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Introduction
Most financial signals show time dependency, which, when combined with the presence 
of noisy and extreme events, can cause severe difficulties in the estimation of statisti-
cal models, particularly for the asset allocation problem in which relationships among 
financial quantities play a fundamental role. In this work, we model the joint dynam-
ics of financial signals, handling both the time-dependency of the time series and the 
presence of extreme events—two features characterizing most financial time series and, 
in particular, the cryptocurrency (CC) market. The first CC—Bitcoin—was developed 
in 2009. At the end of 2015, the number of available CCs was approximately five Hun-
dred. In mid-2021, more than six thousand CCs existed. These numbers, together with 
the growing literature regarding these new currencies, are witnesses to how the inter-
est in CCs increased during recent years. Several statistical aspects related to CCs were 
studied, as in Bariviera et  al. (2017), Cunha and Da Silva (2020), Cont (2001) and Hu 
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et  al. (2019), which analyzed stylized characteristics of the CC market. Alternatively, 
in Ciaian and Rajcaniova (2018) and Brandvold et  al. (2015), the authors investigated 
the joint dynamics of CCs. Moreover, several authors investigated CCs’ volatility using 
GARCH models and their extensions, including Caporale and Zekokh (2019), Dyhrberg 
(2016), and Katsiampa (2017). Robustness issues regarding GARCH modeling of CCs’ 
volatility were addressed by Charles and Darné (2019). Beyond multivariate GARCH 
models, Bouri et  al. (2017) used a dynamic conditional correlation model to describe 
the time-varying conditional correlation between Bitcoin and other financial assets, 
whereas Corbet et al. (2018) studied the time-varying relationships between some CCs 
and other financial assets using a pairwise directional measure of volatility spillovers. In 
Bazán-Palomino (2020, 2021), the authors investigated the correlations between Bitcoin 
and its forks, where the terms fork refers to a new version of the blockchain obtained 
by introducing changes in the rules of the original blockchain. The authors used sev-
eral volatility models—both univariate and bivariate—and showed that Bitcoin and their 
forks are dynamically correlated. Chaim and Laurini (2019) modeled the returns and 
volatility dynamics of CCs using a multivariate stochastic volatility model with discon-
tinuous jumps, whereas Fry (2018) developed bubble models for CCs to handle the pres-
ence of heavy tails. To conclude this overview of CCs’ modeling literature, it is worth 
citing Catania et al. (2019), who proposed several models to improve CCs’ forecasting 
performances.

Notwithstanding the large number of potential applications of CCs, such as near real-
time micropayments that are necessary to the development of the Internet of Things, 
currently, they are mainly used as speculative investment instruments. Indeed, many 
online exchange websites offer the opportunity to sell and buy all available CCs and to 
create investment portfolios to manage the related financial risk. However, given their 
nature, these currencies are far from being similar to the traditional ones (Baek and 
Elbeck 2015; Huang et al. 2019)—an aspect that immediately emerges by inspecting the 
data. Several researchers analyzed the opportunity to invest in CCs: Briere et al. (2015) 
analyzed the returns of traditional asset portfolios in which bitcoin was inserted. Klein 
et  al. (2018) investigated the performance of a portfolio containing both traditional 
assets and several CCs and tested the robustness of their results considering the CC 
index CRIX. Chuen et al. (2017) analyzed the investing opportunities of CCs by study-
ing the top ten CCs together with the CRIX index and other indexes related to tradi-
tional assets. In all of these cases, of paramount importance is to estimate the degree of 
dependency between the various CCs.

In this work, we study the dependencies among many CCs in an attempt to provide an 
instrument to investigate the behavior of the entire cryptocurrency market. To this end, 
we study the precision matrix, namely, the inverse of the correlation matrix, whose ele-
ments—when dealing with Gaussian distributions—represent the dependence between 
two variables conditionally on the remaining ones (Lauritzen 1996); that is, if the ele-
ment i, j of the precision matrix is zero, then the variables i and j of the multivariate dis-
tribution are conditionally independent. We do not study the correlation matrix because 
it may not provide meaningful information in multivariate settings on the depend-
ence between the variables. Indeed, two variables might show significant correlation 
because of the influence of other variables. Models based on the precision matrix are 
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called graphical models, which means that the precision matrix allows for a graph to 
be built whose nodes represent the variables—the considered financial time series—and 
the edges represent the conditional dependence; see Lauritzen (1996) for more details. 
In high-dimensional settings, the opportunity to build a graph is worthwhile because it 
allows for interactions to be visualized, clusters to be created, and in general, the exploi-
tation of the entire apparatus of graph theory, which can reveal the hidden topological 
properties of the financial network. These models are frequently used in the statistical 
and machine learning literature for certain reasons. However, despite their theoretical 
relevance, their practical applicability is limited by the restrictive assumptions of inde-
pendent and identically distributed (i.i.d.) Gaussian observations that are often princi-
pally unrealistic because of the presence of a non-Gaussian or a contaminated Gaussian 
process—or the time-dependent nature of the process. The body of literature contains 
studies addressing the distortion arising from a Gaussian assumption in the case of 
heavy tails: Lafferty et al. (2012) proposed two non-parametric approaches, one based 
on a transformation of the data and the second based on a kernel density estimation; 
Finegold and Drton (2014) proposed in a Bayesian setting Dirichlet t-distributions to 
handle heavy tails and investigated the computational costs derived from the Gibbs sam-
pler algorithm tailored for such distributions; Vogel and Tyler (2014) proposed graphical 
M-estimators tailored for elliptical graphical models; and Hirose et al. (2017) proposed a 
robust estimator that minimizes the γ-divergence between the observed and theoretical 
distribution. Moving on the non-stationary issue, Zhou et al. (2010) investigated time-
dependent graphical models by using a temporal kernel to address a precision matrix 
whose structure evolves smoothly over time. To the best of our knowledge, no studies 
simultaneously handled extreme events and time-dependency: our goal in this work 
is to fill this gap by developing an estimation method for multivariate time series that 
handle time-dependent parameters and that is robust against the presence of extreme 
events. In particular, we propose a robustification based on γ-divergence of the time-
varying approach introduced in Zhou et  al. (2010). Using a kernel estimator together 
with an M-type estimator was introduced by Cai and Ould-Saïd (2003), who proposed a 
robust version of a local linear regression smoother for stationary time series. They also 
extended the asymptotic theory developed by Fan and Jiang (2000) to the case of non-
i.i.d. random variables, in which the authors studied local robust techniques in the i.i.d. 
case. Our approach is similar to that proposed in Cai and Ould-Saïd (2003) because it 
merges an M-type estimator with a kernel estimator but differs in the model considered.

The remainder of this paper is organized as follows. “Model” section describes the sta-
tistical model considered in this work. “Estimation methodology” section addresses the 
methodological contribution of the paper and introduces details regarding time-varying 
and robust estimations through γ-divergences that are the starting points of our estima-
tor. “Test case” section addresses simulation experiments constructed to test the per-
formance of the proposed methodology. “Cryptocurrency market application” section 
describes the real data CCs’ application, and “Discussion”  and “Conclusions” sections 
provide discussions and the conclusions, respectively.
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Model
The simplest model accounting for financial price dynamics is given by the geometric 
Brownian motion dpt = µptdt + σptdWt , where µ and σ are the percentages of the 
drift and volatility, respectively, and dWt is a simple Brownian motion with independ-
ent increments normally distributed. The logarithm of the price follows a simple 
Brownian motion. As is usually done, we work with the log return of the price, 
rt = log

pt
pt−1

.
We assume that return dynamics are described by a contaminated time-dependent 

Gaussian process. Formally, we assume that the observed log returns rt are distrib-
uted according to the following probability: distribution

where f (rt , t) = Nd

(

0,Θ−1
t

)

 is a zero mean multivariate Gaussian distribution with a 

time-dependent precision matrix Θ t (that is, the inverse of the correlation matrix), 
s(rt , t) is a contaminating probability distribution accounting for the shock components, 
and ǫ is the ratio of contamination that will never be considered as infinitesimal—mean-
ing that we are interested in the case of a significant contamination of extreme events. 
Worth noting is that Eq. (1) is just a mathematical formulation to describe a contami-
nated model in which, in addition to the selected statistical process, extreme events, out-
liers, or some other possible events are present that are not described by the model f (·) . 
Therefore, the contamination ratio ǫ should not be considered a model parameter to be 
estimated, and the only parameters of interest are those of f (rt , t) = Nd

(

0,Θ−1
t

)

.

Moreover, the distribution f (rt , t) , which is assumed to be Gaussian to keep the 
presentation of the method as clear as possible, can be replaced by a general condi-
tional probability distribution with Gaussian noise, leaving the formalism unchanged.

The choice of this model is motivated by the interest in the conditional correlations 
among CCs, which are represented by the elements of the precision matrix when 
addressing Gaussian distributions.

Estimation methodology
This section describes the main contribution of this study, namely, the presentation 
of a local robust estimator of the precision matrix described in “Robust time-varying 
estimation” section. The proposed estimator is constructed using two estimators: the 
local estimator of the time-varying precision matrix introduced in Zhou et al. (2010) 
and briefly recalled in “Time-varying estimation” section, and the robust estimator 
based on γ-divergence introduced in Fujisawa and Eguchi (2008) and briefly recalled 
in “Robust estimation” section.

Time‑varying estimation

In Zhou et al. (2010), the authors are interested in the local estimation of the preci-
sion matrix of the model f (r, t) = Nd

(

0,Θ−1
t

)

 . To this end, they proposed a kernel 

estimator defined as follows.

(1)g(rt , t) = (1− ǫ)f (rt , t)+ ǫs(rt , t)
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Let {rt}Tt=1 be a sample of T observations of rt , as previously defined. The time-varying 
precision matrix Θ t in the non-i.i.d. case is estimated using the modified Lasso-penalized 
maximum likelihood estimator obtained by introducing a kernel over the time domain,

where 
(

̂S(t)
)

i,j
=

∑T
u=1 wutri,ur

′
j,u , is an empirical covariance matrix weighted with a 

symmetric time-dependent nonnegative kernel wut =
K (|u−t|/h)

∑T
u=1 K (|u−t|/h)

 where K(·) is a 

Gaussian kernel, h is the bandwidth, and �‖Θ‖1 is the Lasso penalty added to local likeli-
hood of inducing sparsity in the precision matrix. Noteworthy is that the bandwidth 
parameter h acts on the kernel by modifying its shape; that is, it is the standard deviation 
of the Gaussian kernel. In particular, low values of h provide high weights only to points 
close to the reference time t, whereas high values of h translate into assigning relevant 
weights to points far from the reference time t. In other words, the bandwidth parameter 
h determines the estimation window size.

The estimator defined in Eq. (2) has good asymptotic properties if the precision matrix 
evolves smoothly over time. At varying t, it provides a chain of graphs that unveils how 
the multivariate structure of the process evolves over time—exactly the objective of 
this study. Unfortunately, the maximum-likelihood approach suffers because of its non-
robust nature (Huber and Ronchetti 2011), the presence of contamination from extreme 
random events. This issue is addressed in the next subsection.

Robust estimation

Many robust approaches are developed in the statistical literature. Some are based on 
the modification of the minimization function to obtain a finite influence function [see 
Huber and Ronchetti (2011)]; others are based on modifying the Kullbach–Leibler diver-
gence, whose minimization corresponds to the maximum-likelihood approach to obtain 
a divergence that provides less weight to extreme events or outliers; thus, it is robust 
against them [see Basu et al. (1998) and Fujisawa and Eguchi (2008)]. In this study, we 
followed the divergence-based approach; in particular, we consider the one introduced 
in Fujisawa and Eguchi (2008) based on γ-divergence. To introduce this methodology, 
we use the model defined in Eq. (1): in the i.i.d case, namely,

Now, let {rt}Tt=1 be an i.i.d. sample drawn from g. In this framework, a non-robust 
approach chooses the estimated parameters θ̂ such that f

θ̂
 is close to g and, thus, is 

biased by outliers. Instead, a robust approach chooses the estimated parameters θ̂ such 
that f

θ̂
 is close to f. The choice of the divergence depends on the specific problem. In this 

paper, we consider the γ-divergence defined as

where γ > 0 is constant. Clearly, f (r)γ weights the observations—in particular, small 
values of γ emphasized extreme events, whereas large values of γ emphasized the 

(2)̂Θ(t) = arg min
Θ≻0

{

tr
(

Θ̂S(t)
)

− ln |Θ| + ��Θ�1

}

,

g(r) = (1− ǫ)f (r)+ ǫs(r).

(3)dγ
(

g , f
)

= −
1

γ
log

∫

g(r)f (r)γ dr +
1

1+ γ
log

∫

f (r)1+γ dr,
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underlying distribution. The second term in Eq. (3) is needed to have an unbiased esti-
mator. The γ-divergence is empirically estimated by

Thus, the robust estimator is obtained as solution to the minimization problem defined 
as

where we changed the notation from f to fθ to highlight the dependence over the set 
of parameters θ and this estimator exhibited good asymptotic properties based on the 
theory of Mestimators (DasGupta 2008) and shows a small bias even in the case of heavy 
contamination assuming that f (r) is sufficiently small when r is an outlier; that is, the 
following condition must be respected

Usually, γ < 1 is considered; for further details see Fujisawa and Eguchi (2008). How-
ever, this estimator does not handle the time-varying nature of the problem considered.

Robust time‑varying estimation

In this section, we present the main methodological contribution of this paper. That is, 
we propose an estimator that can manage the time-varying nature of the problem and 
the presence of extreme events contaminating the underlying distribution. To this end, 
we modify the estimated γ-divergence defined in Eq. (4) to assign greater importance to 
observations close to the period considered. We apply the same methodology as in Zhou 
et al. (2010) that introduces a kernel over the time domain, as detailed in “Time-varying 
estimation” section. Here, we consider the complete model defined in Eq. (1), which we 
report here for the reader’s convenience

Using the same notation introduced in the previous sections, we define the local esti-
mated γ-divergence as

This estimator considers both extreme events through the parameter γ and the time 
dependency through the kernel wut =

K (|u−t|/h)
∑T

u=1 K (|u−t|/h)
 with bandwidth h. Indeed, the 

parameter γ weighs observations according to the underlying distribution, as detailed in 

(4)dγ
(

ḡ , fθ
)

= −
1

γ
ln

{

1

T

T
∑

t=1

f (rt)
γ

}

+
1

1+ γ
ln

∫

f (r)1+γ dr

(5)= ℓ1(rt , θ)+ ℓ2(θ),

̂θ = arg min
θ

dγ
(

ḡ , fθ
)

,

{
∫

s(r)f (r)γ dr

}
1
γ

is small for a sufficiently large γ > 0.

g(rt , t) = (1− ǫ)f (rt , t)+ ǫs(rt , t).

(6)
d
(

ḡ , fθ t
)

= −
1

γ
ln

{

T
∑

u=1

wut f (ru, θ t)
γ

}

+
1

1+ γ
ln

∫

f (r, θ t)
1+γ dr

= ℓ1,t(rt , θ t)+ ℓ2(θ t).
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“Robust estimation” section, whereas the kernel wut provides significant weight only to 
observations at a temporal distance less than the bandwidth h from the reference time t.

Thus, the local robust estimator at time t for 0 ≤ t ≤ T  is obtained as a solution to 
the following minimization problem:

The minimization problem defined in Eq.  (7) can be solved through a maximization–
minimization (MM) algorithm following the procedure detailed in Hirose et al. (2017). 
We customize our estimator in “Appendix 2”.

In high-dimensional settings—when the number of features is higher than the num-
ber of observations—sparsity can be introduced into the precision matrix structure 
by adding a penalty to the local estimated γ-divergence in Eq. (6).

Worth noting is that the use of a kernel estimator with an M-type estimator was 
introduced by Cai and Ould-Saïd (2003), and the authors proposed a robust version 
of a local linear regression smoother for stationary time series. They also extended 
the asymptotic theory developed by Fan and Jiang (2000) to the case of non-i.i.d. ran-
dom variables, for which the authors studied local robust techniques in the i.i.d. case. 
We are working on adapting the asymptotic theory developed in Cai and Ould-Saïd 
(2003) to our estimator; however, the technicalities and mathematical proofs, which 
are beyond the scope of this work, will be published in a separate paper.

Test case
In this section, we investigate the performance of the proposed estimator using a 
synthetic stochastic model with known parameters. In particular, in a time interval 
t ∈ [0 : T ] , we consider a distribution g(r, t) obtained as a mixture of an underlying 
distribution f (r, t) given by a 2-dimensional zero-mean time-dependent Gaussian 
random process and a contaminating distribution, s(r) , given by a simple two-dimen-
sional Gaussian process with a large mean mimicking extreme events, as follows:

The covariance matrices Σ t and D are defined as

where σ 2
1 = 0.197 and σ 2

2 = 0.363 are taken as the sample variances of the Bitcoin and 
Ethereum time series, respectively, detailed in “Data” section. We consider various con-
tamination rates ǫ , and the time dependency in the underlying process is the result of a 
correlation coefficient ρt , which varies in (−1, 1) in the considered time interval [0 : T ] , 
following the sigmoid function

(7)̂θ(t) = arg min
θ

d
(

ḡ , fθ t
)

.

g(r, t) = (1− ǫ)f (r, t)+ ǫs(r) = (1− ǫ)N2(0,Σ t)+ ǫN2(10 ∗ 1,D).

Σ t =

[

σ 2
1 σ1σ2ρt

σ1σ2ρt σ 2
2

]

and D =

[

σ 2
1 0

0 σ 2
2

]

,

ρt =

t−t0
a

√

1+
(

t−t0
a

)2
,



Page 8 of 25Stolfi et al. Financial Innovation            (2022) 8:47 

where t0 = T/2 and a = T/10.
At fixed time t∗ = 50, 150, 250, . . . , 950 , following the algorithm of “Data” section, the 

values of the estimated correlation ρ̂(t∗) associated with different values of the contami-
nation rate ǫ = 0.1, 0.2, and 0.4 and obtained for several robustness parameter values 
γ = 0, 0.01, 0.02, 0.05, 0.1, and 0.2 and several bandwidth values h = 100, 200, and 400 
are shown in Fig. 1. In each row of the figure, the bandwidth is fixed, whereas the contam-
ination rate in each column is fixed, as labeled in the title of each panel. The results show 
that the performance of the estimator changes according to both the contamination rate 
and the γ parameter. Specifically, for low values of γ ( γ = 0, 0.01, 0.02 ), the estimate ρ̂(t∗) 
is not able to catch the dynamic of the correlation coefficient, ρt , of the underlying distri-
bution, f (r, t) , as expected. For values greater than γ = 0.05 , the robust estimator privi-
leged the underlying distribution, and the estimate ρ̂(t∗) identifies the true correlation 
dynamics. Clearly, increasing the contamination rate requires an increase in the value of 
γ to obtain a good estimate of ρt . Worth noting is that the values of γ chosen in these 
simulations point out (see the first row of Fig. 1) that when the contamination is small, 
higher values of γ do not improve the estimate, whereas higher values of γ are needed to 
improve the estimate. We could have chosen more values of γ ; however, to understand 

Fig. 1  Dynamics of the estimated correlation coefficient. The parameters are estimated at 10 points, that is, 
t
∗ = 50, 150, 250, . . . , 950 . Each row corresponds to a bandwidth, that is, h = 100, 200 , and 400, whereas each 

column corresponds to a contamination rate, that is, ǫ = 0.1, 0.2 , and 0.4
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the method and the readability of the related plots, we found that the proposed values 
were a good choice. Bandwidth h acts as a smoothing parameter and softens the variation 
in the true correlation dynamics. Truly remarkable is that a standard non-robust estima-
tor (the case of small γ ) is absolutely unable to grasp the underlying process—even in this 
simple example—and is completely diverted from the contamination of extreme events.

Cryptocurrency market application
Recently, the precision matrix has attracted increasing interest in the financial con-
text, given its various and useful applications, from portfolio optimization, in which the 
closed-form solution to the global minimum variance portfolio involves the precision 
matrix (Torri et al. 2019), to systemic risk analysis, in which the partial correlations are 
more informative than independent correlations when analyzing the financial system as 
a whole. Many measures based on the precision matrix have been proposed to assess 
both systemic risk and portfolio strategy performances; see, for instance, Senneret et al. 
(2016) and Torri et al. (2019).

In this real data application, we show how the estimation of CCs’ precision matrix 
(together with other interesting financial quantities) changes according to the choice of 
the estimator, that is, when considering a robust approach against a non-robust one or 
assuming a time-varying approach instead of a time-invariant one. The existence and 
extent of these variations must necessarily be considered by those decision makers who 
rely on financial quantity estimates associated with different time horizons.

Data

For this study, we consider the daily close value, pt , of 12 CCs, namely, Bitcoin (BTC), 
Ethereum (ETH), XRP (XRP), Litecoin (LTC), Stellar (XLM), Monero (XMR), Dash 
(DASH), Ethereum Classic (ETC), NEM (XEM), Zcash (ZEC), Dogecoin (DOGE), and 
Waves (WAVES), from 01/02/2017 to 26/07/2021, downloaded from CoinMarketCap 
(https://​coinm​arket​cap.​com/​it/). The dynamics of CCs’ log returns and histograms 
(Figs. 3, 4) make it evident that their distribution cannot be considered Gaussian because 
of the presence of extreme events. Such a feature is confirmed by the sample statistics in 
Table 1, in which we report robust statistics, namely median, interquartile range, meas-
ures of skewness, and excess kurtosis based on quantiles [see Kim and White (2004)], 
minimum, and maximum. We also performed the Jarque-Bera test for non-normality 
but did not include the p-values, all of which were zero. Some CCs, such as XRP, XEM, 
and DOGE, exhibit very high kurtosis, confirming the presence of extreme events.

The dynamics of |rt − µ| are reported in Fig. 2, where µ is the mean of rt , and show 
that the variances of the CCs’ log return series cannot be considered constant over time, 
whereas (investigated but not shown) the auto-correlations and cross-correlations for 
different lags in the CCs’ log return series can be considered—except for lag 0—zero 
with good approximation.

We consider the model discussed in Eq. (1) to describe the evolution of the selected 
12 CCs. First, we estimate the precision matrix for several values of the robustness 
parameter, namely, for γ = 0, 0.01, 0.02, 0.05 and 0.1 , and several bandwidth values, 
parameter, namely for h = 20, 50, 100 and ∞ . We attempt different values of γ , and 

https://coinmarketcap.com/it/
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choose those that provide significantly different estimates. Therefore, we do not con-
sider values γ > 0.1 because the estimates do not change significantly.

We stress that the estimation windows around the reference time are larger than the band-
width; however, significant weights are given only to observations inside the bandwidth.

Results

Precision matrices are used to construct Gaussian graphical models, which are statisti-
cal models describing relationships among variables in the form of graphs. Therefore, the 
estimated precision matrices are presented in “Conditional correlation graphs” section in 
the form of a graph. In particular, we show the five local estimates obtained considering a 
neighbor of the following dates: June 30, 2017, January 16, 2018, September 8, 2019, May 15, 

Fig. 2  Dynamics of |rt − µ| , where rt are the 12 CCs’ log return considered and µ is the corresponding mean

Table 1  Sample statistics of the 12 CCs’ log return considered

Median Interq. range Skewness Exc. Kurtosis Min Max

BTC 0.0025 0.0378 0.0254 1.9334 − 0.4799 0.2275

ETH 0.0016 0.0541 0.0959 1.5594 − 0.5656 0.2579

XRP − 0.0000 0.0119 − 0.0342 4.9676 − 0.2288 0.2596

LTC − 0.0002 0.0563 0.0110 1.2862 − 0.4543 0.4693

XLM 0.0000 0.0053 − 0.0413 6.7646 − 0.1243 0.1917

XMR 0.0022 0.0557 0.0013 1.5471 − 0.5301 0.4241

DASH 0.0001 0.0565 0.0061 1.7152 − 0.4679 0.4523

ETC 0.0003 0.0495 0.0395 2.0191 − 0.4572 0.4971

XEM − 0.0001 0.0047 − 0.0306 8.4952 − 0.1844 0.2659

ZEC − 0.0013 0.0658 0.0772 0.9853 − 0.5364 0.5295

DOGE − 0.0000 0.0001 − 0.0673 114.0190 − 0.1033 0.1439

WAVES 0.0004 0.0447 0.0500 2.4293 − 0.3916 0.3377
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2020, and April 30, 2021. The first date corresponds to a period in which investors started to 
observe the CCs market with more interest, the second date is immediately after the huge 
increase in Bitcoin—that is when the interest toward CCs was very high, and the third date 
corresponds to a period in which the interest toward this market was still high but not char-
acterized by dramatic events. The last two dates correspond to the outbreak of the pandemic 
and to the second increase in the value of Bitcoin in April 2021, when its value reached 53,000 
dollars. Figures 5, 6, 7, 8 and 9 shows that, in general, the smaller the value of the bandwidth 
of the kernel, the higher the interconnection between cryptocurrencies. This phenomenon 
results from the significantly not constant dependencies among the cryptocurrencies that, 
not being regulated by any institution and having no fundamentals from which to extract 
a price (Baek and Elbeck 2015; Huang et al. 2019) have wild variations that depend only on 
the whims of the market. With a large bandwidth, the time-varying dependency is mediated, 
resulting in a smaller interconnection. This evidence is the first of the importance of using a 
time-varying approach. Moreover, especially in Figs. 6 and 9, it is possible to observe high 
interconnection between cryptocurrency when the γ parameter is high. These two figures 
are both associated with periods in which CCs are characterized by high growth and high 
volatility, and in the underlying process, CCs turn out to be conditionally dependent; how-
ever, the dependencies are hidden by extreme noisy events. Instead, Figs. 7 and 8 show how 
extreme events can distort the amplitude of the dependence between cryptocurrencies.

What we have just said can be further detailed by observing Fig. 10 in “Conditional 
correlations dynamics” section, where we reported some conditional correlation dynam-
ics, that is, the evolution of some elements of the precision matrix. Indeed, it turns out 
that, for a small value of h (first column), conditional correlations show a significant dif-
ferences at varying γ , meaning that extreme events hide the underlying conditional cor-
relation dynamics. Worth noting is that discrepancies among different estimates can be 
significant—more than one hundred percent. For high values of h (second column), the 
large bandwidth averaged the genuine time-dependent dynamics of the process, similar 
to what was observed from the synthetic stochastic model in “Time-varying estimation” 
section; however, differences in the estimation of the conditional correlation at varying γ 
are still evident. Although the analysis is carried out on the 12 CCs, here we report only 
three examples of conditional correlations between CC pairs as an example of the type 
of analysis and the results that can be achieved using the proposed methodology.

In Fig. 11 in “Quantitative measures” section, we consider a few indicators to quan-
tify the discrepancies among the estimated precision matrices. The first indicator is the 
normalized Frobenius norm of the differences between the estimated precision matrix 
obtained for γ = 0.1 , for which we expect more accurate estimates and the one obtained 
for γ = 0, 0.01, 0.02, 0.05 , that is

The computation of ∆F(t, γ ) is reported in the first row of Fig. 11, which shows that, 
even if this measure is an average quantity, the relative differences associated with the 

∆F(t, γ ) =

√

∑

i,j

(

Θ̂(t, 0.1)− Θ̂(t, γ )
)2

i,j
√

∑

i,j

(

Θ̂(t, 0.1)
)2

i,j

.
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different values of γ are remarkable for both small and large bandwidth values, touching 
one hundred percent for the smallest bandwidth.

Of course, the discrepancies among different estimates affect the computation of 
financial quantities. To measure such an impact, we also consider the following gen-
erally used quantities [see Billio et al. (2012) for more details]:

•	 the sum of the elements of the precision matrix, that is 

 gives a measure of interconnectedness of the entire system;
•	 let �k(t, γ ) for k = 1, . . . , d be the eigenvalues of the correlation matrix Σ̂(t, γ ) and 

ν ∈
{

1, . . . , d
}

 , then 

 is a measure of interconnectedness. Indeed, the numerator is the risk associated 
with the first ν principal components, whereas the denominator is the total risk of 
the system.

As previously done, we considered the relative differences of these measures using as 
reference the estimated precision matrix obtained for γ = 0.1 , for which we expect 
more accurate estimates, that is ∆S(t, γ ) = s(t,0.1)−s(t,γ )

s(t,0.1)  and ∆W (t, γ ) = w(t,0.1)−w(t,γ )
w(t,0.1)  

for γ = 0, 0.01, 0.02, 0.05 , to better highlight the effect of different estimations on the 
financial quantities of interest. We report the results in the second and third rows 
of Fig.  11, which show that both measures present significant differences by vary-
ing parameter γ . Such differences can also be observed when varying the bandwidth 
parameter, even if, as previously noted, at a small bandwidth ( h = 20 ), the differences 
are greater than those for the large bandwidth ( h = 100 ) because of the usual average 
effect that emerges in the last case.

Considering the three quantities reported in Fig.  11, the absolute value gradually 
decreases from ∆F  (first row), ∆S (second row), and ∆W  (third row). This result is 
expected. In fact, ∆F  , measuring the sum of the differences between the elements of 
the precision matrices, is an accurate measure of the discrepancies between the esti-
mates obtained at varying γ , whereas ∆S , measuring the differences between the over-
all connections in the CC market (obtained at varying γ ) can be considered a difference 
between composite variables that usually fluctuate less than the individual variables of 
which it is composed. Lastly, ∆W  , measuring the relative differences in the percent-
ages of variance explained by the first ν eigenvalues of the correlation matrix, is an 
extensive quantity least affected by different estimates obtained at varying γ.

Discussion
The results shown in the previous section highlighted that time dependency is a relevant 
feature of the cryptocurrency market, that is, non-constant conditional dependencies 
among different cryptocurrencies, and different levels of contamination given by extreme 

s(t, γ ) =
∑

i,j

∣

∣

∣
Θ̂(t, γ )i,j

∣

∣

∣
,

w(t, γ ) =

∑ν
k=1 �k(t, γ )

∑d
k=1 �k(t, γ )



Page 13 of 25Stolfi et al. Financial Innovation            (2022) 8:47 	

events over time. We found further confirmation of our findings in recently published 
studies. For instance, Nie (2020) analyzed the correlation dynamics using a dimensional-
ity reduction method. His analysis shows that the correlation dynamics experience drastic 
changes in relation to periods characterized by large market fluctuations. This finding is 
consistent with our observations. Indeed, the dynamics of conditional correlations show 
drastic changes when considering a small bandwidth and, thus, when having a short-term 
outlook. The changes in the dynamics of the conditional correlations decrease when a 
wider bandwidth is considered and, thus, when having a long-term outlook. Nie (2022) 
used a network method to identify critical events in the correlation dynamics of the CCs. 
He found that the network structure is easily broken near critical events, namely, peri-
ods characterized by large market fluctuations. After these events, the network structure 
returns to stability. We observed something similar; indeed, the graphs we obtained using 
conditional correlations change their structure in correspondence of large market fluc-
tuations. These changes are reduced when considering a wider bandwidth, that is, from 
a long-term perspective. In Shams (2020), the authors investigated the structure of CC 
returns and found persistence among CCs’ sharing similar features. The author introduced 
a connectivity measure that captures strong exchange-specific commonalities in CCs’ 
investors’ demand, which spills over to other exchanges. This spillover could explain the 
drastic changes in the conditional correlations we observe when having a short-term out-
look. Indeed, the author suggests that demand from users and developers might correlate 
with that of investors and speculators, translating into an amplified effect on prices and 
explaining that CCs are prone to wild price movements and bubbles. In Guo et al. (2021), 
the authors investigated the market segmentation problem and information propagation 
mechanism in the CCs market by constructing a time-varying network of CCs that com-
bines return cross-predictability and technological similarities. The network based on 
return cross-predictability is obtained using an adaptive Lasso regression technique, which 
is very similar to our approach in which the elements of the precision matrix can also be 
obtained as coefficients of a linear regression model. However, the manner in which they 
addressed the time dependency is different from ours because they considered rolling win-
dows. All of these results unveil the complexity of the cryptocurrency market and any type 
of investment strategy, such as high frequency trading or long-term hedging techniques, 
must be carefully planned using the right quantitative tools. Of course, other indicators 
could be considered to test the interconnectedness of the CCs market or to assess the per-
formances of a portfolio containing CCs; however, it is out of the scope of this paper, which 
has the aim of providing a flexible and robust estimation methodology able to manage dif-
ferent levels of data contamination and time-varying parameters at different time scales.

Finally, some considerations on the choice of the parameters γ and h are in order. Fig-
ures 10 and 11 provide insights into the influence of h and γ on parameter estimations. 
In general, the choice of h depends on the type of analysis that is intended to be carried 
out, such as long-term portfolio management that needs a large estimation window, 
whereas high frequency analysis (e.g., to grasp time-varying correlations) needs a short 
estimation window. In the CCs market, characterized by highly non-stationary signals, 
parameter h acts as a smoother over the time domain; namely, a higher h results in 
smoother dynamics of the parameter estimates. In other words, small values of parame-
ter h, which identifies the estimation window size, favor a precise local estimation of the 
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model parameters at the expense of the smoothness of their dynamics. Instead, param-
eter γ provides significant differences in parameter estimations when the data are highly 
non-Gaussian. Indeed, Fig. 11 and, in particular, the plots showing the dynamics of the 
∆S(t, γ ) measure for different γ values indicate that such dynamics remarkably diverge 
at a few points corresponding to the first significant increase in Bitcoin in December 
2017, when its value reached 16,000 dollars, to the outbreak of the Covid-19 pandemic 
and to the second significant increase in Bitcoin in April 2021, when the value reached 
53,000 dollars. Therefore, h and γ must be independently set according to the need for 
local estimations and different data contamination levels. To conclude, we highlight the 
fact that, for what was just discussed, no unique optimal choice of the hyperparameters 
exists, and it is strictly related to the analysis of interest.

Conclusions
The main motivation for this work is the introduction of a local and robust estimator of preci-
sion matrices able to handle both extreme events and time-varying parameters that typically 
affect financial time series. In particular, the proposed estimator, obtained by using a kernel 
over the time domain and replacing the Kullbach–Leibler divergence with a robust diver-
gence, namely, the γ divergence, is applied to estimate time-varying precision matrices of the 
log return of a representative subset of the cryptocurrency market. The proposed method is 
remarkably suited for the considered application because the cryptocurrency market is char-
acterized by a peculiar time-dependent and very turbulent nature because the major move-
ments on it are the result of speculators who are free to act in a market not regulated by any 
authority. Moreover, the application is particularly relevant for both the increasing interest in 
the cryptocurrency market—witnessed by the growing literature and investment in CCs—
and the attention that the precision matrix gained in the financial context, given its various 
and useful applications, from portfolio optimization to systemic risk analysis.

When the financial time series show cyclic or trend components, a simple Gaussian 
process cannot be considered a reliable model. In such cases, the model considered in 
this work can be easily extended by considering regression terms, and the proposed 
estimator could be used with few modifications to the algorithm.

Moreover, in high-dimensional settings—when the number of features is higher 
than the number of observations—sparsity can be introduced in the precision matrix’s 
structure by adding a penalty to the local estimated γ-divergence.

In addition, clustering algorithms can be used to classify time-varying precision matrices to 
detect turbulent periods and minimize investor risk (Kou et al. 2014, 2021a, b; Li et al. 2021).

Finally, the use of a kernel estimator together with an M-type estimator has been intro-
duced by Cai and Ould-Saïd (2003), in which the authors proposed a robust version of a 
local linear regression smoother for stationary time series. They also extended to the case 
of non-i.i.d. random variables of the asymptotic theory developed by Fan and Jiang (2000), 
in which the authors studied local robust techniques in the i.i.d. case. We are working on 
adapting the asymptotic theory developed in Cai and Ould-Saïd (2003) to our estimator. 
The technicalities and mathematical proofs, which are out of the scope of this paper, will 
be published in a separate paper.
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Appendix 1: Figures
Cryptocurrencies log return

See Figs. 3 and 4.

Fig. 4  Histograms of the 12 CCs’ log return considered

Fig. 3  Dynamics of the 12 CCs’ log return considered
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Conditional correlation graphs

See Figs. 5, 6, 7, 8 and 9.

Fig. 5  Conditional correlations around June 30 2017, using the bandwidth parameter h = 20 (first row), 
h = 50 (second row) and h = 100 (third row). The parameter γ refers to the robustness parameter: γ = 0 
means no robust approach
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Fig. 6  Conditional correlations around January 18 2018, using the bandwidth parameter h = 20 (first row), 
h = 50 (second row) and h = 100 (third row). The parameter γ refers to the robustness parameter: γ = 0 
means no robust approach
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Fig. 7  Conditional correlations around September 8 2019, using the bandwidth parameter h = 20 (first row), 
h = 50 (second row) and h = 100 (third row). The parameter γ refers to the robustness parameter: γ = 0 
means no robust approach
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Fig. 8  Conditional correlations around May 15, 2020, using the bandwidth parameter h = 20 (first row), 
h = 50 (second row) and h = 100 (third row). The parameter γ refers to the robustness parameter: γ = 0 
means no robust approach
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Fig. 9  Conditional correlations around April 30 2021, using the bandwidth parameter h = 20 (first row), 
h = 50 (second row) and h = 100 (third row). The parameter γ refers to the robustness parameter: γ = 0 
means no robust approach
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Conditional correlations dynamics

See Fig. 10.

Fig. 10  The plots show the dynamics of the conditional correlation between the 2 CCs reported in the title. 
In the first two column the value of the bandwidth is fixed at h = 20 and h = 100 respectively and each line 
in the plot corresponds to a parameter γ as detailed in the legend. In the third column the value of gamma is 
fixed at γ = 0.1 and each line in the plot corresponds to a bandwidth parameter h as detailed in the legend
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Quantitative measures

See Fig. 11.

Appendix 2: Algorithm
Given the model in Eq. (1), the parameters being estimated through minimisation problem 
in Eq. (7) correspond to elements in the precision matrix Θ t , for 0 ≤ t ≤ T  . Therefore, let 
θ t = vec(Θ t)

′ be the vector of parameters at time t, and ̂θ
(j)

t  be an estimate of θ t at the jth 
iteration. Let us denote

z
(j)
u =

wut f
(

ru,̂θ
(j)

t

)γ

∑T
k=1 wkt f

(

rk ,̂θ
(j)

t

)γ ,

x
(j)
u =

T
∑

k=1

wkt f
(

rk ,̂θ
(j)

t

)γ wut f (ru, θ t)
γ

wut f
(

ru,̂θ
(j)

t

)γ ,

Fig. 11  The plots show the dynamics of the measures defined in “Results” section. Each panel corresponds to 
a bandwidth h, in particular h = 20, 50, 100 from left to right respectively. Each line in the plot corresponds to 
a measure, as reported on y-label
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so that z(j)u x
(j)
u = wut f (ru, θ t)

γ . Then, using the Jensen’s inequality to the convex function 
y = − log (x) , we get

Moreover

Therefore by Eqs. (8) and (9) it holds

that are the two properties characterising a majorisation function, therefore allowing to 
use an MM–algorithm in order to solve the minimisation problem in Eq. (7).

At iteration j + 1 the following step have to be implemented:

•	 Majorize–Step: compute 

•	 Minimisation–Step: solve 

In order to solve the minimisation step we use the results in the “Appendix 2” of Hirose 
et al. (2017) regarding the function ℓ2(θ t) . In particular, it holds
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and

where 
(

2Ŝ
(j)
t

)

i,j
=

T
∑

s=1

z
(j)
s ri,sr

′
j,s and c is a constant.

Therefore the following formula is obtained

To find the update θ (j+1)
t  we need to solve the following minimisation problem

whose solution is carried out similarly to maximum–likelihood method.
It is interesting to notice that, if we want to introduce sparsity in the precision matrix, 

the detailed algorithm would work in the same way and the minimisation step would 
require to solve the following

that can be solved using the graphical lasso algorithm, see Friedman et al. (2008).
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