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Introduction
It is important to model the dynamic behavior of high-frequency time series returns 
because they have unique characteristics that are not present in other types of time series 
data. These distinctive properties are referred to as the three stylized facts in finance: 
long-range dependence, fat-tail property, and volatility clustering effect. The volatility 
clustering effect is first noted by Mandelbrot (1963b), where it is submitted that “large 
changes tend to be followed by large changes, of either sign, and small changes tend to 
be followed by small changes”. Fama (1970) states that “large price changes are followed 
by large price changes, but of unpredictable sign”. Mandelbrot (1963b) also observes that 
asset returns are highly leptokurtic and slightly asymmetric. The autoregressive condi-
tional heteroskedastic (ARCH) model formulated by Engle (1982) and the generalized 
ARCH (GARCH) model conceptualized by Bollerslev (1986) are the first models intro-
duced to capture the volatility clustering effect and estimate conditional volatility.1 The 
standard forms of the ARCH and GARCH models with normal (Gaussian) innovations 
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successfully capture volatility clustering but sometimes fail to adequately account for 
conditional leptokurtosis. Hence, a need for more flexible conditional distributions to 
be explored has arisen. In this sense, much research has tried to account for the fat-tail 
property found in most financial return data: for example, the Student’s t-distribution 
(Bollerslev 1987), non-central t-distribution (Harvey and Siddique 1999), generalized 
hyperbolic skew Student’s t-distribution (Aas and Haff 2006), Johnson’s SU-distribution 
(Johnson 1949; Yan 2005; Rigby and Stasinopoulos 2005; Choi and Nam 2008; Naguez 
and Prigent 2017; Naguez 2018), generalized error distribution (GED) (Nelson 1991; 
Baillie and Bollerslev 2002), and Laplace distribution (Granger and Ding 1995). How-
ever, these distributions generally have numerous issues in the applications, even though 
they may be capable in some cases, and the issues include that a GED distribution does 
not have a sufficient fat tail to account for extreme events and the density of a non-cen-
tral t-distribution has the sum of an infinite series.

In addition, during the past decades, there has been growing interest in other types of 
fat-tail distributions in finance, including a generalized hyperbolic distribution (Barn-
dorff-Nielsen 1977), a normal inverse Gaussian distribution (Barndorff-Nielsen 1995), 
a variance gamma distribution (Madan and Seneta 1990), a stable distribution (Man-
delbrot 1963a; Liu and Brorsen 1995; Panorska et al. 1995; Mittnik et al. 1998; Mittnik 
and Paolella 2003), and a tempered stable distribution (Rosiński 2007; Kim et al. 2009). 
In particular, the generalized hyperbolic distribution is a very general form that involves 
other types of distributions as special cases, such as a Student’s t-distribution, hyper-
bolic distribution, normal inverse Gaussian distribution, variance gamma distribution, 
and Laplace distribution (Anderson 2001; Jensen and Lunde 2001; Venter and De Jongh 
2002; Forsberg and Bollerslev 2002; Stentoft 2008). Although the aforementioned fat-tail 
distributions have been studied for empirical innovations in ARMA–GARCH models 
to capture the fat-tail property on financial return data, Sun et al. (2008) and Beck et al. 
(2013) evoke that these distributions are unable to fully describe the stylized facts, espe-
cially in high-frequency time series analysis.

However, since Mandelbrot and Van Ness (1968) have introduced fractional Brown-
ian motion2 to explain short- and long-range dependence, several empirical studies on 
asset prices (Lo 1991; Cutland et al. 1995; Willinger et al. 1999; Robinson 2003; Casas 
and Gao 2008; Chronopoulou and Viens 2012; Cont 2005; Mariani et  al. 2009; Cher-
idito 2003; Comte and Renault 1998; Rosenbaum 2008) have investigated the long-range 
dependence properties of asset returns. In the sense that the fractional Brownian motion 
can capture the long-range dependence properties, the ARCH and GARCH mod-
els with innovations utilizing the fractional Brownian motion can capture not only the 
long-range dependence but also the volatility clustering effect on high-frequency return 
data. However, the fat-tail properties remain unconsidered. Hence, in an attempt to 
better describe high-frequency returns, Sun et al. (2008) offer a univariate model with 
three stylized facts by taking the ARMA–GARCH model with fractional stable distrib-
uted residuals, and they suggest that the model performs effectively in high-frequency 

2  For more details regarding the fractional Brownian Motion, refer to Biagini et al. (2008), Coutin (2007), Doukhan et al. 
(2002), Kaarakka and Salminen (2011) and so forth.
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returns. In addition, Kim (2012) introduced the fractional multivariate normal tempered 
stable process as a subclass of the fractional stable process3 using time-changed frac-
tional Brownian motion with the fractional tempered stable subordinator. The fractional 
tempered stable process was redefined by Kim (2015) with the stochastic integral for the 
Volterra kernel presented in Houdre and Kawai (2006), and it was applied to the innova-
tions on the multivariate ARMA–GARCH model4. In addition, Kozubowski et al. (2006) 
applied fractional Laplace motion by subordinating fractional Brownian motion to a 
gamma process to model a financial time series. The fractional normal inverse Gaussian 
process was proposed in Kumar et al. (2011) and Kumar and Vellaisamy (2012).

Much research has addressed wide issues, especially the simulation and parameter 
estimations in processes with long-range dependence, as well as the detection of long-
range dependence. This study is motivated by the availability of high-frequency time 
series return data and the need for a new market model accommodating three stylized 
facts. The main contribution of this study is the development of a general fractional 
model that incorporates three stylized facts into the volatility process. This is the first 
study to explore the fractional generalized hyperbolic process and apply it to a multi-
variate ARMA–GARCH model. The generalized hyperbolic process is derived using 
time-changed Brownian motion with the generalized inverse Gaussian subordinator. 
Thereafter, the univariate fractional generalized hyperbolic process is defined by the sto-
chastic integral for the Volterra kernel. The basic properties and covariance structure of 
the multivariate fractional generalized hyperbolic process are discussed, and a numeri-
cal method for generating the sample paths of the processes is presented. Using high-
frequency stock return data, parameter estimations on the ARMA–GARCH model with 
fractional generalized hyperbolic innovations are provided, and goodness-of-fit tests are 
performed for the estimated parameters to validate the model.

The purpose of this study is threefold. First, a new ARMA–GARCH model that 
accounts for three stylized facts is presented to provide the broad framework of an alter-
native model that can be used in financial economic applications. Second, we examine 
whether considering three stylized facts, especially with a fractional generalized hyper-
bolic innovation, produces superior forecast estimates and thereby motivates their use 
in effectively managing financial risk as well as optimizing portfolios in high-frequency 
time series return data. Finally, this study calls for attention to an assumption underlying 
the mean-variance model (Markowitz 1952) applied to high-frequency returns, that is, 
the assumption that asset returns are normally distributed. By being the first to derive 
a fractional generalized hyperbolic process using time-changed Brownian motion, we 
contribute to the empirical literature on modeling for financial risk and portfolio man-
agement. In the portfolio optimization based on Markowitz’s mean–variance model, the 
Gaussian assumption can be replaced by the ARMA–GARCH model with fractional 
generalized hyperbolic innovations, and the portfolio value-at-risk (VaR) and average 
value-at-risk (AVaR) based on the model can supersede the variance risk measure.

The remainder of this paper is organized as follows: in the next section, Models 
and Methodology, the notion of long-range dependence is discussed, time-changed 

3  Refer to Samorodnitsky and Taqqu (1994) for stable process.
4  The fractional tempered stable process is also discussed on the option pricing by Kim et al. (2019).
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Brownian motion is reviewed, the generalized hyperbolic process is derived from the 
time-changed Brownian motion, and the fractional generalized hyperbolic process as 
well as the covariance structure for two elements of the processes are discussed. Section 
Simulation presents the simulation of fractional generalized hyperbolic processes and 
an illustration of the sample paths for representative parameter values. The multivari-
ate ARMA–GARCH model with long-range dependence is defined in Section ARMA–
GARCH Model with fGH Innovations, with empirical illustration. The main findings 
and implications are summarized in Section Conclusion.

Models and methodology
This section reviews the background knowledge regarding long-range dependence and 
the generalized hyperbolic process. Subsequently, a fractional generalized hyperbolic 
process is derived.

Long‑range dependence

Long-range dependence in a stochastic process is typically defined based on its auto-
correlation functions. While a short memory stationary process usually refers to a sto-
chastic process whose autocorrelation functions decay fast and whose spectral density is 
bounded everywhere, a long memory process5 is associated with the slow decay of auto-
correlation functions as well as a certain type of scaling linked to self-similar processes. 
Although the notion of long-range dependence varies from author to author, the com-
monly used notion is recalled in terms of the autocorrelation function of a process. For 
lag k, a stationary process with autocorrelation function ρ(k) is referred to as a process 
with long-range dependence if

does not converge. According to this notion, absolute autocorrelations are not inte-
grable. Thus, a weakly stationary process is said to have long-range dependence if ρ(·) 
hyperbolically decays, that is, ρ(k) ∼ L(k)k2d−1 as k → ∞ , 0 < d < 1

2 , where L(k) is a 
slowly varying function as x → ∞ , if for every positive constant c,

exists and is equal to 1. Hence, the memory length in a stochastic process is measured by 
the rate at which its correlations decay with a lag. To illustrate, suppose an autocorrela-
tion function ρ(·) of an ARMA process at lag k. The function converges rapidly to zero as 
k → ∞ in the sense that there exists r > 1 such that

∞
∑

k=0

|ρ(k)|

lim
x→∞

L(cx)

L(x)

rkρ(k) → 0 as k → ∞.

5  Long memory and long-range dependence are synonymous notions.
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In this case, the correlations for the ARMA processes decay exponentially fast with k. 
Conversely, consider the autocorrelation function ρ(k) of the FARIMA(p, d, q) process 
with 0 < |d| < 1

2 . This autocorrelation function has the following property:

indicating that ρ(k) converges to zero as k → ∞ at a much slower rate than that of an 
ARMA process. Therefore, ARMA processes are regarded as having short memory, 
whereas FARIMA processes are regarded as exhibiting long memory. Likewise, the long-
range dependence property depends on the behavior of the autocorrelation function at 
large lags. However, it may be difficult to empirically estimate the long-range depend-
ence property (Beran 1994). Thus, self-similar processes are often used to formulate 
models with the long-range dependence property. A stochastic process {X(t)}t≥0 is said 
to be self-similar if there exists H > 0 such that for any scaling factor c > 0 , the pro-
cesses {X(t)}t≥0 and {cHX(t)}t≥0 have the same law:

where H is referred to as the self-similarity exponent of the process X. For a con-
tinuous stochastic process xt , we assume that x0 = 0 , E[xt ] = 0 , and the increments 
X(t) = xt − xt−1 are stationary with Var(X(t)) = σ 2 . Thereafter, we have:

By the self-similarity property, the correlation is

Based on L’Hopital’s rule,

Thus, limn→∞

∑k−n
k=−n ρ(k) exist if and only if H < 1

2 , and H > 1
2 implies that the series 

does not converge; thus, X(t) is a long-memory process.

Time‑changed Brownian motion

By substituting the usual deterministic time t as subordinator T = {T (t)}t≥0 in a stochastic 
process Y = {Y (t)}t≥0 , we obtain a new process X = {X(t)}t≥0 , and Y is said to be subordi-
nated by process T. Namely,

Hence, we change the time to the stochastic process Y to run on a “new clock” 
whose stochastic time is dominated by the subordinator T. Intuitively, it can be con-
sidered as the business time (or trading time) that can be viewed as stochastic. If we 

ρ(k)k1−2d → c as k → ∞,

{X(ct)}t≥0
d
= {cHX(t)}t≥0,

cov(X(t), X(t + k)) = cov(X(1),X(1+ k))

=
1

2

[

E
[

(xk+1 − x0)
2
]

+ E
[

(xk−1 − x0)
2
]

− 2E
[

(xk − x0)
2
]

]

.

ρ(k) = corr(X(t),X(t + k)) =
1

2

[

(k + 1)2H − 2k2H + (k − 1)2H
]

=
1

2
k2H

[

(

1+
1

k

)2H
− 2+

(

1−
1

k

)2H
]

.

(1)ρ(k) ∼ H(2H − 1)k2H−2 as k → ∞.

X(t) = Y (T (t)).
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employ an arithmetic Brownian motion subordinated by a subordinator, we obtain the 
time-changed Brownian motion. More specifically, considering that a subordinator 
T = {T (t)}t≥0 is independent of the standard Brownian motion {B(t)}t≥0 , we have a new 
process X = {X(t)}t≥0 , which is called the time-changed Brownian motion, by substitut-
ing physical time t as the subordinator T as follows:

Let FT (t) be the filtration of T. We can derive the characteristic function φX(t) via sub-
ordination theorem (Cont and Tankov 2004; Barndorff-Nielsen and Levendorskii 2001; 
Sato 1999). That is to say,

where φT (t) is the characteristic function of the subordinator T(t). A Lévy process can 
be constructed by subordinating Brownian motion with a particular subordinator (Clark 
1973). Therefore, subordination is used as a constructive tool to define a particular class 
of Lévy processes. In the next section, a generalized hyperbolic process is presented by 
applying time-changed Brownian motion.

Generalized hyperbolic process

The density function of the generalized inverse Gaussian distribution described by 
the three parameters (�, δ, γ ) is given by

where Y� is the modified Bessel function of the second kind with index � as follows:

The parameter domain of the generalized inverse Gaussian distribution is

Proposition 1  The characteristic function of a generalized inverse Gaussian random 
variable G is given by

X(t) = µT (t)+ σB(T (t)).

φX(t)(u) = E
[

E
[

exp
(

iu(µT (t)+ σB(T (t)))
) ∣

∣ FT (t)
]

]

= E
[

exp
(

iuµT (t)−
u2σ 2

2
T (t)

)]

= φT (t)

(

uµ+
iu2σ 2

2

)

,

fGIG(x) =
(γ /δ)�

2Y�(δγ )
x�−1 exp

(

−
1

2

(

δ2x−1 + γ 2x
)

)

, x > 0,

Y�(x) =

∫ ∞

0
u�−1 exp

(

−
1

2
x
(

u−1 + u
)

)

du, x > 0,

δ > 0, γ ≥ 0, if � < 0,

δ > 0, γ > 0, if � = 0,

δ ≥ 0, γ > 0, if � > 0.

φG(u) =

(

γ
√

γ 2 − 2iu

)�Y�(δ
√

γ 2 − 2iu)

Y�(δγ )
, δ, γ > 0.
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Proof  See Appendix. �

Using the same approach as in the proof of Proposition 1, the rth moment can be 
derived as follows, given a generalized inverse Gaussian random variable G with param-
eters (�, δ, γ ),

where q(�, δ, γ ) represents the norming constant of the corresponding generalized 
inverse Gaussian density. In this study, we set the expected value of the generalized 
inverse Gaussian random variable G to one, that is, E[G] = 1 . Using the moment for-
mula in Equation (2), the expected value is defined by

and set

Then, we have a generalized inverse Gaussian random variable G under parametrization 
(�,α) . It follows identity

Hence, the variance of G is given by

Owing to the infinite divisibility of a generalized inverse Gaussian distribution (Barn-
dorff-Nielson and Halgreen 1977), the characteristic function of a generalized inverse 
Gaussian process {G(t)}t≥0 with parameters (�,α) is

where ν(�,α) =
(

α2 Y�+1(α)

α2 Y�+1(α)−2iuY�(α)

)
1
2.

In the remainder of this paper, we assume that N is a positive integer that rep-
resents the dimension, and β = (β1,β2, · · · ,βN )

⊤ , θ = (θ1, θ2, · · · , θN )
⊤ , while 

� = [σm,n]m,n∈{1,2,··· ,N } is a correlation matrix such that σn,n = 1 for n ∈ {1, 2, · · · ,N } . 
Thereafter, we consider an N-dimensional Brownian motion B = {B(t)}t≥0 , such that 
B(t) = (B1(t),B2(t), · · · ,BN (t))

⊤ , and suppose that cov(Bm(t),Bn(t)) = σm,nt for all 
m, n ∈ {1, 2, · · · ,N } and that B and the generalized inverse Gaussian process {G(t)}t≥0 
with parameters (�,α) are independent. In addition, consider the N-dimensional process 

(2)
E[Gr] =

∫ ∞

0
q(�, δ, γ )grg�−1 exp

(

−
1

2

(

δ2g−1 + γ 2g
)

)

dg

=
q(�, δ, γ )

q(�+ r, δ, γ )
=

(

δ

γ

)r Y�+r(δγ )

Y�(δγ )
,

E[G] =

(

δ

γ

)

Y�+1(δγ )

Y�(δγ )
= 1,

α = δγ .

γ = α

(

Y�+1(α)

Y�(α)

)

1
2

and δ = α

(

Y�(α)

Y�+1(α)

)

1
2

.

Var(G) =
Y�(α) Y�+2(α)

Y2
�+1(α)

− 1.

φG(t)(u) =

(

ν(�,α)�
Y�

(

α ν(�,α)−1
)

Y�(α)

)t

,
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X = {X(t)}t≥0 , with X(t) = (X1(t),X2(t), · · · ,XN (t))
⊤ . For n ∈ {1, 2, · · · ,N } , we define 

{X(t)}t≥0 by the time-changed Brownian motion as

Thereafter, process X is referred to as the N-dimensional generalized hyperbolic process 
with parameters (�,α,β , θ ,�) . We define the characteristic function of a generalized 
hyperbolic process Xn(t) in the following proposition.

Proposition 2  The characteristic function of a generalized hyperbolic process Xn(t) is 
given by

where ν1(�,α,βn, θn) =
(

α2 Y�+1(α)

α2 Y�+1(α)−2iu
(

βn+
iuθ2n
2

)

Y�(α)

)
1
2

.

Proof  See Appendix. � �

Furthermore, the covariance between Xm(t) and Xn(t) is

The variance of Xn(t) is equal to

Fractional generalized hyperbolic process

The Volterra kernel KH : [0,∞)× [0,∞) → [0,∞] is employed to define generalized 
hyperbolic process with long-range dependence.

with

(3)Xn(t) = βn(G(t)− t)+ θnBn(G(t)).

φXn(t)(u) =

(

exp
(

− iuβn
)

ν1(�,α,βn, θn)
�
Y�

(

α ν1(�,α,βn, θn)
−1

)

Y�(α)

)t

,

(4)cov
(

Xm(t),Xn(t)
)

= t

[

βmβn

(

Y�(α) Y�+2(α)

Y 2
�+1(α)

− 1

)

+ θmθnσm,n

]

.

(5)Var(Xn(t)) = t

[

β2
n

(

Y�(α) Y�+2(α)

Y2
�+1(α)

− 1

)

+ θ2n

]

.

KH (t, s) = cH

((

t

s

)H− 1
2

(t − s)H− 1
2 −

(

H −
1

2

)

s
1
2−H

∫ t

s
uH− 3

2 (u− s)H− 1
2 du

)

1[0,t](s)

cH =

(

H(1− 2H)Ŵ( 12 −H)

Ŵ(2− 2H)Ŵ(H + 1
2 )

)

1
2

and H ∈ (0, 1).
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In addition, the following facts on the Volterra kernel are provided by Houdre and Kawai 
(2006) and Nualart (2003): 

1.	 For t, s > 0 , 

 and 

2.	 If H ∈ ( 12 , 1) , then 

 and K 1
2
(t, s) = 1[0,t](s).

3.	 Let t > 0 and p ≥ 2 . KH (t, ·) ∈ Lp([0, t]) if and only if H ∈
(

1
2 − 1

p ,
1
2 + 1

p

)

 . When 
KH (t, ·) ∈ Lp([0, t]) , then 

 where 

Let KH (t, s) be the Volterra kernel and let X ∼ GHN (�,α,β , θ ,�) . The N-dimensional 
fractional generalized hyperbolic process generated by X is defined by the process of 
vector Z = {Z(t)}t≥0 with Z(t) = (Z1(t),Z2(t), · · · ,ZN (t))

⊤ , such that

for n ∈ {1, 2, · · · ,N } , where

is a partition of the interval [0, t] and

We denote Zn(t) =
∫ t
0 KH (t, s)dXn(s) and Z ∼ fGHN (H , �,α,β , θ ,�) . Then, we have

(6)
∫ t∧s

0
KH (t, u)KH (s, u)du =

1

2

(

t2H + s2H − |t − s|2H
)

,

(7)
∫ t

0
KH (t, s)

2ds = t2H

KH (t, s) = cH

(

H −
1

2

)

s
1
2−H

∫ t

s
(u− s)H− 3

2 uH− 1
2 du 1[0,t](s),

∫ t

0
KH (t, s)

pds = CH ,p t
p(H− 1

2 )+1,

CH ,p = c
p
H

∫ 1

0
vp(

1
2−H)

[

(1− v)H− 1
2 −

(

H −
1

2

)

∫ 1

v
wH− 3

2 (w − v)H− 1
2 dw

]p
dv.

Zn(t) = lim
||p||→0

M
∑

j=1

KH (t, tj−1)(Xn(tj)− Xn(tj−1))

P : 0 = t0 < t1 < · · · < tM = t

||P|| = max{tj − tj−1 | j = 1, 2, · · · ,M}.
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where ν2(�,α,βn, θn) =
(

α2 Y�+1(α)

α2 Y�+1(α)−2iuKH (t,s)
(

βn+
iuθ2n
2

)

Y�(α)

)
1
2

 . Therefore, the character-

istic function of Zn(t) is given by

Proposition 3  For n ∈ {1, 2, · · · ,N } , the covariance between Zn(s) and Zn(t) is equal 
to

Proof  See Appendix.�  �

Proposition 4  For m, n ∈ {1, 2, · · · ,N } , the covariance between Zm(t) and Zn(t) is 
equal to

Proof  See Appendix.�   �

For a given stochastic process Y = {Y (t)}t≥0 , the summation

E



exp



iu

M
�

j=1

KH (t, tj−1)(Xn(tj)− Xn(tj−1))









=

M
�

j=1

E
�

exp(iuKH (t, tj−1)(Xn(tj)− Xn(tj−1)))
�

= exp



−

M
�

j=1

iuβnKH (t, tj−1)(tj − tj−1)

+

M
�

j=1

(tj − tj−1) log

�

ν2(�,α,βn, θn)
�
Y�(α ν2(�,α,βn, θn)

−1)

Y�(α)

�



,

φZn(t)(u) = lim
||P||→0

exp

(

−

M
∑

j=1

iuβnKH (t, tj−1)(tj − tj−1)

+

M
∑

j=1

(tj − tj−1) log

(

ν2(�,α,βn, θn)
�
Y�

(

α ν2(�,α,βn, θn)
−1

)

Y�(α)

))

= exp

(

− iuβn

∫ t

0
KH (t, s) ds

+

∫ t

0
log

(

ν2(�,α,βn, θn)
�
Y�

(

α ν2(�,α,βn, θn)
−1

)

Y�(α)

)

ds

)

.

cov
(

Zn(s),Zn(t)
)

=
1

2

(

β2
n

(

Y�(α) Y�+2(α)

Y 2
�+1(α)

− 1

)

+ θ2n

)

(

t2H + s2H − |t − s|2H
)

.

cov
(

Zm(t),Zn(t)
)

= t2H
(

βmβn

(

Y�(α) Y�+2(α)

Y 2
�+1(α)

− 1

)

+ θmθnσm,n

)

.

∞
∑

j=1

E
[

(

Y (1)− Y (0)
)(

Y (j + 1)− Y (j)
)

]
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diverges. From Proposition 3 and Equation (1),

where η = β2
n

(

Y�(α) Y�+2(α)

Y 2
�+1(α)

− 1
)

+ θ2n . This becomes ηH(2H − 1)j2H−2 as j → ∞ . 

Hence, 
∑∞

j=1 E
[

Zn(1)
(

Zn(j + 1)− Zn(j)
)]

 diverges, that is, the process {Z(t)}t≥0 has 

long-range dependence when 12 < H < 1.

Simulation
In this section, the sample paths of fractional generalized hyperbolic processes are simu-
lated by subordinating a discretized generalized inverse Gaussian process with fractional 
Brownian motion at equally spaced intervals. First, the generalized inverse Gaussian 
process G(t) is simulated as follows6: 

1.	 Choose M fixed times in [0,  t]: t0 = 0, t1 = t/M, · · · , tM−1 = (M − 1)t/M, and 
tM = t.

2.	 Generate M generalized inverse Gaussian variates (G(t1),G(t2), · · · ,G(tM)).

Let L� be the lower triangular matrix obtained by the Cholesky decomposition for � 
with � = L�L

T
� , where � is the correlation matrix in Equation (3). Thus, we obtain a 

mutually independent vector of Brownian motion B̄(t) = (B̄1(t), B̄2(t), · · · , B̄N (t))
⊤.

The sample paths of X ∼ GHN (�,α,β , θ ,�) are generated as follows: for a given parti-
tion in 1) above,

where ǫj,n ∼ N (0, 1) . Therefore, we have

where ǫj = (ǫj,1, ǫj,2, · · · , ǫj,N )
T , ǫj,n ∼ N (0, 1) , and ǫj,m is independent of ǫj,n for all 

m, n ∈ {1, 2, · · · ,N } and j ∈ {1, 2, · · · ,M}.
Finally, the sample paths of Z ∼ fGHN (H , �,α,β , θ ,�) are generated as follows:

Figure  1 presents sample paths of the generalized inverse Gaussian subordinator 
G(t) with parameters � = −1.2 , δ = 0.1 , and γ = 0.01 for tM = 1 and �t = 1/250 as 
well as � = −0.5 , δ = 0.2 , and γ = 0.03 for tM = 5 and �t = 1/250 . Figure  2 shows 

E
[

Zn(1)
(

Zn(j + 1)− Zn(j)
)

]

=
η

2

(

(j + 1)2H − 2j2H + (j − 1)2H
)

=
η

2
j2H−2

(

j2
(

(

1+
1

j

)2H
− 2+

(

1−
1

j

)2H
))

,

B̄n(G(tj))− B̄n(G(tj−1)) =
√

G(tj)− G(tj−1) ǫj,n, n ∈ {1, 2, · · · ,N },

X(tk) =
(

G(tk)− tk
)

β + diag(γ )

k
∑

j=1

√

G(tj)− G(tj−1) L�ǫj ,

Z(tk) =

k−1
∑

j=0

KH (tk , tj)
(

X(tj+1)− X(tj)
)

, k ∈ {1, 2, · · · ,M}.

6  R version 4.1.1 is used for numerical analyses throughout this article.
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sample paths of the univariate fractional generalized hyperbolic process Z(t) with 
parameters � = −1.2 , δ = 0.1 , γ = 0.01 , β = −0.05 , θ = 0.1 , and H = 0.65 for tM = 1 
and �t = 1/250 as well as � = −0.5 , δ = 0.2 , γ = 0.03 , β = −0.01 , θ = 0.08 , and 
H = 0.70 for tM = 5 and �t = 1/250 . Figure  3 illustrates pairs of sample paths of the 
two dimensional fractional generalized hyperbolic process Z = (Z1(t),Z2(t)) for t ≥ 0 
with the different parameters and series lengths.

Fig. 1  Simulated sample paths of the generalized inverse Gaussian subordinator G
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ARMA–GARCH model with fGH innovations
Let Z ∼ fGHN (H , �,α,β , θ ,�) be generated by X ∼ GHN (�,α,β , θ ,�) . An N-dimen-
sional discrete time process y = {y(tk)}k∈{0,1,2,··· } with y(tk) = (y1(tk), y2(tk), · · · , yN (tk)) 
is referred to as the N-dimensional ARMA–GARCH model with fGH innovations when it 
is given by the ARMA(1,1)-GARCH(1,1) model as follows: yn(t0) = 0 and εn(t0) = 0 , and

{

yn(tk+1) = µn + anyn(tk)+ bnσn(tk)εn(tk)+ σn(tk+1)εn(tk+1),

σ 2
n (tk+1) = ωn + ξnσ

2
n (tk)ε

2
n(tk)+ ζnσ

2
n (tk)

Fig. 2  Simulated sample paths of the univariate fractional generalized hyperbolic process Z
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where εn(tk+1) = Zn(tk+1)− Zn(tk) and n ∈ {1, 2, · · · ,N } . This model describes the vol-
atility clustering effect of the GARCH(1, 1) model, as well as the fat-tail and the asym-
metric dependence between elements by the generalized hyperbolic process X, and the 
long-range dependence by the fractional generalized hyperbolic process Z. Because 
Zn(tk) can be approximated as

its increment Zn(tk+1)− Zn(tk) is expressed as follows:

Zn(tk) ≈

k−1
∑

j=0

KH (tk , tj)(Xn(tj+1)− Xn(tj)),

Fig. 3  Simulated sample paths of the two dimensional fractional generalized hyperbolic process 
Z = (Z1(t), Z2(t))t≥0
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Let N be the number of assets in the portfolio and M be the number of time steps. The 
parameters of the models are estimated using the following steps: 

1.	 Estimate ARMA(1,1)-GARCH(1,1) parameters µn , an , bn , ωn , ξn , and ζn with stand-
ard normal innovations by maximum likelihood estimation (MLE) with assumption 
σ 2
n (t0) =

κn
(1−ξn−ζn)

 for n = 1, 2, · · · ,N .
2.	 Using the estimated parameters, extract residuals εn(tk) for n = 1, 2, · · · ,N  and 

k = 1, 2, · · · ,M.
3.	 Estimate the Hurst index Hn of {εn(tk)}k=1,2,··· ,M using rescaled range (R/S) analysis 

(Hurst 1951; Lo 1991; Qian and Rasheed 2004). Then, parameter H is obtained as the 
mean of Hn for n = 1, 2, · · · ,N .

4.	 Let Zn(tk) =
∑k

j=1 εn(tj) , and extract {Xn(tk)}k=1,2,··· ,M for n = 1, 2, · · · ,N  as fol-
lows: 

5.	 Estimate the parameters �n = (�n,αn,βn, θn) of the generalized hyperbolic process 
using {Xn(tk)}k=1,2,··· ,M extracted in the step 4) for n = 1, 2, · · · ,N  as follows: the 
likelihood function for the observations {Xn(tk)}k=1,2,··· ,M is given by 

 The maximum likelihood estimator of the parameters �n for the generalized hyper-
bolic innovations is defined by maximizing the log-likelihood function given above. 

6.	 Setting � =
∑N

n=1
�n
N  and α =

∑N
n=1

αn
N  , estimate the parameters βn and θn again 

using {Xn(tk)}k=1,2,··· ,M by means of MLE for n = 1, 2, · · · ,N  as in step 5).
7.	 From the data {(Xm(tk), Xn(tk)}k=1,2,··· ,M extracted in the Step 4), calculate the 

covariance between Xm(t1) and Xn(t1) for m, n ∈ {1, 2, · · · ,N } . We estimate 
� = [σm,n]m,n∈{1,2,··· ,N } using Equation (4) and cov(Xm(t1), Xn(t1)).

To estimate the parameters and covariance matrix discussed above, 2,  730 observed 
1-minute stock prices of IBM Co., Johnson & Johnson, Oracle Co., Apple Inc., Amazon.

Zn(tk+1)− Zn(tk) ≈KH (tk+1, tk)(Xn(tk+1)− Xn(tk))

+

k−1
∑

j=0

(KH (tk+1, tj)− KH (tk , tj))(Xn(tj+1)− Xn(tj)).

(8)

Xn(t1) =
Zn(t1)

KH (t1, t0)
and

Xn(tk) = Xn(tk−1)+
Zn(tk)− Zn(tk−1)

KH (tk , tk−1)

−

k−2
∑

j=0

KH (tk , tj)− KH (tk−1, tj)

KH (tk , tk−1)

(

Xn(tj+1)− Xn(tj)
)

for k = 2, 3, · · · ,M.

f (Xn(t1), . . . ,Xn(tM);�n) = f (Xn(tM)|Xn(t1), . . . ,Xn(tM−1);�n)

· f (Xn(tM−1)|Xn(t1), . . . ,Xn(tM−2);�n) · · · f (Xn(t1);�n).

�̂n = arg max
�n

M
∑

k=1

log
(

f (Xn(tk))|Xn(t1), · · · ,Xn(tk−1);�n

)

.
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com, Inc., and CVS Health Co. for 7 trading days from February 5 to February 13, 2020, 
are obtained7. The estimated ARMA(1,1)-GARCH(1,1) parameters µn , an , bn , ωn , ξn , and 

Table 1  Estimated parameters of ARMA–GARCH models with standard normal innovations

IBM Johnson & Johnson Oracle Apple Amazon CVS

ARMA(1, 1)

an 0.6681 − 0.2489 0.5850 0.3375 − 0.4656 0.9043

bn − 0.6311 0.2372 − 0.6356 −  0.4119 0.4555 − 0.9100

µn 0.2710·10−4 0.1092·10−4 0.1294·10−4 − 0.8574·10−7 0.1057·10−4 − 0.1116·10−5

GARCH(1, 1)

ζn 0.7883 0.8958 0.9111 0.9009 0.8992 0.8853

ξn 0.1986 0.0784 0.0666 0.0593 0.0747 0.0974

ωn 0.1180·10−7 0.2940·10−8 0.8443·10−8 0.5477·10−9 0.1125·10−7 0.7397·10−8

Table 2  Estimated hurst Index Hn

IBM H1 = 0.5547

Johnson & Jonhson H2 = 0.5424

Oracle H3 = 0.5116

Apple H4 = 0.5163

Amazon H5 = 0.5558

CVS H6 = 0.5513

Mean H = 0.5387

Table 3  Estimated parameters of non-fractional GH and fractional GH process

IBM Johnson & Johnson Oracle Apple Amazon CVS

Non-fractional GH, � = −1.3926 , α = 0.0745

β 0.8494 · 10−8 −0.1234 · 10−4 −0.6355 · 10−5 −0.3409 · 10−4 −0.1549 · 10−4 0.8009 · 10−5

θ 0.6428 · 10−3 0.3622 · 10−3 0.4391 · 10−3 0.6172 · 10−3 0.7846 · 10−3 0.7898 · 10−3

Fractional GH, H = 0.5387 , � = −1.3965 , α = 0.0561

β −0.4953 · 10−5 −0.1309 · 10−4 −0.8864 · 10−5 −0.3555 · 10−4 −0.2430 · 10−4 0.3158 · 10−5

θ 0.7845 · 10−3 0.4430 · 10−3 0.5360 · 10−3 0.7546 · 10−3 0.9599 · 10−3 0.9675 · 10−3

Table 4  Estimated � = [σm,n]m,n∈{1,2,··· ,N}

IBM Johnson & 
Johnson

Oracle Apple Amazon CVS

IBM 1

Johnson & Jonhson 0.3592 1

Oracle 0.7235 0.2764 1

Apple 0.7071 0.4618 0.7936 1

Amazon 0.3144 0.1423 0.4652 0.6337 1

CVS 0.2022 0.4618 0.2745 0.2239 0.1181 1

7  Given that the New York Stock Exchange (NYSE) has normal trading hours from 9:30 a.m. to 4:00 p.m., one day is set 
to 390 minutes, meaning �t = 1/390.
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ζn with standard normal innovations are presented in Table 1. The residuals, which are 
obtained from the estimated parameters, are used to compute the Hurst index Hn for 
n = 1, 2, · · · ,N  , and they are reported in Table 2, with the estimated H = 0.5387 as the 
mean of Hn . The estimated fractional generalized hyperbolic parameters H, � , α , β , and 
θ are listed in Table  3 along with the estimated non-fractional generalized hyperbolic 
parameters. Note that the ARMA–GARCH model with fractional generalized hyper-
bolic innovations becomes the ARMA–GARCH model with non-fractional generalized 
hyperbolic innovations when parameter H = 1/2 . The estimated matrix � is given in 
Table 4.

Three criteria are used to compare the goodness-of-fit of the innovation processes 
under consideration: the Kolmogorov–Smirnov (KS) test statistics, log-likelihood (LL), 
and Akaike information criterion (AIC). The KS test is performed based on the statistic:

where F̂(x) and F(x) are the empirical sample and estimated theoretical distributions, 
respectively. The KS statistics are calculated for the fractional generalized hyperbolic 
distribution with estimated parameters (�, α, βn, θn) and the empirical sample distri-
bution of {Xn(tk)− Xn(tk−1)} for k = 1, 2, · · · ,M , where Xn(tk) is the extracted process 
using Equation (8). The p-values of the KS statistic8 represent the amount of evidence 
available to invalidate the null hypothesis that the data are drawn from the concerned 
theoretical distribution. Hence, the smaller the p-values, the more the evidence against 
the null hypothesis. The LL is an overall measure of the goodness-of-fit, implying that 
higher values are more likely to be the distribution candidates for modeling the data. The 
AIC is a measure of the goodness-of-fit that estimates the relative support for a model, 
which is

KS =
∑

x

|F̂(x)− F(x)|,

Table 5  Goodness-of-fit tests for ARMA–GARCH models

IBM Johnson & Johnson Oracle Apple Amazon CVS

ARMA–GARCH model with fractional GH innovations

KS 0.0758 0.0670 0.1042 0.1207 0.0795 0.0630

(p-value) (0.8432) (0.6967) (0.6776) (0.3669) (0.7269) (0.9627)

LL 16689.24 18226.48 17715.06 16857.67 16235.18 16986.63

AIC − 33372.48 − 36446.95 − 35424.13 − 33709.35 − 32464.37 − 32167.25

ARMA–GARCH model with non-fractional GH innovations

KS 0.1990 0.1789 0.2299 0.1560 0.1967 0.1410

(p-value) (0.0007) (0.0000) (0.0002) (0.0646) (0.0017) (0.0899)

LL 16174.77 17708.04 17198.05 16336.22 15715.95 15563.07

AIC − 32343.54 − 35410.08 − 34390.09 − 32666.44 − 31425.91 − 31120.15

ARMA–GARCH model with normal innovations

KS 0.1542 0.4748 0.3089 0.1763 0.1391 0.2047

(p-value) (0.0168) (0.0000) (0.0000) (0.0383) (0.0815) (0.0098)

LL 15643.38 18121.03 17071.17 15968.61 16156.68 15146.00

AIC − 12.1975 − 13.2808 − 12.5111 − 11.7028 − 11.8407 − 11.8328

8  Refer to Marsaglia et al. (2003); Marsaglia and Marsaglia (2004) for calculating p-values of KS statistic.
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where w is the number of parameters in the calibrated model and L is the maximized 
value of the likelihood function of the estimated model.

Table 5 presents the goodness-of-fit tests of the innovation processes of each model. 
The ARMA–GARCH model with fractional generalized hyperbolic innovations is 
not rejected by KS statistics at the 10% significance level for all the six stock returns, 
which means the empirical sample distribution is not statistically different from the 
estimated theoretical distribution. However, the ARMA–GARCH models with non-
fractional and normal innovations are rejected at the 10% significance level for all con-
sidered stocks. Indeed, the fractional generalized hyperbolic models have the highest 
LL as well as the smallest AIC for all the innovation processes analyzed. Furthermore, 
to assess the power of the goodness-of-fit tests for a small sample size, 390 observed 
1-minute stock prices of the six companies are taken, and these are the prices on Feb-
ruary 5, and the same estimation/test procedures are followed. The inferences from 
Table 5 are consistent as shown in Table 6. Consequently, these results suggest that 
the ARMA–GARCH model with fractional generalized hyperbolic innovations can 
be used as an approximation to the empirical sample distribution. Figure  4 exhib-
its the distributions of the residuals from the models for each stock. Therefore, it is 
noteworthy that the ARMA–GARCH model with fractional generalized hyperbolic 
innovations better describes the behavior of the high-frequency stock returns consid-
ered in this study than the ARMA–GARCH models with non-fractional generalized 
hyperbolic and normal innovations. In this regard, portfolio VaR and AVaR based on 
the ARMA–GARCH models with fractional generalized hyperbolic innovations can 
be applied to the portfolio optimization. As alternative risk measures, the VaR and 
AVaR can overcome the limitations of the use of portfolio variance as a measure of 
risk. In portfolio optimization that portfolio managers and investors use for portfo-
lio rebalancing, a crucial measure is the marginal risk contribution to the portfolio 

AIC = 2w − 2 log L,

Table 6  Small sample: goodness-of-fit test for ARMA–GARCH models

IBM Johnson & Johnson Oracle Apple Amazon CVS

ARMA–GARCH model with fractional GH innovations

KS 0.0800 0.0556 0.0769 0.1029 0.0509 0.1179

(p-value) (0.8186) (0.8631) (0.9524) (0.4670) (0.9421) (0.1327)

LL 8984.54 9937.79 9736.98 9151.06 8829.31 9005.51

AIC − 17963.08 − 19869.58 − 19467.95 − 18296.11 − 17838.63 − 18005.02

ARMA–GARCH model with non-fractional GH innovations

KS 0.1960 0.2102 0.2931 0.1676 0.2679 0.0968

(p-value) (0.0009) (0.0000) (0.0000) (0.0131) (0.0000) (0.1959)

LL 8613.54 9568.62 9366.99 8784.29 8556.95 8637.40

AIC − 17221.08 − 19131.23 − 18727.97 − 17562.57 − 17107.90 − 17268.80

ARMA–GARCH model with normal innovations

KS 0.5811 0.3075 0.1379 0.1341 0.1807 0.2057

(p-value) (0.0000) (0.0000) (0.0730) (0.0801) (0.0001) (0.0001)

LL 8269.34 9023.02 8929.74 8011.06 7804.60 7769.13

AIC − 11.9671 − 13.2404 − 12.4082 − 12.0094 − 11.8806 − 12.1003
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(Gourieroux et al. 2000), which is the risk measure with respect to a given portfolio 
holding. Hence, by employing the VaR and AVaR calculated by the ARMA–GARCH 
model with fractional generalized hyperbolic innovations, we can find the optimal 
portfolio. Moreover, we obtain encouraging results from the goodness-of-fit test that 
it can be applied to an option pricing model equipped with volatility clustering, lever-
age effect and conditional skewness, leptokurtosis, and long-range dependence.

Conclusion
In this study, the non-fractional generalized hyperbolic process is derived by sub-
ordinating the time-changed Brownian motion to the generalized inverse Gaussian 
process, and the fractional generalized hyperbolic process is obtained using the Vol-
terra kernel. Thereafter, we introduce the multivariate ARMA–GARCH model with 
fractional generalized hyperbolic innovations that exhibit three-stylized facts: fat 
tail, volatility clustering, and long-range dependence properties. This model is com-
pared with ARMA–GARCH models with non-fractional generalized hyperbolic and 
normal innovations. The fractional generalized hyperbolic process performs better in 
describing the behavior of the residual process of high-frequency returns than the 
non-fractional generalized hyperbolic process or Gaussian process. Although the 
results reveal some important insights into high-frequency return data, the models 

Fig. 4  Distributions of the residuals
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considered here disregard the structural changes in their dependence structure. This 
limitation can be addressed in future studies by utilizing regime-switching methods 
(Hamilton 1989, 1990; Hackbarth et  al. 2006) or clustering algorithms (Kou et  al. 
2014; Li et al. 2021; Wen et al. 2014).

Appendix
Proof of Proposition 1

Let q(�, δ, γ ) =
(

γ
δ

)� 1
2Y�(δγ )

 denote the norming constant of the generalized inverse 
Gaussian density, then the characteristic function of G is

� �

One can also find the characteristic function of the generalized inverse Gaussian dis-
tribution in McNeil et al. (2005) with different parameterization.

Proof of Proposition 2

Since for all t ≥ 0 we have log φG(t)(u) = t log φG(1)(u) , the characteristic function of 
Xn(t) is

where ν1(�,α,βn, θn) =
(

α2 Y�+1(α)

α2 Y�+1(α)−2iu
(

βn+
iuθ2n
2

)

Y�(α)

)
1
2

 .�  �

Proof of Proposition 3

φG(u) = E
[

eiuG
]

=

∫ ∞

0
q(�, δ, γ )g�−1 exp

(

−
1

2

(

δ2g−1 + (γ 2 − 2iu)g
)

)

dg

=
q(�, δ, γ )

q(�, δ,
√

γ 2 − 2iu)
=

(

γ
√

γ 2 − 2iu

)�Y�(δ
√

γ 2 − 2iu)

Y�(δγ )
.

φXn(t)(u) = E
[

eiuXn(t)
]

= E

[

exp

(

iu
(

βn
(

G(t)− t
)

+ θnBn

(

G(t)
)

)

)]

= E

[

exp
(

iuβnG(t)− iuβnt
)

E
[

exp
(

iuθnBn

(

G(t)
)

) ∣

∣

∣ G(t)
]

]

= exp
(

− iuβnt
)

E

[

exp
(

iuβnG(t)−
u2θ2n
2

G(t)
)

]

= exp
(

− iuβnt
)

φG(t)

(

u

(

βn +
iuθ2n
2

))

=

(

exp
(

− iuβn
)

ν1(�,α,βn, θn)
�
Y�

(

α ν1(�,α,βn, θn)
−1

)

Y�(α)

)t

,

P : 0 = t0 < t1 < · · · < tM−1 < tM

= s ∧ t < tM+1 < · · · < tM∗ = s ∨ t
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Then, we have

By the property of the generalized hyperbolic process Xn , we have

Hence, we obtain

From Equation (5) and (6),

� � 

Refer to Prause (1999), Mercado (2011), and Eberlein and Hammerstein (2004) in more 
details on the properties of the generalized hyperbolic process.

Proof of Proposition 4

Let P be a partition such that

We have

cov
(

Zn(s),Zn(t)
)

= E[Zn(s)Zn(t)]

= lim
||P||→0

E

[ M
∑

j=1

KH (s, tj−1)
(

Xn(tj)− Xn(tj−1)
)

×

M∗
∑

k=1

KH (t, tk−1)
(

Xn(tk)− Xn(tk−1)
)

]

= lim
||P||→0

M
∑

j=1

M∗
∑

k=1

KH (s, tj−1)KH (t, tk−1)

× E

[

(

Xn(tj)− Xn(tj−1)
)(

Xn(tk)− Xn(tk−1)
)

]

.

E
[

(

Xn(tj)− Xn(tj−1)
)(

Xn(tk)− Xn(tk−1)
)

]

=

{

(tj − tj−1)Var
(

Xn(1)
)

if j = k
0 if j �= k .

cov
(

Zn(s),Zn(t)
)

= lim
||P||→0

M
∑

j=1

KH (s, tj−1)KH (t, tj−1)(tj − tj−1)Var(Xn(1))

= Var(Xn(1))

∫ s∧t

0
KH(s, u)KH(t, u) du

cov
(

Zn(s),Zn(t)
)

=
1

2

(

β2
n

(

Y�(α) Y�+2(α)

Y 2
�+1(α)

− 1

)

+ θ2n

)

(

t2H + s2H − |t − s|2H
)

.

P : 0 = t0 < t1 < · · · < tM−1 < tM = t.
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By the property of the generalized hyperbolic process, we have

Hence, we obtain

From Equation (4) and (7),

� �
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cov
(

Zm(t),Zn(t)
)

= E
[

Zm(t),Zn(t)
]

= lim
||P||→0

E

[ M
∑

j=1

KH (s, tj−1)
(

Xm(tj)− Xm(tj−1)
)

×

M
∑

k=1

KH (t, tk−1)
(

Xn(tk)− Xn(tk−1)
)

]

.

= lim
||P||→0

M
∑

j=1

M
∑

k=1

KH (t, tj−1)KH (t, tk−1)

× E

[

(

Xm(tj)− Xm(tj−1)
)(

Xn(tk)− Xn(tk−1)
)

]

.

E
[

(

Xm(tj)− Xm(tj−1)
)(

Xn(tk)− Xn(tk−1)
)

]

=

{

(tj − tj−1) cov
(

Xm(1),Xn(1)
)

if j = k
0 if j �= k

cov
(

Zm(t),Zn(t)
)

= cov
(

Xm(1),Xn(1)
)

∫ t

0

(

KH (t,u)
)2

du

cov
(

Zm(t),Zn(t)
)

= t2H
(

βmβn

(

Y�(α) Y�+2(α)

Y 2
�+1(α)

− 1

)

+ θmθnσm,n

)

.
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