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Introduction
The emerging Chinese stock market adopted the price limit mechanism on 2 January 
1997 to refrain from speculative behaviors and stabilize the market. The mechanism sets 
symmetric price limits in which the up limit φ+ = 10% and the down limit φ− = −10% 
for common stocks and φ+ = 5% and φ− = −5% for specially treated (ST and *ST) 
stocks,1 also called stocks bearing risk warnings. On 27 July 2012 (Friday), after the clos-
ing of the Chinese stock market, the Shanghai Stock Exchange (SSE) released the Draft 
Guideline on the Trading of Stocks Bearing Risk Warnings. A key term (Article VII) sug-
gested that, for stocks bearing risk warnings, the maximum percentage of price increase 
is φ+ = 1% , while the maximum percentage of price decrease is φ− = −5% . Through the 
Draft, especially Article VII, SSE wanted to curb the vicious speculation on junk stocks 
in the market, guide funds to blue-chip stocks and promote the development of the 
stock market. Impacted by this event, on 30 July 2012, 106 out of the 110 ST and *ST 
shares were sealed at the down price limit. On that day, the SHSZ Composite Index, the 
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Shenzhen Stock Exchange (SZSE) Composite Index, and the Chinese Stock Market 500 
Index (CSI 500) dropped respectively − 0.89%, − 1.65% and − 2.01%.

This Draft, especially Article VII, incurred a lot of opposition. Yu Chen, the general 
manager of Beijing Shennong Capital Management, released an open letter to the SSE, 
objecting to the asymmetric price limit setting on risk-warning stocks. He argued that 
the Exchange should not enable unfair trading rules since the provision of asymmet-
ric price limits would significantly increase the cost of buying and holding risk-warn-
ing stocks. He posited that under the asymmetric price limits, the prices of ST and *ST 
stocks would be more likely to fall. He urged that Article VII should be removed from 
the Draft. The final Guideline did replace the asymmetric price limits with symmetric 
limits. However, is there any technical evidence supporting these “arguments”? In this 
work, we design an empirical behavioral order-driven model. Armed with this new 
model, computational experiments show that the asymmetric setting with a larger down 
limit ( φ+ < |φ−| ) leads to vanishing prices. Hence, under the Draft Guideline, no stock 
can escape the fate of being delisted once it is labeled risk warning.

Price limits and trading halts are important mechanisms in many markets (Westerhoff 
2003; Ehrenstein and Westerhoff 2006; Westerhoff 2006). Some studies design agent-
based models and perform computational experiments to investigate the effects of price 
limits. Yeh and Yang find no evidence of volatility spillover but phenomena of delayed 
price discovery and trading interference, whose significance depends on the level of the 
price limits (Yeh and Yang 2013). Zhang et  al. demonstrate that both price limits can 
cause a volatility spillover effect and a trading interference effect (Zhang et  al. 2016). 
Moreover, some researchers argue that a proper level of price limits is helpful to stabilize 
the markets (Yeh and Yang 2010; Xiong et al. 2015). Inspired by the asymmetric effect 
of symmetric price limit mechanism in the Chinese stock market, Li and Geng per-
form Monte Carlo simulations of the VF-EGARCH-M model and conclude that there 
is an optimal design of asymmetric price limit mechanism with φ+ > |φ−| (Li and Geng 
2012). However, our computational experiments show that asymmetric price limit rules 
do hurt the market.

The Chinese stock market is an order-driven market that adopts the continuous dou-
ble auction mechanism and symmetric price limits mechanism (Gu et  al. 2007; Jiang 
et al. 2008; Mu et al. 2009; Wu et al. 2017). Price limits play an important role in price 
formation (Telser 1981; Brennan 1986; Subrahmanyam 1994; Kim and Rhee 1997; Goet-
tler et al. 2009; Hsieh et al. 2009; Wong et al. 2009; Wan et al. 2015, 2018). The model 
proposed in this work was inspired by the seminal Mike–Farmer model (Mike and 
Farmer 2008) and its updated version in Gu and Zhou’s model (2009a). This family of 
order-driven models mimics the order placement process and order cancellation process 
entering the trading terminal. The order placement process contains three components: 
order direction, relative order price, and order size. The microscopic rules of these mod-
els are obtained by empirical regularities of these processes. Compared with existing 
models (Mike and Farmer 2008; Gu and Zhou 2009a), the new model introduced in this 
work makes two innovations. First, it adopts a new definition of the relative order price 
by integrating price limits φ+ and φ− as model parameters. This enables us to investigate 
the mechanisms of phenomena caused by price limits that we will briefly review below. 
Second, it considers order sizes. Hence, the model is more realistic and significantly 
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enhances its ability for the study of market microstructure theories such as immediate 
price impacts (Lillo et al. 2003; Lim and Coggins 2005; Zhou 2012a, b; Xu et al. 2017; 
Pham et al. 2017). The models in Mike and Farmer (2008), Gu and Zhou (2009a) have 
been applied to understand the mechanisms underlying stylized facts (Gu and Zhou 
2009b; Meng et al. 2012; Zhou et al. 2017).

The study of order-driven models has a long history, which may have begun more than 
50 years ago (Stigler 1964). Researchers have constructed different order-driven models 
based on different groups of micro-driving rules, attempting to simulate the dynamics 
of the limit-order book (Maslov 2000; Farmer et  al. 2005; Mike and Farmer 2008; Gu 
and Zhou 2009a; Tseng et al. 2010). In these models, orders are not specific to certain 
traders and the traders have zero intelligence. Other behavioral models include percola-
tion models (Stauffer 1998; Cont and Bouchaud 2000; Eguíluz and Zimmermann 2000), 
Ising models (Föellmer 1974; Chowdhury and Stauffer 1999; Iori 1999; Kaizoji 2000; 
Bornholdt 2001; Zhou and Sornette 2007), minority games (Arthur 1994; Challet and 
Zhang 1997; Challet et al. 2000, 2001a, b, 2005), and so on. Another important family is 
heterogeneous agent models, in which the agents are combinations of informed traders, 
fundamentalists, technical traders, smart traders, noise traders, and so on (Brock and 
Hommes 1997, 1998; Lux and Marchesi 1999; Chiarella and Iori 2002; Chiarella et  al. 
2006; Barunik et al. 2009; Xu et al. 2014a, b). Under this framework, one can study the 
effects of diverse factors, such as noise (Chiarella et  al. 2011), technical trading rules 
(Chiarella et  al. 2009; He and Li 2015), and investor sentiment (Chiarella et  al. 2017). 
Excellent reviews have been provided in Chakraborti et al. (2011), Sornette (2014), Zha 
et al. (2020 ). Nevertheless, the effects of asymmetric price limits have not been studied 
with computational experiments within these models. We note that insightful detailed 
discussions on how to run policy experiments with agent-based stock market models 
can be found in Westerhoff (2008), Westerhoff and Franke (2018).

The rest of the paper is organized as follows. Section 2 describes briefly the database 
we adopt and present the stylized facts relevant to the construction of the model. Sec-
tion  3 constructs and validates the behavioral order-driven model based on empirical 
regularities of order flows. We perform computational experiments in Sect. 4 to study 
the effects of asymmetric price limit rules on the evolution of stock price and several 
stylized facts. Section 5 summarizes the results.

Relevant stylized facts
Data sets

We use the ultra-high-frequency order flow data of 32 A-share stocks and 11 B-share 
stocks traded on the Shenzhen Stock Exchange (SZSE) in 2003 to build the order-driven 
model. The 32 A-shares were constituents of the Shenzhen Stock Exchange Component 
Index and the 11 B-share stocks paired with 11 A-share stocks in our sample.

Each entry of the records contains the details of order placement and order cancella-
tion, including the order placement/cancellation time, order price, order size, and order 
identifier which identifies whether the order is a buy order, a sell order, or a cancellation. 
The timestamp of the database is accurate to 0.01s. The data allows us to reconstruct the 
limit order books (LOBs) and reproduce the price formation process.
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Order direction

The first ingredient of order placement is the order direction s. Assuming s = +1 for buy 
orders and s = −1 for sell orders, we can construct the order direction series for each 
stock. To measure the memory effect of the order direction series for all the 43 stocks, 
we apply the Detrending Moving Average Analysis (DMA) (Carbone 2009; Gu and Zhou 
2010; Jiang et al. 2019), which is a popular method for estimating the Hurst exponent 
(Jiang and Zhou 2011; Shao et al. 2012). The detrending fluctuation function F(ℓ) can be 
computed and is expected to be power-law related to the scale size ℓ , which reads

where H is the DMA scaling exponent or roughly the Hurst exponent. The time series is 
persistent if H > 0.5 , uncorrelated if H = 0.5 , and antipersistent if H < 0.5 . A persistent 
time series has a long memory. We use Hs with subscript s for the Hurst exponents of 
order directions.

The fluctuation functions F(ℓ) with respect to the scale ℓ of four randomly cho-
sen stocks (000001 and 000839 are A shares and 200488 and 200625 are B shares) are 
illustrated in Fig.  1a. Excellent power-law scaling relations are observed in the scal-
ing ranges over 4 to 5 orders of magnitude. The Hurst exponents of the four stocks 
are estimated to be Hs = 0.895± 0.008 for stock 000001, Hs = 0.859± 0.009 for 
stock 000839, Hs = 0.814 ± 0.009 for stock 200488, Hs = 0.845± 0.005 for stock 
200625. The Hurst exponents of all the 43 stocks are presented in Table  1. We also 
show the histogram of Hurst exponents of all the stocks in Fig.  1b. It is clear that all 
the Hurst exponents are all larger than 0.5 and we document that the order direction 
series significantly has a long memory. According to Table  1, the mean Hurst expo-
nent for all the stocks is �Hs� = 0.841± 0.036 . Moreover, the mean Hurst exponent 
of the A shares is �Hs,A� = 0.854 ± 0.027 , which is a little larger than that of B shares 
�Hs,B� = 0.806± 0.036 . It indicates that stronger persistence exists in the A shares in 
2003 in the Chinese stock markets. The results are consistent with the findings of Lillo 
and Farmer for the London Stock Exchange (LSE) stocks (Lillo and Farmer 2004). How-
ever, we find that the SZSE stocks have stronger persistence in order directions than the 

(1)F(ℓ) ∼ ℓH ,

Fig. 1  Long memory in order directions. a Plots of the fluctuation functions F(ℓ) of order directions for 
four stocks 000001, 000839, 200488 and 200625. The solid lines are the least squares fits to the data. The 
scaling curves for 000839, 200488 and 200625 have been shifted vertically for clarity. b Histograms of Hurst 
exponents Hs of order directions for all the 43 stocks
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LSE stocks, which reflects the fact that there are stronger imitative and herding behav-
iors in the Chinese stock market.

Relative price

We define the relative price x based on the price limit rules in the Chinese stock mar-
ket, which is different from the definition of Mike and Farmer for LSE stocks (Mike and 
Farmer 2008). We require that the relative price x varies in the range [−1, 1] and stands 
for the order aggressiveness2. When a buy order is placed on the down limit or a sell 
order is placed on the up limit, we have x = −1 . These orders are the least aggressive. 
When a buy order is placed on the up limit or a sell order is placed on the down limit, we 
have x = 1 . These orders are the most aggressive. When an order is placed on the oppo-
site best price, i.e., pt = pa(t − 1) for buy orders and pt = pb(t − 1) for sell orders, we 
have x = 0 . Following these considerations, we define the relative price as follows:

where pt is the price of order placed at event time t, pa(t − 1) and pb(t − 1) are the best 
ask and best bid at event time t − 1 , and pmax(T ) and pmin(T ) are the maximum and 
minimum valid prices on a trading day T. Larger x values imply that traders are more 
eager to make a transaction immediately and the orders are thus more aggressive. Effec-
tive market orders ( x ≥ 0 ) result in an immediate transaction, while effective limit 
orders ( x < 0 ) are stored in the limit order book waiting to be executed by future effec-
tive market orders on the opposite side. Therefore, the aggressiveness decreases from 
positive to zero, then to negative when the order is placed in the opposite limit order 
book, at the opposite best price, in the bid-ask spread, at the same best price and in the 
same limit order book.

If the price is at the up limit when an order arrives at t, we have

Under such scenarios, the relative prices of sell market orders and buy limit orders are 
well defined by Eq. (2)

while the relative prices of buy market orders and sell limit orders cannot be defined by 
Eq. (2). For buy market orders, one requires that pt > pb(t) = pmax(T ) , which is how-
ever not permitted. For sell limit orders, one requires pt > pa(t) = pmax(T ) , which is 
again not permitted. In other words, when the price is at the up limit, both buy market 
orders and sell limit orders do not exist. Hence, we simply pose that

(2)xt =











[pb(t − 1)− pt ]/[pb(t − 1)− pmin(T )] for sell market orders
[pb(t − 1)− pt ]/[pmax(T )− pb(t − 1)] for sell limit orders
[pt − pa(t − 1)]/[pmax(T )− pa(t − 1)] for buy market orders
[pt − pa(t − 1)]/[pa(t − 1)− pmin(T )] for buy limit orders

,

(3)pa(t − 1) = pb(t − 1) = pmax(T ).

(4)xt =
{

[pb(t − 1)− pt ]/[pb(t − 1)− pmin(T )] for sell market orders
[pt − pa(t − 1)]/[pa(t − 1)− pmin(T )] for buy limit orders

,

(5)pt = pmax(T )

2  Note that aggressive orders are orders that move prices (Degryse et al. 2005). Here we extend the concept of “aggres-
siveness”.
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no matter what the value of x > 0 is. The situation for down price limit is similar. If the 
price is at the down limit when an order arrives at t, we have

Under such scenarios, the relative prices of buy market orders and sell limit orders are 
well defined by Eq. (2)

while the relative prices of sell market orders and buy limit orders cannot be defined by 
Eq.  (2). For sell market orders, one requires that pt < pa(t) = pmin(T ) , which is how-
ever not permitted. For buy limit orders, one requires pt < pa(t) = pmin(T ) , which is 
also not permitted. In other words, when the price is at the down limit, both sell market 
orders and buy limit orders do not exist. Therefore, we simply pose that

regardless of what the value of x < 0 is.
Figure  2a presents the empirical probability density functions (PDFs) f(x) of relative 

prices aggregating both buy and sell orders for four representative stocks in the sam-
ple. We find that the PDF curves of four stocks almost collapse together, especially in 
the range x < 0 . Moreover, other stocks have similar probability distributions as pre-
sented in Fig. 2b, except for the stock 000720 which has obviously higher probabilities 
in the range 0 < x < 0.5 . The f(x) functions reach their maximums around the point 
x = 0 , which means that many traders tend to place orders at the opposite best price 
to balance the relationship between the transaction cost and transaction opportunity. 
The distributions are asymmetric (the skewness equal to − 2.69 for stock 000001), which 
implies that more orders are placed in the limit order book. According to the order flow 
data of stock 000001, only 28.28% of the placed orders are effective market orders with 
x ≥ 0 . This observation verifies that it is natural to maintain nonempty LOBs. We also 
find that the values at x = ±1 are significant jumps, which shows that quite a few traders 
place extreme orders at the down or up limit. Figure 2c, d show the empirical probability 
density functions f(x) of relative prices without price limits defined in Mike and Farmer 
(2008) for comparison. Under this definition, the relative price x varies in [−0.2, 0.2] . The 
most remarkable feature is that there are “humps” at x = ±10% , which reflects the effect 
of price limits. In addition, the jumps at x = ±20% are less significant.

The memory effect of relative prices also plays an important role in model construc-
tion by introducing long memory in the volatility (Gu and Zhou 2009a; Zhou et  al. 
2017). We study the memory effect using the DMA method and Fig. 3a presents the fluc-
tuation function F(ℓ) with respect to the scale size ℓ of relative prices for four represent-
ative stocks. Each curve reveals excellent power-law scaling behavior with the scaling 
range spanning 4–5 orders of magnitude. Using the least-squares regression method, we 
obtain the Hurst exponents Hx = 0.847± 0.009 for stock 000001, Hx = 0.872± 0.004 
for stock 000839, Hx = 0.736± 0.005 for stock 200488, and Hx = 0.763± 0.006 for 
stock 200625. The Hurst exponents of relative prices for all the 43 stocks are presented 
in Table 2. The values are all significantly greater than 0.5. We conclude that the relative 

(6)pa(t − 1) = pb(t − 1) = pmin(T ).

(7)xt =
{

[pb(t − 1)− pt ]/[pmax(T )− pb(t − 1)] for sell limit orders
[pt − pa(t − 1)]/[pmax(T )− pa(t − 1)] for buy market orders

,

(8)pt = pmin(T ),
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prices of placed orders have a long memory. The histogram of the Hurst exponents of 
all stocks is showed in Fig. 3b, which confirms the long memory of relative prices in all 
stocks. According to Table 2, the average Hurst exponents are �Hx� = 0.796± 0.035 for 
all stocks, �Hx,A� = 0.808± 0.030 for A shares and �Hx,B� = 0.761± 0.020 for B shares. It 
means that stronger persistence exists in relative prices of A shares in the year 2003. We 

Fig. 2  Empirical probability density function f(x) of relative prices. a, c Two A-share stocks 000001 and 000839 
and two B-share stocks 200488 and 200625. b, d All the 43 stocks. The relative prices are defined according to 
price limits in plots (a) and (b) and according to Mike and Farmer (2008) in plots (c) and (d)

Fig. 3  Long memory in relative order prices. a Plots of the fluctuation functions F(ℓ) of relative order prices 
for four stocks 000001, 000839, 200488 and 200625. The solid lines are the least squares fits to the data. The 
scaling curves for 000839, 200488 and 200625 have been shifted vertically for clarity. b Histograms of Hurst 
exponents Hx of relative order prices for all the 43 stocks
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conjecture that the diagonal effect originally unveiled by Biais et al. (1995) is stronger for 
A-share stocks than for B-share stocks.

We propose a simple linear model between Hx and Hs and estimate the coefficients. It 
follows that

in which both coefficients are significantly different from 0 at the 3% significance level 
and the adjusted R-square is 0.179. Therefore, we can draw a consistent conclusion that 
stronger imitative and herding behavior in a stock incurs stronger persistence in the 
order directions and relative prices.

Order size

The last ingredient is the order size v. In the model, we do not simply study the statistical 
properties of order size, but analyze the relationship between the order size v and rela-
tive price x. It is because there is a remarkable number preference in the distribution of 
order size (Mu et al. 2009), which suggests that the distribution is singular almost every-
where and cannot be generated feasibly.

The relationship between order size and the relative price of the same four rep-
resentative stocks is presented in Fig.  4a. For each stock, we divided the submitted 
orders into many groups by binning their relative prices, and the average relative price 
and average order size are calculated for each group. We find that these curves have 
similar shapes. Overall, market orders have larger sizes than limit orders. We observe 
that the average order size 〈v(x)〉 is almost independent of the relative price for effec-
tive limit orders ( x < 0 ). There is an interesting feature showing that around the point 
x = 0 , the average size 〈v(x)〉 increases rapidly with the relative price x, which indi-
cates that traders tend to place larger orders around the opposite price level. For mar-
ket orders with large x values, the average order size fluctuates a lot. It is because that 
the number of such market orders is relatively small. Impatient traders submit effec-
tive market orders with large relative prices to ensuring execution. However, most 
orders do not penetrate many levels on the opposite book. Moreover, we find that 
the order sizes of A-share stocks (000001 and 000839) are smaller than the ones of 

(9)Hx = 0.471+ 0.466Hs

Fig. 4  Dependence of order size with respect to relative price. a The mean sizes 〈v(x)〉 against the relative 
prices x of empirical data for four stocks 000001, 000839, 200488 and 200625. b The ratio β(x) as a function of 
x for the same four stocks
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B-share stocks (200488 and 200625). This result is also confirmed by other A shares 
and B shares stocks, indicating that investors submitted larger orders in the B-share 
markets, which is because the proportion of retailer traders is much higher in the 
A-share market.

We assume that the distribution of v(x) is normal for a given x. We calculate the ratio β 
which is the standard deviation of order sizes σ(v) divided by the average size 〈v(x)〉

Figure 4b illustrates the relation between the ratio β and the relative price x for the four 
stocks. We find that the ratio β almost fluctuates around a constant value for the four 
stocks. The normality assumption of v(x) will be used to generate the order size v(x) for 
an order with a relative price x.

Order cancellation

Order cancellation is another main process of continuous double auction. It refers to 
removing stale orders from the LOB. Order cancellation plays an important role in the 
price formation of security markets. If all the orders placed at the best price are canceled, 
the mid-price defined as the mean value of the best bid and best ask will change. If a can-
cellation takes place inside the LOB, it has a potential impact on price movement. The 
Mike-Farmer model (2008) considers three factors in the conditional order cancellation 
probability, that is, the relative distance of the target order to the opposite best, the ratio 
of buy or sell orders on the book, and the total number of LOB orders. However, these 
factors are not observable to the traders in the Chinese market. In addition, Gu and 
Zhou find that the main stylized facts can be reproduced if one uses a Poisson process 
for order cancellation (Gu and Zhou 2009a). What is important in the LOB dynamics 
is the rate of cancellation, together with the rates of limit order placement and market 
order placement. Hence, we adopt a probability cancellation method in the model, as 
first reported by Gu et al. (2013), which can capture the proper rate of order cancellation.

The position of an order on the LOB at time t is fully determined by its price level or 
spatial position l(t) (space dimension) and its temporal position y(l, t) (time dimension) 
in the order queue at the l-th level (Gu et al. 2013, figure 1). First, we define the relative 
price levels Xt,

where l(t) is the price level in which a cancellation occurs in the LOB at event time t and 
Lb,s(t) is the total number of price levels existing in the buy or sell LOB. The relative level 
Xt varies in the range (0, 1] . We note that the relative price levels Xt defined in Eq. (11) is 
different from the relative price xt defined in Eq. (2) in the order placement process. A 
small value of X refers to a cancellation happening close to the same best, while a large 
value of X means that a cancellation occurs far from the same best. Figure 5a presents 
the PDF f(X) for both canceled buy and sell orders of stock 000001. As shown by Gu et al. 
(2013), the PDF f(X) of relative price levels follows a rescaled log-normal distribution

(10)β = σ(v)/�v(x)�.

(11)Xt =
l(t)

Lb,s(t)
,
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where µ is the location parameter, σ is the scaling parameter, and z is the normaliza-
tion constant ensuring that 

∫ 1
0 f (X)dX = 1 . Using the least-squares fitting method, we 

obtain µ = −2.36 and σ = 1.13 for canceled buy orders and µ = −2.49 and σ = 1.52 for 
canceled sell orders.

After the price level, l of the cancelation is determined, we need to determine which 
order will be canceled at the price level. Denote y(l,  t) as the temporal position of a 
canceled order in the queue of the l-th price level at time t. An order with y(l, t) = 1 
is the order placed the earliest in the queue. To remove the number impact of orders 
stored at the l-th price level, we analyze the relative temporal position Y(l, t) instead 
of y(l, t),

(12)f (X) =
1

z

1
√
2πσX

exp

[

−
(lnX − µ)2

2σ 2

]

,

Fig. 5  Determination of the order cancellation process. a Probability density functions f(X) of relative price 
levels on the LOB for both canceled buy and sell orders of stock 000001. The solid lines are fits to the rescaled 
log-normally distribution. b Probability density functions f(Y) of relative temporal positions at all price levels 
for both canceled buy and sell orders of the same stock. The solid line is the fit to an exponential function

Table 1  Hurst exponents Hs of order directions for the 32 A-share stocks and 11 B-share stocks 
estimated using the detrending moving average (DMA) method

The mean Hurst exponent is �Hs� = 0.841± 0.036 for all stocks, �Hs,A� = 0.854± 0.027 for A shares, and 
�Hs,B� = 0.806± 0.036 for B-shares

Stock Hs,A Stock Hs,B Stock Hs,A Stock Hs,A

000002 0.904 ± 0.005 200002 0.844 ± 0.001 000001 0.895 ± 0.008 000778 0.842 ± 0.005

000012 0.834 ± 0.007 200012 0.812 ± 0.003 000009 0.866 ± 0.010 000800 0.871 ± 0.005

000016 0.841 ± 0.005 200016 0.759 ± 0.005 000021 0.824 ± 0.010 000825 0.906 ± 0.003

000024 0.832 ± 0.005 200024 0.751 ± 0.009 000027 0.891 ± 0.006 000839 0.859 ± 0.009

000429 0.827 ± 0.003 200429 0.816 ± 0.004 000063 0.856 ± 0.008 000858 0.885 ± 0.003

000488 0.814 ± 0.004 200488 0.814 ± 0.009 000066 0.829 ± 0.009 000898 0.884 ± 0.007

000539 0.852 ± 0.004 200539 0.870 ± 0.002 000088 0.844 ± 0.005 000917 0.815 ± 0.006

000541 0.862 ± 0.002 200541 0.774 ± 0.003 000089 0.864 ± 0.003 000932 0.876 ± 0.005

000550 0.834 ± 0.007 200550 0.781 ± 0.009 000406 0.830 ± 0.008 000956 0.848 ± 0.007

000581 0.892 ± 0.002 200581 0.799 ± 0.006 000709 0.860 ± 0.006 000983 0.853 ± 0.004

000625 0.806 ± 0.009 200625 0.845 ± 0.005 000720 0.819 ± 0.002



Page 11 of 24Gu et al. Financ Innov            (2021) 7:70 	

where Y(l, t) varies in the range (0, 1] and Nb,s(l, t) is the total number of orders stored 
at the l-th price level on the buy or sell LOB at time t. Since the PDF f(Y) at each price 
level in the LOB has a similar shape, we aggregate the data Y(x,  t) at all price levels 
together and treat them as an ensemble. The ensemble PDFs f(Y) for both canceled buy 
and sell orders of stock 000001 are presented in Fig.  5b. The function f(Y) is close to 
zero when the relative temporal position Y approaches zero. When Y increases, the PDF 
first increases rapidly in the range Y ≤ 0.1 and then fluctuates around a constant level 
until the end of the LOB. These observations indicate an interesting feature that patient 
traders have better self-discipline since they place their orders early at certain levels and 
are less prone to cancel the orders. The f(Y) value is extremely large when Y = 1 , which 
indicates that the latest placed orders are more likely to be canceled. We can apply an 
exponential function to fit the PDF of relative temporal position Y as follows,

where γ is the exponent and z = (γ + 1− eγ )/γ is the normalization factor. Using 
the least-squares fitting method, we obtain γ = −33.78 for canceled buy orders and 
γ = −36.57 for canceled sell orders.

Model specification and validation
Model specification

The placed orders can be regarded as contracts for investors willing to buy or sell 
certain stock shares at a certain price. Once an order is placed, it will be organized in 
a queue in the LOB. It is clear that the LOB has two opposite sides, that is, buy LOB 
and sell LOB. Buy orders in the buy LOB are arranged by decreasing the order price 
and the highest price of the order at the top is called the best bid. In the sell LOB, sell 
orders are arranged by increasing the order price and the lowest price at the top is 
called best ask or best offer. If orders have the same order price, they will be arranged 
based on the placement time. Older orders have priority.

Order cancellation also plays an important role in the price formation of the stock 
market. If orders are not fully filled, they are usually canceled from the LOB based 
on investor decisions. When limit orders at the best price are canceled completely, 
mid-price and spread will change as well. If cancellation occurs inside the LOB, it also 
affects the shape of the LOB and has potential effects on price formation.

The prices are formed due to the order placement and cancellation processes. 
Hence, the order-driven model contains these two independent processes. In the 
order placement process, three ingredients of an order are considered: order direc-
tion, order price, and order size.

In the model, we use the event time instead of actual time for simplification and 
assume that there are N(T) steps (event times) of order placements on a trading day T. 
The price formation process is carried out as follows:

(13)Y (l, t) =
y(l, t)

Nb,s(l, t)
,

(14)f (Y ) =
1

z
(1− eγY ) ,
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We first generate an order direction (sign) series {si : i = 1, 2, . . . ,N (T )} containing 
just two elements “ +1 ” for buy orders and “ −1 ” for sell orders with the memory effect 
characterized by the Hurst exponent Hs from real data. There are many different algo-
rithms for the generation of fractional Brownian motions (FBMs) (Bardet et al. 2003). 
We adopt the wavelet-based algorithm to generate FBMs of size N (T )+ 1 (Abry and 
Sellan 1996), which is an excellent FBM generator especially for small Hurst exponents 
(Ni et al. 2009; Shao et al. 2012, 2015; Qian et al. 2015). The sign sequence of the incre-
ments of the generated FBM is assigned to {si}.

We then generate a relative price series {xi : i = 1, 2, . . . ,N (T )} with given degree 
of long memory quantified by the Hurst index Hx (Gu and Zhou 2009a). A sequence 
of relative prices {xi,0 : i = 1, 2, . . . ,N (T )} is drawn from the probability distribution 
of real data presented in Fig. 2, in which xi,0 is obtained by solving zi = F(xi,0) , where 
{zi : i = 1, 2, . . . ,N (T )} is a sequence of random numbers drawn from the uniform dis-
tribution defined in [0, 1] and F(x) is the cumulative distribution of f(x) (Press et al. 1996). 
To introduce a memory effect to the relative price series {x0} with the Hurst exponent Hx , 
we simulate a FBM with Hx and record its increments as {yi : i = 1, 2, . . . ,N (T )} . The 
sequence {xi,0 : i = 1, 2, . . . ,N (T )} is rearranged such that xi ranks the n-th in sequence 
{xi : i = 1, 2, . . . ,N (T )} if and only if yi ranks the n-th in the {yi : i = 1, 2, . . . ,N (T )} 
sequence (Bogachev et al. 2007; Zhou 2008). A detrending moving average analysis of xi 
confirms that its DMA scaling exponent is very close to Hx.

Finally, we generate the order size sequence {vi : i = 1, 2, . . . ,N (T )} from a normal 
distribution with the average order size 〈v(xi)〉 and its standard deviation β(xi)xi , where, 
for each xi , the corresponding 〈v(xi)〉 and β(xi) are determined according to their rela-
tions to the relative price depicted in Fig. 4.

Having generated three ingredients {si} , {xi} and {vi} of an order, we continue per-
forming the price formation process. For an order placed at the t-th step (event time) 
( t = 1, 2, . . . ,N (T ) ), we transform Eq.  (2) for buy orders ( si = +1 ) and sell orders 
( si = −1 ) to obtain the order price pi , which is rounded to two decimals since the tick 
size is 0.01 yuan in the Chinese stock market. The t-th order is compared with the cur-
rent buy or sell LOB to determine whether it is fully or partly executed or stored in the 
LOB according to the price-time priority mechanism of continuous double auction. If a 
transaction occurs, the mid-price m(t) defined as the mean value of the best bid and best 
ask is recorded.

At each step, we check whether a cancellation occurs according to a Poisson process 
with its characteristic parameter obtained from the real data (the cancellation probabil-
ity is 19% for stock 000001). If cancellation occurs, we first determine the price level X of 
the cancellation location in the LOB based on the log-normal distribution presented in 
of Fig. 5a and then obtain the cancellation position Y at the price level X according to the 
exponential distribution illustrated in Fig. 5b.

To avoid the buy or sell LOB becoming too empty, one needs to impose additional 
regulation that there are at least two orders at each side of the LOB after a transaction or 
cancellation (Mike and Farmer 2008; Gu and Zhou 2009a).

After simulating N(T) steps of order placements, the price formation process is com-
pleted on the T-th trading day. We can start a new simulation on the (T + 1)-th trading 
day with the same process. We mention that on the (T + 1)-th trading day the maximum 
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allowable price pmax(T + 1) = (1+ φ+)pc(T ) and the minimum allowable price 
pmin(T + 1) = (1+ φ−)pc(T ) , where pc(T ) is the closing price on trading day T, which 
is the average of the last 100 values of the simulated mid-prices m(j). According to the 
±10% price limit rule in the Chinese stock market, we use φ+ = 0.10 and φ− = −0.10 
for model validation.

Model validation

When a model is built, one needs to calibrate it with known stylized facts (Li et al. 2014). 
The most universal stylized facts in stock markets are the absence of autocorrelations in 
the returns, power-law tails in the return distribution and long memory in the volatility 
time series (Cont 2001). The modified Mike–Farmer model of Gu and Zhou (2009a) can 
well reproduce these three stylized facts. We illustrate briefly the model validation of 
these three stylized facts. We note that, although there are general validation approaches 
in agent-based models (Fagiolo et al. 2019; Krichene et al. 2020), it is sufficient to check 
the main stylized facts (Mike and Farmer 2008; Gu and Zhou 2009a).

We simulate more than two hundred trading days of price formation and obtain a mid-
price time series m(t). In the simulations, we set φ+ = 0.10 and φ− = −0.10 as the real 
stocks. The returns are calculated as the logarithmic differences of mid-price,

and the volatility is defined as the absolute value of return,

Figure 6a presents the cumulative volatility distributions of the simulated data from the 
order-driven model and the real data of stock 000001. The two distributions overlap with 
each other and have power-law tails. Using an efficient quantitative method, which is 
based on the Kolmogorov–Smirnov test and the maximum likelihood estimation (MLE) 
method (Clauset et al. 2009), we confirm the presence of power-law tails

and obtain the tail exponent α = 2.65± 0.02 for the model and α = 2.96± 0.03 for 
the stock. The results comply with the empirical findings of Chinese stocks (Gu et  al. 

(15)R(t) = ln[m(t)/m(t − 1)],

(16)Vi = |Ri|.

(17)P(> V ) ∼ V−α

Fig. 6  Model validation. a Empirical cumulative distributions of volatility of simulated data and stock 000001. 
Both distributions have power-law tails. b DMA fluctuation functions F(ℓ) of the return and volatility series 
for simulation data. c DMA fluctuation functions F(ℓ) of the return and volatility series of Stock 000001. The 
curves of volatility in b, c have been shifted vertically for clarity



Page 14 of 24Gu et al. Financ Innov            (2021) 7:70 

2008). It shows that the tail distribution of volatility obeys the universal inverse cubic 
law (Gopikrishnan et al. 1998). The discrepancy of tail exponent between the simulated 
and real stock returns comes from the fact that the method of Clauset et al. (2009) gives 
Vmin = 0.0017 for the stimulated returns and Vmin = 0.0024 for the real data in which 
the tail exponents are estimated from the absolute returns that are no less than Vmin.

We then apply the DMA method to compare the memory effects of simulated data 
with real data of stock 000001. Figure  6b shows the fluctuation functions F(ℓ) with 
respect to the size scales ℓ of simulated return and volatility series. The function F(ℓ) 
scales with the scale ℓ as a power law for both curves. Using the least-squares fitting 
method, we obtain the DMA scaling exponents HR = 0.501± 0.007 for the return series 
and HV = 0.753± 0.005 for the volatility series of the simulation data. In Fig.  6c, we 
show the fluctuation functions F(ℓ) of return and volatility series for the real data and 
find that F(ℓ) also scales with ℓ as a power law. We obtain that HR = 0.503± 0.003 for 
the return series and HV = 0.752± 0.002 for the volatility series. The results of simu-
lated returns and volatilities are consistent with stylized facts that return time series is 
uncorrelated with the Hurst exponent close to 0.5 whereas the volatility series processes 
long memory with the Hurst exponent significantly greater than 0.5.

Computational experiments on the effects of asymmetric price limits
Motivated by the debate on the Draft Guideline on the Trading of Stocks Bearing Risk 
Warnings, we perform computational experiments to investigate the effects of asymmet-
ric price limit mechanism on the price dynamics and some stylized facts. In the compu-
tational experiments, we change the value of φ+ from 0.05 to 0.3 with an increment of 
0.05 and the value of φ− from -0.3 to -0.05 with the same increment. The initial price is 
10 yuan. The tick size is 0.01 yuan.

Vanishing and divergence of price trajectory

Figure  7 presents the evolution of simulated mid-price for different combinations of 
{φ+,φ−} : |φ−| < φ+ in panel (a), φ+ = |φ−| in panel (b), and |φ−| > φ+ in panel (c). It is 
evident that the patterns of the price trajectories are similar in each plot but completely 
different among different plots.

When |φ−| < φ+ , the price will rise quickly to an unreasonable extent and diverge, as 
shown in Fig. 7a. The price diverges faster if the up limit is larger or the absolute down 

Fig. 7  Price trajectories of the stocks simulated for different combinations of price limits {φ+ ,φ−} . a 
|φ−| < φ+ . b |φ−| = φ+ . c |φ−| > φ+
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limit is smaller. Let us take a buy order for example. We can obtain the following equa-
tion from Eq. (2),

We know that pi is always proportional to pmax and pmin . When an efficient buy mar-
ket order ( x ≥ 0 ) is placed, the price pi increases with the value of pmax , which means 
that the buy price is very aggressive and it tends to push up the stock price when pmax 
increases. Meanwhile, if a trader places an efficient buy limit order ( x < 0 ), pi also 
increases with the value of pmin . It means that the trader places the limit order with a 
higher price in the limit order book when pmin increases, which makes the stock price 
grow as well. The explanation for sell orders is similar. Hence, the average return is 
greater than 0.

When |φ−| = φ+ , the price evolves within a reasonable range, as shown in Fig.  7b. 
With the increase of −φ− and φ+ , the fluctuations of price enhance. We find that there 
are sharp rises and drops, which are actually bubbles and crashes frequently observed in 
the Chinese stock market (Zhou and Sornette 2004; Jiang et al. 2010; Wen et al. 2019). 
This observation is very interesting because it suggests that these artificial traders can 
also trigger collective behaviors. The model is thus not a zero-intelligence model. Trad-
ers’ strategies and traits have been captured to a certain extent by the micro regularities 
used in this model.

When |φ−| > φ+ , the price drops very quickly, as shown in Fig. 7c. The price decays 
faster if the up limit is smaller or the absolute down limit is larger. For each curve, there 
seems to be a lower bound B such that the price cannot be lower. The presence of this 
lower bound is actually caused by the presence of down limit and tick size as well as the 
formation rule of closing prices. Assuming that the closing price on day T − 1 is B , the 
minimum price on day T is ⌊B(1− |φ−|)⌋ , where ⌊⌋ is the round operator. We note that

In this way, together with the tick size condition

the minimum closing price will be

In order words, the lower bound of the prices is reached at B . It follows from Eq. (19) 
that

or

(18)pi =
{

x[pmax(T )− pa(t − 1)] + pa(t − 1) x ≥ 0
x[pa(t − 1)− pmin(T )] + pa(t − 1) x < 0

.

(19)B = max{B : 100B − ⌊100B(1− |φ−|)⌋ = 1}.

(20)⌊100B⌋ = 100B,

(21)⌊100B/2+ ⌊100B(1− |φ−|)⌋/2⌋ = ⌊100B + 0.5⌋ = 100B.

(22)B = max{B : 0.5 < 100B|φ−| ≤ 1.5},

(23)B = max

{

B :
0.005

|φ−|
< B ≤

0.015

|φ−|

}

.
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Therefore, for φ− = −0.05 , − 0.10, − 0.15, − 0.20, − 0.25 and − 0.30, we obtain that 
B = 0.30 , 0.15, 0.10, 0.07, 0.06 and 0.05. These values fit the empirical results in Fig. 7c 
very well.

Figure 7a shows that, when |φ−| < φ+ , the price increases exponentially

We introduce the divergence rate � of the price to quantify the impacts of these asym-
metric price limit rules. The divergence rates of all cases are estimated as presented in 
the upper triangle of Table 3. We propose a linear model for �(φ+,φ−) as follows

where ǫ is the noise term. The regression model proves excellent since the 
adjusted R-square is 0.98. We obtain that a0 = 8.72× 10−8 with a p-value of 0.92, 
a+ = 9.91× 10−5 with a p-value of 0.0000, and a− = −9.19× 10−5 with a p-value of 
0.0000. It indicates that the constant term a0 is statistically equal to 0, and φ+ and |φ−| 
have significant impacts on the divergence rate � . The divergence rate � increases with 
φ+ and decreases with |φ−| . In addition, the impact is higher for φ+ since a+ > |a−|.

To quantify the decay rate of the price for the cases of |φ−| > φ+ , we calculate the 
half-lives t1/2 for all the (φ+,φ−) pairs. The half-life is the average of time moments 
that intersect the horizontal line pt = p1/2 = 5 . The half-lives t1/2 are digested in the 
lower triangle of Table 3. We also propose a linear model for t1/2(φ+,φ−) as follows

The regression model proves good since the adjusted R-square is 0.50. We obtain that 
b0 = 1.22× 105 with a p-value of 0.001, b+ = 4.56× 105 with a p-value of 0.007, and 
b− = −5.04 × 105 with a p-value of 0.004. It indicates that φ+ and φ− have significant 
impacts on the half-life t1/2 . The half-life t1/2 also increases with φ+ and decreases with 
|φ−| . In addition, the impact is higher for φ− since |b−| > b+.

Our computational experiments provide technical evidence against the asym-
metric price limit rule (Article VII) proposed in the Draft Guideline on the Trad-
ing of Stocks Bearing Risk Warnings. The results show that, with φ− = −0.05 and 
φ+ = 0.02 , the price of a stock labeled with risk warnings will gradually vanish. 
These risk-warning stocks will eventually be delisted from the SSE. We note that 
the results obtained are trivial to some extent because they are mainly caused by 
the implicit assumption that the relative prices defined in Eq. (2) have the same dis-
tribution for symmetric and asymmetric price limit settings. However, these results 
still have practical importance for policymakers. Certainly, taking policy decisions 
based on statistical models should be done with care. We note that the results are 
robust in different experiments. However, the results presented are not averaged 
over many rounds of experiments because the price trajectories are not comparable 
in magnitude.

(24)pt ∼ e�t .

(25)�(φ+,φ−) = a0 + a+φ+ + a−|φ−| + ǫ,

(26)t1/2(φ+,φ−) = b0 + b+φ+ + b−|φ−| + ǫ,
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Return distributions

With several example combinations of price limits {φ+,φ−} , Fig. 8a shows the empiri-
cal distributions of returns, while Fig.  8b illustrates the empirical distributions of 
absolute returns, which exhibit evident power-law tails. We unveil two clusters of 

Fig. 8  Empirical distributions of returns in linear-log coordinates (a) and absolute returns in log-log scales (b) 
for the stocks simulated for different combinations of price limits {φ+ ,φ−}

Table 2  Hurst exponents Hx of relative prices for the 32 A share stocks and 11 B share stocks 
estimated using the DMA method

The mean Hurst exponent is �Hx� = 0.796± 0.035 for all stocks, �Hx ,A� = 0.8075± 0.0301 for A shares, and 
�Hx ,B� = 0.7606± 0.0204 for B shares

Stock Hx,A Stock Hx,B Stock Hx,A Stock Hx,A

000002 0.844 ± 0.005 200002 0.773 ± 0.002 000001 0.847 ± 0.009 000778 0.804 ± 0.007

000012 0.800 ± 0.005 200012 0.759 ± 0.004 000009 0.814 ± 0.011 000800 0.821 ± 0.008

000016 0.792 ± 0.005 200016 0.778 ± 0.003 000021 0.814 ± 0.008 000825 0.823 ± 0.004

000024 0.745 ± 0.007 200024 0.755 ± 0.002 000027 0.802 ± 0.012 000839 0.872 ± 0.004

000429 0.767 ± 0.008 200429 0.720 ± 0.005 000063 0.840 ± 0.019 000858 0.801 ± 0.005

000488 0.792 ± 0.002 200488 0.736 ± 0.005 000066 0.808 ± 0.006 000898 0.847 ± 0.007

000539 0.800 ± 0.004 200539 0.741 ± 0.008 000088 0.776 ± 0.005 000917 0.766 ± 0.008

000541 0.765 ± 0.004 200541 0.776 ± 0.002 000089 0.756 ± 0.008 000932 0.800 ± 0.009

000550 0.828 ± 0.004 200550 0.775 ± 0.004 000406 0.787 ± 0.005 000956 0.861 ± 0.006

000581 0.819 ± 0.002 200581 0.793 ± 0.002 000709 0.807 ± 0.005 000983 0.789 ± 0.004

000625 0.813 ± 0.005 200625 0.763 ± 0.006 000720 0.841 ± 0.003

Table 3  Estimated divergence rates of the price trajectories when |φ−| < φ+ and the half-lives t1/2 
when |φ−| > φ+

The first row shows the φ+ values, whereas the first column shows the φ− values. The upper triangle presents the 
convergence rates � (multiplied by 105 ), while the lower triangle presents the half-lives t1/2 (multiplied by 10−4)

0.05 0.10 0.15 0.20 0.25 0.30

− 0.05 0.520 1.050 1.630 2.041 2.508

− 0.10 10.80 0.543 1.063 1.619 1.977

− 0.15 4.467 6.885 0.593 1.117 1.648

− 0.20 2.828 4.477 1.688 0.562 1.000

− 0.25 2.588 4.971 5.662 9.713 0.854

− 0.30 1.866 1.965 2.871 3.366 7.983
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distributions. The distributions for |φ−| ≤ φ+ (first group) are relatively narrow in the 
bulks and their tail exponents have comparable values. The distributions for |φ−| > φ+ 
(second group) are relatively broad in the bulks and their tail exponents are also com-
parable but different from the first group.

The presence of power-law tails observed in Fig.  8b is confirmed by the method of 
Clauset et  al. (2009). The estimated tail exponents for all the price limit combina-
tions under investigation are depicted in Table 4. Consistent with Fig. 8, the tail expo-
nents can be divided into two groups, in which �α� = 2.02± 0.07 for |φ−| > φ+ and 
�α� = 3.41± 0.18 for |φ−| ≤ φ+ . To further understand the impacts of α(φ+,φ−) , we 
regress the following linear equation:

For all the combinations of price limits {φ+,φ−} , we obtain that c0 = 2.85 , c+ = 4.88 , 
and c− = −4.98 , whose p-values are all less than 0.0000. The adjusted R-square is 0.70 
and the MSE is 0.1503. Although all the coefficients are significantly different from 0 
and the goodness-of-fit is high, it is equivalently fitting “two points” due to the clear 
separation of the tail exponents and the closeness of the tail exponents in each group. 
For the combinations with |φ−| > φ+ , we obtain that c0 = 1.87 with a p-value of 0.0000, 
c+ = 0.75 with a p-value of 0.0015, and c− = 0.27 with a p-value of 0.1748. The adjusted 
R-square is 0.69 and the MSE is 0.0015. For the combinations with |φ−| ≤ φ+ , we obtain 
that c0 = 3.34 with a p-value of 0.0000, c+ = 0.53 with a p-value of 0.0429, and c− = 0.18 
with a p-value of 0.4491. The adjusted R-square is 0.36 and the MSE is 0.0024. The 
results suggest that an increase of |φ−| or φ+ will increase the tail exponent α , expect for 
φ− in the |φ−| ≤ φ+ cases. This finding is reasonable since wider price limits will lead to 
more returns with larger magnitudes.

(27)α(φ+,φ−) = c0 + c+φ+ + c−|φ−| + ǫ.

Table 4  Estimated tail exponents of the simulated returns for different price limit combinations

The first row shows the φ+ values, whereas the first column shows the φ− values

0.05 0.10 0.15 0.20 0.25 0.30

− 0.05 3.32 3.36 3.37 3.44 3.48 3.53

− 0.10 1.94 3.41 3.51 3.43 3.52 3.50

− 0.15 1.92 2.02 3.34 3.53 3.54 3.53

− 0.20 1.96 1.99 2.02 3.41 3.54 3.54

− 0.25 1.91 2.08 2.03 2.12 3.20 3.45

− 0.30 2.01 2.02 2.11 2.06 2.11 2.72

Table 5  Average returns for different price limit combinations

The first row shows the φ+ values, whereas the first column shows the φ− values. The values of the average returns have 
been multiplied by 105 for better presentation

0.05 0.10 0.15 0.20 0.25 0.30

− 0.05 0.017 0.544 1.098 1.721 2.188 2.550

− 0.10 − 0.558 0.008 0.551 1.087 1.666 1.950

− 0.15 − 1.388 − 0.746 − 0.022 0.582 1.144 1.674

− 0.20 − 2.181 − 1.384 − 0.719 − 0.052 0.462 0.934

− 0.25 − 2.990 − 2.158 − 1.433 − 0.843 − 0.190 0.494

− 0.30 − 4.003 − 3.593 − 2.563 − 2.121 − 1.056 − 0.324
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In Table 5, we present the average returns for different price limit combinations. When 
|φ−| < φ+ , the average returns are positive. When |φ−| > φ+ , the average returns are 
negative. When |φ−| = φ+ , the average return decreases monotonically from positive to 
negative with the increase of φ+ . We use the following linear model to fit the data

and obtain that d0 = 0.0041× 10−4 with a p-value of 0.7363, d+ = 1.2380× 10−4 with 
a p-value of 0.0000, and d− = −1.4147× 10−4 with a p-value of 0.0000. The adjusted 
R-square is 0.98, indicating an excellent linear relationship between the average return 
and the two price limits.

Hurst exponents of returns

We perform DMA analysis on the return time series for all the combinations of price 
limits. The estimated Hurst exponents are presented in Table 6. Some characteristic fea-
tures can be derived from the table, which can be well captured by the linear model:

For the combinations with |φ−| > φ+ , we obtain that e0 = 0.40 with a p-value of 0.0000, 
e+ = 0.01 with a p-value of 0.3912, and e− = 0.30 with a p-value of 0.0000. The adjusted 
R-square is 0.97 and the MSE is 0.000010. Hence, Hr does not depend on φ+ since its 
coefficient is insignificant, but depends on |φ−| . The Hurst exponent of returns increases 
with |φ−| . For the combinations with |φ−| < φ+ , we obtain that e0 = 0.49 with a p-value 
of 0.0000, e+ = 0.27 with a p-value of 0.0000, and e− = −0.03 with a p-value of 0.4598. 
The adjusted R-square is 0.80 and the MSE is 0.000066. It shows that Hr does not depend 
on φ− . Rather, the Hurst exponent of returns increases with |φ+| . For the combinations 
with |φ−| = φ+ , we observe a humped shape for the dependence of Hr with respect to 
φ+ . Despite the statistically significant trends, the Hurst indexes are all close to 0.5. The 
slight deviations are reasonable because of the non-arbitrage nature of the intraday 
returns caused by the T + 1 trading mechanism (Zhou et al. 2017).

Hurst exponents of volatilities

We also perform DMA analysis on the volatility time series for all the combinations of 
price limits. The estimated Hurst exponents are presented in Table 7. We also find some 
intriguing features, which can be well captured by the linear model:

(28)�r� = d0 + d+φ+ + d−|φ−| + ǫ

(29)Hr = e0 + e+φ+ + e−|φ−| + ǫ.

Table 6  Estimated Hurst exponents of the simulated returns for different price limit combinations

The first row shows the φ+ values, whereas the first column shows the φ− values

0.05 0.10 0.15 0.20 0.25 0.30

− 0.05 0.45± 0.01 0.50± 0.01 0.53± 0.01 0.55± 0.02 0.56± 0.01 0.57± 0.01

− 0.10 0.43± 0.01 0.50± 0.02 0.53± 0.01 0.55± 0.01 0.56± 0.01 0.56± 0.02

− 0.15 0.45± 0.01 0.45± 0.01 0.52± 0.02 0.55± 0.01 0.56± 0.02 0.57± 0.01

− 0.20 0.46± 0.01 0.46± 0.01 0.47± 0.01 0.54± 0.02 0.55± 0.02 0.56± 0.01

− 0.25 0.48± 0.02 0.48± 0.01 0.48± 0.01 0.48± 0.01 0.54± 0.02 0.56± 0.02

− 0.30 0.49± 0.01 0.50± 0.02 0.49± 0.01 0.50± 0.01 0.49± 0.01 0.52± 0.03
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For the combinations with |φ−| ≥ φ+ , we obtain that f0 = 0.68 with a p-value of 0.0000, 
f+ = 0.16 with a p-value of 0.0001, and f− = 0.13 with a p-value of 0.0006. The adjusted 
R-square is 0.80 and the MSE is 0.000088. In this case, the Hurst exponent of volatility 
increases with φ+ and |φ−| and the impact of φ+ is larger than |φ−| . For the combinations 
with |φ−| < φ+ , we obtain that f0 = 0.77 with a p-value of 0.0000, f+ = −0.02 with a 
p-value of 0.6775, and f− = −0.01 with a p-value of 0.8870. The adjusted R-square is 
-0.13 and the MSE is 0.000094. In this case, the Hurst exponent HV  is independent of φ+ 
and |φ−| and remains constant.

Conclusion
We have developed a behavioral order-driven model with price limit rules based on the 
empirical regularities of the order placement and cancellation processes. In the order 
placement process, order directions are determined by the unveiled long memory, order 
prices are determined by the long memory in relative prices and the asymmetric distri-
bution of relative prices, and order sizes are determined by the nonlinear dependence on 
the relative price. In the order cancellation process, we adopted a Poisson process with 
the arrival rate determined from real data and the canceled orders determined empiri-
cally by their temporal and spatial positions. The model is validated because it can suc-
cessfully reproduce the main stylized facts in real markets.

Computational experiments uncover that asymmetric setting of price limits will cause 
the stock price to diverge when the up limit φ+ is greater than the absolute down limit 
|φ−| and to vanish vice versa. When φ+ > |φ−| , the price diverges exponentially, and 
the divergence rate increases linearly with φ+ and decreases linearly with |φ−| . When 
φ+ < |φ−| , the price will eventually decay to a lower bound determined by |φ−| and the 
tick size. According to these results, setting asymmetric price limits will destroy the 
market.

For asymmetric price limits, the simulated returns have power-law tails. The tail 
exponents for φ+ < |φ−| are significantly smaller than those for φ+ ≥ |φ−| . In addi-
tion, the tail exponent α increases linearly with φ+ and decreases linearly with |φ−| . 
Interestingly, the average return increases linearly with φ+ and decreases linearly 
with |φ−| . The Hurst exponents Hr of returns are all close to 0.5 but have slight devia-
tions. For each case of asymmetric price limits, the Hurst exponent depends linearly 

(30)HV = f0 + f+φ+ + f−|φ−| + ǫ.

Table 7  Estimated Hurst exponents of the simulated volatilities for different price limit 
combinations

The first row shows the φ+ values, whereas the first column shows the φ− values

0.05 0.10 0.15 0.20 0.25 0.30

− 0.05 0.71± 0.01 0.78± 0.01 0.77± 0.01 0.75± 0.02 0.75± 0.02 0.77± 0.01

− 0.10 0.68± 0.01 0.72± 0.01 0.76± 0.02 0.76± 0.02 0.76± 0.02 0.76± 0.01

− 0.15 0.70± 0.01 0.71± 0.02 0.72± 0.02 0.75± 0.01 0.77± 0.03 0.77± 0.01

− 0.20 0.70± 0.02 0.71± 0.01 0.73± 0.02 0.75± 0.01 0.75± 0.02 0.76± 0.01

− 0.25 0.73± 0.02 0.73± 0.02 0.73± 0.02 0.74± 0.02 0.75± 0.02 0.76± 0.02

− 0.30 0.73± 0.02 0.75± 0.02 0.73± 0.03 0.75± 0.02 0.75± 0.02 0.77± 0.02
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on the price limits. In both cases, Hr increases with φ+ and |φ−| . For volatility, the 
Hurst exponents HV  are constant for φ+ > |φ−| , and HV  increases with φ+ and |φ−| 
for φ+ < |φ−| . It is difficult to test the results of asymmetric price limits because most 
stock markets in the world have symmetric price limits or no price limit. The order 
flow data of asymmetric markets are rare. Meanwhile, since the up limit and down 
limit of most markets are symmetric, it also verifies the conclusion of our results to 
some extent.

Our EBOD model provides a suitable computational experiment platform for aca-
demics, market participants, and policymakers (Farmer and Foley 2009). For academ-
ics, the model can be used to study microstructure theories such as the price impacts 
of transactions, influencing factors of macroscopic properties, the mechanisms of the 
formation of bubbles, and the triggering of crashes through collective herding behav-
iors, systemic risks, and so on. For market participants, the model can be used to 
design optimal strategies of order placement, perform option pricing, estimate value-
at-risk with higher precision, and predict the recurrence probability of extreme fluc-
tuations. For policymakers, the model can be used to study the effects of the different 
settings of price limits on the performance of markets, such as price discovery, mar-
ket volatility, and market liquidity.

Certainly, the model is still open for further improvements following further efforts 
of model specification and calibration. Our model deals briefly and indirectly with the 
learning and adaptation behavior of traders and assumes that traders do not adjust their 
learning and adaptation behavior when the market environment changes dramatically. 
In reality, if the data-generating process changes, investors should realize this and adjust 
their behavior. Relatedly, investors do not believe in the stock market’s fundamental 
value (say, the discounted value of future dividend payments). Such a building block typ-
ically anchors the price dynamics of artificial stock markets, preventing that stock prices 
become extremely high or low. This mechanism might at least partially offset our main 
results. This issue can be considered in future work to further improve the model and 
increase the reliability of the computational experiments.
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