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Introduction
Since the inception of the European Union Emissions Trading System (EU ETS), carbon 
derivatives have been traded. Moreover, futures trading is the main section of the EU 
ETS. Carbon futures not only provides more effective risk management tools for enter-
prises controlling emissions but also opportunities for investors to engage in speculative 
arbitrage activities. Hence, carbon futures help improve market liquidity and effectively 
circumvent the risk for participants (Zhou and Li 2019). Moreover, the price fluctuations 
of carbon futures can reflect overall market price trend (Tang et  al. 2013; Milunovich 
and Joyeux 2010). This provides a basis for carbon market policymakers to formulate 
effective management policies. Owing to the relatively short development history, the 
risk mechanism for the EU carbon market has not yet been completed. An effective 
method of volatility forecasting can contribute to improving risk management capabil-
ity. Meanwhile, increasing participation of financial intermediaries and international 
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economics and politics has increased the complexity and volatility of the carbon market. 
For these reasons, effective measurement of carbon futures market volatility is of great 
significance for market participants. Therefore, predictions on EU ETS carbon futures 
price volatility were analyzed.

Currently, economic situations and policy adjustments have proven vital in the volatil-
ity of carbon prices (Zhu and Chevallier 2017; Kautto et al. 2012; Fan et al. 2017; Cheval-
lier 2011). Economic and policy changes also signify uncertainty. From the perspective 
of the underlying logic of the relationship, the uncertainty caused by economic policy 
changes mainly affects the carbon futures market through the following three channels. 
First, since the generation and operation of the carbon futures market primarily depend 
on government policies, the allocation system will directly determine the supply of the 
carbon quota in the market. This affects the price of carbon futures (Chevallier 2009; 
Kanamura 2019; Mansanet-Bataller and Pardo 2009). Second, the uncertainty regarding 
economic policy changes will affect the production behavior and carbon emissions of 
regulated enterprises, which affects the demand for the carbon quota and causing price 
fluctuations in carbon futures. Alshubiri et al. (2020) highlight that the 2008 subprime 
mortgage reduced the activities of oil-relevant enterprises, and Bel and Joseph (2015) 
found that the economic recession caused by the subprime mortgage crisis in 2008 led to 
a sharp decrease in the demand for carbon quota and caused the carbon quota price to 
plummet. Third, economic policy uncertainty will have an impact on the energy market 
(Wei et al. 2017; Aloui et al. 2016; Yin 2016; Chen et al. 2020). In contrast, volatility in the 
energy market can affect the carbon futures market (Chevallier 2011; Mansanet-Bataller 
et  al. 2007; Dutta 2019; Liu and Chen 2013). First, economic and policy factors influ-
ence the price of non-clean energy, which affects the production behavior of enterprises. 
Moreover, this further changes the carbon quota demand, leading to fluctuations in car-
bon futures prices. In contrast, supported by advances in clean energy technologies and 
environmental policies, enterprises may apply clean energy to replace non-clean energy. 
Moreover, energy consumption is related to carbon dioxide emissions(Khan et al. 2020). 
Here, carbon dioxide emissions per unit of capacity are reduced, resulting in decreased 
demand for carbon quotas and lower carbon price. Therefore, economic policy uncer-
tainty has certain explanatory power for fluctuations in the carbon futures market.

The existing literature quantitatively measures economic policy uncertainty. Baker 
et  al. (2016) proposed economic policy uncertainty (EPU) index for the major econo-
mies of the world. The EPU is based on the frequency of keywords, such as uncertainty, 
economic activity, and policy adjustments, found in newspaper coverage. The global 
EPU (GEPU) index is measured by Davis (2016), which is obtained by the GDP-weighted 
average of the EPU index of 20 countries accounting for two-thirds of the total global 
output. Since its introduction, the EPU index has been extensively applied in research. 
Moreover, based on our analysis of the relationship between EPU and the volatility of 
the carbon futures market, introducing EPU to explore its explanatory and predictive 
ability for the EUA futures fluctuations is appropriate.

This study adopts the GARCH mixed frequency data sampling (GARCH-MIDAS) 
model proposed by Engle et al. (2013), which allows data of different frequencies to be 
incorporated into the same model. Moreover, it decomposes the variance into long-term 
and short-term components, which can effectively enhance the prediction accuracy. 
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Therefore, the GARCH-MIDAS model is adopted to explore the connection between 
EPU and EUA futures. Additionally, the GARCH-MIDAS model and GARCH-type 
models are compared in terms of predictive performance for EUA futures.

Our analysis of the relationship between the EU carbon futures market and economic 
policy uncertainty is original and can provide a new perspective for measuring the vola-
tility of the EU carbon futures market. The main contributions of this study can be sum-
marized as follows. First, combined with the GARCH-MIDAS model proposed by Engle 
et al. (2013), we add the EPU index to the EUA futures forecasting model. The empiri-
cal results confirm that the EPU has great predictive performance for the volatility of 
EUA futures and that GARCH-MIDAS models significantly outperform GARCH-type 
models in forecasting performance by using the out-of-sample test. Our analysis proves 
that EPU is a new and valid approach to EUA futures volatility forecasts. Second, we 
not only investigate the influence of GEPU on EUA futures volatility and its prediction 
performance but also introduce the EEPU to analyze and predict EUA futures volatil-
ity. By comparing their predictive ability, we verified that EEPU can be more effective in 
predicting carbon futures price volatility than GEPU. Third, by constructing a portfolio 
of EUA futures and risk-free EU rates, our method can produce the economic value of 
volatility forecasting in practical applications.

The remainder of this paper is organized as follows. "Related literature" section pre-
sents the related literature.  "Model and methodology” section describes the method-
ology of the study. "Data and statistical description" section   introduces the data and 
its characteristics. “Empirical analysis” section  presents the empirical analysis. Finally, 
“Conclusions” section.  concludes the paper.

Related literature
Effective measurement of carbon futures market volatility is of great significance for var-
ious participants in the EU ETS carbon futures market. Currently, economic conditions 
and policy adjustments have proved vital factors in the volatility of carbon prices. An 
increasing number of studies have explored the links between carbon prices and macro-
economic information. Chevallier (2011) highlighted that the carbon market is affected 
during periods of economic expansion (recession). This confirms the existence of a link 
between the macroeconomic conditions and carbon price. Zhu and Chevallier (2017) 
confirmed that a long-term co-integration relationship exists between carbon prices and 
drivers, such as economic activities. The connection between carbon prices and policy 
changes has also been explored (Kautto et al. 2012; Fan et al. 2017). Kautto et al. (2012)
verified the mutual influence between climate policy and carbon emission right price 
through their research. Fan et al. (2017) found that the adjustment of regulatory policies 
in EU ETS would also affect the earnings of European Union Allowance (EUA). Com-
bined, these studies indicate that carbon prices are strongly tied to economic situations 
and policy changes.

Economic and policy changes also signify uncertainty. Existing literature quantitatively 
measures economic policy uncertainty. Since its introduction, the EPU index has been 
extensively applied in research. In the stock market volatility prediction, many studies 
show that the EPU index has significant and positive impact on both the Chinese stock 
market and that of the United States (Balcilar et al. 2019; Bahmani-Oskooee and Saha 
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2019; Li et al. 2019; Yu and Song 2018; Hoque and Zaidi 2019). Regarding the volatility 
forecast in the energy market, some studies have proved that the EPU is significantly 
related to the energy market price and has superior predictive effects in out-of-sample 
tests (Wei et al. 2017; Aloui et al. 2016; Yin 2016). Additionally, Fang et al. (2018) hold 
that the GEPU index has remarkable predictive ability regarding the volatility of the 
global gold futures market. Some scholars have also confirmed that the EPU has note-
worthy impacts on markets such as virtual currencies and correlations between various 
markets (Fang et al. 2017, 2019). Additionally, EPU can also affect the company’s deci-
sion-making behavior, such as the financial asset allocation of a company (Huang et al. 
2019; Wen et al. 2019; Yan et al. 2019) and cash flow holding (Li 2019). Based on our 
analysis of the relationship between EPU and the volatility of the carbon futures market 
above, EPU may have a certain explanatory power on carbon futures price fluctuations 
and can be used to predict price fluctuations in the carbon market. In addition to the 
influence of the economic policy in the EU, the market volatility of EUA futures may also 
be affected by other large economic policy changes. Therefore, we introduce the EU EPU 
(EEPU) and GEPU index to explore the explanatory ability of EUA futures and its ability 
to predict long-term fluctuations, respectively.

Existing studies mainly use classic financial time-series prediction methods, such 
as ARCH and GARCH-type models, to forecast the price of carbon financial prod-
ucts (Emenogu et al. 2020; Challa et al. 2018; Dhamija et al. 2017; Byun and Cho 2013; 
Koop and Tole 2013; Zeitlberger and Brauneis 2016; Venmans 2015). Nevertheless, 
these methods cannot guarantee both long-term and short-term prediction accuracy 
(Lei et al. 2018). When exogenous variables of different frequencies are added, only fre-
quency reduction can be adopted. The processing method of frequency reduction will 
lose effective information from the high-frequency data and may lead to a decline in the 
prediction accuracy. An extended form of the model can meet more research needs (Zha 
et al. 2020). In this case, the GARCH-MIDAS model can effectively enhance the forecast 
accuracy by simultaneously incorporating the data of different frequencies simultane-
ously. Since its introduction, many scholars have used the GARCH-MIDAS model to 
analyze the volatility of the stock and energy markets, and they confirmed that the model 
has superior predictive performance (Yu et al. 2018; Fang et al. 2017; Wei et al. 2017; Lei 
et al. 2018; Li et al. 2019). The GARCH-MIDAS model has become essential for research 
on the correlation between macroeconomic factors and market fluctuations. Similar to 
general financial markets, the price volatility of EUA futures has a significant GARCH 
effect (Byun and Cho 2013). Hence, applying the GARCH-MIDAS model to the EU car-
bon market is reasonable. Therefore, we use the GARCH-MIDAS model combined with 
EPU to analyze and predict fluctuations in EUA futures prices. The results show that the 
GARCH-MIDAS model exceeds the GARCH-type models relative to predictive perfor-
mance. This provides new insights into modeling and forecasting carbon price volatility.

Model and methodology
GARCH‑MIDAS model

To explore the contribution of a monthly frequency EPU index to the long-term volatility 
of daily frequency EUA futures, we adopt the GARCH-MIDAS model proposed by Engle 
et al. (2013). Unlike GARCH-type models, the variance is decomposed into long-term 
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and short-term volatility components. Short-term fluctuations remain determined by 
historical fluctuation information. In contrast, long-term fluctuations are characterized 
by low-frequency macroeconomic variables. The basic forms are as follows:

where ri,t refers to the log return of financial assets on day i of month t, and µ is the non-
conditional mean of the return sequence. The term Nt denotes the number of days in a 
month. εi,t |�i−1,t ∼ N (0, 1) , given the information set �i−1,t up to day (i − 1) of period t. 
The conditional variance of the daily return is divided into two components: a short-run 
component defined as si,t and a long-run component defined as lt and σ 2

i,t is defined as 
the total conditional variance. The short-run volatility component si,t follows the tradi-
tional GARCH (1,1) process as follows:

where α and β are the parameters to be estimated for the ARCH and GARCH compo-
nents, respectively, where α > 0 , β > 0 , and α + β < 1 . Because the growth rate of the 
EPU index presented by Xt−k can have a negative value, according to Engle et al. (2013), 
we convert the long-term fluctuations into the logarithmic form in this study. This can 
be expressed as follows:

where m is an intercept and θ is the slope of the weighted effect of the low-frequency 
macroeconomic variables lagged behind the long-term volatility of financial asset 
returns. The term K denotes the maximum lag order of smooth volatility in MIDAS 
filtering. The marginal effect depends on θ and ω (Conrad et  al. 2014). In contrast, 
ϕk(ω1,ω2) represents the weighting scheme of beta weights with the independent vari-
ables ω1 and ω2 , which can be expressed as follows:

Equation  5 is the unrestrictive weighting scheme that can produce attenuated and 
hump weight distributions. In contrast, Eq. 6 can be obtained from Eq. 5 with a con-
straint of ω1 = 1 . The constraint of ω1 = 1 is applied to the unrestricted weight func-
tion to obtain the restricted weight function Eq. 6. The restricted weighting function can 
only generate an attenuated weight distribution, and the attenuation rate is determined 

(1)ri,t = µ+
√

lt si,tεi,t , ∀i = 1, . . . ,Nt ,

(2)σ 2
i,t = lt si,t ,

(3)si,t = (1− α − β)+ α
(ri−1,t − µ)2

lt
+ βsi−1,t ,

(4)log(lt) = m+ θ

K∑

k=1

ϕk(ω1,ω2)Xt−k ,

(5)ϕk(ω1,ω2) =
(k/K )ω1−1(1− k/K )ω2−1

∑K
j=1(j/K )ω1−1(1− j/K )ω2−1

,

(6)ϕk(1,ω2) =
(1− k/K )ω2−1

∑K
j=1(1− j/K )ω2−1

,
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by the parameters ω2 . This means that the larger the value of ω2 , the faster the decay 
rate, and vice versa. Both of these beta weighting functions can be applied to the estima-
tion of the GARCH-MIDAS model. Following Conrad and Loch (2015), the restricted 
weight function of ω1 = 1 is selected. Equations 1, 3, 4, and 6 form a GARCH-MIDAS 
model based on the EPU exponential change rate. Additionally, quasi-maximum likeli-
hood estimation (QMLE) was adopted to estimate the parameters and parameter space 
� = {µ,α,β ,m, θ ,ω}.

Regression‑based test for the specification of one‑component GARCH

According to Conrad and Schienle (2020), there should be misspecification testing in 
GARCH models in the sense of an omitted multiplicative long-term component. Hence, we 
apply the regression-based test proposed by Conrad and Schienle (2020) as a preliminary 
check before estimating the GARCH-MIDAS model. The regression model is considered in 
logarithmic form:

where Xt denotes the monthly explanatory variables, vt meets the independent identical 
distribution, and σ̂ 2

i,t is the estimated variance from the model under the null hypothesis 
of a simple GARCH. ri,t refers to the daily log returns. We define RV t as the sum of the 
volatility-adjusted squared daily returns within each month. The regression-based test 
checks whether the H0 : w0 = 0 that the one-component GARCH is correctly specified 
can be rejected when using EPU as an explanatory variable.

MCS test

To assess the predictive power of the volatility forecasts from the GARCH-MIDAS and 
GARCH-type models, various loss functions were used to compare the accuracies of the 
different models. More criteria make a more effective analysis (Kou et al. 2021). According 
to Hansen et al. (2011), we employ six loss functions as criteria for evaluating the prediction 
accuracy of various volatility models in the empirical examination. The specific definitions 
of these six types of loss functions are as follows:

(7)ln(RV t) = c + w0X0 + vt ,

(8)RV t =

M∑

i=1

r2i,t/σ̂
2
i,t ,

(9)MAE =
1

T

T∑

i=1

|σ 2
i − σ̂ 2

i |,

(10)MSE =
1

T

T∑

i=1

(σ 2
i − σ̂ 2

i )
2
,

(11)MAD =
1

T

T∑

i=1

|σi − σ̂i|,
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where σ̂ 2
i  denotes the predicted value of the variance on day i obtained by the different 

models, and σ 2
i  is the daily actual variance. The daily frequency realized variance is a 

perfect proxy for the true conditional variance (Patton 2011). Nevertheless, owing to the 
unavailability of data, we use the square value of the daily real return to represent the 
daily actual fluctuation value (Wei et  al. 2017). Moreover, T  represents the size of the 
out-of-sample prediction window.

However, the loss function could not distinguish whether the loss differences of the dif-
ferent models were statistically significant. After the loss function value is obtained, we 
employ the model confidence set (MCS) test proposed by Hansen et al. (2011) to compare 
the prediction accuracy between models. The MCS test has an advantage over the conven-
tional test model as it does not have to set a benchmark model. Moreover, it allows for the 
possibility of multiple optimal models. The MCS test process was expressed as follows:

First, it sets a model collection M0 , which contains m volatility forecasting models to be 
inspected. After calculating the loss values of the out-of-sample forecast, we write them as 
Liu,t for model u of the loss function i (out-of-sample window t = 1, . . . , n ). Therefore, for 
any two predictive volatility models in model collection M0 , the relative loss function val-
ues are denoted as duv,t = Liu,t − Liv,t(u, v ∈ M0) . The superior object set is defined as M∗ , 
which can be expressed as follows:

where E(diuv,t) represents the mathematical expectation of duv,t under the specific loss 
function i . The MCS test is a series of continuous significance tests for the models of M0 , 
and the model that proves to be significantly inferior to the others is eliminated. The null 
hypothesis of the MCS test is as follows:

As shown above, the null hypothesis assumes that any two models have the same predic-
tive power. The MCS test is conducted through a series of continuous significance tests 
wherein models of M0 with poor predictive power are eliminated until no models are 
excluded from M0 . Setting the confidence level α , if the p value is larger than α , this indi-
cates that this model possesses superior out-of-sample predictive ability and can survive 
the MCS test. The larger the p value of the MCS test, the higher the prediction accu-
racy of the corresponding model. Additionally, if the p value is smaller than α , then this 

(12)MSD =
1

T

T∑

i=1

(σi − σ̂i)
2
,

(13)QLIKE =
1

T

T∑

i=1

(log(σ̂ 2
i )+ σ 2

i /σ̂
2
i ),

(14)R2LOG =
1

T

T∑

i=1

(log(σ 2
i /σ̂

2
i ))

2
,

(15)M∗ ≡ {u ∈ M0 : E(d
i
uv,t) ≤ 0 for all v ∈ M0},

(16)H0,M : E(diuv,t) ≤ 0 for all v ∈ M0



Page 8 of 19Liu et al. Financ Innov            (2021) 7:76 

volatility prediction model is proven to have poor out-of-sample predictive ability and 
will be removed from the MCS test.

Additionally, Hansen et  al. (2011) recommend using semi-quadratic statistics TSQ 
and range statistics TR in the model assessment process. These statistics are defined as 
follows:

If the p values of the TSQ and TR statistics are larger than the given confidence level α , 
then H0 , that is, the null hypothesis, cannot be rejected. Because the asymptotic distri-
bution of the statistics TSQ and TR depends on the “aversion parameter” their real distri-
butions are extraordinarily complicated. However, the bootstrap method can solve this 
difficulty and easily obtain the statistics TSQ , TR , and the corresponding pvalues.

Data and statistical description
The data samples used in this study were divided into two parts. One part is the daily 
data of the consecutive settlement price of EUA futures from the European Climate 
Exchange, which is the most active carbon futures trading market in the world and 
includes mainly EUA futures. The other is the EPU index, which represents monthly 
data on macroeconomic variables. As the carbon quotas of phase I of the EU ETS are 
allocated for free, the enterprises controlling their emissions do not participate in car-
bon market transactions. To ensure the adequacy and validity of the data, we use the 
data of phases II and III of the EU ETS. The EUA futures data cover the period from 
January 1, 2008, to September 30, 2019, including 3023 pieces of daily data from the 
WIND database. The EPU sample period spans from January 2008 to September 2019, 
with 141 pieces of monthly data (EPU data are available on http://​www.​polic​yunce​rtain​
ty.​com). According to Fang et al. (2017) and Liu et al. (2019a), we adopt the logarithmic 
rate of the returns for the EUA futures settlement price to narrow the value range of the 
variables so the returns of the EUA futures and EPU are of the same order of magni-
tude. The transformed yield is expressed as R , and the growth rates of the EPU indexes 
are denoted as �GEPU and �EEPU , where �GEPU = (GEPUt − GEPUt−1)/GEPUt−1 , 
�EEPU = (EEPUt − EEPUt−1)/EEPUt−1 . The summary statistics of the transformed 
data are presented in Table 1.

As shown in Table 1, first, the SD of the EUA futures yield is much larger than its 
mean. This indicates that the EUA futures price exhibits certain volatility. Second, the 
yield of the EUA futures is obviously to the left and turns to form a sharp peak and 
thick tail. In contrast, the GEPU and EEPU indexes are to the right and have sharp 

(17)TSQ = max
u,v∈M0

(d
i

uv)
2

√
var(diuv)

,

(18)TR = max
u,v∈M0

|d
i

uv|√
var(diuv)

,

(19)d
i

uv =
1

n

n∑

t=1

diuv ,

http://www.policyuncertainty.com
http://www.policyuncertainty.com
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peaks. The JB test also revealed that all yield (growth rate) sequences were signifi-
cantly abnormally distributed and provided evidence of autocorrelation characteris-
tics with different degrees. Finally, all results of the ADF test support the rejection of 
the null hypothesis of a unit root significantly. This implies that the all-time series is 
stationary and can thus be modeled. Furthermore, the variation trend diagrams of the 
EUA yield sequence, GEPU, and EEPU volatility sequences are shown in Fig. 1.

As displayed in Fig. 1, the four major events throughout the sample period result 
in significant fluctuations and an agglomeration effect of carbon futures prices. For 
instance, affected by the subprime mortgage crisis in 2008, companies were selling 
their excess carbon allowances, leading to a glut of carbon allowances in the market 
and plummeting of carbon prices. During the European debt crisis in 2011, GEPU 
and EEPU fluctuated drastically. The European economy was in recession, thus 
affecting carbon prices. EUA futures prices fluctuated sharply in 2013 as the EU ETS 
entered phase III because of the oversupply of carbon quotas in the first few months 
and the subsequent rejection of a ”volume auction” by the European parliament. Sub-
sequently, structural reforms in the EU ETS led to an increase in prices. Additionally, 
the Brexit referendum in 2016, together with the presidential election of the USA and 
the interest rate of Fed raised, brought higher uncertainty to the global economy and 
increased volatility in EUA futures prices. Both the EPU index and EUA futures prices 

Table 1  Descriptive statistics of transformed data

SD, standard deviation; Skew, skewness; Kurt, kurtosis; JB, Jarque-Bera test; Ljung-Box Q test of lagged 5 order (Q(5)); ADF, 
augmented Dickey-Fuller unit root test. In the case of the ARCH test, the table reports the coefficient of a first-order lag

***, **, *Indicate significance at the 1%, 5%, 10% levels, respectively

Variables Mean SD Skew Kurt JB Q(5) ADF ARCH test

R 0.3e−04 0.032 − 0.805 19.418 64.057*** 12.477** − 47.765*** 0.282***
�
GEPU 0.031 0.220 1.094 5.383 61.510*** 9.645* − 4.106 *** − 0.051**

�
EEPU 0.030 0.233 1.238 6.578 111.300*** 12.120 ** − 4.524 *** − 0.040

Fig. 1  Time evolution of EUA return and growth rates of GEPU and EEPU
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fluctuated sharply during these four events. The price fluctuations of the EU carbon 
futures market can be considered closely related to economy and policy uncertainty.

Empirical analysis
In this section, we first conduct a regression-based test to check whether a simple 
GARCH is misspecified in the sense of an omitted long-term component. Second, we 
analyze the results of the parameter estimation of the two GARCH-MIDAS models 
based on different EPU indexes for the entire sample period. The data were then divided 
into two parts for the out-of-sample prediction of the rolling window.

Regression‑based test

As Table 2 shows, the results of parameter w0 are positive at the 1% significance level, 
indicating the connection between EPU and monthly realized volatility of EUA futures. 
Additionally, the results indicate that the two models are significant under the F-statistic 
test. Moreover, this means that in the null hypothesis, the one-component GARCH is 
correctly specified can be rejected. A significant relationship is found between the EPU 
index and the log of the volatility-adjusted realized variance of EUA futures. Therefore, 
this preliminary check can provide evidence that we can adopt the GARCH-MIDAS 
model to forecast EUA futures using the EPU index.

Model estimation

To examine the applicability of the GARCH-MIDAS model for the prediction of EUA 
futures volatility and analyze the influence of different EPU indexes, we perform a 
parameter estimation of the entire sample in this subsection. According to Conrad et al. 
(2015), the maximum lag order K  of the model is determined using the information cri-
terion. However, owing to the existence of a flexible weight function, a lag order that is 
as large as possible can be selected. After calculating the beta function with different 
lag orders, we choose 24 to be K  . Hence, the lag time range of the influence of the EPU 
index on the volatility of the carbon futures market is 24 months. The parameter estima-
tion results are presented in Table  3. First, the parameters µ , α , and β are significant, 
with the sum of α and β being close to 1. This indicates that the short-term volatility 
components of the EUA futures price yield show a noteworthy GARCH (1,1) effect. Sec-
ond, both the estimated results of θ of these two models are positive at the 1% level, with 
the effect of GEPU being larger than that of EEPU. This implies that GEPU and EEPU 
are positively correlated with the long-term volatility components of the EUA futures 
yield and produce a positive effect on the EUA futures price. Basically, a larger growth 

Table 2  Results of regression-based test

***, **, *Indicate significance at the 1%, 5%, 10% levels, respectively. The values in parentheses are the p values

Xt c w0 F-statistic

�
GEPU 2.947*** 0.532*** 9.71***

(0.000) (0.002) (0.002)
�

EEPU 2.945*** 0.561*** 12.890***

(0.000) (0.000) (0.001)
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rate of the EPU index leads to higher volatility in the EUA futures price. Overall, the 
GEPU and EEPU indexes have significant and positive effects on the long-term com-
ponents of the EU carbon futures market volatility. When economic policy uncertainty 
increases, the EU carbon market becomes more volatile. Once the economic cycle of a 
recession is entered, the economic activity of factories will be greatly reduced. Therefore, 
the demand for quotas will be greatly reduced, resulting in drastic fluctuations in carbon 
prices in the carbon market. Market participants in the EU carbon market should be 
vigilant during periods of high economic policy uncertainty.

Based on the estimation results above, the distributions of the beta weight function 
of the two modes are drawn. In Fig. 2, both weight functions show a decreasing distri-
bution, indicating that the closer the volatilities of GEPU and EEPU are to the current 
time, the more the variables influence the EUA futures price volatility. As the param-
eter ω estimated by the 

�

GEPU model is larger than that of the GM-
�

EEPU , the rate 
of decay of the former is faster than that of the latter. Additionally, Fig. 3 presents the 
EUA futures price volatility and long-term volatility trend charts. The green dotted line 
is the actual daily volatility variance of EUA futures. In contrast, the blue solid line is 
the long-term volatility variance of the obtained model. A certain connection between 
long-term fluctuations and total fluctuations of EUA futures prices driven by different 
EPU indexes can be observed. The total volatility trend is also in line with the economic 
conditions of the EU and the world. Specifically, the subprime crisis in 2011 led to an 
economic recession, and EPU indexes rose rapidly during the same period. The EU car-
bon market was also deeply affected by the crisis, and the EUA futures price volatility 

Table 3  Full-sample estimates of GARCH-MIDAS models

***, **, *Indicate significance at the 1%, 5%, 10% levels, respectively. The LLF is the log-likelihood function. The p values are 
shown in parentheses below the corresponding parameter estimates

Variables µ α β m θ ω LLF AIC
�
GEPU 1.002E-03** 0.124*** 0.865*** − 6.990*** 16.978*** 1.117*** 5477.820 − 10,944

(0.024) (0.000) (0.000) (0.000) (0.000) (0.000)
�
EEPU 0.987e−03** 0.120*** 0.870*** − 6.937*** 13.634*** 1.092*** 5475.020 − 10,938

(0.026) (0.000) (0.000) (0.000) (0.000) (0.000)

Fig. 2  Distributions of beta weights function
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and long-term volatility rose sharply. In the recovery stage of the subprime crisis, the 
EPU index fell, reducing the long-term volatility of EUA futures, and the decline in the 
instability of the EU carbon market also reduced the EUA futures’ total volatility. During 
phase III of the EU ETS in 2013 and the UK referendum in 2016, long-term fluctuations 
and total fluctuations also followed the above trend. However, the EPU index that can 
affect EUA futures cannot be judged based on the estimated results only. We focus on 
exploring which EPU index can be more useful in forecasting the daily volatility of EUA 
futures prices. In the next section, we evaluate the predictive performances of these two 
EPU indexes and discuss the relationships between the two GARCH-MIDAS models 
and EUA futures volatility.

Evaluation of the forecast performance

The estimated results of the samples change with time. Market participants are more 
concerned about the out-of-sample predictive ability of the model and the indicator that 
can most accurately predict future fluctuations than the estimated results in a sample 
(Wang et  al. 2016). In the next step, we empirically test the out-of-sample predictive 
power of the EPU index. The data are divided into two subgroups: in-sample data for 
estimating the parameters and out-of-sample data for forecasting volatility. Specifically, 
in-sample data of 2623 trading days and out-of-sample data of the last 400 trading days 
were included. We adopt the step forward rolling forecast method, which means that the 
first estimate uses the data of the first 2623 days to forecast the volatility of the following 
day. For the second estimate, we eliminated the first data and combined the recent data 
to keep the parameter estimate sample sizes fixed. Each estimate yields an out-of-sample 
forecast value. Using a rolling window, two GARCH-MIDAS models and six GARCH-
type models were predicted to obtain 400 out-of-sample predicted values. Additionally, 
we employ the MCS test to determine whether the loss differences of the different mod-
els are statistically significant. For the control parameters of the MCS test, we set K = 2 
(block bootstrap length) and simulation times B = 10,000. Meanwhile, the confidence 
level α was set to 0.1 (Hansen et al. 2011; Wang et al. 2016; Zhang et al. 2019). If the p 
value is larger than 0.1, the model can survive in the MCS test. Otherwise, the model 

Fig. 3  Trend of total volatility and long-term volatility by the two GARCH-MIDAS models
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is removed. The larger the p value, the better is the predictive power of the model. The 
MCS test results are listed in Table 4.

Table  4 reports the MCS test results of all the models. The two models based on 
�GEPU and �EEPU passed the MCS test with the GM-�EEPU , which obtains the high-
est forecasting accuracy in general. In contrast, few GARCH-type models survived in 
the MCS test. Essentially, the GARCH-MIDAS model with EPU index has better predic-
tion performance relative to EUA futures volatility than other models. The results mean 
that, the GARCH-MIDAS model incorporated EPU indices that can predict the EUA 
futures price fluctuations more accurately in contrast to the GARCH-type models. Our 
results further confirmed that EPU contains useful information in EUA futures volatility. 
Participants should consider EPU when making investments in the EU carbon market. 
Additionally, by comparing the two GARCH-MIDAS models based on different EPU 
indexes, the p values of the two mixing models under different loss functions are dif-
ferent. Overall, for this out-of-sample prediction window, EEPU contains more useful 
information than GEPU. On the one hand, the EU ETS is an emerging market for more 
than a decade with imperfect market mechanism. This makes the carbon market more 
vulnerable to economic uncertainty within the economy in which it operates. On the 
other hand, the establishment and operation of the EU ETS was accompanied by the 
adjustment of corresponding policies by the government. The economic policy uncer-
tainty in EU can cause EUA futures price fluctuations more easily than the economic 
policy changes in other economies. Therefore, most of the volatility in carbon markets 
can be explained by EEPU, and the effect of EEPU on the predictive ability of the EUA 
futures price is stronger.

Robustness checks

EUA futures of weekly rate of return

In this section, we use the weekly rate of return for alternative robustness testing (Liu 
et al. 2019b; Kang et al. 2019). Weekly yield is denoted by Rm = ln(p1,w)− ln(p5,w) using 
the data from the first and last days of a week. When the other conditions remain the 
same, we choose window sizes of 80 weeks, which means 400 trading days. The results of 
the MCS tests are presented in Table 5. Two of the GARCH-MIDAS models passed the 
MCS test, and the GM-�GEPU obtained the highest forecasting accuracy in all models. 

Table 4  MCS test results of the model (400-day out-of-sample prediction window)

The bold numbers represent the models with p value greater than 0.1

Model MAE MSE MAD MSD R2LOG QLIKE

TR TSQ TR TSQ TR TSQ TR TSQ TR TSQ TR TSQ

GM-
�
GEPU 0.064 0.053 0.525 0.628 0.027 0.019 0.175 0.175 0.153 0.206 0.335 0.264

GM-
�
EEPU 1.000 1.000 0.978 0.978 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

GARCH 0.001 0.006 0.221 0.118 0.000 0.000 0.003 0.005 0.000 0.000 0.335 0.264
GJRGARCH 0.003 0.009 0.105 0.060 0.001 0.000 0.003 0.004 0.000 0.002 0.319 0.233
NAGERCH 0.031 0.029 0.221 0.211 0.027 0.019 0.094 0.050 0.576 0.576 0.319 0.233
NGARCH 0.003 0.013 0.525 0.628 0.000 0.000 0.003 0.004 0.000 0.000 0.319 0.233
EGARCH 0.064 0.053 1.000 1.000 0.004 0.003 0.094 0.050 0.000 0.000 0.113 0.123
IGARCH 0.000 0.002 0.221 0.138 0.000 0.000 0.000 0.002 0.000 0.000 0.335 0.264
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Additionally, few GARCH-type models survived the MCS test. The empirical results 
confirmed that the predictive power of GARCH-MIDAS with the EPU index is signifi-
cantly better than that of the six GARCH-type models. This further suggests that, com-
pared with the GARCH-type models, the GARCH-MIDAS model with the EPU index 
helps enhance the predictive power of EUA futures prices. Basically, the EPU index con-
tains more useful information regarding the EU carbon futures price volatility than the 
GEPU index, which demonstrates the robustness of the above conclusion.

EPU of logarithmic growth rate

According to Fang et  al. (2019), the EPU data are transformed to logarithm 
growth rates to measure the out-of-sample predictive ability. The new variables 
are expressed as ∗GEPU and ∗EEPU  , where ∗GEPU = ln(GEPUt)− ln(GEPUt−1) , 
∗EEPU = ln(EEPUt)− ln(EEPUt−1) . Table  6 reports the MCS results, and we find 
that only the GM-∗EEPU  model survived the MCS test under all loss functions. The 
GM-∗GEPU model was removed with respect to the MAD and MAE loss functions. 
However, they outperformed GARCH-type models in most cases. Additionally, all the 
GARCH-type models survive only under the QLIKE loss function with the TR and TSQ 
test statistics, and they are eliminated in most cases. This provides strong evidence that 

Table 5  MCS test results of the model (80-week out-of-sample prediction window of weekly yield)

The bold numbers represent the models with p value greater than 0.1

Model MAE MSE MAD MSD R2LOG QLIKE

TR TSQ TR TSQ TR TSQ TR TSQ TR TSQ TR TSQ

GM-
�
GEPU 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

GM-
�
EEPU 0.609 0.682 0.720 0.838 0.351 0.325 0.423 0.409 0.922 0.935 0.794 0.790

GARCH 0.126 0.300 0.128 0.398 0.351 0.325 0.082 0.146 0.019 0.199 0.350 0.495
GJRGARCH 0.675 0.682 0.872 0.848 0.582 0.473 0.436 0.460 0.922 0.935 0.794 0.790
NAGARCH 0.609 0.682 0.720 0.838 0.351 0.325 0.423 0.409 0.922 0.935 0.350 0.495
NGARCH 0.093 0.217 0.079 0.187 0.582 0.458 0.082 0.110 0.019 0.042 0.350 0.410
EGARCH 0.700 0.700 0.872 0.848 0.886 0.886 0.464 0.464 0.922 0.935 0.597 0.695
IGARCH 0.005 0.029 0.004 0.024 0.351 0.325 0.032 0.036 0.019 0.001 0.350 0.328

Table 6  MCS test results of the model (using the logarithmic growth rate of EPU)

The bold numbers represent the models with p value greater than 0.1

Model MAE MSE MAD MSD R2LOG QLIKE

TR TSQ TR TSQ TR TSQ TR TSQ TR TSQ TR TSQ

GM-∗GEPU 0.059 0.059 0.778 0.778 0.024 0.024 0.198 0.198 0.038 0.038 0.881 0.957
GM-∗EEPU 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.881 0.957
GARCH 0.000 0.000 0.110 0.159 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000
GJRGARCH 0.000 0.000 0.368 0.295 0.000 0.000 0.000 0.002 0.000 0.000 0.881 0.957
NAGERCH 0.008 0.007 0.566 0.585 0.003 0.003 0.020 0.028 0.001 0.001 0.881 0.957
NGARCH 0.000 0.000 0.157 0.188 0.000 0.000 0.000 0.000 0.000 0.000 0.881 0.957
EGARCH 0.000 0.000 0.094 0.087 0.000 0.000 0.000 0.000 0.000 0.000 0.881 0.900
IGARCH 0.000 0.000 0.094 0.097 0.000 0.000 0.000 0.000 0.000 0.000 0.881 0.957
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the GARCH-MIDAS models can outperform GARCH-type models, showing the vital 
role of EPU in enhancing the predictive performance for EUA futures. Additionally, the 
EEPU can provide more useful information than GEPU, showing its superior ability to 
predict EUA futures price fluctuations.

Portfolio returns

As EPU indices can be helpful in forecasting the volatility of EUA futures, using the pre-
diction results to effectively allocate assets is still significant for investors. In this section, 
we further explore the economic significance of these models. We consider a mean-var-
iance utility investor who allocates his or her assets based on the forecasting volatility 
between the EUA futures and risk-free assets. Here, we adopt the forecast values of the 
400-day out-of-sample window, and the risk-free asset is presented by EONIA rates, a 
bank overnight rate of the Eurozone [https://​sdw.​ecb.​europa.​eu/]. The portfolio returns 
of a given time t can be represented as follows:

where ωt is the weight of the portfolio of EUA futures. reua and rf  are the yields of the 
EUA futures and EONIA rates, respectively. r∗eua,t is the excess return, which equals reua,t 
minus rf  . Following Campbell and Thompson (2008) and Zhang et al. (2018), a mean-
variance utility investor, the utility function of an investment strategy is equal to:

where γ denotes the risk-aversion coefficient. When the value of γ increases, the risk 
asset of EUA futures is assigned a lower optimal weight in the portfolio. According to 
Wang et al. (2016), we set values 3, 6, and 9 for γ for a robustness check. By maximizing 
the utility function, the optimal portfolio weight can be obtained. It can be expressed as 
follows:

where r̂∗eua,t+1
 is the rolling window forecast of the EUA futures excess return on day 

t + 1 and is the corresponding estimate of the excess return volatility on day t + 1. To 
preclude short sales and prevent more than 50% leverage, we restrict ωt to lie between 
0 and 1.5 (Wang et al. 2016). We use the certainty equivalent return (CER) to evaluate 
portfolio performance.

where µ̂p and σ̂ 2
p  are the mean and variance of the portfolio during the out-of-sample 

period, respectively.
Table 7 reports the daily mean excess returns and CER for the eight models over the 

400-day out-of-sample period. The GARCH-MIDAS models can generate substantially 
higher economic returns for the mean-variance investor in contrast to the GARCH-type 
models. Among all models, the GM-�EEPU model obtains the highest excess returns, 

(20)Rp,t = ωt reua,t + (1− ωt)rf ,t = ωt r
∗
eua,t + rf ,t

(21)U(Rp,t) = Et(Rp,t)− 0.5γVar(Rp,t)

(22)ω∗
t =

1

γ

r̂∗eua,t+1

σ̂ ∗
eua,t+1

(23)CER = µ̂p −
γ

2
σ̂ 2
p

https://sdw.ecb.europa.eu/
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confirming the prediction results above. For larger values of γ , the mean excess return 
from GM-�EEPU becomes lower but still statistically significant. The results imply that 
the GARCH-MIDAS model with EPU can not only obtain higher forecasts but also have 
better performance in portfolio.

Conclusions
In this study, the GARCH-MIDAS model is adopted to investigate the forecasting per-
formance of EPU on EUA futures price volatility. Some noteworthy conclusions were 
drawn. First, both GEPU and EEPU indexes have remarkable and positive effects on the 
long-term components of the EU carbon futures market volatility. The results indicate 
that when EPU increases, the EU carbon market will become more volatile. Policymak-
ers, market participants, and especially institutional investors in EU carbon market 
should be vigilant during the period of high economics policy uncertainty. Second, the 
GARCH-MIDAS models with variable EPU are superior to the GARCH-type models, 
and the former can more accurately predict EUA futures price fluctuations. By adding 
the EPU indices, the forecast performance of EUA futures increases. Additionally, the 
prediction performance of the GM-

�

EEPU for EUA futures prices is markedly stronger 
than that of the GM-

�

GEPU . The EU ETS is a burgeoning market for more than a dec-
ade with imperfect market mechanisms. This makes the carbon market more vulnerable 
to economic uncertainty within the economy wherein it operates. Therefore, in the cur-
rent phase, emphasizing the EU of EPU when considering the volatility of EUA futures 
is necessary. The robustness checks further confirm that the EPU index (especially the 
EPU index of the EU) has strong predictive power for EUA futures prices, and by con-
structing a portfolio of EUA futures and risk-free EU rates, the forecast method using 
EPU indices can produce economic gains for investors in practical applications.

The EU ETS has a high degree of marketization, and the market mechanism tends 
to become increasingly perfect. However, the higher the degree of marketization, 
the more sensitive the financial market to economic policy uncertainty (Wang et al. 
2014). Hence, we adopt the EPU index to predict EU carbon market fluctuations and 
confirm its accurate predictive ability. On the one hand, our work is of great value 
in application. The EPU index offers an effective method for market participants to 

Table 7  Portfolio performance over the 400-day out-of-sample period

R is the mean excess returns and CER denotes the certainty equivalent returns. ∗∗ ,∗ indicate significance at the 5% and 10% 
levels, respectively, under the t-statistics test. All values were based on days multiplied by 100. Bold numbers represent the 
largest values for each column

Model γ = 3 γ = 6 γ = 9

R CER R CER R CER

GM-�GEPU 0.132* 0.095 0.065 0.045 0.043 0.029

GM-�EEPU 0.147* 0.111 0.082 ** 0.062 0.057** 0.043

GARCH 0.098 0.076 0.048 0.037 0.032 0.025

GJRGARCH 0.064 0.050 0.031 0.024 0.021 0.016

NAGARCH 0.046 0.036 0.023 0.018 0.015 0.011

NGARCH 0.105* 0.081 0.052 0.040 0.034 0.026

EGARCH 0.093 0.071 0.046 0.035 0.030 0.023

IGARCH 0.098 0.076 0.049 0.037 0.032 0.024
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manage the risk of price fluctuations. Through the EPU index, investors can con-
struct corresponding asset portfolios or design hedge strategies. When the EPU index 
fluctuates sharply, the EU carbon futures market will also experience large fluctua-
tions. By determining whether the uncertainty of economic policies brings positive 
or negative news, investors can choose to short or long futures markets. Thus, they 
are more likely to reduce volatility because of the unstable carbon market. Addition-
ally, enhancing the ability of the government to correct the implementation of car-
bon management strategies. During periods of heightened uncertainty, policymakers 
can formulate corresponding environmentally oriented policies and regulations to 
intervene in the carbon futures market. They are apt to avoid excessive fluctuations 
in price fluctuations caused by increased economic uncertainty by reducing the sup-
ply of carbon. Additionally, policymakers must strive to maintain the continuity and 
stability of policies in the EU carbon market and reduce the uncertainty of economic 
policies to achieve the long-term goal of promoting the healthy and orderly develop-
ment of the EU carbon market. On the other hand, this study has great theoretical 
significance, as it is an effective complement to existing research on carbon market 
volatility. Our analysis of the relationship between the EU carbon futures market and 
EPU is original and may provide a relatively new perspective to measure the volatility 
of the EU carbon market. Meanwhile, this study could be used as a reference in other 
carbon market volatility studies.
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