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Introduction
The jump component is an essential and useful determinant in the prediction of the vol-
atility dynamics of various asset prices, such as exchange rates, stock returns, and bond 
yields (see, e.g., Andersen et al. 2007; Corsi et al. 2010; Duong and Swanson 2015; Patton 
and Sheppard 2015; Clements and Liao 2017). However, an influential paper by Prokop-
czuk et al. (2016) argues that explicitly using jumps cannot efficiently enhance the out-
of-sample forecast accuracy for the volatility of the crude oil futures market. Prokopczuk 
et al. (2016) provide a plausible explanation that unpredictable events such as political 
unrest and natural disasters in oil-exporting countries always trigger jumps in oil prices. 
Theoretically, jumps do not occur at each point in time. When there is no jump in the oil 
price, incorporating the jump component into the predictive model will probably lead 
to overfitting, in which the in-sample forecasting performance improves but the out-of-
sample performance worsens. Hence, it is critical to investigate whether the jump com-
ponent should be included in volatility models in real time. The main purpose of this 
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study is to selectively use jumps (or jump model) and thereby discover useful forecasting 
information that is hidden in jumps. To this end, we propose a simple but successful 
strategy to improve the forecasting ability of the jump model. This is our main contribu-
tion to the literature on forecasting crude oil market volatility.

Our new strategy makes an optimal predictive model switch between the benchmark 
of the heterogeneous autoregressive realized variance (HAR-RV)1 model pioneered by 
Corsi (2009) and the HAR-CJ jump model pioneered by Andersen et al. (2007), which is 
an extension that adds the jump component to the HAR-RV specification. The switch-
ing behavior is conditional on the relative predictive performances of these two mod-
els during a recent period of past time. Specifically, if the recent past predictive ability 
of the HAR-CJ model is superior to that of the HAR-RV model, we continue to select 
the HAR-CJ model to predict the oil futures market realized variance (RV) in the near 
future. Otherwise, the HAR-RV benchmark is used to generate volatility forecasts. The 
motivation is straightforward: We believe that the relatively strong forecasting power of 
the HAR-CJ model is persistent. That is, a jump model with a good past performance 
will have a good forecasting performance in the near future. We term this phenomenon 
‘‘momentum of jumps’’ (MoJ), in the context of forecasting oil futures market volatility. 
To be precise, MoJ refers to the momentum (or persistence) of the predictive ability of a 
jump model.

Consistent with the empirical findings by Prokopczuk et  al. (2016), our full-sample 
estimation results show that the overall impact of the jump component on the oil futures 
market RV is not pronounced. In other words, the benefits from the use of jumps appear 
to be negligible. This in-sample evidence also suggests that using the jump model (i.e., 
the HAR-CJ model) alone is unlikely to be feasible for out-of-sample forecasting exer-
cises. Nevertheless, we observe that the HAR-CJ model outperforms the HAR-RV model 
during part of the out-of-sample period. More importantly, several relatively good peri-
ods are clustered and show a continuous pattern. Using a formal test proposed by Wang 
et al. (2018), we document the existence of the MoJ between the HAR-RV and HAR-CJ 
models for the oil futures market. The existence of the MoJ phenomenon suggests that 
if the jump model (i.e., the HAR-CJ model) could produce more accurate RV forecasts 
than the HAR-RV benchmark over a recent past period, the jump model would continu-
ously produce more accurate RV forecasts in the near future. This lays the foundation for 
the success of our MoJ strategy in forecasting oil futures RV.

In our MoJ strategy, we use the mean squared error (MSE) loss function to assess the 
past predictive performance of the individual HAR-RV and HAR-CJ models during a 
look-back period. The MoJ strategy uses the model that shows a relatively good past 
forecasting performance to generate an RV forecast in the next forecast step. To rule 
out the concern that the success of the MoJ method is due to the forecast combination,2 
we further consider the simple mean combination as a competing model, which takes 
the equally weighted average of the individual HAR-RV and HAR-CJ forecasts. In terms 
of the out-of-sample evaluation, we rely on the statistic test of the model confidence set 

1  The reason for using the HAR framework is that the HAR models are very tractable and useful in the prediction of 
financial market RV. In the robustness test below, we also rely on the MIDAS models to forecast oil RV and obtain simi-
lar results.
2  Particularly, the MoJ model can be regarded as a special combination approach.
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(MCS) originated by Hansen et  al. (2011). We find convincing evidence that the MoJ 
strategy consistently exhibits a substantially stronger out-of-sample predictive ability 
than the competing models of the HAR-RV, HAR-CJ, and mean combination for not 
only the 1-day, 5-day, 10-day, and 22-day forecast horizons, but also for six widely used 
loss functions.

We further present a multitude of robustness tests and extensions. The results are 
summarized in seven streams. First, we consider the robustness regarding the jump 
detection test and jump model. Specifically, we additionally use two jump models, 
namely, the HAR-J model proposed by Andersen et al. (2007), which uses a simple meas-
ure of the jump component without a jump detection test, and the HAR-TCJ model pro-
posed by Corsi et al. (2010), in which a threshold jump measure is used. In terms of the 
jump detection test, we consider three confidence levels: 1%, 0.5%, and 0.1%.

The second type of robustness test entails how to evaluate past forecasting perfor-
mance in our MoJ strategy. We calculate the forecast error of past RV forecasts dur-
ing 1-day, 5-day, 10-day, and 22-day look-back periods. Furthermore, the average MoJ 
forecasts are generated by the individual MoJ forecasts based on the various look-back 
periods. In addition, we use three different evaluation criteria to assess past forecasting 
performance.

Third, we consider the robustness of the model specification. The MoJ method is 
mainly based on the linear HAR models. Alternatively, we consider not only the nonlin-
ear HAR models cast in logarithmic and standard deviation forms, but also the MIDAS 
model, which is regarded as a generalized version of the HAR framework.

Fourth, we consider alternative volatility estimators and forecast evaluation methods. 
The volatility estimators include the RV and realized kernel (RK). In addition, we use 
six different loss functions to evaluate forecast accuracy. Moreover, both the MCS test 
by Hansen et al. (2011) and the Diebold–Mariano (DM) test by Diebold and Mariano 
(1995) are used to calculate the significance level of forecast accuracy.

Fifth, we consider alternative estimation windows in out-of-sample forecasting exer-
cises. On the one hand, we use both the rolling and expanding estimation windows. On 
the other hand, we consider different window sizes (i.e., various lengths of out-of-sample 
evaluation periods).

Sixth, we extend our competing models by considering other similar strategies, includ-
ing alternative forecast combination approaches that also depend on individual mod-
els’ past forecasting performance and the three widely used shrinkage approaches of the 
ridge, lasso, and elastic net.

Finally, the MoJ strategy is extended to the stock market. That is, we use the MoJ strat-
egy as well as the competing models to predict the stock market RV. Fortunately, we 
observe consistent results for all the above-mentioned robustness tests and extensions, 
which greatly alleviate the concern of data mining.

In a portfolio exercise, we explore the economic significance of the volatility forecasts 
of the MoJ strategy and the competing models. Specifically, we follow Bollerslev et al. 
(2018) and consider a specific case, in which a mean–variance investor who targets a 
constant Sharpe ratio allocates her wealth between a risky asset (i.e., oil futures) and a 
risk-free asset (i.e., risk-free bills). The corresponding results suggest that the four fore-
casting models used in this study deliver sizeable utility gains relative to the ones from a 
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static model that uses the rolling sample average of past RVs. More importantly, the util-
ity gains from our MoJ model relative to the ones from the static model are always high-
est. The mean–variance investor would be glad to pay at least 56 basis points to employ 
the MoJ model rather than the simple static model, which is, of course, economically 
significant.

We organize the paper as follows. ’Related literature and our contribution” section 
reviews the related literature and highlights the paper’s contribution. “RV and HAR 
models” section details the methodology of RV and HAR models. “Data and in‑sample 
results” section presents the data and in-sample results, while   “Out‑of‑sample analy-
ses” section provides the out-of-sample analyses. “Robustness checks” section provides 
a wide variety of robustness checks. “Extension and application” section presents exten-
sions and an economic application of the MoJ strategy. “Conclusion” section concludes 
this paper.

Related literature and our contribution
In this section, we review the related literature on (a) jump behavior in the crude oil 
market, (b) jumps and crude oil volatility forecasting, and (c) the momentum of predict-
ability (MoP). Moreover, we separately discuss the innovative work of this paper in the 
three aspects.

Jump behavior in the crude oil market

Crude oil prices are characterized by jump behavior. Gronwald (2012) argues that a large 
quantity of total oil price volatility is triggered by jumps. Wilmot and Mason (2013) doc-
ument that jumps help to improve a model’s ability to explain crude oil prices. Bouri 
(2019) finds that the jumps in the sovereign risks of major oil-exporting countries are 
significantly driven by oil price volatility jumps. Bouri and Gupta (2020) present that 
crude oil price jumps and macroeconomic news surprises are likely to occur synchro-
nously, indicating the sensitivity of crude oil prices to macroeconomic news. Bouri et al. 
(2021) provide evidence that the spillover effect of jumps in crude oil and other financial 
markets is notable. In contrast, this paper provides new insights into the jump behavior 
of crude oil prices. That is, we find a novel phenomenon, MoJ, in the forecasting of oil 
futures market volatility. The predictive ability of jumps is confirmed to be persistent.

Jumps and crude oil volatility forecasting

Andersen et al. (2007) is perhaps the first study that uses jump information to forecast 
the RV of financial assets. Following this seminal work, a growing number of studies 
rely on jump information to improve the predictability of crude oil volatility (see, e.g., 
Liu et al. 2018; Ma et al. 2019; Dutta et al. 2021). In contrast, the work by Prokopczuk 
et al. (2016) most closely relates to this paper. Prokopczuk et al. (2016) explore the role 
of jumps in forecasting energy market volatility and find that explicitly modeling jumps 
does not significantly improve the forecast accuracy for the volatility of the oil futures 
market. However, their study is silent on how to improve the accuracy of oil price volatil-
ity forecasts. Our paper contributes to their study by providing a solution to the prob-
lem of improving forecast accuracy. Specifically, we propose the MoJ strategy, which 
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selectively uses the jump model and thereby successfully captures the useful forecasting 
component contained in jumps.

MoP

Our paper also contributes to the literature on MoP (see Wang et  al. 2018; Zhang et  al. 
2019a). Wang et al. (2018) find the MoP that a univariate predictive regression with one 
macroeconomic variable, which generates more accurate return forecasts than the bench-
mark of historical average during several past months, can continue to successfully predict 
stock market returns in the near future. Zhang et al. (2019a) document the existence of the 
MoP between low- and high-frequency forecasting models in the case of forecasting stock 
market volatility, thus establishing a new mixed-frequency model. In this sense, the MoJ 
proposed by our paper is not completely new, as it has been empirically confirmed by the 
related studies of Wang et al. (2018) and Zhang et al. (2019a). However, the MoP findings of 
the two related studies, in other words, motivate and support us to investigate the MoJ. In 
contrast, our paper provides a new study that focuses on the momentum of the forecasting 
performance of the jump model in predicting oil futures market volatility. This is neces-
sary and meaningful because the role of jumps in forecasting oil futures market volatility 
is found to be limited. To address this issue, we rely on the fundamental of the MoP and 
thereby present an efficient model, i.e., the MoJ strategy.

More broadly, the MoJ strategy, as well as the MoP, is related to the conditional combina-
tion approaches that are based on past predictive performance (see, e.g., Stock and Watson 
2004; Yang 2004; Giacomini and White 2006). In contrast, the contribution of this paper 
is not a technical innovation but a novel idea of clustered jumps (i.e., MoJ). Moreover, we 
document that our MoJ strategy can outperform a popular forecast combination approach 
that is conditional on past predictive performance.

RV and HAR models
RV and jump

The quadratic variation (QV) of the asset price return process can be given by

where in the continuous-time jump diffusion process, σ(z) represents a stochastic vola-
tility process and ν(z) measures the size of discrete jumps. On the right hand of Eq. (1), 
the first term is the so-called integrated variance (IV), which is regarded as the continu-
ous sample path component of QV, while the second one represents the jump (discon-
tinuous) component of QV.

Andersen and Bollerslev (1998), Barndorff-Nielsen and Shephard (2002), and Andersen 
et al. (2003) emphasize that the RV estimator uniformly converges to QV in probability as 
the sampling frequency increases. The RV measure can be calculated as the summation of 
squared intraday oil price returns,

(1)QVt =
∫ t

t−1
σ 2(z)dz +

∑

t−1<z≤t

ν2(z),

(2)RVt =
N∑

j=1

r2t,j ,
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where RVt refers to the realized variance measure on trading day t, N = 1/� , � is the 
sampling interval for intraday returns, and rt,j denotes the jth intraday oil futures market 
return during day t. Since RV converges to QV, we have

for N → ∞ or � → 0 . Barndorff-Nielsen and Shephard (2004) further propose an 
estimator dubbed realized bipower variation (BPV), which takes the form of

where κ1 =
√
2
/
π  . As the sampling frequency increases ( N → ∞ or � → 0 ), BPV is a 

consistent estimator of IV. That is, we have

for N → ∞ . Combining Eqs. (3) and (5), we can consistently estimate the jump (discon-
tinuous) component of QV as

for N → ∞ . To ensure that each jump estimate is nonnegative, Andersen et al. (2007) 
truncate jump measures at zero, which is also suggested by Barndorff-Nielsen and 
Shephard (2004). Consequently, the daily jump measure on day t is given by

We follow Andersen et al. (2007) and employ the ratio statistic to detect significant 
jumps. The jump detection test based on the ratio statistic is given by

where TQt denotes the realized tripower quarticity measure. Statistically, TQ is 
expressed as

where κ4/3 = 22/3Ŵ(7
/
6)
/
Ŵ(0.5) . As the test statistic in Eq. (8) closely follows a standard 

normal distribution, the significant jump (SJ) is naturally expressed as

where I(·) refers to an indicator function, which equals one if a significant jump happens 
and zero otherwise, and �α denotes the threshold value that is calculated by the cumula-
tive standard normal distribution at the confidence level of 1 − α. We follow Andersen 

(3)RVt →
∫ t

t−1
σ 2(z)dz +

∑

t−1<z≤t

ν2(z),

(4)BPVt = κ−2
1

∑N

j=2

∣∣rt,j
∣∣∣∣rt,j−1

∣∣,

(5)BPVt →
∫ t

t−1
σ 2(z)dz,

(6)RVt − BPVt →
∑

t−1<z≤t

ν2(z),

(7)Jt = max{RVt − BPVt , 0}.

(8)Zt = �−1/2 (RVt − BPVt)/RVt√
(κ−4

1 + 2κ−2
1 − 5)max{1,TQt/BPV

2
t }

,

(9)TQt = �−1κ−3
4/3

∑N

j=3

∣∣rt,j
∣∣4/3∣∣rt,j−1

∣∣4/3∣∣rt,j−2

∣∣4/3,

(10)SJt = I(Zt > �α)(RVt − BPVt),
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et al. (2007) and rely on the significance level of 0.5%. To ensure that the sum of the con-
tinuous and discontinuous components equals the whole RV, the continuous component 
is then identified as

HAR models

In terms of our forecasting strategies, the benchmark method is naturally the HAR-RV 
model, which is pioneered by Corsi (2009). The HAR-RV model is probably the most 
popular volatility model. This is because the model captures some stylized facts of asset 
return volatility such as long memory and multi-scaling behavior. Furthermore, the 
HAR-RV model is tractable, as it merely includes three variables without any hyperpa-
rameter tuning. Therefore, its model specification is straightforward, and can be shown 
as

where RVt+1:t+h = (1
/
h)(RVt+1 + · · · + RVt+h) . In particular, RVt , RVt−4:t , and 

RVt−21:t denote the daily, weekly, and monthly RVs, respectively, all of which are avail-
able up to day t.

More importantly, our MoJ strategy requires a jump model. We choose the HAR-CJ 
model, which is pioneered by Andersen et al. (2007) and has been widely used by a host 
of literature on predicting asset return volatility (see, e.g., Sévi 2014; Prokopczuk et al. 
2016; Wang et al. 2016; Buncic and Gisler 2017; Zhang et al. 2019a, 2021). Mathemati-
cally, the HAR-CJ model takes the following form:

For robustness, we also consider alternative jump measures and jump models in 
Sect. 6.1.

Data and in‑sample results
Data

Following Sévi (2014), Haugom et al. (2014), and Zhang et al. (2022), we choose a well-
known oil price benchmark, West Texas Intermediate (WTI). The intraday price data of 
the WTI futures are obtained from Tick Data. The whole sample period is between Janu-
ary 3, 2012 and May 11, 2018.

The 5-min RV is commonly used by a substantial body of literature on predicting 
oil futures market RV (see, e.g., Haugom et  al. 2014; Sévi 2014; Ma et  al. 2019; Yang 
et al. 2019; Zhang et al. 2019c; Niu et al. 2021). Overall, Liu et al. (2015) argue that it is 
extremely difficult to outperform the 5-min RV by using any other volatility measures 
from a wide range of estimators and financial assets. Thus, we rely on the 5-min interval 
as the sampling frequency to calculate the oil futures market RV.

(11)Ct = I(Zt ≤ �α)RVt + I(Zt > �α)BPVt .

(12)RVt+1:t+h = ϕ0 + ϕdRVt + ϕwRVt−4:t + ϕmRVt−21:t + ωt+1:t+h,

(13)
RVt+1:t+h = ϕ0+ϕcdCt+ϕcwCt−4:t+ϕcmCt−21:t+ϕsdSJt+ϕswSJt−4:t+ϕsmSJt−21:t+ωt+1:t+h.
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In‑sample results

The in-sample estimation results of the individual HAR-RV and HAR-CJ models 
are reported in Table 1. One striking observation follows the table immediately. The 
HAR predictors (namely, RVt , RVt−4:t , and RVt−21:t ) always yield significant coef-
ficients, while the regression coefficients of the lagged daily and weekly SJs are 
always insignificant. Although the R2 of HAR-CJ is greater than that of HAR-RV, the 
improvement in the R2 is limited. Overall, the full-sample estimation results suggest 
that the jump components do not contain a powerful explanatory ability for future 
oil futures RV. This also implies that a straightforward approach of using the jump 
model (i.e., the HAR-CJ) alone is unlikely to be feasible. This evidence echoes the 

Table 1  Full-sample estimation results of the HAR-RV and HAR-CJ models

This table provides the full-sample estimation results of the HAR-RV and HAR-CJ models in Panels A and B, respectively. The 
HAR-RV model is given by

RVt+1:t+h = ϕ0 + ϕdRVt + ϕwRVt−4:t + ϕmRVt−21:t + ωt+1:t+h , 

where RV is the realized variance, RVt+1:t+h = (1
/
h)(RVt+1 + · · · + RVt+h) . In particular, RVt , RVt−4:t and RVt−21:t 

denotes the daily, weekly, and monthly RVs, respectively, which are all available up to day t. The HAR-CJ model is expressed 
as

RVt+1:t+h = ϕ0 + ϕcdCt + ϕcwCt−4:t + ϕcmCt−21:t + ϕsdSJt + ϕswSJt−4:t + ϕsmSJt−21:t + ωt+1:t+h , 

where C and SJ denote the continuous component and significant jump measure, respectively. Coefficient estimates 
are reported and their t-statistics shown in parentheses below are computed based on a Newey-West correction which 
allows for serial correlation up to order 5 (h = 1), 10 (h = 5), 20 (h = 10), and 44 (h = 22). The R2s are also reported. *** (**) (*) 
indicates significance at the 1% (5%) (10%) two-tailed level. The sample period runs from January 3, 2012 to May 11, 2018.

Variables h = 1 h = 5 h = 10 h = 22

Panel A: HAR-RV

φ0 0.199*** 0.258*** 0.314*** 0.410***

(2.803) (2.804) (2.836) (3.491)

φd 0.056 0.067** 0.042* 0.041**

(1.120) (2.073) (1.925) (2.151)

φw 0.356*** 0.264** 0.225* 0.210*

(3.123) (2.303) (1.673) (1.763)

φm 0.465*** 0.510*** 0.540*** 0.499***

(4.383) (4.227) (3.683) (3.327)

R2 0.314 0.544 0.580 0.581

Panel B: HAR-CJ

φ0 0.264*** 0.316*** 0.360*** 0.439***

(4.639) (4.358) (3.933) (3.735)

φcd 0.116 0.133** 0.095** 0.102***

(1.609) (2.449) (2.458) (3.258)

φcw 0.589*** 0.505*** 0.481*** 0.386***

(3.773) (3.869) (3.595) (3.213)

φcm 0.256** 0.282** 0.300** 0.309**

(2.213) (2.277) (2.082) (1.979)

φsd 0.007 0.013 − 0.003 − 0.007

(0.186) (0.571) (− 0.227) (− 0.675)

φsw − 0.001 − 0.109 − 0.159** − 0.073

(− 0.010) (− 1.262) (− 2.098) (− 0.934)

φsm 0.227 0.342* 0.467* 0.493*

(1.447) (1.763) (1.814) (1.755)

R2 0.342 0.600 0.639 0.622
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findings of Prokopczuk et al. (2016), who document that the jump components are 
not useful for the in-sample predictability of crude oil price volatility.

Out‑of‑sample analyses
Forecasting methodology of individual HAR regression models

The in-sample estimation analysis only provides the predictive information of the regres-
sion models (namely, the HAR-RV and HAR-CJ), while it is silent on our MoJ strategy 
and the mean combination approach. In real time, financial investors and practitioners 
pay more attention to the out-of-sample forecasting test as it is more relevant to examin-
ing genuine predictive ability. Moreover, an in-sample analysis is probably influenced by 
econometric issues such as the Stambaugh bias (see Busetti and Marcucci 2013), small-
sample size distortion, and over-fitting, whereas an out-of-sample test is less likely to be 
influenced. Therefore, it is more crucial to assess the out-of-sample forecasting ability of 
the volatility models used.

In this study, we generate the out-of-sample RV forecasts for the individual HAR-RV 
and HAR-CJ models by employing a rolling estimation window. Specifically, we decom-
pose the whole sample period into an in-sample training period and an out-of-sample 
forecasting period. The former contains the initial 819 observations, while the latter con-
tains the remaining 800 observations. When we obtain each out-of-sample RV forecast, 
we roll the estimation window forward by not only discarding the first used observation, 
but by also including one new observation. Finally, the MoJ and mean combination fore-
casts are produced by the individual HAR-RV- and HAR-CJ forecasts.

Forecasting methodology based on the MoJ

Wang et al. (2018) present a similar phenomenon, termed MoP, in which the stock return 
predictability of univariate regressions is persistent. Specifically, a superior past predict-
ing performance of a univariate regression model that uses a single economic variable is 
commonly followed by a superior future predicting performance. Furthermore, Zhang 
et al. (2019a) document that the MoP also exists between GARCH-class and HAR-RV-
type models. Along the same lines, we propose the MoJ. To be precise, the MoJ refers 
to the MoP between the volatility forecasting models with and without jumps. In our 
case, we have two strands of RV forecasts, separately given by the HAR-RV and HAR-
CJ models. We then continue to employ the volatility model whose past predictive per-
formance is relatively good. Following Zhang et al. (2019a) and Wang et al. (2018), we 
assess whether the past predictive performance of the HAR-CJ model is superior to that 
of the HAR-RV model as follows.

(14)

ppt+1:t+h(k) =I




t−h�

i=t−h−k+1

(RVi+1:i+h − �RVCJ

i+1:i+h)
2

−
t−h�

i=t−h−k+1

(RVi+1:i+h − �RVRV

i+1:i+h)
2 < 0



,
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where k denotes the length of the look-back evaluation period,3 I(·) denotes an indica-
tor function, RVt+1:t+h is the true RV on days t + 1 : t + h , and R̂V

CJ

i+1:i+h and R̂V
RV

i+1:i+h 
are the HAR-CJ and HAR-RV forecasts, respectively, for RVi+1:i+h . Based on the relative 
past performance, as defined by ppt+1:t+h(k) , we can readily obtain the corresponding 
MoJ forecast as follows.

Simple mean forecast combination

Our MoJ strategy switches between the benchmark and jump models by observing their 
relative past forecasting performances. This model selection approach can be treated as 
a particular combination approach, in which the weight of each model is a binary vari-
able that equals either 0 or 1. For comparison, we also use the equal-weighted combina-
tion forecasts, 1

/
2(R̂V

CJ

t+1:t+h + R̂V
RV

t+1:t+h) . Here, we do not consider any more complex 
weighting schemes when combining forecasts. This is because the famous “forecast com-
bination puzzle” suggests that the simple mean cannot be systematically outperformed 
by many other sophisticated combination methods in out-of-sample prediction exercises 
(see, e.g., Stock and Watson 2004; Rapach et al. 2010).

Evaluation framework

We employ six commonly used loss functions to provide a quantitative assessment of 
the out-of-sample predictive performance for different volatility forecasting strategies: 
the Quasi-Likelihood (QLIKE), mean squared error (MSE), mean absolute error (MAE), 
mean squared percentage error (MSPE), mean absolute percentage error (MAPE), and 
mean squared logarithmic error (MSE-LOG) loss functions, which are statistically 
expressed as

(15)�RVMoJ

t+1:t+h(k) =





�RVCJ

t+1:t+h, if ppt+1:t+h(k) = 1

�RVRV

t+1:t+h, if ppt+1:t+h(k) = 0.

(16)QLIKE : L(R̂V t+1:t+h,RVt+1:t+h) = log(R̂V t+1:t+h)+
RVt+1:t+h

R̂V t+1:t+h

,

(17)MSE : L(R̂V t+1:t+h,RVt+1:t+h) =
(
R̂V t+1:t+h − RVt+1:t+h

)2
,

(18)MAE : L(R̂V t+1:t+h,RVt+1:t+h) =
∣∣∣R̂V t+1:t+h − RVt+1:t+h

∣∣∣,

(19)MSPE : L(R̂V t+1:t+h,RVt+1:t+h) =

(
1−

R̂V t+1:t+h

RVt+1:t+h

)2

,

3  The forecasting results reported below is based on the look-back period of k = 5 (i.e., one week) for the MoJ strategy. A 
robustness check in Sect. 6.2 considers other reasonable values of k.
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and

respectively, where RVt+1:t+h is the true RV for days t + 1 : t + h , and R̂V t+1:t+h denotes 
the RV forecast given by one of the predictive strategies. Patton (2011) recommends the 
use of the QLIKE and MSE loss functions because the two are robust to the presence of 
noise in the volatility proxy. Nonetheless, we employ more loss functions to show a com-
prehensive test.

To ascertain the confidence level of the different models’ out-of-sample forecast accu-
racies, we follow extensive literature on predicting RV (see, e.g., Patton and Sheppard 
2009; Liu et al. 2015; Gong and Lin 2018; Zhang et al. 2019c, 2020; Calzolari et al. 2021; 
Dai et al. 2022) and employ the MCS econometric method pioneered by Hansen et al. 
(2011). An MCS refers to a subset of all the used models into which the best model falls 
with a specific confidence level. Generally, a model that delivers a larger MCS p value 
is more likely to show the best forecasting performance. Following Hansen et al. (2011) 
and Zhang et al. (2019c), we choose the confidence (significance) level of 90% (10%). In 
other words, a model whose MCS p value is greater than 0.1 falls into the MCS. Finally, 
it should be noted that the MCS p values we report below are all calculated based on 
the range statistic; however, the results are similar when we rely on the semi-quadratic 
statistic.

Forecasting performance

Table 2 presents the MCS test results. We summarize the table with one key observa-
tion. Our MoJ strategy always produces the highest MCS p value (i.e., 1). In contrast, 
the HAR-RV, HAR-CJ, and mean combination models generate substantially lower MCS 
p values, most of which are lower than 0.1, indicating that the corresponding models 
cannot enter the MCS at the 10% significance level. Overall, the reported MCS p val-
ues indicate that our MoJ strategy exhibits significantly better forecasting performance 
than the competing models of the individual HAR-RV and HAR-CJ models as well as the 
mean combination. Furthermore, we observe that the relatively powerful predictive abil-
ity of the MoJ strategy consistently exists not only across various loss functions but also 
across various forecast horizons.

Testing the MoJ

Wang et al. (2018) and Zhang et al. (2019a) both highlight that the success of their MoP 
strategies relies on the presence of the MoP. Therefore, we need to investigate whether 
the superiority of our MoJ strategy is supported by the existence of the MoJ. More pre-
cisely, the MoJ refers to the momentum of the predictive ability of the forecasting strat-
egy with jumps relative to the one without jumps. That is, we should examine whether a 
better past predictive performance of the HAR-CJ models relative to that of the HAR-RV 

(20)MAPE : L(R̂V t+1:t+h,RVt+1:t+h) =

∣∣∣∣∣1−
R̂V t+1:t+h

RVt+1:t+h

∣∣∣∣∣,

(21)
MSE−LOG : L(R̂V t+1:t+h,RVt+1:t+h) =

(
log(R̂V t+1:t+h)− log(RVt+1:t+h)

)2
,
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model can generally result in a better future performance. Statistically, the future predic-
tive performance of the HAR-CJ relative to that of the HAR-RV over days t + 1 : t + h is 
defined as

In a statistical sense, a cross-sectional dependence of ppt+1:t+h(k) and fpt+1:t+h 
implies the existence of the MoJ. Following the related studies of Zhang et al. (2019a) 
and Wang et al. (2018), we rely on the chi-square statistic proposed by Pesaran and 
Timmermann (2009) to test the null hypothesis that ppt+1:t+h(k) and fpt+1:t+h are 
not cross-sectional dependent in the presence of serial dependencies for each series 
itself against the alternative hypothesis that the two time-series variables are cross-
sectional dependent. In this sense, if the null hypothesis of no dependence between 
ppt+1:t+h(k) and fpt+1:t+h is rejected, we statistically prove that the MoJ exists.

We follow Wang et al. (2018) and report the p-values for the Pesaran and Timmer-
mann (2009) statistics in Table 3. As expected, all the p values for the different lengths 
of the look-back periods and forecast horizons are less than 0.001. That is, the null 
hypothesis of independence between ppt+1:t+h(k) and fpt+1:t+h is rejected below the 
0.1% significance level. This evidence suggests that the MoJ does exist between the 

(22)fpt+1:t+h = I
(
(RVt+1:t+h − R̂V

CJ

t+1:t+h)
2 − (RVt+1:t+h − R̂V

RV

t+1:t+h)
2 < 0

)
.

Table 2  Out-of-sample forecasting performance based on the MCS test

This table provides the MCS p values of the four used models. Panels A, B, C, and D report the corresponding results for 
1-day, 5-day, 10-day, and 22-day horizons, respectively. The mean combination uses the equally weighted average (that is, 
simple mean) of the individual HAR-RV and HAR-CJ forecasts, while our MoJ strategy switches between the HAR-RV and 
HAR-CJ forecasts based on their relatively past forecasting performance. The past forecasting performance is evaluated by 
a 5-day look-back period. The six considered loss functions are QLIKE, MSE, MAE, MSPE, MAPE, and MSE-LOG. Bold numbers 
highlight important instances in which the corresponding model falls into the MCS with the 10% significance level. The 
entire sample period consisting of 1619 observations spans January 3, 2012 to May 11, 2018, while the out-of-sample 
forecasting period contains the last 800 observations

Models QLIKE MSE MAE MSPE MAPE MSE-LOG

Panel A: 1-day horizon

HAR-RV 0.306 0.105 0.005 0.018 0.001 0.001

HAR-CJ 0.075 0.389 0.301 0.018 0.001 0.001

Mean 0.306 0.276 0.022 0.018 0.000 0.001

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel B: 5-day horizon

HAR-RV 0.000 0.007 0.001 0.000 0.001 0.000

HAR-CJ 0.000 0.007 0.001 0.000 0.000 0.000

Mean 0.000 0.007 0.001 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel C: 10-day horizon

HAR-RV 0.000 0.003 0.000 0.000 0.001 0.002

HAR-CJ 0.000 0.003 0.000 0.000 0.000 0.000

Mean 0.000 0.003 0.000 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel D: 22-day horizon

HAR-RV 0.000 0.000 0.000 0.032 0.001 0.001

HAR-CJ 0.000 0.000 0.000 0.000 0.000 0.000

Mean 0.000 0.000 0.000 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
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HAR-CJ model with and the HAR-RV model without jump information. In other 
words, we statistically document that a better past performance of the HAR-CJ model 
is always associated with a better future forecasting performance. Of course, the exist-
ence of the MoJ phenomenon is the fundamental driving force of our MoJ method.

To further provide a visual impression of the model switching between the HAR-CJ 
and HAR-RV models, we plot the dynamics of the model selection between the two 
models in Fig. 1 for various forecast horizons, which is based on the case of k = 5. We 
summarize this graphical device with two major observations. First, we observe that 
our MoJ strategy sometimes selects the HAR-RV model and sometimes selects the 
HAR-CJ model. This implies that the jump component cannot always provide useful 
information for forecasting the oil futures market RV during the entire out-of-sample 
period; however, it contains useful forecasting information during part of the out-of-
sample period. That is, the HAR-RV and HAR-CJ models cannot outperform each 
other completely. This evidences the potential success of our MoJ strategy (which 
uses both the HAR-RV and HAR-CJ models) in selecting the relatively good model. 
Second and more importantly, the model selection between the HAR-RV and HAR-
CJ is highly persistent. That is, we observe the momentum of model selection. To be 
precise, the MoJ strategy persistently selects one model between the HAR-RV and 
HAR-CJ for a relatively long period. Therefore, the model that shows a relatively good 
past forecasting performance tends to yield a relatively good future performance. This 
appealing selection pattern contributes to the success of the MoJ strategy.

Table 3  Testing results of the momentum of jumps

This table provides the p values of the Pesaran and Timmermann (2009) chi-square statistic that is used to test the existence 
of the momentum of jumps (MoJ). The MoJ refers to that the forecasting model with jump information (i.e., the HAR-CJ) 
which outperforms the benchmark model without jump information (i.e., the HAR-RV) over a recent past period is able 
to show better forecasting performance in the near future. Statistically, the future forecasting performance of the HAR-CJ 
relative to the HAR-RV for time t + 1 : t + h is defined as 

fpt+1:t+h = I
(
(RVt+1:t+h − R̂V

CJ

t+1:t+h)
2 − (RVt+1:t+h − R̂V

RV

t+1:t+h)
2 < 0

)
, 

where I(·) refers to an indicator function, R̂V
CJ

i+1:i+h and R̂V
RV

i+1:i+h are the HAR-CJ and HAR-RV forecasts, respectively, for 
RVi+1:i+h . Similarly, the past forecasting performance of the HAR-CJ relative to the HAR-RV for time t + 1 : t + h is defined 
as 

ppt+1:t+h(k) = I

(
t−h∑

i=t−h−k+1

(RVi+1:i+h − R̂V
CJ

i+1:i+h)
2 −

t−h∑
i=t−h−k+1

(RVi+1:i+h − R̂V
RV

i+1:i+h)
2 < 0

)
, 

where k refers to the length of the look-back period. In a statistical sense, the cross-sectional dependence between 
ppt+1:t+h(k) and fpt+1:t+h equates with the existence of MoJ. The chi-square statistic of Pesaran and Timmermann (2009) is 
used to test the null hypothesis that ppt+1:t+h(k) and fpt+1:t+h are not cross-sectional dependent in the presence of serial 
dependencies for each series itself against the alternative hypothesis that the two time series are cross-sectional dependent. 
The corresponding p values are reported.

Look-back period h = 1 h = 5 h = 10 h = 22

k = 1 < 0.001 < 0.001 < 0.001 < 0.001

k = 5 < 0.001 < 0.001 < 0.001 < 0.001

k = 10 < 0.001 < 0.001 < 0.001 < 0.001

k = 22 < 0.001 < 0.001 < 0.001 < 0.001
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Robustness checks
The primary forecasting performance reported in Table 2 shows that our out-of-sample 
results are robust to a multitude of loss functions and forecast horizons. Furthermore, 
we provide ten robustness tests in this section. These robustness tests alleviate the con-
cern about data mining, thus validating our results.

Alternative jump models

We use the prevailing HAR-CJ model to incorporate the jump component. However, 
there are many other jump models used to predict financial market RV. To alleviate the 
concern about the arbitrary use of the jump model, we additionally consider two pop-
ular forecasting models that also use the jump component. The first new jump model 
is termed HAR-J, which is also originated by Andersen et al. (2007). The HAR-J model 
specification is given by

The second new jump model is termed HAR-TCJ, which is pioneered by Corsi 
et  al. (2010). To detect jumps, Corsi et  al. (2010) depend not only on a new test sta-
tistic, termed C-Tz, but also on the threshold bipower variation (TBPV) to calculate 
the threshold jump measure as TJt = I(C−Tzt > �α)(RVt − TBPVt) . The continuous 

(23)RVt+1:t+h = ϕ0 + ϕdRVt + ϕwRVt−4:t + ϕmRVt−21:t + ϕJ Jt + ωt+1:t+h,

Table 4  MCS out-of-sample forecasting test using the HAR-J jump model

This table provides the MCS p values of the four used models. Panels A, B, C, and D report the corresponding results for 
1-day, 5-day, 10-day, and 22-day horizons, respectively. The mean combination uses the equally weighted average (that 
is, simple mean) of the individual HAR-RV and HAR-J forecasts, while our MoJ strategy switches between the HAR-RV and 
HAR-J forecasts based on their relatively past forecasting performance. The past forecasting performance is evaluated by a 
5-day look-back period. The six considered loss functions are QLIKE, MSE, MAE, MSPE, MAPE, and MSE-LOG. Bold numbers 
highlight important instances in which the corresponding model falls into the MCS with the 10% significance level

Models QLIKE MSE MAE MSPE MAPE MSE-LOG

Panel A: 1-day horizon

HAR-RV 0.079 0.026 0.000 0.032 0.000 0.000

HAR-J 0.566 0.434 1.000 0.736 0.309 0.171
Mean 0.875 0.063 0.004 0.075 0.000 0.080

MoJ 1.000 1.000 0.852 1.000 1.000 1.000
Panel B: 5-day horizon

HAR-RV 0.014 0.125 0.011 0.038 0.010 0.013

HAR-J 0.032 1.000 0.855 0.064 0.044 0.022

Mean 0.014 0.235 0.211 0.038 0.010 0.013

MoJ 1.000 0.754 1.000 1.000 1.000 1.000
Panel C: 10-day horizon

HAR-RV 0.003 0.021 0.003 0.005 0.001 0.002

HAR-J 0.005 0.250 0.013 0.005 0.001 0.002

Mean 0.001 0.021 0.001 0.005 0.000 0.001

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel D: 22-day horizon

HAR-RV 0.001 0.071 0.000 0.000 0.002 0.004

HAR-J 0.000 0.071 0.000 0.000 0.000 0.000

Mean 0.000 0.031 0.000 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
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counterpart is calculated as TCt = RVt − TJt . Consequently, the HAR-TCJ model takes 
the regression form of

Thus far, we have the HAR-RV benchmark model and two new jump models of the 
HAR-J and HAR-TCJ. We can generate two new MoJ and mean combination forecasts by 
separately using the two new jump models. Tables 4 and 5 provide the forecasting results 
when we use the HAR-J and HAR-TCJ jump models, respectively. In the HAR-J case, we 
find that the MoJ model falls into the MCS at the 10% significance level for all the 24 cases 
(6 different loss functions and 4 different forecast horizons). Furthermore, our MoJ model 
generates the greatest MCS p value (i.e., 1) for 22 out of the 24 cases. The HAR-J model 
generates the greatest MCS p value for only 2 cases and survives in the MCS test for sev-
eral cases. However, the HAR-J model as well as the other two competing models fails to 
remain in the MCS for most of the 24 cases. The results suggest that the MoJ method has 
significantly stronger predictive power than the competing methods for most of the cases 
(i.e., most loss functions and forecast horizons). We observe similar results when using the 
HAR-TCJ as the jump model. Thus, our forecasting results are robust to different jump 
models.

In this subsection, we use two alternative jump measures to explore the robustness of the 
MoJ strategy. Additionally, sampling frequency is an important factor in detecting jumps 

(24)RVt+1:t+h = ϕ0 + ϕtcdTCt + ϕtcwTCt−4:t + ϕtcmTCt−21:t + ϕTJTJt + ωt+1:t+h.

Table 5  MCS out-of-sample forecasting test using the HAR-TCJ jump model

This table provides the MCS p values of the four used models. Panels A, B, C, and D report the corresponding results for 
1-day, 5-day, 10-day, and 22-day horizons, respectively. The mean combination uses the equally weighted average (that is, 
simple mean) of the individual HAR-RV and HAR-TCJ forecasts, while our MoJ strategy switches between the HAR-RV and 
HAR-TCJ forecasts based on their relatively past forecasting performance. The past forecasting performance is evaluated by 
a 5-day look-back period. The six considered loss functions are QLIKE, MSE, MAE, MSPE, MAPE, and MSE-LOG. Bold numbers 
highlight important instances in which the corresponding model falls into the MCS with the 10% significance level

Models QLIKE MSE MAE MSPE MAPE MSE-LOG

Panel A: 1-day horizon

HAR-RV 0.489 0.046 0.001 0.010 0.000 0.001

HAR-TCJ 0.291 1.000 1.000 0.010 0.040 0.019

Mean 0.568 0.640 0.014 0.010 0.000 0.002

MoJ 1.000 0.640 0.247 1.000 1.000 1.000
Panel B: 5-day horizon

HAR-RV 0.000 0.003 0.000 0.004 0.000 0.000

HAR-TCJ 0.000 1.000 0.039 0.027 0.000 0.000

Mean 0.000 0.188 0.000 0.004 0.000 0.000

MoJ 1.000 0.998 1.000 1.000 1.000 1.000
Panel C: 10-day horizon

HAR-RV 0.000 0.000 0.000 0.005 0.000 0.000

HAR-TCJ 0.000 0.209 0.000 0.009 0.000 0.000

Mean 0.000 0.004 0.000 0.005 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel D: 22-day horizon

HAR-RV 0.000 0.001 0.000 0.006 0.000 0.000

HAR-TCJ 0.000 0.055 0.000 0.006 0.000 0.000

Mean 0.000 0.001 0.000 0.001 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
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(see, e.g., Lyócsa et al. 2020; Maneesoonthorn et al. 2020). However, we leave it for future 
research due to data constraints.

Alternative look‑back periods

Our MoJ strategy relies on recent past forecasting performance that is assessed based on a 
look-back period whose length is defined as k. The previously reported forecasting results 
of the MoJ model are based on a weekly (k = 5) look-back period. In this subsection, we 
follow Wang et al. (2018) and use a few reasonable look-back periods to generate an aver-
age MoJ forecast. More specifically, we consider daily (1-day), weekly (5-day), biweekly (10-
day), and monthly (22-day) look-back periods, and thereby generate R̂V

MoJ

t+1:t+h(k) for k = 1, 
5, 10, 22. The average MoJ forecast is then given by

Table 6 presents the corresponding MCS results when the average MoJ strategy is used. 
Expectedly, the MoJ strategy continues to deliver the highest MCS p values for all the 24 
cases and, of course, consistently falls into the MCS at the 10% significance level. In con-
trast, the competing models of the HAR-CJ and mean combination survive in the MCS for 

(25)R̂V
MoJ−AVG

t+1:t+h =
1

4

∑

k∈{1,5,10,22}
R̂V

MoJ

t+1:t+h(k).

Table 6  MCS out-of-sample forecasting test based on various look-back periods

This table provides the MCS p values of the four used models. Panels A, B, C, and D report the corresponding results for 
1-day, 5-day, 10-day, and 22-day horizons, respectively. The mean combination uses the equally weighted average (that is, 
simple mean) of the individual HAR-RV and HAR-CJ forecasts, while our MoJ strategy switches between the HAR-RV and 
HAR-CJ forecasts based on their relatively past forecasting performance. The past forecasting performance is separately 
evaluated by 1-day, 5-day, 10-day, and 22-day look-back periods. Then, the final MoJ forecast reported in this table is equal 
to the simple mean of the four individual MoJ forecasts based on the four different look-back periods. The six considered 
loss functions are QLIKE, MSE, MAE, MSPE, MAPE, and MSE-LOG. Bold numbers highlight important instances in which the 
corresponding model falls into the MCS with the 10% significance level

Models QLIKE MSE MAE MSPE MAPE MSE-LOG

Panel A: 1-day horizon

HAR-RV 0.071 0.086 0.003 0.019 0.001 0.000

HAR-CJ 0.016 0.192 0.077 0.019 0.001 0.000

Mean 0.071 0.114 0.004 0.001 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel B: 5-day horizon

HAR-RV 0.001 0.004 0.000 0.000 0.002 0.000

HAR-CJ 0.001 0.004 0.000 0.000 0.000 0.000

Mean 0.000 0.004 0.000 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel C: 10-day horizon

HAR-RV 0.000 0.001 0.000 0.000 0.002 0.002

HAR-CJ 0.000 0.001 0.000 0.000 0.000 0.000

Mean 0.000 0.001 0.000 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel D: 22-day horizon

HAR-RV 0.001 0.000 0.001 0.039 0.003 0.003

HAR-CJ 0.000 0.000 0.000 0.000 0.000 0.000

Mean 0.000 0.000 0.000 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
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only 1 out of 24 cases (i.e., the 1-day forecast horizon and MSE loss function). The robust 
results suggest that our MoJ strategy consistently outperforms the competing models. 
Finally, it should be noted that the MoJ forecasting results based on the individual look-
back periods (i.e., k = 1, 10, 22) are tabulated in our Additional file 1. The forecasting results 
are robust to alternative look-back periods.

Nonlinear HAR models

A commonly considered issue for model specification is whether to use linear or nonlinear 
HAR models. With this in mind, we further employ nonlinear HAR models that are cast in 
logarithmic and standard deviation forms (see also Andersen et al. 2007; Corsi et al. 2010; 
Prokopczuk et al. 2016). Mathematically, the logarithmic HAR-RV and HAR-CJ models are 
given by

and

(26)
ln(RVt+1:t+h) = ϕ0 + ϕd ln(RVt)+ ϕw ln(RVt−4:t)+ ϕm ln(RVt−21:t)+ ωt+1:t+h

(27)

ln(RVt+1:t+h) =ϕ0 + ϕcd ln(Ct)+ ϕcw ln(Ct−4:t)+ ϕcm ln(Ct−21:t)

+ ϕsd ln(SJt + 1)+ ϕsw ln(SJt−4:t + 1)+ ϕsm ln(SJt−21:t + 1)+ ωt+1:t+h,

Table 7  MCS out-of-sample test using the logarithmic HAR-RV and HAR-CJ models

This table provides the MCS p values of the four used models. Particularly, the HAR-RV and HAR-CJ models used in this 
table are cast in logarithmic form. Panels A, B, C, and D report the corresponding results for 1-day, 5-day, 10-day, and 22-day 
horizons, respectively. The mean combination uses the equally weighted average (that is, simple mean) of the individual 
HAR-RV and HAR-CJ forecasts, while our MoJ strategy switches between the HAR-RV and HAR-CJ forecasts based on their 
relatively past forecasting performance. The past forecasting performance is evaluated by a 5-day look-back period. The six 
considered loss functions are QLIKE, MSE, MAE, MSPE, MAPE, and MSE-LOG. Bold numbers highlight important instances in 
which the corresponding model falls into the MCS with the 10% significance level

Models QLIKE MSE MAE MSPE MAPE MSE-LOG

Panel A: 1-day horizon

HAR-RV 0.127 0.038 0.000 0.073 0.000 0.002

HAR-CJ 0.788 0.827 0.851 1.000 0.349 0.387
Mean 1.000 0.739 0.046 0.208 0.001 0.056

MoJ 0.788 1.000 1.000 0.856 1.000 1.000
Panel B: 5-day horizon

HAR-RV 0.000 0.002 0.000 0.000 0.000 0.000

HAR-CJ 0.000 0.033 0.002 0.001 0.000 0.000

Mean 0.000 0.003 0.000 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel C: 10-day horizon

HAR-RV 0.000 0.001 0.000 0.000 0.000 0.000

HAR-CJ 0.000 0.003 0.000 0.000 0.000 0.000

Mean 0.000 0.001 0.000 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel D: 22-day horizon

HAR-RV 0.000 0.000 0.000 0.000 0.000 0.000

HAR-CJ 0.000 0.000 0.000 0.000 0.000 0.000

Mean 0.000 0.000 0.000 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
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respectively. The square-root counterparts are expressed as

and

respectively.
Tables 7 and 8 present the corresponding MCS results when we employ the loga-

rithmic and square-root HAR models, respectively. In the logarithmic version, our 
MoJ strategy generates the highest p values for 22 out of 24 cases and falls into the 
MCS at the 10% significance level across all the 24 cases. Moreover, we observe a bet-
ter forecasting performance of the MoJ strategy than the competing models in the 
square-root version. Overall, the MoJ strategy still shows a significantly stronger pre-
dictive ability than the competing models when nonlinear HAR models are employed. 
Our forecasting results are thus robust to the use of linear and nonlinear HAR 
models.

(28)RV
1/2
t+1:t+h = ϕ0 + ϕdRV

1/2
t + ϕwRV

1/2
t−4:t + ϕmRV

1/2
t−21:t + ωt+1:t+h

(29)
RV

1/2
t+1:t+h =ϕ0 + ϕcdC

1/2
t + ϕcwC

1/2
t−4:t + ϕcmC

1/2
t−21:t

+ ϕsdSJ
1/2
t + ϕswSJ

1/2
t−4:t + ϕsmSJ

1/2
t−21:t + ωt+1:t+h,

Table 8  MCS out-of-sample test using the square-root HAR-RV and HAR-CJ models

This table provides the MCS p values of the four used models. Particularly, the HAR-RV and HAR-CJ models used in this 
table are cast in standard deviation form. Panels A, B, C, and D report the corresponding results for 1-day, 5-day, 10-day, 
and 22-day horizons, respectively. The mean combination uses the equally weighted average (that is, simple mean) of the 
individual HAR-RV and HAR-CJ forecasts, while our MoJ strategy switches between the HAR-RV and HAR-CJ forecasts based 
on their relatively past forecasting performance. The past forecasting performance is evaluated by a 5-day look-back period. 
The six considered loss functions are QLIKE, MSE, MAE, MSPE, MAPE, and MSE-LOG. Bold numbers highlight important 
instances in which the corresponding model falls into the MCS with the 10% significance level

Models QLIKE MSE MAE MSPE MAPE MSE-LOG

Panel A: 1-day horizon

HAR-RV 0.118 0.040 0.000 0.055 0.000 0.001

HAR-CJ 0.436 0.317 0.604 0.669 0.098 0.061

Mean 0.436 0.139 0.004 0.091 0.000 0.001

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel B: 5-day horizon

HAR-RV 0.000 0.004 0.000 0.003 0.000 0.000

HAR-CJ 0.005 0.032 0.011 0.026 0.000 0.001

Mean 0.000 0.004 0.000 0.003 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel C: 10-day horizon

HAR-RV 0.000 0.001 0.000 0.004 0.000 0.000

HAR-CJ 0.005 0.041 0.002 0.013 0.000 0.001

Mean 0.000 0.001 0.000 0.004 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel D: 22-day horizon

HAR-RV 0.000 0.004 0.000 0.002 0.000 0.000

HAR-CJ 0.000 0.004 0.000 0.002 0.000 0.000

Mean 0.000 0.001 0.000 0.001 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
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MIDAS model

A growing number of studies rely on the MIDAS regression model to forecast financial 
market volatility (see, e.g., Ghysels et al. 2006, 2007; Forsberg and Ghysels 2007; Santos 
and Ziegelmann 2014; Ma et  al. 2019). The HAR model imposes constant weights on 
lagged RVs, while the MIDAS model allows a more flexible weighting scheme. In this 
sense, the HAR model appears to be a special case of the MIDAS model. Therefore, we 
further examine the forecasting ability of the MoJ strategy based on the MIDAS model. 
Specifically, we use our MoJ strategy to switch between the MIDAS-RV and MIDAS-CJ 
models.

The MIDAS-RV model can be shown as

where kmax refers to the maximal lag length of the included RVs and the weighting func-
tion, b(k , θ1, θ2) , provides the lag coefficients of lagged RVs. Consistent with the previ-
ously used HAR models, we use kmax= 22.4 The weighting function, b(k , θ1, θ2) , is given 
by

where g(x, y, z) = xy−1(1− x)z−1
/
f (y, z) and f (y, z) = Ŵ(y)Ŵ(z)

/
Ŵ(y+ z) . It should be 

noted that the weighting scheme always delivers positive weights, which ensures that the 
RV forecasts are positive. We refer the reader to Ghysels et al. (2007) for more details 
regarding the weighting scheme.

Consistent with Santos and Ziegelmann (2014) and Ma et al. (2019), the MIDAS-CJ 
model can be shown as

We provide the forecasting results in Table 9 when using the MIDAS-RV and MIDAS-
CJ models to replace the HAR-RV and HAR-CJ models, respectively. The MoJ model 
consistently falls into the MCS at the 10% significance level for all the cases. Conversely, 
the competing models of the MIDAS-RV, MIDAS-CJ, and mean combination approach 
hardly fall into the MCS. This indicates that the MoJ model exhibits substantially bet-
ter predictive ability than the competing models. Thus, the forecasting results remain 
robust to the alternative use of the MIDAS or HAR frameworks.

(30)RVt+1:t+h = µ+ β

kmax−1∑

k=0

b(k , θ1, θ2)RVt−k + ωt+1:t+h,

(31)b(k , θ1, θ2) =
g
(

k
kmax , θ1, θ2

)

∑kmax

j=1 g
(

j
kmax , θ1, θ2

) ,

(32)

RVt+1:t+h = µ+β1

kmax−1∑

k=0

b(k , θC1 , θ
C
2 )Ct−k +β2

kmax−1∑

k=0

b(k , θSJ1 , θSJ2 )SJt−k +ωt+1:t+h.

4  Forsberg and Ghysels (2007), Santos and Ziegelmann (2014), and Ma et al. (2019) use lag length in the range between 
40 and 60. The forecasting results are qualitatively similar for alternative lag lengths, which is provided in the Additional 
file 1.
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Alternative volatility estimators

It is commonly known that the actual measure of asset price volatility is unobserv-
able. With this in mind, we additionally employ another widely used volatility measure, 
termed realized kernel (RK), which is originally proposed by Barndorff-Nielsen et  al. 
(2008). RK has the appealing property that it is not affected by market microstructure 
noise. Statistically, the RK is calculated as

where

and k(x) refers to the Parzen kernel function. For more details, please refer to Barndorff-
Nielsen et al. (2009).

Table  10 presents the corresponding out-of-sample results when we use the RK to 
predict oil futures market volatility in all the four models used. The MoJ strategy con-
tinues to exhibit substantially stronger forecasting power than the competing models. 

(33)RKt =
P∑

p=−P

k(
p

P + 1
)γp,

(34)γp =
N∑

j=|p|+1

rt,jrt,j−|p|

Table 9  MCS out-of-sample test based on the MIDAS-RV and MIDAS-CJ models

This table provides the MCS p values of the four used models. Particularly, we use the MIDAS-RV and MIDAS-CJ models 
to replace the HAR-RV and HAR-CJ models, respectively. Panels A, B, C, and D report the corresponding results for 1-day, 
5-day, 10-day, and 22-day horizons, respectively. The mean combination uses the equally weighted average (that is, simple 
mean) of the individual MIDAS-RV and MIDAS-CJ forecasts, while our MoJ strategy switches between the MIDAS-RV and 
MIDAS-CJ forecasts based on their relatively past forecasting performance. The past forecasting performance is evaluated by 
a 5-day look-back period. The six considered loss functions are QLIKE, MSE, MAE, MSPE, MAPE, and MSE-LOG. Bold numbers 
highlight important instances in which the corresponding model falls into the MCS with the 10% significance level

Models QLIKE MSE MAE MSPE MAPE MSE-LOG

Panel A: 1-day horizon

MIDAS-RV 0.259 0.067 0.002 0.002 0.000 0.000

MIDAS-CJ 0.027 0.152 0.024 0.002 0.000 0.000

Mean 0.259 0.137 0.002 0.002 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel B: 5-day horizon

MIDAS-RV 0.000 0.002 0.000 0.003 0.000 0.000

MIDAS-CJ 0.000 0.002 0.000 0.000 0.000 0.000

Mean 0.000 0.002 0.000 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel C: 10-day horizon

MIDAS-RV 0.000 0.000 0.000 0.011 0.000 0.000

MIDAS-CJ 0.000 0.000 0.000 0.000 0.000 0.000

Mean 0.000 0.000 0.000 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel D: 22-day horizon

MIDAS-RV 0.000 0.012 0.000 0.028 0.000 0.001

MIDAS-CJ 0.000 0.000 0.000 0.000 0.000 0.000

Mean 0.000 0.000 0.000 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
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Specifically, the MoJ model generates the highest MCS p values (i.e., 1) for 23 out of 24 
cases and falls into the MCS for all the 24 cases. In contrast, the three competing models 
enter the MCS for no more than 3 cases. The RK evidence suggests that our out-of-sam-
ple results are robust to the use of alternative volatility estimators.

Other robustness tests

In this subsection, we provide additional robustness tests from five different aspects. 
First, we consider various significance levels for the jump detection test. The previously 
reported forecasting results are based on the 0.5% significance level, which is suggested 
by Andersen et  al. (2007). For the consideration of robustness, we follow Corsi et  al. 
(2010) and Prokopczuk et al. (2016) and additionally use the 1% and 0.1% significance 
levels for the jump detection test.

Second, Rossi and Inoue (2012) and Inoue et al. (2017) both present that out-of-sam-
ple forecasting performance is often influenced by the choice of forecasting window 
size. Therefore, we further employ two window sizes. Specifically, the first 1019 and 619 
observations are used as the initial training samples, while the rest of the observations 
are in the out-of-sample period.

Third, while the rolling estimation window can mitigate the impact of structural 
breaks (see, e.g., Clark and McCracken 2009), the rolling scheme also discards initial 

Table 10  MCS out-of-sample forecasting test based the volatility measure of realized kernel

This table provides the MCS p values of the four used models. The volatility estimator to forecast in this table is the realized 
kernel (RK) instead of the realized variance (RV). Panels A, B, C, and D report the corresponding results for 1-day, 5-day, 
10-day, and 22-day horizons, respectively. The mean combination uses the equally weighted average (that is, simple mean) 
of the individual HAR-RK and HAR-CJ forecasts, while our MoJ strategy switches between the HAR-RK and HAR-CJ forecasts 
based on their relatively past forecasting performance. The past forecasting performance is evaluated by a 5-day look-
back period. The six considered loss functions are QLIKE, MSE, MAE, MSPE, MAPE, and MSE-LOG. Bold numbers highlight 
important instances in which the corresponding model falls into the MCS with the 10% significance level

Models QLIKE MSE MAE MSPE MAPE MSE-LOG

Panel A: 1-day horizon

HAR-RK 0.016 0.030 0.003 0.001 0.000 0.000

HAR-CJ 0.253 1.000 0.258 0.001 0.000 0.000

Mean 0.253 0.170 0.042 0.001 0.000 0.000

MoJ 1.000 0.489 1.000 1.000 1.000 1.000
Panel B: 5-day horizon

HAR-RK 0.000 0.012 0.000 0.000 0.000 0.000

HAR-CJ 0.000 0.012 0.000 0.000 0.000 0.000

Mean 0.000 0.012 0.000 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel C: 10-day horizon

HAR-RK 0.000 0.003 0.000 0.000 0.001 0.001

HAR-CJ 0.000 0.003 0.000 0.000 0.000 0.000

Mean 0.000 0.003 0.000 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel D: 22-day horizon

HAR-RK 0.000 0.003 0.000 0.015 0.000 0.000

HAR-CJ 0.000 0.032 0.000 0.006 0.000 0.000

Mean 0.000 0.004 0.000 0.006 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
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observations when the window rolls forward. The discarded observations perhaps con-
tain useful information for forecasting future RV. For this consideration, we alterna-
tively employ the recursive (expanding) estimation window to obtain out-of-sample RV 
forecasts.

Fourth, as shown in Eq. (14), the past predictive performance is evaluated based on the 
MSE form. For the consideration of robustness, we separately use the QLIKE and MAE 
forms to evaluate past forecasting performance.

Fifth, in addition to the MCS test, we consider another popular test, the Diebold–Mar-
iano (DM) test (Diebold and Mariano 1995).5 Based on the DM test, we compare each 
forecasting model with the HAR-RV benchmark to investigate whether the MoJ model 
shows the highest forecasting gains.

For the sake of brevity, all the results for the five different types of robustness tests are 
tabulated in the Additional file 1. In short, we find robust results that the MoJ strategy 
consistently surpasses the competing models.

Table 11  MCS out-of-sample forecasting test for stock market

This table provides the MCS p values of the four used models. In particular, we forecast the stock market (i.e., the S&P 500 
Index) volatility instead of the oil futures market volatility in this table. Panels A, B, C, and D report the corresponding results 
for 1-day, 5-day, 10-day, and 22-day horizons, respectively. The mean combination uses the equally weighted average (that 
is, simple mean) of the individual HAR-RV and HAR-CJ forecasts, while our MoJ strategy switches between the HAR-RV and 
HAR-CJ forecasts based on their relatively past forecasting performance. The past forecasting performance is evaluated by 
a 5-day look-back period. The six considered loss functions are QLIKE, MSE, MAE, MSPE, MAPE, and MSE-LOG. Bold numbers 
highlight important instances in which the corresponding model falls into the MCS with the 10% significance level

Models QLIKE MSE MAE MSPE MAPE MSE-LOG

Panel A: 1-day horizon

HAR-RV 1.000 0.690 0.096 0.002 0.000 0.012

HAR-CJ 0.047 0.751 0.096 0.014 0.012 0.012

Mean 0.906 1.000 0.096 0.001 0.000 0.012

MoJ 0.945 0.690 1.000 1.000 1.000 1.000
Panel B: 5-day horizon

HAR-RV 0.000 0.010 0.000 0.000 0.000 0.000

HAR-CJ 0.000 0.010 0.001 0.000 0.002 0.001

Mean 0.000 0.068 0.001 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel C: 10-day horizon

HAR-RV 0.000 0.004 0.000 0.000 0.000 0.000

HAR-CJ 0.000 0.004 0.000 0.014 0.000 0.000

Mean 0.000 0.005 0.000 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel D: 22-day horizon

HAR-RV 0.000 0.005 0.000 0.000 0.000 0.000

HAR-CJ 0.000 0.000 0.000 0.000 0.000 0.000

Mean 0.000 0.000 0.000 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000

5  Specifically, we use the modified Diebold–Mariano test proposed by Harvey et al. (1997), which considers potential 
contemporaneous correlation between forecast errors, as well as autocorrelation and heavy-tailed distributions for fore-
cast errors.
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Extension and application
Stock market evidence

Stock market volatility forecasting is equally important and popular in the academic lit-
erature (see, e.g., Wang et al. 2016; Clements and Liao 2017; Zhang et al. 2020). There-
fore, the question arises as to whether our MoJ strategy is useful for forecasting stock 
market volatility. Thus, we extend the MoJ strategy to the stock market. Specifically, we 
use the MoJ strategy as well as the three competing models to produce the RV forecasts 
of the S&P 500 Index. The entire sample period spans January 2, 2009 to December 30, 
2016, which includes 2001 observations. The first 1201 observations are used as the ini-
tial training sample, while the rest 800 observations are in the out-of-sample period. A 
rolling estimation window is employed to produce the stock market RV forecasts.

Table 11 presents the corresponding MCS results for forecasting stock market volatil-
ity. We find similar results for the crude oil futures and stock markets. The MoJ model is 
in the MCS at the 10% significance level for all the 24 cases. Furthermore, the MoJ model 
yields the highest MCS value and significantly beats the competing model in 22 out of 
24 cases. This evidence suggests that the MoJ strategy is also feasible and useful for fore-
casting stock market volatility.

Portfolio performance

We examine the economic value of the RV forecasts of the MoJ strategy and the compet-
ing models in an asset allocation exercise. Following Bollerslev et al. (2018), we assume 
that a mean–variance investor will allocate her wealth between a risky asset (i.e., WTI 
futures) and a risk-free asset (i.e., risk-free bills) with a constant Sharpe ratio. Compared 
to the related approaches (see, e.g., Fleming et al. 2001, 2003; Campbell and Thompson 
2008; Rapach et al. 2010; Zhang et al. 2019c), which rely on both the return and volatil-
ity forecasts, the portfolio exercise proposed by Bollerslev et al. (2018) depends exclu-
sively on the volatility forecast. This is appealing since forecasting returns is notoriously 
difficult (see, e.g., Campbell and Thompson 2008; Welch and Goyal 2008; Rapach et al. 
2010).

In the portfolio exercise of Bollerslev et al. (2018), the investor invests a fraction, wt , 
of her current (i.e., time t) portfolio in WTI futures with a return of rt+1 and the rest in 
risk-free bills with a return of rft  . Correspondingly, her future portfolio return becomes 
r
p
t+1 = wtrt+1 + (1− wt)r

f
t = wtr

e
t+1 + r

f
t  , where ret+1 = rt+1 − r

f
t  . Excluding the con-

stant terms, which depend only on time-t variables, we can approximate the expected 
utility as

where γ denotes the investor’s risk aversion coefficient and Var(ret+1) = Et(RVt+1) . To 
focus exclusively on volatility forecasting, Bollerslev et al. (2018) assume that the condi-
tional Sharpe ratio, which is written as SR ≡ Et(r

e
t+1)

/√
Et(RVt+1) , is constant. Conse-

quently, the expected utility can be rewritten as

(35)U(wt) = wtEt(r
e
t+1)−

γ

2
w2
t Var(r

e
t+1),

(36)U(wt) = wtSR
√
Et(RVt+1)−

γ

2
w2
t Et(RVt+1),
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which simply relies on the portfolio weight, wt , and the expected RV, Et(RVt+1) . Maxi-
mizing the expected utility given by Eq. (36), we can obtain the optimal portfolio weight 
for oil futures as follows.

Given Eq. (37), we can derive that the conditional standard deviation of the portfolio’s 
risky part is 

√
Var(w∗

t r
e
t+1) = SR

/
γ . This indicates that the investor targets an optimal 

volatility of SR
/
γ . When the forecast of 

√
Et(RVt+1) is greater than the “risk target” of 

SR
/
γ (that is, w∗

t < 1 ), the investor only allocates part of her wealth to the risky asset of 
oil futures. On the contrary, when the predicted volatility risk of 

√
Et(RVt+1) is smaller 

than this risk target (that is, w∗
t > 1 ), the investor must rely on leverage to achieve her 

target.
Substituting Eq. (37) into (36), we can realize an expected utility from the optimally 

targeted portfolio as follows.

However, in practice, Et(RVt+1) is not available. Using the RV forecast of R̂V t+1 for 
day t + 1, we can realize an expected utility of

We empirically report the average utility during the out-of-sample forecasting period. 
Accordingly, the reported average utility is calculated as

(37)w∗
t =

SR
/
γ

√
Et(RVt+1)

.

(38)U(w∗
t ) =

SR2

2γ
.

(39)U(�RV t+1) =
SR2

γ




√
RVt+1�
�RV t+1

−
1

2

RVt+1

�RV t+1



.

(40)U(�RV ) =
1

q

R+P−1�

t=R

SR2

γ




√
RVt+1�
�RV t+1

−
1

2

RVt+1

�RV t+1



,

Table 12  Portfolio performance

This table provides the portfolio performance evaluated by the average realized utility (in percentage). In this portfolio 
exercise, we assume that a mean–variance investor will allocate her portfolio between WTI futures and risk-free bills by 
using different RV forecasts, which is based on a constant Sharpe ratio of 0.4 and a risk aversion coefficient of 2. The static 
model simply takes the rolling sample average of in-sample RVs as the RV forecast. The mean combination uses the equally 
weighted average (that is, simple mean) of the individual HAR-RV and HAR-CJ forecasts, while our MoJ strategy switches 
between the HAR-RV and HAR-CJ forecasts based on their relatively past forecasting performance. The past forecasting 
performance is evaluated by a 5-day look-back period

Models h = 1 h = 5 h = 10 h = 22

Static 2.839 3.100 3.176 3.234

HAR-RV 3.502 3.719 3.756 3.783

HAR-CJ 3.487 3.702 3.741 3.764

Mean 3.504 3.719 3.755 3.776

MoJ 3.505 3.749 3.783 3.799
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where R and P denote the lengths of in- and out-of-sample periods, respectively. Follow-
ing Bollerslev et  al. (2018), we set the risk aversion coefficient and annualized Sharpe 
ratio to be γ = 2 and SR = 0.4, respectively.6 Consequently, U(w∗

t ) = 4% , implying that 
the investor is happy to pay 4% of her wealth to obtain the w∗

t  portfolio of the risky asset 
rather than to exclusively invest in risk-free bills.

Table  12 reports the portfolio performance evaluated based on the average realized 
utility. Particularly, we follow Bollerslev et al. (2018) and additionally use a static model 
as the benchmark in portfolio performance. Under the assumption that volatility risk is 
constant, the static model simply takes the rolling sample average of in-sample RVs as 
the RV forecast.7 Two important findings emerge. First, all the four forecasting mod-
els deliver substantially higher realized utilities than the static model. The utility gains, 
which are computed as the difference between the realized utilities of our previously 
used forecasting models and that of the static model, are mostly above 50 basis points. 
The realized utility can be regarded as the portfolio’s profit (or return) adjusted by vola-
tility risk. Therefore, this evidence means that the investor is happy to forego 50 basis 
points to have access to the four econometric models rather than to simply use the static 
model. Second and more importantly, the utility gain from the MoJ model is the largest 
of the gains from all the four models used. This means that the investor is happy to pay 
more fees to use the MoJ model than to use the other three competing models. In other 
words, our MoJ model can deliver the largest economic gains for the assumed investor in 
a real portfolio exercise.

A comparison with alternative strategies

In this subsection, we extend our competing models by considering two strands of simi-
lar forecasting strategies. First, the MoJ approach also works like the discount mean 
squared prediction error (DMSPE) combination method. Both the MoJ and DMSPE 
strategies depend on the past predictive performances of individual models. The differ-
ence is that the MoJ model imposes a binary weight of 0 or 1 on the individual HAR-RV 
and HAR-CJ models, while the DMSPE method produces a continuous weight between 
0 and 1 for the two models based on their past forecasting performances. Several recent 
studies explicitly show that the DMSPE method can improve out-of-sample forecast 
accuracy (see, e.g., Rapach et al. 2010; Wang et al. 2019; Dai et al. 2021). Statistically, the 
DMSPE weight for individual forecast i on days t + 1 : t + h is given by

where

(41)ωi,t+1:t+h = φ−1
i,t+1:t+h

/
∑

ℓ∈{RV, CJ}
φ−1
ℓ,t+1:t+h, for i = RV,CJ,

6  That is, the annualized volatility target equals 20%. Other reasonable values of SR and γ will not influence the compari-
son results of the average realized utility among different RV forecasting models.
7  Bollerslev et al. (2018) use the expanding sample average of RVs, while we use the rolling sample average, which is con-
sistent with the forecasting scheme of our previously used models. Moreover, the portfolio results are similar when we 
employ the expanding sample average.
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R denotes the length of the initial training period, and δ refers to the discount factor. 
We follow Rapach et al. (2010) and rely on two values of δ , that is, 1 and 0.9. We then 
obtain two corresponding approaches, dubbed DMSPE(1) and DMSPE(0.9).

Second, the MoJ strategy is similar to shrinkage approaches, which push the coeffi-
cients of jump components toward 0 when the recent past performance of the HAR-CJ 
is worse than that of the HAR-RV model. Therefore, we compare the forecast accuracy 
of the MoJ with those of alternative shrinkage methods, including the ridge, lasso, and 

(42)φi,t+1:t+h =
∑t−h

s=R
δt−h−s

(
RVs+1:s+h − R̂V

i

s+1:s+h

)2
,

Table 13  A comparison of alternative forecasting models

This table provides the MCS p values for the MoJ and alternative models. Panels A, B, C, and D report the corresponding 
results for 1-day, 5-day, 10-day, and 22-day horizons, respectively. The combination models of DMSPE(1) and DMSPE(0.9) 
calculate the weights of the individual HAR-RV and HAR-CJ forecasts based on their past forecasting performance, while our 
MoJ strategy switches between the HAR-RV and HAR-CJ forecasts based on their relatively past forecasting performance. 
The shrinkage methods of the ridge, lasso, and elastic net are performed based on the HAR-CJ model. In the MoJ model, the 
past forecasting performance is evaluated by a 5-day look-back period. The six considered loss functions are QLIKE, MSE, 
MAE, MSPE, MAPE, and MSE-LOG. Bold numbers highlight important instances in which the corresponding model falls into 
the MCS with the 10% significance level

Models QLIKE MSE MAE MSPE MAPE MSE-LOG

Panel A: 1-day horizon

DMSPE(1) 0.002 0.212 0.000 0.000 0.000 0.000

DMSPE(0.9) 0.267 0.487 0.000 0.026 0.000 0.001

Ridge 0.002 0.533 0.684 0.026 0.003 0.002

Lasso 0.002 0.533 0.000 0.000 0.000 0.000

Elastic net 0.002 0.487 0.000 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel B: 5-day horizon

DMSPE(1) 0.000 0.011 0.000 0.000 0.000 0.000

DMSPE(0.9) 0.000 0.016 0.000 0.000 0.000 0.000

Ridge 0.000 0.016 0.000 0.000 0.000 0.000

Lasso 0.000 0.016 0.000 0.000 0.000 0.000

Elastic net 0.000 0.016 0.000 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel C: 10-day horizon

DMSPE(1) 0.000 0.003 0.000 0.000 0.000 0.000

DMSPE(0.9) 0.000 0.003 0.000 0.000 0.000 0.000

Ridge 0.000 0.003 0.000 0.000 0.000 0.000

Lasso 0.000 0.004 0.001 0.000 0.000 0.000

Elastic net 0.000 0.003 0.000 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
Panel D: 22-day horizon

DMSPE(1) 0.000 0.000 0.000 0.000 0.000 0.000

DMSPE(0.9) 0.000 0.000 0.000 0.000 0.000 0.000

Ridge 0.000 0.000 0.000 0.000 0.000 0.000

Lasso 0.000 0.000 0.000 0.000 0.000 0.000

Elastic net 0.000 0.000 0.000 0.000 0.000 0.000

MoJ 1.000 1.000 1.000 1.000 1.000 1.000
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elastic net.8 These shrinkage methods have been demonstrated to perform well in fore-
casting asset price returns and volatilities (see, e.g., Li et al. 2015; Li and Tsiakas 2017; 
Zhang et al. 2019c).

The corresponding comparison results are shown in Table 13. Our MoJ strategy con-
sistently produces the highest MCS p-values (i.e., 1) for all loss functions and forecast 
horizons. In contrast, the alternative competing models of DMSPE(1), DMSPE(0.9), 
ridge, lasso, and elastic net produce substantially lower MCS p values, most of which are 
smaller than 0.1, implying that the corresponding models cannot enter the MCS at the 
10% significance level. We thus conclude that the MoJ strategy also outperforms the two 
DMSPE and three shrinkage methods in the out-of-sample forecasting test.

Conclusion
The jump component is not informative for forecasting oil futures market volatil-
ity (Prokopczuk et  al. 2016). To improve the efficiency of using jump information, we 
propose the MoJ strategy, which switches between the HAR-RV model without jumps 
and the HAR-CJ model incorporating jump information based on their relative past 
forecasting performances. The MoJ approach depends on the momentum of the jump 
model’s predictive ability. More precisely, the MoJ implies that a good past predictive 
performance of the jump model (i.e., the HAR-CJ model) typically delivers a good future 
predictive performance.

Empirically, the in-sample estimation results suggest that the jump component does 
not contain a powerful explanatory ability for future oil futures RV. This evidence implies 
that a straightforward approach of using the jump model alone is unlikely to be feasible. 
In addition, based on six prevailing loss functions, the MCS out-of-sample forecasting 
test provides convincing evidence that the MoJ strategy outperforms the HAR-RV, HAR-
CJ, and the mean combination of the two HAR models. Furthermore, we document the 
existence of the MoJ in forecasting the oil futures market RV; that is, the stronger pre-
dictive power of the jump model is persistent. This lays the foundation for the success of 
the MoJ strategy.

The results of the superiority of our MoJ model are found to be robust to various fore-
cast horizons (ranging from 1-day to 22-day horizons), alternative jump models, vari-
ous look-back periods, alternative volatility estimators, the use of the HAR or MIDAS 
framework, the use of linear and nonlinear HAR models, different forecasting windows, 
and many other robustness perspectives. In addition, we extend the MoJ model to the 
prediction of stock market RV and obtain consistent forecasting results. Finally, in a 
portfolio exercise, we explore the economic significance of the RV forecasts of the MoJ 
strategy and the competing models. A mean–variance investor who targets a constant 
Sharpe ratio can realize sizeable utility gains relying on the MoJ-based RV forecasts to 
allocate her portfolio.

Our empirical findings have some useful implications for the participants in the crude 
oil market. For example, volatility forecasting is commonly used in the applications of 

8  For ridge, we use the Hoerl et al. (1975) algorithm to ascertain the reasonable value of the biasing parameter. In terms 
of lasso and elastic net, we follow Zhang et al. (2019b) and Zhang et al. (2019c) to estimate the shrinkage parameters. We 
refer to these references for further details about the estimations of ridge, lasso, and elastic net.
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asset allocation and risk management. While directly using jumps is likely to be use-
less when forecasting crude oil price volatility, the participants still need to indirectly 
consider jump information. Our MoJ approach is a successful example that can enhance 
the predictability of oil market volatility and thereby improve the performance of asset 
allocation and risk management. There are, of course, many other ways to address jump 
information. This is an interesting field for future research. Machine learning is probably 
a better choice for discovering more useful information in jumps.
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