 are the equally-weighted and value-weighted cumulative returns of Long-Short 
Strategy and long-only strategy, respectively. In general, during the sample period from Jan-
uary 01, 2018 to June 30, 2021, Long-Short Strategy earns annualized return with 41.16% 
and 42.52% annualized return for equally-weighted portfolio and value-weighted portfo-
lio, respectively. And long-only strategy earns annualized return with 31.06% and 37.09% 
annualized return for equally-weighted portfolio and value-weighted portfolio, respec-
tively. Moreover, the performances evaluated by other measures are listed in Table 711.

Conclusion
In this paper, we propose DeepPricing, a FinGAN based model for pricing convertible 
bonds. Extending traditional model-driven stock return generators, the method is more 
flexible and accurate than the baseline methods to capture dynamics of the underlying 

(56)MDDT = max
τ∈[1,T ]

(
max
t∈[1,τ ]

(
ARt − ARτ

ARt

))

(57)DDT =
√

E[min (Rt ,MAR)]2

11  Notice that strategy returns are computed in the absence of transaction costs.
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stock return process by adopting a novel financial time-series generative adversarial net-
works, as it is able to reproduce risk-neutral stock return process that retains the major 
stylized facts such as the linear unpredictability, the fat-tailed distributions, the volatility 
clustering, the leverage effects, the coarse-fine volatility correlation, and the gain/loss 
asymmetry.

We implement the DeepPricing model and conduct an extensive empirical pricing 
study for the Chinese convertible bond market, covering daily prices from January 01, 
2010 to June 30, 2021. Several important conclusions can be drawn. First, the DeepPric-
ing model has a much better convertible bonds pricing performance than the traditional 
model-based generators such as BS, CEV, GARCH and data-driven generators such as 
FinGAN-MLP and FinGAN-LSTM. Second, we find that due to the higher reproduc-
ibility of stylized facts, the DeepPricing model substantially improves the pricing of 
equity-liked convertible bonds, the convertible bonds trading in the bull market and 
out-of-the-money convertible bonds. The results indicate that the DeepPricing model is 
more flexible to capture the volatility and high-dimensional features of the underlying 
stock return process, outperforming other models in fitting higher volatility convert-
ible bonds and the overall market implied volatility smirk. Third, we analyze the factors 
affecting the pricing of convertible bonds. Empirical results show that convertible bonds 
which are higher-liquidity, riskier (longer time to maturity, lower quality credit rating, 
higher volatility), equity-liked, trading in the bull market and out-of-the-money tend 
to be more likely to be mispriced. The results are consistent with the convertible bond 
pricing performance, and further illustrate the importance of accurately characterizing 
the volatility and high-dimensional features for the pricing of convertible bonds. Finally, 

Fig. 6  The cumulative return in Chinese convertible bond market based on DeepPricing model, the sample 
period is from January 01, 2018 through June 30, 2021
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the investment strategies based on the DeepPricing model are proposed. Both long-short 
strategy and long-only strategy earn a significant annualized return with 41.16% and 
31.06% for equally-weighted portfolio and 42.52% and 37.09% for the value-weighted 
portfolio during the sample period, respectively.

This paper provides a new attempt to apply the GAN-based method for the pricing of 
convertible bonds. For future research, it can be applied for the pricing of other complex 
path-dependent derivatives.

Appendix
The implement details of FinGAN

We use TensorFlow to implement FinGAN. For all of the components (encoder, decoder, 
generator, and discriminator networks), we used TCNs with skip connections. Inside 
the TCN architecture, the block module is composed of temporal blocks each contain-
ing two dilated causal convolutions and two PReLUs as activation functions. The TCN 
architecture is illustrated in Table 8. Table 9 shows the input, hidden and output dimen-
sions of the models. Note that for all models, the hidden dimension was set to 80, the 
kernel size of each temporal block, except the first block, was 2, and the receptive field 
size of each TCN is 127.

Table 7  Strategy performance in Chinese convertible bond market based on DeepPricing model

Table 7 reports the evaluation metrics of Long-short strategy and Long-only strategy, respectively. AR stands for annualized 
return, AVOL stands for annualized volatility, MDD stands for max drawdown, DD stands for downside deviation, ASR stands 
for annualized Sharpe ratio, STR stands for sortino ratio, CR stands for calmar ratio. The sample period is from January 01, 
2018 through June 30, 2021

AR AVOL MDD DD ASR STR CR

Equally-weighted

Panel A.1. Long-short strategy

Long-short 0.4116 0.3260 0.2178 0.1985 1.2626 2.0737 1.8901

Long-only 0.3106 0.1653 0.1034 0.1094 1.8793 2.8389 3.0049

Short-only −0.1009 0.3629 0.2541 02787 −0.2782 −0.3622 −0.3973

Panel A.2. Long-only strategy

Long-only 0.3106 0.1653 0.1034 0.1094 1.8793 2.8389 3.0049

Convertible bonds 
Index (equally-
weighted)

0.1394 0.1324 0.0739 0.0929 1.0533 1.5004 1.8873

Excess return 0.1712 0.0987 0.0566 0.0598 1.7353 2.8615 3.0249

Value-weighted

Panel B.1. Long-short strategy

Long-short 0.4252 0.3300 0.2409 0.2054 1.2884 2.0701 1.7650

Long-only 0.3709 0.2050 0.1562 0.1284 1.8089 2.8879 2.3737

Short-only −0.0543 0.3395 0.2389 0.2569 −0.1600 −0.2115 −0.2274

Panel B.2. Long-only strategy

Long-only 0.3709 0.2050 0.1562 0.1284 1.8089 2.8879 2.3737

Convertible bonds 
Index (value-
weighted)

0.0789 0.1116 0.0828 0.0774 0.7064 1.0194 0.9521

Excess return 0.2920 0.1509 0.0998 0.0854 1.9356 3.4185 2.9252
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