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Introduction
Analysis of co-movements and Granger causality across frequencies attracts a special 
attention in much of the contemporary theoretical and empirical research in finance 
with regards to analysis on contagion, volatility spillovers, predictability, bubbles, and 
crashes (e.g., Wang et al. 2017; Saâdaoui et al. 2017; Rehman and Apergis 2019; Bouri 
et al. 2019).1 In recent times, the finance literature has increasingly borrowed estimation 
techniques from physics—i.e. wavelet transformation of data to different time-scales—
to analyze the multiscale relationship and directional Granger causality between assets 
and/or markets2 (Mensi et  al. 2019). These analyses have important implications on 
diversification benefits, hedging strategies, and portfolio risk assessment.

Cryptocurrencies have exhibited spectacular growth since their inception in 2008, 
with the range of different currencies recently surpassing 3000. This digital money 
(Financial technology) reduces the transaction costs, provides higher quality services, 
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and increases customer satisfaction (Kou et al. 2021a). Their emergence in such num-
bers underpins their importance to market participants, governments, firms, and econo-
mists. Interestingly, the increasing integration and interdependence among international 
markets reduces the diversification opportunities. In addition, cryptocurrencies have 
been considered a viable alternative to traditional assets, especially in the wake of the 
global financial crisis (GFC) of 2008 (Corbet et al. 2019; Rehman and Vo 2020). Thus, a 
better understanding of the multiscale interactions among major cryptocurrencies may 
provide new opportunities for investors.

In the literature, different econometric methods can be used to analyze the relation-
ships among markets (causality test, cointegration, bivariate GARCH models, structural 
vector autoregression (SVAR), spillover index, copula functions, and quantile regression 
approach, among others). However, these methods are not able to examine the relation-
ships under both time–frequency domain. Our research philosophy is to account for the 
evolving relationship between cryptocurrency markets not only over time but also over 
frequencies to account for market heterogeneity (traders and speculators are interested 
in short-term investment (high frequencies) and institutional investors are concerned by 
the long term investments (low frequencies).

This study contributes to the emerging empirical literature in three important fronts. 
First, it uses high frequency data to examine the multiscale interactions among main 
cryptocurrencies—Bitcoin, Ethereum, Litecoin, Dash, Ripple, and Monero—in terms of 
market capitalization and their remarkable trading volume in the last few years (Bouri 
et al. 2020a). The relatively large sample used in this study adds to the literature on co-
movement and interconnectedness of cryptocurrencies—by providing a richer and an 
extensive empirical analysis. This contrasts with many earlier studies that limit their 
analyses to a few cryptocurrencies—see e.g., Corbet et al. (2018a), Phillip et al. (2018), 
Aslanidis et al. (2019) and Qureshi et al. (2020). The use of high frequency data offers 
an additional useful information on how crypto markets co-move and respond to local 
and international shocks. The high frequency data has significant power in predicting 
stock prices and more advantageous than low-frequency data (Zhang and Wang 2019). 
Koopman et al. (2005) argue that volatility models based on high-frequency estimators 
enable forecasts that are superior to those generated by models grounded in low-fre-
quency data. Thus, the high frequency data researchers can set a sufficiently narrow time 
window around each market announcement to check if markets are surprised or not by 
a specific news. Measuring the surprise on this limited time horizon allows to remove 
the noise deriving from other events that might influence the instrument’s quote along 
the day and potential crowding-in or out effects. Second, it overcomes the static full 
sample analysis by relying on rolling window wavelet correlation (RWWC) coefficients 
to analyze the co-movements among cryptocurrency returns over different time scales 
(Polanco-Martínez et al. 2018). We notice that the rolling window analysis assesses the 
stability of the coefficients over time.

Despite their advantage, RWWC is unable to identify the directional causality (uni- or 
bi-directional causalities) and the magnitude of causalities at different frequencies. To do 
this, we use the non-linear directional Granger causality at multiple scale to identify the 
origin of information transmission. We notice that the presence of unidirectional cau-
sality from market i to market j indicates that market i can be used to predict the price 
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return of market j . In addition, the decomposition of raw return series is fundamen-
tal to account for the heterogeneous investors. Thus, we apply for a deepen analysis the 
nonlinear Granger causality test of Diks and Panchenko (2006) to find out the wavelet 
decomposition coefficients. The advantage of this nonlinear causality testing method is 
that, while the wavelet correlation coefficients measure the co-movements, they are una-
ble to establish direction of causation in different wavelet scales. Determining the direc-
tion of causation allows us to determine the direction of information flow (and perhaps 
spillover of volatility and contagion) across different time horizons to construct a more 
complete picture of the cryptocurrency marketplace.

Third, the findings of RWWC and multiscale Granger causality methods are relevant 
for cryptocurrency investors in terms of portfolio design. For this aim, we assess an 
investment strategy of mixed portfolios composed from Bitcoin and each of other cryp-
tocurrency by quantifying the optimal weights, hedge ratios and hedging effectiveness 
under different wavelet scales. We select Bitcoin as a benchmark because it is the largest 
cryptocurrency asset and widely traded and accepted by investors. From a practical per-
spective, considering these methods together provide an accurate and rich information 
to cryptocurrency investors and fund managers to enhance their funds allocation and 
investment trading strategies.

Our results demonstrate that the cryptocurrencies move together—largely in a positive 
direction—and experience long-term memory. This observation holds more strongly for 
the cryptocurrency pairs involving Bitcoin, Ethereum, and Monero. Bidirectional cau-
sality exists between most of the cryptocurrency pairs as per the Diks and Panchenko 
(2006) tests. The implication of these findings is that there exists substantial scope for 
arbitrage, portfolio risk assessment, diversification, and improvement (Corbet et  al. 
2018b; Makarov and Schoar 2019). Portfolio managers and investors who engage across 
investment horizons (i.e., multi-prospect and/or high-frequency traders) can avail these 
findings for their strategic decisions (Qureshi et al. 2020). The analysis of cryptocurrency 
pricing data at 15-min intervals may help the agents in managing and stabilizing their 
intra-day transaction portfolio to manage risk and ensure predictability of returns. Of 
late, the high levels of volatility exhibited in the cryptocurrency markets make them a 
perfect candidate for high-frequency volatility analysis. As mentioned above, high-fre-
quency analysis provides richer and more useful insights regarding market response to 
specific news, noisy events, and/or shocks. The findings from this high-frequency analy-
sis may additionally allow agents and policymakers to improve stability of the system’s 
connectedness network (Bouri et al. 2021a).

The remainder of this paper is structured as follows: “Literature review” section  pre-
sents the succinct literature review; “Data and methodology” section  explicates the 
materials; “Results” section discusses the empirical results; “Conclusion” section con-
cludes the paper.

Literature review
The literature on cryptocurrency has grown significantly in the recent years. Yaya 
et  al. (2019) analyze the persistence and the evolving interdependence between 
BTC and other major cryptocurrencies and reveal significant cointegration between 
cryptocurrency prices and BTC and an increase in both volatility persistence and 
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efficiency in cryptocurrency markets after the onset of the price crash in 2017/2018. 
Koutmos (2018) finds evidence of spillovers in returns and volatility among cryp-
tocurrencies and that news announcement amplify the degree of spillovers. Ji et  al. 
(2019) apply the spillover index to explore the connectedness between various cryp-
tocurrencies and show that Bitcoin (Ethereum) is the dominant transmitter (receiver) 
of spillover to (from) others, supporting the findings of Corbet et al. (2018a).

Mensi et al. (2019) use wavelet approach and find that a portfolio composed from 
Bitcoin and other cryptocurrencies provides diversification benefits where Bitcoin-
Ethereum portfolio offers the highest hedging effectiveness. Using rescaled range 
and wavelet method, Celeste et  al. (2019) analyze the multifractal property of Bit-
coin, Ethereum and Ripple price behavior. The results show that Bitcoin exhibit a 
long memory process and cyclical persistence and anti-persistence process. Another 
strand of empirical literature has addressed the relationships between cryptocur-
rencies under time–frequency space. Omane-Adjepong and Alagidede (2019) use 
wavelet approach and parametric and nonparametric causality tests to examine the 
spillovers and causality in returns and volatility returns between seven cryptocurren-
cies. Mensi et al. (2019) analyzed the co-movements between Bitcoin and five major 
cryptocurrencies using wavelet coherence and cross wavelet transform approaches. 
They find evidence of multiscale co-movements between Bitcoin and other crypto-
currencies and that a mixed cryptocurrency portfolio offers diversification benefits.

Chaudhari and Crane (2020) investigate the cross-correlations among crypto-
currencies. Ferreira et  al. (2020) use the detrended cross-correlation (DCCA) and 
detrending moving-average cross-correlation (DMCA) correlation coefficients to 
examine the correlation structure among the most liquid cryptocurrencies (Bitcoin, 
DASH, Stellar, Litecoin, Monero, and Ripple). Nie (2020) uses the multidimensional 
scaling method to analyze the evolving correlations in cryptocurrency markets. 
Qureshi et  al. (2020) avail wavelet methodologies to observe the interdependencies 
across five dominant as well as liquid cryptocurrencies—Bitcoin, Ethereum, Ripple, 
Litecoin, and Bitcoin Cash)—to alternate between time and frequency. Mensi et  al. 
(2020) and Rehman et al. (2020) examine the diversification properties of bitcoin with 
Islamic asset classes and highlight significant spillover effect from Bitcoin to Islamic 
stocks. Bouri et al. (2020a) observe the ‘volatility surprise’ of major cryptocurrencies 
over frequency domain and find that causality is determined by permanent shocks 
over the short horizon and by transitory shocks over the long horizon. The authors 
conclude that Bitcoin is not the only dominant cryptocurrency in the market. Bouri 
et al. (2020b) discover ‘significant jumps’ as well as ‘co-jumps’ in most of the 12 cryp-
tocurrencies studied using AR-GJR-GARCH models.

Bouri et  al. (2021a) scrutinize the connectedness between seven cryptocurren-
cies using a quantile VAR methodology. They find the prominence of the conditional 
distributions’ tails, rather than their means or medians, in determining connected-
ness. Bouri et al. (2021b) find trading volume and uncertainties as key determinants 
of market during the increased integration of 12 top cryptocurrencies. Shahzad et al. 
(2021) analyze how COVID-19 affects the volatility spillover regimes of the daily 
returns of 18 important cryptocurrencies. High volatility regimes are found to trans-
mit greater spillovers following the onset of the pandemic. Wątorek et al. (2021) show 
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that cross-correlations between BTC/ETH–BTC/EUR and BTC/ETH–BTC/USD 
exchange rate pairs are characterized by a negative difference.

Data and methodology
Data and descriptive statistics

We use the intraday price data of six cryptocurrencies—Bitcoin (BTC), Ethereum (ETH), 
Litecoin (LTC), DASH, Ripple (XRP), and Monero (XMR)—at 15-min intervals. These 
assets represent the leading cryptocurrency in the market. The market capitalization of 
Bitcoin, Ethereum, Litecoin, and Ripple represents more than 80% of the total market 
capitalization of all cryptocurrencies (Naeem et al. 2021). The selected cryptocurrency 
assets, and especially Bitcoin, attract the attention of investors due to its innovative 
Blockchain technology and the significant opportunity to generate abnormal returns 
(Urqhuhart 2018; Yarovaya et  al. 2021). The sample period ranges from September 1, 
2017 to June 24, 2018. We have selected the same sample period for all cryptocurrencies 
to ensure a uniform analysis. This period has been marked by high levels of volatility and 
sharp fluctuations in cryptocurrency prices, as well heightened interest from investors 
(Bouri et al. 2020a). Data comes from the digital asset store Kaiko which offers tick-by-
tick trade data for 6000+ currency pairs across 32+ exchanges including Bitfinex, the 
world’s leading cryptocurrency trading platform. We examine dollar-denominated data 
from Bitfinex exchange for our sample cryptocurrencies stamped at GMT time zone.

Figure 1 plots the evolution of cryptocurrency prices and exhibits an upside trend for 
the period September 2017 to December 2017 (except Ripple). A significant structural 
break point is observed from early 2018 followed by a downside price trend. The price 
return series for all cryptocurrencies shows volatility clustering—especially between late 
2017 and early 2018—and fat tails (Fig. 2). Table 1 shows that all cryptocurrency returns 
series are positive except DASH. Monero is the highest volatile market whereas BTC is 
the least one. Cryptocurrency price returns are characterized by heavy tails and volatility 
clustering related to nonlinear temporal correlations in the returns. This result is con-
sistent with Wątorek et al. (2021). All returns series exhibit evidence against Gaussian 
distribution. The unit root tests of ADF and PP as well the stationary test of KPSS show 
that all cryptocurrency return series are stationary. The results of BDS test of Brock et al. 
(1996) show strong evidence of non-linearity across different embedding dimensions of 
the BDS test. This result indicates that the traditional linear models are not suitable to 
identify and capture the true nature of relationship among cryptocurrency returns.3

Methodology

Wavelet correlation

In order to analyze the relationship between our sampled cryptocurrencies, we apply 
maximal overlap discrete wavelet transform (MODWT)4 of Gencay et  al. (2002). The 
multi-resolution analysis (MRA) scale levels provide eight decomposition: D1 (15–
30 min), D2 (30–60 min), D3 (60–120 min), D4 (120–240 min), D5 (240–480 min), D6 
(480–960 min), D7 (960–1920 min) and D8 (1920–3840 min).

3  The results of BDS test are available upon request.
4  For more information on wavelet decomposition analysis see “Appendix”.
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The expression for unbiased wavelet correlation for scale �j between X and Y is as 
follows:
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Fig. 1  Evolution of 15-min prices of major cryptocurrencies
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where 
∼
γ XY (�j) represents unbiased wavelet covariance estimators between W̃Y ,jt and 

W̃Y ,jt (market coefficients). 
∼
σ
2

X

(
�j

)
 and 

∼
σ
2

Y (�j) are the unbiased wavelet variance estima-
tors for X and Y, respectively with the associated scale �j . Based on MODWT, we define 
estimators of the unbiased wavelets as

In Eq.  (2), W̃ 2
j,t represents jth level of MODWT coefficient for X, 

Lj =
(
2j − 1

)
(L− 1)+ 1 represents length of �j scale i.e. wavelet filter whereas 

Ñ = N − Lj + 1 is the number of coefficients that remain ineffective by the boundary. 
We follow the work of Whitcher et  al. (1999)5 in constructing the confidence interval 
100(1 − 2p)% for the wavelet coherence. The confidence interval for the wavelet coher-
ence is expressed as tanh{h[

∼
ρXY (�j)] ±∅

−1(i − p)/
√

Nj − 3} , where ∅−1(p) high-
lights 100p% for standard normal distribution and h(

∼
ρXY ) = tanh−1(

∼
ρXY ) is the Fisher 

Z-transformation (see Gencay et al. 2002 for more details).

Rolling window wavelet correlation (RWWC)

To highlight the presence of temporal variations in wavelet correlation, we use rolling 
window wavelet correlation (RWWC) as a dynamic measure. In our study, we analyzed 
this rolling correlation as a visualized decomposed correlation, proposed by Polanco-
Martínez and Abadie (2016), under time–frequency space. Since the work by Ranta 
(2010), this technique has been employed in several studies (for example, Dajcman 
et al. 2012; Benhmad 2013) because it allows for analysis under different time intervals. 

(1)
∼
ρXY =

cov(W̃Y ,jt , W̃Y ,jt)√
var{W̃X ,jt}var{W̃X ,jt}

=
∼
γ XY (�j)

∼
σ
2

X (�j)
∼
σ
2

Y (�j)

(2)
∼
σ
2

X

(
�j

)
=

1

Ñj

N−1∑

t=Lj−1

W̃ 2
j,t

Table 1  Descriptive statistics

This table presents the descriptive statistics of 15-min prices of major cryptocurrencies for the period from September 1, 
2017 to June 24, 2018

*Represents significance level at 5% or better

Variables BTC ETH LTC DASH RIPPLE MONERO

Mean 0.00001 0.00001 0.00000 − 0.00002 0.00000 0.00002

Maximum 0.05600 0.10600 0.12000 0.18800 0.12300 0.31400

Minimum − 0.08200 − 0.08300 − 0.14800 − 0.08600 − 0.11300 − 0.31500

Std. Dev 0.00663 0.00723 0.00868 0.00773 0.00862 0.01067

Skewness − 0.13686 0.04133 0.10145 0.76115 0.04843 0.75986

Kurtosis 12.22892 15.49612 21.22038 25.46886 14.54152 81.53078

Jarque–Bera 100,934* 184,893* 393,116* 600,486* 157,728* 7,304,562*

ADF − 220.4327* − 127.2089* − 130.6018* − 137.5965* − 135.6117* − 135.6117*

PP − 315.2593* − 292.4937* − 298.2076* − 290.0422* − 304.6763* − 304.6763*

KPSS 0.3022 0.1721 0.2496 0.2293 0.2344 0.2344

5  Whitcher et al. (1999) explains the Fisher Z-transformation of correlation coefficient.
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Following Ranta (2010), Dajcman et al. (2012) and Benhmad (2013), we compute pair-
wise RWWC by rolling forward a single data point centered around a time. Specifically, 
we estimate the RWWC using rolling window of 250 observations i.e. 250 observations 
of 15-min cryptocurrency pricing data (250 * 15 = 3750 min or 62.5 h). The time scale 
comprises 4 total wavelet scales out of which D1 and D2 represent more volatile events 
at higher frequency (short-run) whereas D3 and D4 are associated with changes at lower 
frequencies (long-run). We restrict the number of wavelets up to J = 8; however, we ana-
lyze only the first four scales.6

Nonlinear Granger causality

Diks and Panchenko (2006) proposed a nonlinear Granger causality test under a non-
parametric framework to avoid the over-rejection problem of Hiemstra and Jones (1994).

The null hypothesis of Granger causality between the two series Xt and Yt is based on 
the fact that Xt contains no information regarding Yt+1. We present two delay vectors 
Xlx
t = (Xt−1X+1,....Xt) and Y ly

t = (Yt−1Y+1,....Yt) where lx , ly ≥ 1 highlight delays for Xt and 
Yt , respectively. We present the expression for the null hypothesis as

We consider Zt = Yt + 1 as a null hypothesis and drop the time indices in Eq.  (3). 
According to Bekiros and Diks (2008), the conditional distribution of Z given (X, Y) = (x, 
y) is similar to Z given Y = y. The null hypothesis of Eq. (3) is expressed as a joint distri-
bution function under the joint probability density function fX,Y,Z (x, y, z) with the associ-
ated marginal satisfying the following conditions:

From the above equation, it is evident that X and Y are conditionally independent of 
Y = y for each value of fixed y (Diks and Panchenko 2006). We express the null hypoth-
esis of Eq. (3) as

In Eq.  (5), E denotes the expectation operator, and the estimator for q according to 
Diks and Panchenko (2006) is expressed as

The expression denotes IWij  representing (||WiWj||< ε), where I is the indica-
tor or characteristic function. Wi and Wj denote elements of dw-variate random 
vector W. ε is the bandwidth whereas n represents sampling size. Considering 

(3)H0 : Yt+1

∣∣∣(Xlx
t ;Y

ly
t ) ∼ Yt+1

∣∣∣Y ly
t

(4)
fx,y,z(x, y, z)

fy(y)
=

fX ,Y (x, y)

fy(y)

fY ,Z(y, z)

fY (y)

(5)q ≡ E
[
fx,y,z(X, Y, Z)fy(Y)− fX,Y(X, Y)fY,Z(Y, Z)

]
= 0

(6)Tn(εn) =
(2ǫ)−dX−2dY−dZ

n(n− 1)(n− 2)

�

i




�

k ,k �=1

�

j,j �=1

IXYZik IYij I
XY
ik IYZij





6  The reason for this is that after applying MODWT to a sub-window with 250 data points and avoiding boundary 
wavelet coefficients, data points become much less than 250 for the 5th scale. Computations are made as N–W, where 
N = 1043 and w = 250 resulting in N–W = 793 windows and therefore the resulting correlation coefficient.
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the local density estimator of dw-variate random vector W, which is expressed as 
f̂WWi = 2 ∈−dW (n− 1)−1∑

j,j �=1 I
W
ij  , the T statistics is defined as

In the above equation, εn = C−β
n , with β ∈ (1/4, 1/3) and C > 0, and for the lag –1, i.e. 

lx = ly = −1 , the T value consists of asymptotic normal distribution satisfying the below 
mentioned condition:

In Eq. (8), d→ represents convergence in distribution whereas Sn represents asymptotic 
variance estimator, Tn (see Bekiros and Diks 2008).

Hedging ratios and hedging effectiveness measure

In order to provide implications for investment in cryptocurrencies for hedging purpose, 
we examine whether Bitcoin along with other cryptocurrencies can minimize portfolio 
risk without lowering the expected returns. For this purpose, we consider Bitcoin with 
other cryptocurrencies as a hedged portfolio aiming to hedge exposure to cryptocur-
rencies price movements. For this purpose, we use a Dynamic Conditional Correlation 
Generalized Autoregressive Conditional (DCC-GARCH) model of Engle (2002) which 
possesses no asymmetric properties and is feasible to measure the hedging ratios, opti-
mal weights in a portfolio and hedging effectiveness. Our aim is to construct a portfolio 
having minimum risk for expected returns. We follow the work by Kroner and Ng (1998) 
for estimating optimal weights of the Bitcoin in portfolio 

(
wBTC
t

)
 at time t as.

where (hcryptot ),
(
hBTCt

)
and

(
h
BTC,crypto
t

)
 represents conditional volatility of cryptocur-

rencies other than the Bitcoin, conditional volatility of bitcoin asset and conditional 
covariance between Bitcoin and other cryptocurrencies asset, respectively. Expression 
for the optimal budget weight for cryptocurrencies other than the Bitcoin is presented as 
(1− wWTI

t ).
For hedging ratios to minimize risk, we follow the work by Kroner and Sultan (1993) 

for constructing portfolio comprising of bitcoin and other cryptocurrencies (BTC and 
crypto). In order to minimize portfolio risk which is $1 long in cryptocurrencies con-
tract, an investor should short $ β of the cryptocurrencies other than the Bitcoin. More 
specifically, hedging ratio with minimum variance at time t is appended below.

Finally, we estimate hedging effectiveness ratio as highlighted below.

(7)Tn(εn) =
(n− 1)

n(n− 2)

∑

i

[
f̂X ,Y ,Z(XiYiZi)f̂Y (Yi)− f̂X ,Y (Xi,Y i)f̂Y ,Z(Yi,Zi)

]

(8)
√
n
(Tn(εn)− q)

Sn

d→ N (0, 1)

(9)wBTC
t =

h
crypto
t − h

BTC ,crypto
t

hBTCt − 2h
BTC ,crypto
t + h

crypto
t

, with wBTC
t =






0 wBTC
t < 0

w
crypto
t 0 ≤ wBTC

t ≤ 1

1 wBTC
t > 1

(10)βt =
h
crypto−BTC
t

hBTCt
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where Varhedged and Varunhedged represents variance of the hedged portfolio (comprising 
of bitcoin and other cryptocurrencies) and unhedged portfolio (cryptocurrencies other 
than the bitcoin). Higher value of the HE ratio highlights higher hedging effectiveness.

Results
RWWC analysis

The estimated RWCC coefficients—exhibited in Fig.  3—are, for the most part, all 
found to be non-zero. The lowest coefficient value reaches − 0.71 for BTC-XMR pair 
and the highest attains 0.86 for LTC-DSH, LTC-XRP and ETH-LTC pairs. The pair-
wise rolling window correlations for BTC-ETH range between values as low as − 0.5 

(11)HE = 1−
Varhedged

Varunhedged
,

Fig. 3  Rolling window wavelet correlation
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to more than 0.8. Most of the lower correlation coefficients occurred between Octo-
ber and December 2017 and in all wavelet scales: D1 to D4 (from 0 to 120 min). This 
may be due to the upside trend of Bitcoin and Ethereum prices and an uptick in their 
volatility—observations that are shared by Corbet et al. (2018a, 2019)—which are also 
observed in Figs. 1 and 2. There were also short bouts of low correlation in early- and 
mid-2018, mostly in D1 (15–30 min), D2 (30–60 min), and D4 (120–240 min) scales. 
The pattern of time-variant correlation coefficients is quite similar for the crypto-
currency pair BTC-LTC. The lower correlations occur in all wavelet scales between 
October and December 2017. However, there is a longer prevalence of lower wavelet 
correlations between early- and mid-2018 in scales D1, D2, and D4 of the BTC-LTC 
pair.

A recurring pattern of rolling window correlations can be seen in the cryptocur-
rency pairs BTC-DSH, BTC-XMR, and BTC-XRP. The correlation coefficients range 
between 0.8 and − 0.65, and the lower correlations including negative ones occur pre-
dominantly in the lower wavelet scales D1 and D2. In contrast, the higher wavelet 
scales are dominated by higher correlation coefficients. In particular, the lower corre-
lations dominate the final three months of 2017 in all wavelet scales. For higher wave-
let scales (such as D3 and D4), the lower correlation coefficients occur briefly, and 
intermittently, in early- and mid-2018. The lower correlations are also more prevalent 
in these three cryptocurrency pairs in contrast to BTC-ETH and BTC-LTC.

The cryptocurrency pairs involving Ethereum—ETH-LTC, ETH-DSH, ETH-XMR, 
and ETH-XRP—exhibit similar patterns. The rolling window wavelet correlation coeffi-
cients for these four pairs range between 0.85 and − 0.5. There are higher concentrations 
of lower correlations for the smaller wavelet scales (such as D1 and D2), and in the last 
quarter of 2017. This result reveals the possibility of diversification benefits—in line with 
Corbet et al. (2018a, 2019) and Aslanidis et al. (2019). The lower correlations also occur 
sporadically, for the most part, in early- and mid-2018. However, there is a higher preva-
lence of the lower correlations in the cryptocurrency pairs ETH-DSH and ETH-XRP. It 
is worth noting that the lower correlation coefficients are positive for the most part, with 
only traces of negative correlations in the final quarter of 2017. The RWCC coefficients 
are higher in the bigger wavelet scales (e.g. D3–D4) for the pairs ETH-LTC and ETH-
XMR. In addition, each of these two pairs of cryptocurrencies indicates a higher level of 
similarity among themselves (i.e. ETH-LTC is more akin to ETH-XMR than to the ETH-
DSH or ETH-XRP pairs). The above observations are novel but somewhat akin to the 
observation of positive correlations between cryptocurrencies by Aslanidis et al. (2019) 
and that of clustering by Hu et al. (2019).

Similar patterns of wavelet correlations also exist between the LTC-DSH, LTC-
XMR and LTC-XRP pairs. Lastly, we observe the rolling window wavelet correlation 
coefficients for cryptocurrency pairs DSH-XMR, DSH-XRP, and XMR-XRP. These 
cryptocurrency pairs also exhibit similar correlation patterns with lower correlation 
coefficients dominating the lower wavelet scales (D1 and D2) as well as the last quar-
ter of 2017. The higher correlations dominate the higher wavelet scales (D3 and D4) 
and for much of early- to mid-2018. However, these cryptocurrency pairs also exhibit 
an increased prevalence of lower correlation coefficients in contrast to the cryptocur-
rency pairs involving Bitcoin and Ethereum.
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The rolling window wavelet correlation coefficients reveal a general pattern: the cor-
relations of cryptocurrencies are time-varying and more (positively) correlated in rela-
tively higher wavelet scale; a pattern that appears in much of 2018 as well. There are also 
brief intermittent periods of low (including negative) correlations in 2018 as well as a 
long spell in the final quarter of 2017. High volatility and a rapid decline—possible indi-
cation of a bubble—is a characteristic of this period in the cryptocurrency marketplace 
(Corbet et al. 2018b, 2019; Su et al. 2018). As such, we can affirm that the cryptocurren-
cies move together closely for most of the sample time period. In addition, long-term 
co-movements are relatively stronger than short-term ones—roughly similar to the evi-
dence of jumping behavior amongst cryptocurrencies by Bouri et  al. (2020b). This is 
in line with the extant literature such as Caporale et al. (2018), Phillip et al. (2019) and 
Qureshi et al. (2020), who detected long-term memory (persistence) in the cryptocur-
rency market. However, our analysis reveals that the long memory (persistence) is more 
transient in the lower wavelet scales than in the higher wavelet scales. This provides a 
unique time–frequency perspective to the memory characteristics of the cryptocur-
rency market—the cryptocurrencies co-move more closely over a longer span of time 
than over shorter time-spans. This implies that the cryptocurrencies move in the same 
direction over time despite the short-term deviations, which are likely due to the unique 
conditions of the particular cryptocurrency marketplace as well as the cryptocurrency’s 
technical specifications. These findings, although novel, are in agreement with Aslanidis 
et al. (2019), Bouri et al. (2020b), Rehman (2020), Bouri et al. (2021b), inter alia.

Moreover, the correlations appear to be higher for cryptocurrency pairs involving BTC 
and ETH, and to a lesser extent XMR. This may also be an indication of volatility con-
nectedness (contagion) as well as strategic behavior and bargaining in this market (Hu 
et al. 2019).

Nonlinear multiscale Granger causality analysis

Table 3 provides the results of the nonlinear multiscale Granger causality test performed 
on the eight wavelet decomposed datasets. The estimated test statistics and associated 

Fig. 4  Non-linear causality at different MODWT levels (from D1 to D8). Notes: The arrows in the solid lines 
indicate the causality direction between each cryptocurrency market pair. The nonlinear causality between 
BTC and Litecoin is insignificant for this reason we did not have arrow
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p-values are given in Table 4. A visual representation of the Granger causality directions 
is provided for each MODWT level in Fig. 4. As can be seen, there is evidence of bidi-
rectional Granger causation between each cryptocurrency pair for all wavelet scales, 
except for the following instances: non-causation between ETH-RIPPLE in D1 and well 
as between DASH and MONERO in D2, indicating evidence of hedging. We also find 
evidence of unidirectional causality from LTC to MONERO in D2, suggesting that LTC 
can be used to predict the MONERO price returns. The bidirectional nonlinear infor-
mation spillover between each cryptocurrency pair reiterates the connectedness of the 
market and the substantial information spillover between cryptocurrencies as observed 
through the rolling window wavelet correlation analysis. In addition, causality estimates 
also reaffirm long-term memory across the cryptocurrencies. Thus, our findings add to 
earlier observations by Phillip et al. (2018, 2019), Bouri et al. (2020a) and Shahzad et al. 
(2021).

The nonlinear Granger causality results also reveal that ETH and MONERO—found 
previously (Fig. 3) to be more volatility connected than the rest of cryptocurrencies—
appear to not impart volatility (information) to three other cryptocurrencies in the lower 
wavelet scales (i.e. in the short-term). This is a contrast to the findings of the rolling win-
dow wavelet correlation analysis. While Ethereum and Monero may volatility connected 
more than the others, they are less able to initiate short-term information spillovers—i.e. 
volatility spillover from them are sluggish compared to the others.

For robustness, we also apply the Diks and Panchenko (2006) Granger causality using 
multiple embedding dimensions to increase the robustness against the lag order. The 
results show non-linear bidirectional causality from Bitcoin to other cryptocurrencies 
and vice versa in all cases with consistency across all embedding dimensions. Our results 
imply more contemporary handling the asymmetric and non-linear properties of data. 
We also carry out the Markov regime switching model for two different regime classi-
fications. The results show that in both regimes, though the coefficient remains signifi-
cant, the variation in magnitude is quite high. The magnitude in the low volatility regime 
produces high variations in other cryptocurrencies whereas in the case of high volatility 
regime, the explanatory power of Bitcoin in other cryptocurrencies reduces significantly. 
Such asymmetric shift in the magnitude of returns across two regimes justifies our appli-
cation of non-linear wavelets decomposed into different frequencies ranging from short- 
to long-run.7

Portfolio analysis

To help investors to take optimal portfolio allocation decisions, we study the optimal 
portfolio design that includes BTC with another cryptocurrency asset (Dash, ETH, 
LTC, MNR, and XRP). Our assumption is that cryptocurrency investors may invest in 
another currency to hedge their position against downward BTC prices. This assump-
tion can be justified by the increasing independence (i.e., ‘self-contained trade’) of the 
cryptocurrency markets observed by Drożdż et al. (2020). Table 2 provides a detailed 

7  The results of Granger causality test of Diks and Panchenko (2006) and the Markov regime switching model are avail-
able upon request.
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Table 2  Optimal weights, hedge ratios and hedging effectiveness under different scales

Portfolios W
BTC
t

βt REVAR (%)

Raw series

BTC/ETH 0.6332 0.8231 0.2899

BTC/LTC − 0.0497 0.9119 0.3813

BTC/DASH 0.3435 0.6850 0.5135

BTC/XRP 0.1463 0.8543 0.4877

BTC/XMR 0.2196 0.8291 0.5359

D1

BTC/ETH 2.3039 − 0.5336 − 2.6977

BTC/LTC 0.2102 1.4016 0.6771

BTC/DASH 0.4992 − 1.9546 0.9105

BTC/XRP 0.6801 − 1.2410 2.9236

BTC/XMR 0.2035 − 4.1168 1.1959

D2

BTC/ETH 0.2939 0.3984 0.8973

BTC/LTC 0.3702 − 0.5863 1.3051

BTC/DASH 0.5371 1.0930 0.9968

BTC/XRP − 0.1191 − 7.3638 0.7519

BTC/XMR 0.0948 − 8.2036 0.1589

D3

BTC/ETH − 0.3691 3.0295 0.7858

BTC/LTC 0.5080 1.0737 1.2410

BTC/DASH 0.0280 0.6639 0.8915

BTC/XRP 1.2612 3.4945 0.4041

BTC/XMR − 0.1838 0.3284 1.5576

D4

BTC/ETH − 7.9228 − 0.0164 − 10.6329

BTC/LTC − 0.0345 0.8847 1.3392

BTC/DASH 0.2852 0.5123 0.9385

BTC/XRP − 0.2056 1.1843 0.7564

BTC/XMR 0.5518 2.4997 1.6471

D5

BTC/ETH − 1.0418 0.5409 2.2105

BTC/LTC 0.3046 0.7648 0.8204

BTC/DASH − 0.2126 0.5997 0.7013

BTC/XRP 0.1156 0.6702 0.6843

BTC/XMR 0.6114 1.0588 0.8084

D6

BTC/ETH 1.0857 0.5962 1.3132

BTC/LTC 0.1880 0.8720 0.4522

BTC/DASH 0.6469 0.3812 0.7056

BTC/XRP − 0.0583 0.6003 0.6428

BTC/XMR 0.1302 0.8099 1.2568

D7

BTC/ETH − 0.8670 0.7372 0.5418

BTC/LTC 0.1298 0.7119 0.3139

BTC/DASH 0.0481 0.4515 0.6513

BTC/XRP 0.1935 − 0.0566 0.8699

BTC/XMR 4.2093 0.4772 93.0881
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portfolio risk assessment under different scales for designing optimal hedging strate-
gies. The results of optimal weights show that investors should hold less BTC than 
other cryptocurrency asset (except for ETH for raw series, D1 and D6) in order to 
minimize the risk without lowering the expected return of BTC and each other cryp-
tocurrency. This result persists regardless the frequencies. The average weight for 
BTC/ETH portfolio under scale D2 (30–60 min) is 0.294, indicating that for a US$10 
on average 294 cents should be invested in ETH and the remaining budget 706 cents 
should be invested in BTC. The hedge ratio values oscillate between negative to posi-
tive values and are sensitive to the evolving of scales and the portfolio considered. For 
BTC/ETH portfolio under D2, a hedge ratio of 0.398 indicates that a US$ 1 long (buy) 
in the BTC requires investors to go short $0.398 in the ETH. The negative values of 
hedge ratios are observed for few cases, indicating that that the two crypto assets (i 
and j) are moving in opposite direction (negative correlation) in the short run. The 
hedging effectiveness results reveal that, in almost all cases, a mixed portfolio offers 
better risk reductions than individual BTC portfolio regardless of the scales and port-
folio. Overall, the optimal weights, hedge ratios, and hedging effectiveness are sensi-
tive to the time scale.

Conclusion
This study estimates rolling window wavelet correlation coefficients and nonlinear 
multiscale Granger causality tests to ascertain the time–frequency relationships across 
six prominent cryptocurrencies. Empirical wavelet correlation results indicate pre-
dominantly positive co-movements between the cryptocurrencies, especially between 
Bitcoin, Ethereum, and Monero. The nonlinear Granger causality tests reveal dual causa-
tion between most of the cryptocurrency pairs. These findings point to interconnected-
ness in the cryptocurrency marketplace.

Overall, both the RWCC and multiscale Granger causality analysis exhibit bidirec-
tional correlations among cryptocurrencies and indicate that substantial opportunity for 
portfolio diversification (Das et al. 2018; Corbet et al. 2018b; Makarov and Schoar 2019). 
Our findings are augmented by robustness tests including nonlinear Granger causality of 
Diks and Panchenko (2006) and the Markov regime switching model. The results show 
non-linear bidirectional causality from Bitcoin to other cryptocurrencies and vice versa. 
In addition, we find asymmetric shift in the magnitude of returns across two regimes. 

Table 2  (continued)

Portfolios W
BTC
t

βt REVAR (%)

D8

BTC/ETH − 1.0611 0.8583 0.4838

BTC/LTC 0.0569 0.8583 − 0.5250

BTC/DASH 0.8044 0.0311 0.8686

BTC/XRP 0.6123 0.5866 0.5871

BTC/XMR − 0.1864 0.1465 0.8040

In this table, we used dynamic conditional covariance between cryptocurrency returns along with their individual 
conditional variances using DCC model. The dynamic ratio is estimated using covariance between two cryptocurrency 
assets divided by variance of the benchmark BTC asset
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Optimal portfolio design is sensitive to scales. Furthermore, a mixed portfolio composed 
from BTC and other cryptocurrency asset offers a better hedging effectiveness.

These findings should motivate policy makers to explore improvements to oversight 
mechanisms in the cryptocurrency markets and encourage them to promote a more 
mature and robust exchange system via the development of relevant infrastructure 
and regulations (Corbet et  al. 2019). Finally, the results can also lead pertinent agents 
towards improved hedging and portfolio risk assessment strategies.

Though our work examines the presence of correlation using a contemporary rolling 
window wavelet measure, our work can further be extended in future by examining the 
portfolio implications of all cryptocurrencies. Since our work employs wavelet corre-
lation, this can be extended to include the wavelet VaR analysis and opinion dynamics 
(Zha et al. 2021) which can have important implications for investors holding cryptocur-
rencies portfolio.

Appendix
Wavelet decomposition

The advantage of using discrete wavelet transformation (DWT) is its ability to model 
non-stationary time series in a time-scale framework (Gencay et  al. 2002). Maximal 
overlap discrete wavelet transformation (MODWT) differentiates itself from traditional 
DWT methodologies due to its ability to handle sample restrictions (i.e. size up to 2J, 
J = decomposition layers), making it one of the most commonly used algorithms (Per-
cival and Walden 2006). Another advantage of the MODWT technique is its invariability 
to circular shifting of time series, not supported by traditional DWT. A final advantage 
of the DWT and MODWT models is that they have the ability to analyze variance based 

Table 3  Non-linear directional Granger causality

This table presents the results of pairwaise non-linear Granger causality test of Diks and Panchenko (2006). For each 
MODWT level (D1 to D8), the arrows → and ↔ stand respectively for statistically significant unidirectional and bidirectional 
relationship between cryptocurrency pairs

Cryptocurrency pair MODWT level

D1 D2 D3 D4 D5 D6 D7 D8

BTC-ETH ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
BTC-LTC ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
BTC-DASH ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
BTC-RIPPLE ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
BTC-MONERO ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
ETH-LTC ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
ETH-DASH ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
ETH-RIPPLE Insignificant ↔ ↔ ↔ ↔ ↔ ↔ ↔
ETH-MONERO ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
LTC-DASH ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
LTC-RIPPLE ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
LTC-MONERO ↔  →  ↔ ↔ ↔ ↔ ↔ ↔
DASH-RIPPLE ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
DASH-MONERO ↔ Insignificant ↔ ↔ ↔ ↔ ↔ ↔
RIPPLE-MONERO ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
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Table 4  Estimates for non-linear Granger causality at decomposed levels

Direction MODWT level

D1 D2 D3 D4 D5 D6 D7 D8

BTC-ETH 15.181 
(0.0000)

14.912 
(0.0000)

19.798 
(0.0000)

18.555 
(0.0000)

13.525 
(0.0000)

8.464 
(0.0000)

7.260 
(0.0000)

6.737 
(0.0000)

ETH-BTC 16.992 
(0.0000)

17.106 
(0.0000)

21.198 
(0.0000)

21.401 
(0.0000)

16.181 
(0.0000)

12.480 
(0.0000)

10.756 
(0.0000)

9.947 
(0.0000)

BTC-LTC 18.199 
(0.0000)

19.202 
(0.0000)

23.273 
(0.0000)

21.368 
(0.0000)

14.241 
(0.0000)

10.366 
(0.0000)

8.515 
(0.0000)

6.737 
(0.0000)

LTC-BTC 19.511 
(0.0000)

19.673 
(0.0000)

22.123 
(0.0000)

21.983 
(0.0000)

17.462 
(0.0000)

12.569 
(0.0000)

12.523 
(0.0000)

9.947 
(0.0000)

BTC-DASH 21.474 
(0.0000)

26.311 
(0.0000)

25.656 
(0.0000)

25.123 
(0.0000)

17.783 
(0.0000)

12.154 
(0.0000)

9.556 
(0.0000)

8.122 
(0.0000)

DASH-BTC 20.131 
(0.0000)

21.550 
(0.0000)

20.157 
(0.0000)

19.941 
(0.0000)

16.106 
(0.0000)

12.430 
(0.0000)

10.485 
(0.0000)

10.881 
(0.0000)

BTC-RIPPLE 17.322 
(0.0000)

18.120 
(0.0000)

22.683 
(0.0000)

21.229 
(0.0000)

15.791 
(0.0000)

11.148 
(0.0000)

7.750 
(0.0000)

8.616 
(0.0000)

RIPPLE-BTC 17.868 
(0.0000)

17.346 
(0.0000)

17.623 
(0.0000)

17.757 
(0.0000)

16.074 
(0.0000)

11.521 
(0.0000)

11.380 
(0.0000)

10.274 
(0.0000)

BTC-MON‑
ERO

19.900 
(0.0000)

27.997 
(0.0000)

22.323 
(0.0000)

21.654 
(0.0000)

15.977 
(0.0000)

11.206 
(0.0000)

6.089 
(0.0000)

8.074 
(0.0000)

MONERO-
BTC

20.034 
(0.0000)

23.647 
(0.0000)

20.899 
(0.0000)

20.228 
(0.0000)

15.346 
(0.0000)

11.773 
(0.0000)

13.057 
(0.0000)

9.945 
(0.0000)

ETH-LTC 20.622 
(0.0000)

21.164 
(0.0000)

24.751 
(0.0000)

23.147 
(0.0000)

16.791 
(0.0000)

13.197 
(0.0000)

10.629 
(0.0000)

9.197 
(0.0000)

LTC-ETH 19.379 
(0.0000)

19.295 
(0.0000)

21.919 
(0.0000)

21.371 
(0.0000)

15.793 
(0.0000)

10.737 
(0.0000)

10.635 
(0.0000)

11.139 
(0.0000)

ETH-DASH 18.046 
(0.0000)

20.052 
(0.0000)

23.368 
(0.0000)

24.149 
(0.0000)

18.389 
(0.0000)

13.318 
(0.0000)

11.645 
(0.0000)

8.078 
(0.0000)

DASH-ETH 17.273 
(0.0000)

15.384 
(0.0000)

17.179 
(0.0000)

17.357 
(0.0000)

13.211 
(0.0000)

9.683 
(0.0000)

8.403 
(0.0000)

10.259 
(0.0000)

ETH-RIPPLE 0.883 
(0.1886)

23.647 
(0.0000)

28.572 
(0.0000)

24.716 
(0.0000)

18.870 
(0.0000)

13.987 
(0.0000)

11.139 
(0.0000)

11.390 
(0.0000)

RIPPLE-ETH 0.883 
(0.1886)

17.064 
(0.0000)

18.066 
(0.0000)

17.106 
(0.0000)

14.736 
(0.0000)

10.198 
(0.0000)

9.783 
(0.0000)

7.895 
(0.0000)

ETH-MON‑
ERO

18.393 
(0.0000)

18.684 
(0.0000)

21.988 
(0.0000)

21.699 
(0.0000)

17.109 
(0.0000)

11.754 
(0.0000)

11.139 
(0.0000)

6.236 
(0.0000)

MONERO-
ETH

17.563 
(0.0000)

16.998 
(0.0000)

19.655 
(0.0000)

19.086 
(0.0000)

13.431 
(0.0000)

10.907 
(0.0000)

9.783 
(0.0000)

10.716 
(0.0000)

LTC-DASH 20.454 
(0.0000)

21.231 
(0.0000)

23.638 
(0.0000)

24.133 
(0.0000)

18.811 
(0.0000)

13.386 
(0.0000)

11.891 
(0.0000)

9.844 
(0.0000)

DASH-LTC 19.138 
(0.0000)

17.071 
(0.0000)

19.334 
(0.0000)

19.023 
(0.0000)

13.242 
(0.0000)

10.446 
(0.0000)

8.905 
(0.0000)

9.655 
(0.0000)

LTC-RIPPLE 22.893 
(0.0000)

20.023 
(0.0000)

25.736 
(0.0000)

22.774 
(0.0000)

18.249 
(0.0000)

12.621 
(0.0000)

10.686 
(0.0000)

8.558 
(0.0000)

RIPPLE-LC 21.249 
(0.0000)

19.974 
(0.0000)

19.941 
(0.0000)

19.788 
(0.0000)

15.190 
(0.0000)

11.282 
(0.0000)

9.275 
(0.0000)

8.181 
(0.0000)

LTC-MON‑
ERO

20.759 
(0.0000)

0.472 
(0.0000)

22.838 
(0.0000)

22.550 
(0.0000)

17.938 
(0.0000)

12.355 
(0.0000)

8.701 
(0.0000)

8.794 
(0.0000)

MONERO-
LTC

20.643 
(0.0000)

0.472 
(0.3186)

22.093 
(0.0000)

20.783 
(0.0000)

14.666 
(0.0000)

11.374 
(0.0000)

11.438 
(0.0000)

9.821 
(0.0000)

DASH-
RIPPLE

17.735 
(0.0000)

16.209 
(0.0000)

18.569 
(0.0000)

17.040 
(0.0000)

13.824 
(0.0000)

10.070 
(0.0000)

10.059 
(0.0000)

9.062 
(0.0000)

RIPPLE-
DASH

19.948 
(0.0000)

19.754 
(0.0000)

21.035 
(0.0000)

21.429 
(0.0000)

17.438 
(0.0000)

13.046 
(0.0000)

9.961 
(0.0000)

9.056 
(0.0000)

DASH-
MONERO

19.877 
(0.0000)

0.472 
(0.3186)

20.245 
(0.0000)

20.154 
(0.0000)

15.236 
(0.0000)

10.487 
(0.0000)

7.521 
(0.0000)

8.252 
(0.0000)

MONERO-
DASH

20.795 
(0.0000)

0.472 
(0.3186)

23.077 
(0.0000)

23.035 
(0.0000)

17.801 
(0.0000)

12.883 
(0.0000)

12.531 
(0.0000)

10.754 
(0.0000)
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on wavelets and scaling coefficients, with the variance estimators being more asymptoti-
cally efficient.8

In this paper, we decompose the 15  min tick returns of cryptocurrencies using 
MODWT with Daubechies least asymmetric wavelets9 LA(8) (i.e. a filter of length 
L = 8). We use log2(N) for extracting maximum decomposition level J. Because the 
number of wavelet coefficients tends to become critically small at high levels, we 
select J = 8 for avoiding boundary coefficients. Therefore, by using MODWT under 
this arrangement, we get eight wavelets with one scaling coefficient (i.e. 

∼
ω1,t , . . . .,

∼
ω8,t 

and ṽ8,t , respectively). In the case of rolling window wavelet correlation (discussed 
earlier), we take J = 4. Although the possibility of selecting J = 5 exists, the analysis 
does not provide meaningful results. The required level of transformation defines the 
scale of wavelet coefficient, i.e. 

∼
ωt,j . For all families of Daubechies, the level J has asso-

ciation with changes at the effective scale �j = 2j−1 days. The MODWT also encom-
passes idea bandpass filters between the frequency intervals [ 1/2j+1, 1/2j] for scale 
1 ≤ j ≤ J. To obtain equivalent periods of [ 2j , 2j+1] ∆t under 1 ≤ j ≤ J scale, we invert the 
frequency range and then multiply it by an appropriate time unit (the 15  min tick 
price in our case). In our study, the wavelet coefficients λj, j = 1, … 8 are associated 
with time horizon changes of 15, 30, 60, 120, 240, 480, 960, and 1920  min, respec-
tively. We decompose original return series of 15-min frequency into eight different 
components. Such decomposition helps in examining the wavelet correlation based 
on specified rolling window across different frequencies. These frequencies are high-
lighted by the decomposed levels ranging from D1 to D8 corresponding with higher 
frequency (short-run) to low frequency (long-run). The reason to use 8 scales rather 
than 6 is to use maximum scales for more clear interpretation across different invest-
ment horizons. Eight scales present more frequency windows to analyze correlation 
between our sampled cryptocurrencies. Furthermore, we decompose default return 
series using MODWT which employs Daubechies least asymmetric (LA) wavelet fil-
ter of length = 8, commonly referred to as LA (8) (see Daubechies 1992; Gencay et al. 
2002) (Tables 3, 4).

Table 4  (continued)

This table presents coefficients for non-linear Granger causality test for different decomposition levels ranging from D1 to 
D8. We highlight significance level as p values in parenthesis

8  For details, readers are referred to Percival and Mofjeld (1997), Gencay et al. (2002) and Polanco-Martínez and Abadie 
(2016).
9  Gencay et al. (2002).

Direction MODWT level

D1 D2 D3 D4 D5 D6 D7 D8

RIPPLE-
MONERO

20.059 
(0.0000)

19.586 
(0.0000)

20.034 
(0.0000)

19.658 
(0.0000)

16.479 
(0.0000)

11.202 
(0.0000)

7.521 
(0.0000)

7.387 
(0.0000)

MONERO-
RIPPLE

22.658 
(0.0000)

22.320 
(0.0000)

23.282 
(0.0000)

20.831 
(0.0000)

15.440 
(0.0000)

11.335 
(0.0000)

12.531 
(0.0000)

9.994 
(0.0000)
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Abbreviations
DWT: Discrete wavelet transformation; MODWT: Maximal overlap discrete wavelet transformation; RWCC​: Rolling win‑
dow wavelet correlation; BTC: Bitcoin; ETH: Ethereum; LTC: Litecoin; XRP: Ripple; XMR: Monero.
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