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Introduction and literature review

Since the uncertainty and unpredictability of the economic policy and investment envi-
ronment increase over time, predicting financial market movement is very challenging
for scholars and practitioners. Thus, the measurement of the uncertainty in the financial
market has attracted enormous attention, e.g., Jurado et al. (2015), Baker et al. (2016)
and Huang and Luk (2020). Economic agents typically define uncertainty as the condi-
tional volatility of a disturbance, which is generally unpredictable (Jurado et al. 2015).

In recent years, an increasing number of studies have focused on the linkage between
uncertainty and financial market dynamics. For example, several studies have associated
the uncertainty therein with stock returns and volatility (Pastor and Veronesi 2012; Li
et al. 2020; Megaritis et al. 2021), commodity prices and volatility (Karabulut et al. 2020;
Guo et al. 2022), corporate credit spreads (Kaviani et al. 2020), leverage levels (Khan
et al. 2020), financial stability (Phan et al. 2021), etc.

Volatility is a well-known indicator for measuring asset price risk. It features a wide
range of applications in the fields of finance and economics, such as risk manage-
ment, asset pricing, and hedging strategies (Chkili 2021; Gong et al. 2022). Moreover,
volatility exerts a significant predictive power on potential output growth (Vu 2015).
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Consequently, an elucidation of the determinants of volatility is quite relevant for
investors and policymakers. Volatility is conventionally measured with daily or lower-
frequency data [the standard deviation of asset returns, Generalized AutoRegressive
Conditional Heteroskedasticity (GARCH)-type model, and so on (Zhang et al. 2021)].
The appearance of the realized volatility (RV), as proposed by Andersen et al. (2001),
shortens the distance between the estimated and real volatilities and has been widely
adopted in the literature. Compared with the low-frequency one, RV contains richer
market information.

Here, we employed five-minute sampling data to construct RV and reduce market
microstructure noise to focus on the issue of the high-frequency relationship between
the uncertainty index (UI) and realized variance (volatility) in global stock markets.
Dissimilar to many studies that had investigated a single extant uncertainty indicator
(Liu and Zhang 2015; Megaritis et al. 2021), we explored uncertainty from the equity
market, investor, and economic policy levels. Thereafter, we constructed a composite
UI based on the scaled principal component analysis (s-PCA) method that was intro-
duced by Huang et al. (2021). Additionally, two well-known competing methods, PCA
and the partial least squares (PLS) methods, were employed as competing models.

The motivations were derived from several aspects. Firstly, owing to the increas-
ing trend of international investment, it is necessary to develop a relatively fixed and
internationalized risk indicator that monitors market risk dynamics. Particularly, the
intensities of the interactions among the global economic entities have grown through
the increased liberalization of international trade (Tsai 2017). An increasing number
of investors allocate their assets to global markets. Figure 1 shows that the global eco-
nomic policy uncertainty (EPU) index of Baker et al. (2016) tended to the fluctuant
and uncertain international investment environment. Under this condition, monitor-
ing the stock price risk in each market through different indicators might not be an
ideal choice because it requires time to separately respond to each market; moreover,
it is expensive to simultaneously monitor the stock price risk in each market. There-
fore, a relatively fixed indicator that can comprehensively predict the risk of interna-
tional investment is necessary and convenient for investors to rapidly reach their next
investment decisions.

Secondly, only a few studies in the literature focused on the high-frequency rela-
tionship between uncertainty and stock volatility. Recent studies offered suffi-
cient evidence confirming that low-frequency uncertainty measures can explain
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potential financial market volatility. For example, the EPU exerts a significant pre-
dictive power on stock volatility (Liu and Zhang 2015; Li et al. 2020), forex volatil-
ity (Christou et al. 2018), and European Union allowance futures volatility (Liu et al.
2021). Moreover, Megaritis et al. (2021) argued that the macroeconomic uncertainty
sufficiently predicts the U.S. stock volatility. However, the foregoing mainly focused
on low-frequency monthly data, even though it is crucial to consider the high-fre-
quency (microcosmic) relationship between uncertainty and volatility. For one thing,
many uncertain events, such as the China-US trade war (2018-2019), which was
announced by then President Donald Trump on Twitter on August 23, 2019, and the
COVID-19 pandemic, which began with the lockdown of Wuhan on January 23, 2020,
occur instantaneously. These unexpected events can significantly influence the finan-
cial market. A low-frequency investigation cannot readily elucidate this real-time
dynamic and random change. For another, compared with the low-frequency vola-
tility, a high-frequency-data-based RV comprises richer trading information and can
consistently estimate the true integrated volatility (Andersen et al. 2001). Thus, eluci-
dating the determinants of volatility from the microcosmic perspective is crucial for
market participants, particularly short-term investors, to accurately detect financial
risks.

Thirdly, many studies in the literature have investigated the predictability of a single
Ul in a single market (see references in the previous paragraph). It is very interesting to
determine whether there is a relatively fixed composite uncertainty indicator that affects
international stock markets. This motivation is straightforward and twofold. One, we
anticipate a composite index that can reflect a more comprehensive market uncertainty
(MU) by capturing uncertainty from different perspectives, such as economic policies
and investor behaviors. Compared with a single indicator, the composite index, which
is constructed via a dimension-reduction method, could exhibit more robust and out-
standing performances in prediction tasks (Neely et al. 2014; Gong et al. 2022). Moreo-
ver, a robust composite index is required since this study focuses on international stock
market forecasting. For the other fold, we anticipate that a relatively fixed index could
influence numerous markets since many studies have documented the strong links, such
as volatility co-movement (Cipollini et al. 2015), volatility spillovers (Diebold and Yilmaz
2009), and contagion (Chiang and Wang 2011), among international financial markets.
Numerous findings have demonstrated significant volatility spillover effects from the
U.S. market on other markets, such as the Pacific-Basin (Ng 2000) and European mar-
kets (Baele 2005). Thus, the U.S.-market-based composite UI could potentially impact
other markets.

Finally, applying the dimension-reduction technique to the extraction of relevant
information from different types of factors has received enormous attention, thus
inspiring this study. For example, PCA is generally employed to predict stock volatil-
ity (Zhang et al. 2020) and risk premium (Neely et al. 2014). Huang et al. (2015) and
Gong et al. (2022) exploited PLS to construct an aligned sentiment index, thereby signif-
icantly improving the returns and volatility forecasting, respectively. In a recent study by
Huang et al. (2021), an s-PCA method, which demonstrated remarkable predictive per-
formance in macroeconomic forecasting, was developed. Based on this work, Guo et al.
(2022) and Yan et al. (2022) confirmed that the s-PCA-based PU index exhibits more
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powerful predictability on crude oil volatility compared with other competing methods.
Moreover, s-PCA is also employed to extract predictive information from macro vari-
ables (Huang et al. 2020), technical indicators (He et al. 2021), liquidity indicators (Liao
et al. 2021), and investor-attention indicators (Chen et al. 2022). They reported that the
s-PCA method improves market returns forecasting. However, it is largely unknown if
the s-PCA method is also effective for the prediction of stock volatility, which is fun-
damentally different from the forecasting of returns (Zhang et al. 2021). Moreover, the
application scenarios of the method could be further expanded. Dissimilar to their stud-
ies, we applied the s-PCA method to construct a global-level composite uncertainty
indicator, which is very beneficial to market participants, as discussed above. Finally
and significantly, although Guo et al. (2022) and Yan et al. (2022) argued that the s-PCA
method outperforms other competing models, the valid evidence to demonstrate why
the s-PCA method is better is still rare, and we will attempt to fill this gap.

Fundamentally, we analyzed the channel from the financial environment uncertainty
to the stock price or financial one (Goodell et al. 2020). One theoretical basis derives
from increasing the uncertainty about future discount rates, cash flows (dividends), and
capital structures. For example, Pastor and Veronesi (2012) revealed that the change in
policy or a new policy exerts uncertain impacts on profitability, which will increase the
discount rates. Moreover, Megaritis et al. (2021) observed that a significant percentage
of stock market fluctuations cannot be explained by fundamentals but only by latent
macroeconomic uncertainties. The unexplained component is driven by the uncertainty
surrounding future dividend yields. Furthermore, Khan et al. (2020) reported that the
listed firms would decrease the level of leverage when the uncertainty increases, thus
affecting a firms’ capital structure.

The shocks due to extreme events, such as financial crises and epidemic diseases,
account for another channel that explains the predictability of uncertainty on volatility.
Naturally, such extreme events occur randomly and intangibly because of the challenge
of pre-identifying the factor that generates them. This uncertain factor easily results in
irrational trading and contributes to market fluctuations. Academically, numerous stud-
ies, e.g., Choudhry (2010) and Wang et al. (2020b), have demonstrated that extreme
events can significantly produce violent fluctuations in the stock market. The occur-
rences of extreme shocks will force market participants to focus more on the financial
market dynamics, particularly large asset price fluctuations, and these shocks trigger
herding activity and could spread the crisis to neighboring markets (Chiang and Zheng
2010).

To investigate the impacts of uncertainty indices on stock volatilities in 23 relevant
international markets, the empirical design was described as follows: the well-known
Heterogeneous AutoRegressive-RV (HAR-RV) model (Corsi 2009) was employed
as a benchmark model. Next, we employed the PCA, PLS, and s-PCA models to
construct the composite uncertainty indices based on a news-based equity market
uncertainty (EMU) index (Bakera et al. 2019), investor uncertainty indices measured
by market liquidity (Uygur and Tas 2014), implied volatility index (VIX) of the Chi-
cago Board Options Exchange (CBOE) (Deeney et al. 2015), and EPUs from the U.S.,
UK., and China (Baker et al. 2016; Huang and Luk 2020). The benchmark model
was extended by adding these uncertainty indices, followed by investigating the
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in-sample and out-of-sample performances. Additionally, several robustness checks
were performed, and they supported the result that s-PCA is superior to PCA and
PLS. Finally, we discussed why s-PCA outperforms PCA and PLS.

By investigating the predictive power of the proposed composite UI on stock vola-
tilities, this study contributed to the literature in the following aspects. First, a global
composite Ul based on s-PCA was proposed. This approach is more comprehensive
compared with that which was adopted by Yan et al. (2022) and Guo et al. (2022),
who developed a composite index employing the s-PCA method on policy-related
indices only. The composite index positively affects stock volatility, indicating that
a higher uncertainty in the financial environment would increase the price uncer-
tainty, and this is consistent with the theoretical basis and extant studies (Liu and
Zhang 2015; Li et al. 2020). Moreover, it exerts significant in- and out-of-sample pre-
dictive powers on stock volatility in the 23 markets, although it also exhibited a bet-
ter and more robust out-of-sample performance than the PCA and PLS methods in
most stock markets. Furthermore, this index benefits investors in making decisions,
because it is constructed mainly based on the U.S. market data and is relatively fixed.

Second, we observed that VIX is a powerful volatility predictor in most stock mar-
kets, and this correlates with the results reported by Wang et al. (2020a); Liang et al.
(2020); Megaritis et al. (2021). Additionally, we availed new evidence that the change
in VIX (DVIX) exerts a greater short-term predictive power on stock volatility than
itself in most markets. Conversely, VIX outperforms DIVX in long-term forecast-
ing. Thus, our results indicated that international investors must focus on different
indicator forms (itself or its change) for different investment horizons (short-term
or long-term). Moreover, high-frequency EPUs exhibit weak predictability on stock
volatility, disagreeing with much extant evidence from monthly frequencies, e.g., Liu
and Zhang (2015) and Li et al. (2020). This indicates that it is not rational to apply
daily EPUs to the identification of market risk movement, which should be a warn-
ing to market participants.

Finally, this study empirically answered the question regarding why s-PCA out-
performs PCA and PLS via time-varying loadings. We demonstrated that the main
contributors of the PCA, PLS, and s-PCA factors are markedly different. More spe-
cifically, the loadings of the PCA factors exhibited generally equal relevance. Thus,
its predictability would be reduced in the presence of strong and weak predictors.
Further, the PLS method can effectively identify the main predictors but cannot rea-
sonably assign weights. Contrarily, s-PCA is a superior method because it can effec-
tively extract relevant predictive information and extract weak factors by placing a
higher (lower) weight on the powerful (weak) predictors, thus ensuring a better pre-
diction performance.

The remainder of this paper is organized as follows: “Measurement” section pre-
sents the measurements; “Methodology” section introduces the methodologies; and
“Empirical analysis” section reports the empirical results, including the in-sample,
out-of-sample, longer forecast horizon, and robustness analyses. “Predictability
analyses” section further analyzes the difference in the predictability methods from
the microcosmic perspective. Finally, our conclusions are reported in “Conclusion”

section.
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Measurement

This section introduces the measurement methods, including RV and Uls, employed
in this study. We demonstrated the uncertainty measures from three aspects, including
MU, investor uncertainty, and EPU.

Realized variance

The utilization of high-frequency data to model volatility is a well-known and widely
accepted approach because it could be a good proxy for real volatility. Realized variance,’
indicated as RV, the sum of the squared log-returns, as defined by Andersen et al. (2001),
is a simple, efficient, and consistent estimator of volatility. To overcome the influence of
microstructure noise, sampling every five minutes is a common method. Following this,

RV on the trading day, ¢, is given by the following:
My
RV, =Y "1}, )
j=1

where r;; = log (pt,,') —log (Pt,jfl) is the logarithmic returns from time, j — 1 to j; py;
refers to the closing price on the jth five-minute point in the trading periods; and M;
denotes the number of five-minute intervals in the ¢th trading period.

Uncertainty variable

Two aspects are generally considered when selecting the uncertainty measures. One
involves focusing on the high-frequency relationship, and the other involves exploring a
relatively fixed UI that exerts a significant predictive power on international stock mar-
kets. Thus, the following uncertainty measures were employed. They are mainly derived
from the American market since it is the biggest and most developed capital market
worldwide.

Equity market uncertainty

Facing the big data area, the media account for the main source of information for the
public. Different types of participants, including retail and institutional investors, man-
agers, and policymakers, exist in this field. Thus, we cannot ignore the information
from the media that are related to MU. Accordingly, we employed the newspaper-based
equity market uncertainty index (EMU), which was proposed by Bakera et al. (2019),
to capture the uncertainty reported by the media. EMU was constructed employing the
scaled frequency counts of newspaper articles that contain the following three types of
sets: economic, economy, and financial; stock market, equity, equities, etc.; and volatility,

volatile, risk, etc.

Investor uncertainty
We postulated that investor psychology, which dominates investors’ behaviors, can be
viewed as a source of uncertainty in the financial market for two reasons. One, investor

! Realized variance is the square of realized volatility and thus they have the same economic meanings. Although we
focus on realized variance in this study, we use the terms stock volatility and realized variance interchangeably.
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psychology is unpredictable because it changes with the information that are available
to the investor. Thus, investor psychology can reflect uncertain information from the
market via investors. Secondly, investor sentiment and attention are good measures for
capturing investors’ cognitive biases (Baker and Wurgler 2006; Da et al. 2011). Inves-
tor sentiment is regarded as the propensity to generally speculate (display optimism or
pessimism) markets. Put differently, investor sentiment comprises future expectations.
Investor attention is defined as a scarce cognitive resource. Extreme events are expected
to increase investors’ attention via Internet activities, e.g., the search volume on Google.
Thus, investor psychology must be the source of uncertainty in the financial market.

Considering the availability of high-frequency data, the first employed investor uncer-
tainty was the CBOE volatility index (VIX) because it is a proxy of investor sentiment
(Deeney et al. 2015), which is also employed as an uncertainty measure (Wang et al.
2020a; Megaritis et al. 2021). Considering that VIX is a popular and powerful factor that
affects the financial market, we further focused on the changes therein, indicated by
DVIX, to capture the change in investor uncertainty. Another measure is the change in
the trading volume (VOL) of the National Association of Securities Dealers Automated
Quotations (NASDAQ) composite index. This measure is regarded as an information
flow (Zhang et al. 2021), and is a good proxy of market liquidity, which adequately
reflects investor sentiment (Baker and Wurgler 2006; Uygur and Tas 2014).

Economic policy uncertainty

Aldy and Viscusi (2014) reported that environmental risks might comprise the most
relevant policy-related applications of the economics of risk and uncertainty. The link-
age between EPU and economic activities has been widely proven, e.g., Liu and Zhang
(2015); Li et al. (2020). However, the studies focused on low-frequency analysis; the
microcosmic evidence is lacking. We selected EPUs from the U.S. (USEPU), UK.
(UKEPU), and China (CNEPU) since they constitute powerful and influential countries
globally. Another reason is the availability of high-frequency data. The newspaper-based
USEPU and UKEPU indexes were proposed by Baker et al. (2016) who measure uncer-
tainty by calculating the number of keywords in leading newspapers, such as economic
or economy; uncertain or uncertainty. Although Baker et al. (2016) also introduced
CNEPU, we employed the measure proposed by Huang and Luk (2020) because it is
based on more comprehensive materials, including ten influential newspapers in main-

land China.

Methodology
Dimension reduction methods
A single Ul could be limited to predicting the stock volatility in international markets;
thus, a composite index is required because it can capture uncertainty from a more com-
prehensive perspective. Moreover, considering all the Uls in a “kitchen sink” model, it
is easy to achieve in-sample over-fitting and poor out-of-sample performances (Huang
et al. 2015, 2021). To address it, this study introduced three types of dimension-reduc-
tion methods to construct composite indexes.

Assuming that there were N uncertainty indicators, u;; for i =1,---,N, that are
relevant but imperfect predictor variables of the target variable (RV) denoted by
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Table 1 Definition of uncertainty variables

Variable Definition Full period Trading days Data source

EMU Equity market uncertainty index for the 2001/1/1-2021/08/31 7548 Public website 1
United States (Log)

VIX The CBOE volatility index (Log) 2001/1/2-2021/08/31 5199 Public website 2

DVIX The CBOE volatility index (Log change) 2001/1/2-2021/08/31 5199 Public website 2

VOL Volume of NASDAQ stock index (investor 2001/1/2-2021/08/31 5199 Public website 2
sentiment proxy, Log change)

USEPU  Economic policy uncertainty for the United  2001/1/1-2021/08/31 7548 Public website 1
States (Log change)

UKEPU  Economic policy uncertainty for the United  2001/1/1-2021/08/31 7548 Public website 1
Kingdom (Log change)

CNEPU  Economic policy uncertainty for Chinese 2001/1/1-2021/08/31 7548 Public website 3

mainland (Log change)

This table reports the information of uncertainty indexes. The public websites are accessed by following websites: Public
website 1 (Economic policy uncertainty for the US and the UK): https://www.policyuncertainty.com/, Public website 2
(Yahoo Finance): https://finance.yahoo.com/, Public website 3 (Economic policy uncertainty for China): https://economicpo
licyuncertaintyinchina.weebly.com/

U, = (I»t1,;:, Uty uN,t)/ fort =1,---,T,where T refers to the number of observations.
U = {EMU, DVIX, VOL, USEPU, UKEPU, CNEPU} for the following analyses, as well as
the definition of each u;, are presented in Table 1. Notably, we employed DVIX here, rather
than VIX, to consider the stationarity of time series, which aims to avoid incorrect statisti-
cal inferences. Following the convention, we standardized each predictor in set U before
constructing these composite uncertainty indicators.

PCA and s-PCA techniques

The oldest and most commonly employed approach for combining predictors into a
lower-dimensional linear space is the (PCA) model, which could preserve the covariance
structure among these factors (Gu et al. 2020). Mathematically, the PCA model extracts
diffusion indexes as linear combinations of the predictors, i.e., set U in this study, via the
following equation:

wip = wi + AP + ¢y, i=1,2,---,N, t=12,...,T, 2)

FPCA is the PCA diffusion indexes that were extracted from

where
u; = (ul,t, Ugts e, uN,t)/, which is a K-dimensional vector (K << N), /, is the
K-dimensional parameter to be estimated; and e;; is the idiosyncratic noise term.
Although PCA is a well-known dimension-reduction technique that has been widely
employed in the literature, it is limited by its negligence of the ultimate statistical objective.
An improved target-driven dimension-reduction method is the s-PCA method that was
recently proposed by Huang et al. (2021); it scales each predictor variable with its predictive
slope on the to-be-predicted target. This method is implemented by the following two
steps: first, we generated a panel of scaled predictors, (él Uz, él Uty - éN MN,z), in which

the coefficient, 6;, was the estimated slope from regressing the target variable on the ith
uncertainty predictor, u;, as follows:

log(RVy) = 00 + iy + €y, i=1,2,---,N. (3)


https://www.policyuncertainty.com/
https://finance.yahoo.com/
https://economicpolicyuncertaintyinchina.weebly.com/
https://economicpolicyuncertaintyinchina.weebly.com/
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Second, similar to Eq. (2), we applied PCA to (élul,t,élug,t, .. .,éNuN,t) to extract the

factors and forecast the target variable. Compared with PCA, Huang et al. (2021) argued
that the s-PCA exhibited several advantages: (i) s-PCA could distinguish between the
target-relevant and -irrelevant latent factors when the factors are strong, while PCA
could not; (ii) s-PCA could extract the signals from a large amount of noise, while PCA
failed to do that, thus resulting in biased forecasts even when all the factors were weak.

Subsequently, we investigated two cases involving the use of s-PCA: in the first case,
we employed the first principal component to measure a composite Ul, denoted by
s-FPCA. In the other case, we employed a weight s-PCA, following Gong et al. (2022),
and defined as follows:

M M
Us—PCA — Z (PC?—PCA . eigeni) / Zeigen‘, (4)
i=1 j=1
where PC;~PCA is the ith principal component, eigen, is its eigenvalue, and M is the total

number of principal components. Compared with s-FPCA, the weighted s-PCA index
(s-PCA) comprises more predictive information that could be useful since it is screened
by the target variable.

PLS technique
Another supervised learning technique is the PLS (PLS) method, which can separate the
irrelevant component from the proxy variables and extract the predictive information
for the forecasting task (Huang et al. 2015). Following Huang et al. (2015) and Gong et al.
(2022), PLS can be implemented via the following two steps:

In the first step, we ran the time-series regressions N times, where N is the number
of basic uncertainty proxies. More specifically, each uncertainty predictor variable, u;;,
regressed on a constant and logarithmic RV. Namely,

Uip = ¢io + ¢ log(RVy) + €5, t=1,2,...,T, )

where the loading ¢; captures the sensitivity of each u; to the uncertainty measure that
was instrumented by RV.

In the second step, T cross-sectional regressions were run. For each time period, ¢, we
regressed u; on the estimated coefficient, i, in the regression 5 and obtained the following:

Uit = Wt + UI?Lsél + Eits i= 11 2; o )N, (6)

where the slope of this regression, UIfLS, is the estimated PLS uncertainty index.

Notably, we employed contemporaneous regression in the target-related equations,
Eq. (3) and (5), differing from the application in the return predictions of Huang et al.
(2015) and Huang et al. (2021). This is because the volatility was highly autocorrelated,
dissimilar to the asset returns. The predictive information regarding the volatility must
exert a potential predictive power on one-step-ahead volatilities. Moreover, the volatility
model below considers the historical information on the volatility. Thus, focusing on the
contemporaneous target variable can prevent the overlap of information between the
volatility and uncertainty indicators.
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This study investigated whether there was a fixed uncertainty indicator that signifi-
cantly impacted stock volatility in international markets. Thus, the target variables in
Egs. (3) and (5) were set as the logarithmic RVs of the Dow Jones Industrial Average
(DJIA) stock index. This is because the U.S. market is the biggest and most developed
capital market. Moreover, the well-known volatility spillover effects examined the
shocks from the U.S. to other markets, such as the European equity (Baele 2005) and
Pacific-Basin (Ng 2000) markets. Therefore, we assumed that the composite uncertainty
indicator, which is driven by the volatility of the U.S. stock market, might effectively pre-
dict other equity markets.

Predictive regression model and its extension

To investigate whether UI is an effective factor for predicting stock volatility, we first
set the HAR-RV model that was proposed by Corsi (2009) as the benchmark model.
This model is based on the heterogeneous market hypothesis, where the heterogeneity
derives from the differences in time horizons, i.e., the different types of market partici-
pants, such as high- and low-frequency traders, exert different impacts on future volatil-
ity. The HAR-RV model is formulated as follows:

RV =a0+a PRV, + ™RV + o™ RV* 4+ ¢, ?)

where RVt(m) =" RVi_y41/m, and h denote the forecast horizon.

Afterward, following Liang et al. (2020); Zhang et al. (2021) among others, we incor-
porated UI into the HAR-RV model. Apparently, the HAR-RV-UI model was specified
as follows:

RV, = o+ a PRV, + «™ RV + o« RV* 4 BUIL, + €4, (8)

where the key variable Ul ¢{lEMU, VIX, DVIX, VOL, USEPU, UKEPU, CNEPU, PCA,
PLS, s-FPCA, s-PCA}. In the following, we focused on the coefficient, B, since its signifi-
cance reflects the predictability of UL

Regarding the estimations of the parameters of the predictive regression models (7)
and (8), we employed the logarithmic RV to ensure that the distributions were more
approximately Gaussian, following the report of Paye (2012), Gong et al. (2022) and
others. This prevented achieving a misleading statistical inference in the ordinary least
squares (OLS) estimation. Notably, we employed the information available only up to
time ¢ to predict the target variable in time ¢ + /4, to avoid the look-ahead bias in the
out-of-sample analysis. More specifically, when employing the composite Ul to predict
RV, we calculated PCA, PLS, s-FPCA, and s-PCA recurrently with only the in-sample
data to avoid the usage of the out-of-sample information for the prediction of the out-of-
sample RV.

Forecast combination

Although this study mainly focused on the relationship between UI and stock volatil-
ity, we also compared the predictive performances of the dimension-reduction methods
and forecast-combination methods since the latter is widely employed as the competing
models, e.g., Guo et al. (2022) and Yan et al. (2022). The forecast combinations employed
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all the predictive information from each predictor (Set {/) and combined them to obtain
the final prediction. This method can be mathematically described as follows Timmer-
mann (2006) and Weiss et al. (2018): First, we ran the HAR-RV-UI model (8) on each
uncertainty indicator u; (€ U) to obtain the individual forecasts

—~ . () 2 iy 2=G) oy == (22) N

RV i1 = Goy +@DRV 0 +G0VRV, ) + &RV ) + BuUly, ©9)

&,(,d), &S,W), &,(f"), and ﬁn are the estimated coefficients from model (8) of the

where, &g 4,
nth uncertainty indicator employing the information up to time ¢t — 1, and n=1, 2, - -+,
N. Thereafter, the final prediction was obtained by combining the individual forecasts

based on some weight schemes, as follows:

N

¢ _
RV = an,t—len,tlt—l, (10)
n=1

where C is the combination style determined by the weight, w;_1, given at time, t — 1.

Three types of classical forecast combinations were employed as the competing mod-
els. The first simple method is the mean combination (MC) obtained by averaging all the
individual forecasts as follows:

—~ MC 1 ~ —~ —~
RV i1 = N(thltfl,l +RVye—12+ -+ RVy—1N), (11)

ie,wpr—1 =1/N.
The second simple-weighted method is the median combination (MEDC) obtained
from the median values of the individual forecasts, as exhibited below:

—~ MEDC L~ . —
th|t_1 = Median{RV y;—1,1, RV ¢t—1,2, -+ \ RV si—1,N } (12)

The winsorized mean (WMC) is the final combination, which handles outliers employ-
ing a softer line. This method caps outliers at a certain level, and it is specified as follows:

—~ WMC 1 —~ NN —~
RV = N ANRV 1t 1 ;N+1 + Z RVijt—1,n + ANRV i1 N—iN |5 (13)
n=AN-+1

where 1 is also a trim factor, i.e., the top/bottom 100 A% are winsorized, that takes
the value of 0.1 in the empirical analysis; RV is the ith statistic by increasing order in
{IE\\/ n}]nv=1~ This measure involves taking the (AN)th smallest and (AN)th largest fore-
casts and equating them to the (AN + 1)th smallest and (AN + 1)th largest forecasts,
respectively.

Out-of-sample regression mechanism and evaluation criteria

Out-of-sample predictability could change with time since many extreme events, such
as the sub-prime crisis in 2008 and the COVID-19 pandemic in 2020, occurred during
our sampling periods. Following Catania and Proietti (2020), we addressed this employ-
ing a rolling window regression method, which is a common technique for evaluating
stability and prediction accuracies in time-series forecasting. More specifically, we split
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the full sample, 7, into initial train data (in-sample) with a fixed window length, W, and
test data (out-of-sample) with 7' — W observations. This fixed window method replaces
one old observation and a new one. In the empirical analysis, we employed a four-year
window, i.e., W = 1000, to conduct the investigations. As alternative robustness checks,
W = 2000 and 3000 were discussed.

To assess the out-of-sample relative performance of the Ul model concerning the
benchmark model, following Huang et al. (2015) and Neely et al. (2014), the out-of-sam-
ple R? (R%)S) was employed to evaluate the out-of-sample performance. It is given by the

following:
Tos IC V. VU 2
5 t=1"t (R rt — R f,t) . .
Rog=1— 5> C=Full, Expansions, Contractions,
1o 1€ (RV, — RVE,)

(14)

where RV, refers to the actual RV, R\/f]?t and RVfUt are the fitted values from the bench-
mark (7) and UI (8) models, respectively, Tos denotes the out-of-sample size, and I is an
indicator function whose value is 1 if day ¢ belongs to the periods of C and 0 otherwise.
Computing R separately during economic expansions and contractions clarifies
whether UI exerts a significant out-of-sample predictive power over the different eco-
nomic periods.

We expected RZOS to be significantly positive from a statistical perspective, i.e., the
mean square prediction error (MSPE) from the competing model is expected to be less
than that of the benchmark model, indicating that UI can improve the out-of-sample
predictive performance. We exploited an approximately normal test that was developed
by Clark and West (2007) for equal predictive accuracy. The null (alternative) hypothesis
states that the benchmark model has equal or less (larger) MSPE with the competing
model, corresponding to Hy: R%)s < 0 against Hu: R%)s > 0. To realize it, we regressed
the time series f”t, formulated by

jim (v )= (- mg) - (g -mi)] s

on a constant and calculated the ¢ statistic corresponding to the constant coefficient.
Thereafter, the ¢ statistic from a one-tailed (right) test was employed for the statistical

decision.

Empirical analysis

This section discusses the predictability of Uls on RVs of international stock markets
based on in- and out-of-sample analyses. Moreover, we investigated its predictive power
on longer horizons. Finally, several robustness checks were designed to analyze the per-
formances of the uncertainty indicators under different conditions.

Data and statistical analyses

The information regarding the single uncertainty variables, including the abbreviations,
definitions, periods, and data sources of the variables, are presented in Table 1. Moreo-
ver, we focused on 23 stock markets globally, e.g., the U.S., Australia, Belgium, Brazil,
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Canada, China, Denmark, Euro Area, Finland, France, Germany, Hong Kong, India,
Italy, Japan, Mexico, Norway, Pakistan, South Korea, Spain, Sweden, Switzerland, and
the U.K,, covering five continents, as well as developed and developing markets. Notably,
these markets were the main focus of the literature. We obtained the high-frequency RV
data of stock indexes from the realized library.>

Table 2 presents description statistics of the RVs. Most stock indexes covered the
period between January 1, 2001, and August 31, 2021. Some exhibited a shorter inter-
val owing to data availability. The autocorrelation coefficients (p) revealed that RVs were
highly dependent, thus indicating the rationality of modeling the HAR-RV model. More-
over, the Jarque and Bera (1987) statistic (JB-stat) rejects the null hypothesis, indicating
that all the time series did not follow the normal distribution. Thus, it was necessary to
take the logarithm transformation in the empirical analysis to avoid misleading statisti-
cal inferences. The augmented Dickey—Fuller (ADF) statistic, which was developed by
Cheung and Lai (1995), indicated that all the time series were stationary, and this is a
sufficient condition for conducting econometric analyses. Finally, the difference in the
observations (Obs.) indicated that each market had a different number of trading days.

Figure 2 shows the time dynamics of the uncertainty indicators and RVs. The shaded
area highlights the National Bureau of Economic Research (NBER)-dated economic
recession periods.® Evidently, RVs increased during the economic contractions, par-
ticularly during the 2008 sub-prime crisis and the COVID-19 pandemic. This result is
consistent with the trends of EMU and VIX. However, it was challenging to determine
whether there was a potential relationship between EPUs and the economic cycle since
EPUs fluctuate frequently and irregularly. Moreover, regarding the VOL, we observed
a relatively subdued tendency. Finally, we noted that several stock indexes, which the
economic cycle could not capture, fluctuated acutely. For example, the Chinese stock
market (SSEC) fluctuated greatly and frequently before the 2008 sub-prime crisis and
was shocked between 2015 and 2016 owing to the well-known 2015-2016 Chinese stock
market turbulence. Additionally, the Pakistani stock market (KSE) exhibited continuous
fluctuations over time. These findings indicate that these stock markets were not steady
and could cause many challenges to the prediction task.

In-sample analysis

Table 3 reports the in-sample results of the one-step-ahead forecasts (4 = 1). For the
single Uls, we observed that EMU, VIX, DVIX, and VOL significantly impacted RVs
in most stock markets. More specifically, EMU and VIX performed poorly only in the
Chinese market (SSEC). VOL could not predict stock volatility in the American (DJI)
and Pakistan (KSE) markets. Surprisingly and interestingly, the change in VIX (DVIX)
performed well in all the stock markets. What’s more, DVIX delivered a better predic-
tive performance than VIX according to the magnitude of the adjusted R?, indicating
that the changes in VIX exerted more power to capture the market dynamics than itself.
Moreover, the positive coefficients indicated that volatility increases with uncertainty.

2 See https://realized.oxford-man.ox.ac.uk/.

3 We split economic expansions and recessions following the NBER, see https://www.nber.org/research/data/us-busin
ess-cycle-expansions-and-contractions.


https://realized.oxford-man.ox.ac.uk/
https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions
https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions
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This result is consistent with some findings regarding the relationship between uncer-
tainty and volatility, e.g., Li et al. (2020) and Megaritis et al. (2021). The results indicate
that the uncertainty information about the U.S. market could effectively impact the stock
volatility in many international stock markets.

However, the predictive abilities of the EPU indexes were weak. Each EPU exerts sig-
nificant impacts on several markets (<4) from the perspective of the number of sig-
nificant results. From the significant-level perspective, most of the results were not
statistically significant or were significant at a low level (10% or 5%). These findings indi-
cated that EPUs were not strong predictor variables for predicting stock volatility. This
contradicts the arguments of Li et al. (2020) and Liu and Zhang (2015), who observed a
significant relationship between EPU and stock volatility. This might be because we uti-
lized high-frequency data, while they utilized a monthly frequency.

The composite Uls demonstrated a robust and significant predictive power on all stock
markets except for PLS of the Chinese market (SSEC). This result was expected since
the composite indices were derived from many single uncertainty indicators exhibiting
significant predictabilities on RV in international stock markets. Moreover, the highest
adjusted R’s often appear in the s-PCA index, indicating that this composite uncertainty
indicator exerted the best in-sample predictability. Notably, the composite Uls exhib-
ited very close predictability with DVIX, which is the best volatility factor in the single
uncertainty indicators. Thus, the predictive ability of the composite Uls might mainly
derive from DVIX.

Out-of-sample analysis
Table 4 presents the out-of-sample results. The bold font highlights the significantly pos-
itive R% s, and the underline font highlights the highest one.* We observed that EMU,
VIX, DVIX, and VOL exhibited insignificant the out-of-sample predictive abilities in
only a few stock markets. More specifically, EMU exhibited poor ability in forecasting
RVs in Italy (FTMIB), Canada (GSPTSE), Pakistan (KSE), and China (SSEC). VIX and
DVIX did not perform well in only SSEC and KSE, respectively. Additionally, VOL could
not effectively predict the stock volatilities in Brazil (BVSP), America (D]I), Pakistan
(KSE), and China (SSEC). The terrible performances in China and Pakistan were predict-
able because the volatilities of both markets fluctuated greatly and frequently (see Fig-
ure 2). Moreover, compared with VIX, we noted that DVIX exerted stronger predictive
ability in most markets based on its greater R3s. Thus, DVIX is a better indicator for
identifying the potential movement of stock volatility compared with VIX. This finding
meaningfully supplements the extant literature investigating the short-term impact of
VIX on stock volatility, e.g., Wang et al. (2020a) and Liang et al. (2020). However, most
EPUs performed poorly and even had negative R% values in most cases, indicating that
the high-frequency relation between EPU and stock volatility was not significant.

The composite Uls exhibited significant predictability on RVs in all the markets
except for s-FPCA of KSE. Thus, compared with the single uncertainty indicators, the

4 Note that the Rés is not very large in some cases but statistically significant. This is common since we use hi%h—fre—
quency data in this study. A similar result described in He et al. (2021) reports that the statistically significant R5s are
18.38%, 14.53%, and 0.55% for monthly, weekly, and daily frequency, respectively.
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composite indices delivered more robust prediction results. What’s more, the s-PCA
methods performed better than PCA and PLS according to the magnitude of R%, indi-
cating that the s-PCA method exerted a higher power to capture prediction information
from single uncertainty indicators and incorporate lesser noise. Although the composite
indexes exhibited the highest RZOS (the underlined ones) occasionally, their prediction
accuracy was inferior to those of DVIX in some cases, implying that the predictability

was mainly derived from DVIX.

Comparison with the forecast combination models

We compared the prediction accuracy of the dimension-reduction methods and the
forecast combination methods based on the model confidence set (MCS) test of Hansen
et al. (2011). The results based on the Tmax statistic, which were evaluated by MSPE
and the mean absolute error (MAE), are presented in Table 5.° We set the confidence
level to be 90%, indicating that a model was excluded from MCS if the p-value was <0.1.
The p-values were obtained based on 10,000 block bootstraps. The results demonstrated
that the maximum p-value generally appeared in the s-(F)PCA model, indicating that
the s-(F)PCA model exhibited better prediction accuracies in different evaluation indi-
cators and different stock markets (except for KSE) than the competing models from the

statistical perspective.

Longer forecast horizon analyses

To determine whether the predictability of Uls was persistent, we further investigated
the out-of-sample performance on longer forecasts horizons. More specifically, we set
horizon % as 3, 6, and 12, and Table 6 presents the corresponding results. To conserve
space, we only reported the results of Rés, where the bold font indicates that the value
was significantly positive, following the test by Clark and West (2007) and the under-
line font denotes that the value was the highest in the corresponding row. Overall, most
Uls exerted a significant predictive power on longer horizons, although their impacts
decreased with the increasing forecast horizon (except for several particular cases). This
result indicated the persistence of their predictive abilities. Interestingly, VIX performed
better on the longer prediction horizons because many of the highest Rzoss (the under-
lined ones) appeared. Thus, considering the long view, VIX was more effective for fore-

casting stock volatility concerning other uncertainty indicators.

Robustness analyses

Robustness check for different window lengths

Table 7 presents the out-of-sample results when the lengths of the rolling window
(W) were set at 2000 and 3000. We observed that the changes in the window lengths
exerted weak impacts on the results reported above. VIX and DVIX were also the
most significant single uncertainty indicators for international stock markets. Particu-
larly, DVIX exerted a significant predictive power on RVs of all the markets, including

% The result based on the TR statistic is consistent with the TMAX statistic results. The results are not reported owing
to space limitations but are available from the authors. For details of MCS test, one can refer to Hansen et al. (2011) and
Zhao et al. (2021).
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KSE, where it performed poorly when W=1000. Moreover, PLS could not predict the
stock volatility in Finland (OMXHPI) and Sweden (OMXSPI) when W=3000, indicat-
ing that its predictive power was unstable in several cases. Finally, s-PCA exhibited
more robust and outstanding predictabilities in the composite indexes. Overall, the
results were robust when the window lengths were changed in the rolling regression
framework.

Robustness check for the business cycle

The predictability of stock volatility has been proven to change over time. Paye (2012)
observed that the predictive performance changed in different subperiods. This sub-
section discussed a robustness check to identify whether the out-of-sample predicta-
bility changed in the business cycle. Table 8 presents the out-of-sample results during
the NBER-dated U.S. economic expansions and contractions.

Regarding the single UI, we observed that DVIX exhibited robust predictive ability
during the economic expansions and recessions in most markets except for KSE and
Mexico (MXX). Moreover, VIX exhibited poor performance during economic reces-
sions in many countries, including Belgium (BFX), America (D]I), the U.K. (FTSE), Spain
(IBEX), Japan (N225), Denmark (OMXC20), Sweden (OMXSPI), Norway (OSEAX),
China (SSEC), and Switzerland (SSMI). This indicated that VIX was not a robust predic-
tor in many markets, which the extant literature did not report, e.g., Wang et al. (2020a)
and Liang et al. (2020). Further, this result highlights that DVIX was superior to VIX
regarding robustness. Moreover, EMU and VOL exerted robust explanatory powers on
potential RVs during expansions and recessions in most stock markets, indicating that
they were relatively significant volatility predictors for forecasting international stock
market volatilities. Finally, EPUs performed poorly in both periods, as always.

Regarding the composite Uls, dissimilar to VIX, PCA exhibited a weak predictive
ability over the economic contractions in a few countries. This result is consistent
with that of Gong et al. (2022) who observed that the investor sentiment predicted
stock volatility better under economic expansion conditions than under recession
ones. This might be related to the increases in uncertainty during an economic reces-
sion, which results in poor predictive performance employing an unsupervised learn-
ing method, such as PCA. Moreover, PLS and s-PCA were the only robust indexes
that exerted a significant predictive power in both expansions and recessions based
on the positive R%. Interestingly, for PLS, we observed that it exhibited a better out-
of-sample performance during recessions than during expansions, indicating that the
PLS method could capture more prediction information during economic recessions.

Robustness check employing realized semi-variances as the response variable

Although RV, which has attracted enormous attention in the literature, is a popular
measure for identifying market risks, the realized semi-variance, which captures the
impacts of negative returns (downside risk), could be more relevant to investors. This
measure was developed by Barndorft-Nielsen et al. (2010) and defined by the follow-

ing equation:
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t
RS; =) Inj<0-rij, (16)

where 1,”.<0 is an indicator function that takes the value of unity if r;; < 0 and zero oth-
erwise. We replaced (log)RV with (log)RS in the regression models (7) and (8). Table 9
reports the results of whether Uls impacted the realized semi-variance in global stock
markets. The results demonstrated that the findings were consistent with RV. More spe-
cifically, VIX, DVIX, and s-PCA were the main, significant, and powerful contributors to
the prediction of stock downside risks in international markets, respectively. Moreover,
some Uls exerted a significantly higher predictive power on the Australian stock market,
as evidenced by the large R%¢s (27.25% and 22.99% for DVIX and s-PCA, respectively).

Predictability analyses

The empirical results revealed significant differences among the uncertainty indica-
tors regarding predictability. This section further analyzed the reasons. To do this, two
schemes were designed. In the first one, we compared the prediction errors of all the
models, and in the second, we investigated why the composite indexes delivered differ-
ent out-of-sample performances by analyzing the loadings of the dimension-reduction
methods.

Comparison of the prediction error
We conducted the analyses from the following two dimensions. On the one hand, we
focused on the time dimension, and on the other, we compared which uncertainty meas-
ure exhibited better-fitted values in longer periods. For example, if DVIX produced a
smaller prediction error in more periods than the other indexes, it was considered to
demonstrate a greater possibility for achieving high prediction accuracy. Conversely, we
focused on the stability dimension. More specifically, we focused on the volatility of the
prediction errors. If the residuals fluctuated wildly, it must be unstable. Many extremely
predicted values (colossal prediction error) could significantly affect the prediction accu-
racy. Thus, we expected more stable prediction results, which exhibited less extreme
predicted values.

Owing to the outstanding out-of-sample performance of DVIX, we set it as the bench-
mark and compared the prediction errors between it and the other Uls (u) over time. We
first discussed the time dimension. To do this, we defined the following:

e b ‘RVDVIX RV, l ’ —RVy|,t=1,2,--,Tos a”
! 0. otherwise
Next, we defined a “superior probability’, as follows:
Tos ryu
1 Dy
Psup = Z (18)
Tos

The condition val,)tVIX — RV, | <

‘RV“ — RV, ;| indicated whether the residual error

derived from the HAR-RV-DVIX model was not larger than that derived from the
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HAR-RV-u model on day ¢, where u € UI'\ {DVIX}. Thus, Eq. (18) measures the proba-
bility of DVIX to produce a smaller residual error compared with the other Uls.

Table 10 presents the superior probability, ps,y, in each market, where the bold font
highlights that the probability was <50%. DVIX outperformed the other uncertainty
indicators in predicting RVs during more than half of the out-of-sample periods. This is
a universal phenomenon except for the s-(F)PCA indexes in most markets. Notably, the
out-of-sample size was between 1994 and 4176, indicating that 1% in p,, denoted 20-42
observations. Thus, DVIX exhibited better performance than the others except for the
s-(F)PCA indexes since it had smaller prediction errors in longer periods.

We noted that the predicted value of DVIX was more often closer to the real value
than the other Uls were, although the superiority did not appear to be very significant
since the superior probabilities approached 50%. Thus, we further analyzed the (abso-
lute) prediction error sequence to investigate the impacts of the extreme values (from
the stability dimension). Table 11 presents the 99%, 95%, and 90% quantiles of the pre-
diction error sequences of Uls after subtracting that of DVIX. The positive (negative)
ones denote that the prediction error of DVIX at the quantile was smaller (larger) than
those of Uls. We highlighted the negative ones in bold font. The results demonstrated
that most Uls exhibited higher extreme prediction errors than DVIX, indicating that
DVIX delivered better prediction results since its prediction errors were more stable
(exhibiting less-extreme values). Finally, compared with DVIX, we observed that the
s-PCA-based index exhibited an advantage and a disadvantage in the time and stability
dimensions. This could account for why they exhibited their prediction advantages in
different markets.

Comparison of the composite Uls

The empirical results demonstrated that the PCA-based and PLS-based composite Uls
demonstrated lower prediction accuracies compared with the s-PCA-based ones. This
subsection further discusses the loadings of these dimension-reduction methods to
explain the result. Put differently, we analyzed the main contributors of these compos-
ite indexes. Dissimilar to the findings of He et al. (2021) and Neely et al. (2014) who
employed static analysis to discuss the loadings, we employed dynamic analysis to dem-
onstrate the change in the loadings with time, and this enabled us to observe the changes
in the weight over time and prevented particularity. Based on the one-step-ahead rolling
(W=1000), we calculated the loadings recurrently. Thus, the length of a series of load-
ings correlated with the out-of-sample size.

Time-varying loadings of the PCA factors

Figure 3 displays the loadings of the PCA factors over time. First, we observed that each
loading changed over time, indicating that the contribution of each predictor to the PCA
factor was time-varying. Thus, the time-varying analysis was more suitable compared
with the static analysis. Moreover, we observed that every single Ul exhibited approxi-
mate loadings, indicating that each predictor in the PCA component played an equally
essential role all the time or sometimes. Notably, EPUs exhibited a limited explanatory
power on RVs, which should destroy the predictability of PCA.
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Fig. 3 Time-varying loadings of the PCA factors (W = 1000)
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Fig. 5 Time-varying loadings of the Scaled-PCA factors (W = 1000)

Time-varying loadings of the PLS factors

Figure 4 shows that the loadings of the PLS factors were more stable over time com-
pared with those of the PCA method except for EMU. The figure shows that EMU exhib-
ited the largest weight, followed by VOL, DVIX, and the other predictors, indicating
that EMU was the main contributor to UI of PLS even though it exhibited time-varying
weights. Revisiting the in- and out-of-sample results (Tables 3 and 4), EMU, VOL, and
DVIX exerted a significant predictive power on stock volatility in most markets. Thus,
PLS performed better than PCA since it could identify and extract the significant predic-
tors and reduce the impacts of the insignificant predictors (EPUs).

Time-varying loadings of the s-PCA factors

Figure 5 shows the time-varying loadings of the s-PCA factors. Interestingly, the fig-
ure shows that the s-PCA-based index was mainly constructed by DVIX and VOL
since they exhibited a significantly higher weight than the other predictors. VOL
dominated other predictors before 2009, while DVIX became the main contributor
afterward. For the other predictors (EPUs and EMU), we observed that their weights
approached zero over time, indicating that their contributions to the s-PCA-based
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Fig. 6 Comparison of uncertainty indices before and after crises

Uls were limited. Recall that DVIX delivered more outstanding in- and out-of-sample
performances than VOL and the other predictors in volatility forecasting. Although
PLS and s-PCA were supervised learning techniques, s-PCA could further differenti-
ate between the relative importance of the strong predictors. Put differently, s-PCA
could identify the better (worse) predictors, DVIX and VOL, and place more (less)
weights on them, while PLS could only identify the powerful predictors but could not
arrange reasonable weights. Thus, s-PCA is a more effective dimension-reduction
method in the presence of strong and weak predictors.

Index performance during the financial crises

To further observe the differences among composite Uls intuitively, we depicted their
time series. Considering that we employed daily data, which were collected within a
long period, we demonstrated the time series before and after two well-known cri-
ses, namely the 2008 subprime crisis (January 1, 2007, to December 31, 2009) and the
2020 COVID-19 pandemic (January 1, 2020, to the end of the year). For comparison,
we added the time dynamics of the U.S. market RV as a reference. Figure 6 shows that
the s-PCA-based index (red line) exhibited synchronous and consistent fluctuations
with RVs of DJIA (blue line), such as March 3, 2007, November 3, 2008, and August 2,
2019. The PLS-based index (cyan line) exhibited a similar character with the s-PCA-
based index only in periods of great fluctuations, such as September 2008 and March
2020. Moreover, it exhibited a small swing, which was not similar to those of RV and
the red line with frequent fluctuations, over time. However, the PCA-based index
(orange line) fluctuated continually over time, which was just like the random walk
process. Although it was challenging to visually capture the relationship between it
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and RV, we observed that there were no significant differences among PCA-based
indexes during financial crises and non-crisis.

In summary, from the loadings and picture analyses, we revealed that the s-PCA
method outperformed PCA and PLS owing to two aspects: first, the s-PCA method
identified strong predictors and could further place reasonable weight on each predictor.
Secondly, compared with the PLS method, s-PCA could solve the over-fitting issue and
avoid the incorporation of much noise because it could transform many predictors into
orthogonal components Huang et al. (2021), thus reducing the number of variables.

Conclusion

Uncertainty index is beneficial to decision-making investors and policymakers moni-
toring market risks. Though enormous efforts have been invested into constructing this
index, the method for building one exhibiting a relatively fixed composite and imposing
significant impacts on international stock volatilities is still rare, and this study has filled
that research gap. We constructed a composite uncertainty index based on the s-PCA
method and investigated the high-frequency relationship between the proposed index
and stock volatilities in global markets. The proposed index comprehensively captured
the uncertainties from the equity-market, investor, and economic-policy levels. More
crucially, it was very practical and user-friendly, in reality, for its property of a relatively
fixed composite.

The empirical analyses of 23 international stock market volatilities revealed that the
proposed index exhibited excellent performances in the in- and out-of-sample predict-
abilities, and these performances were better and more robust than those of compet-
ing models, including the widely employed PCA and PLS methods. This superiority is
rational. One reason is that the proposed method reserved the advantage of the PCA
method, which avoids adding much noise to the prediction task and reduces the risk of
overfitting. The other reason is that the proposed index could not only identify relevant
predictors, it also achieved the best use of them by placing more weight on more inform-
ative predictors, while the PLS method could not.

Our results exhibit the following practical implications: (i) We availed fixed and valu-
able indicators for investors and policymakers with keen interests in the international
stock markets. These indicators can effectively reflect market risk dynamics. (ii) We
established the insignificant high-frequency relationship between EPU and stock volatil-
ity, which brings a warning to short-term investors when allocating their wealth. (iii) We
discussed the differences among popular dimension-reduction methods that deal with
both strong and weak factors, which give a good reference to scholars and practitioners
when employing econometric models to investigate market movements.
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