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Introduction
A futures contract is an agreement between two parties to transfer ownership of an 
underlying asset at a fixed time in the future. It is a standardized contract, so the trade 
takes place through an exchange. The underlying quantity is physical gold in the case of a 
gold futures contract. This type of financial contract acts as an insurance to the investor 
as it allows them to benefit from favorable price movements and acts as a hedge against 
systemic financial risk (Kou et  al. 2019) during unfavorable future price movements 
(Choudhry et al. 2015; Iqbal 2017). There is evidence that metals play an important role 
in diversifying risk (Beckmann et al. 2015; Lean and Wong 2015; Daskalaki et al. 2017; 
Alkhazali and Zoubi 2020).
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Forecasting futures prices is an integral component of a profitable futures trading 
strategy. In this respect, this paper uses one of the most popular methods for forecast-
ing and econometric analysis, namely, ARIMA models (Box and Jenkins 1970; Al-Shaib 
2006; Box et al. 2016; Guha and Bandyopadhyay 2016; Challa et al. 2018; Mallikarjuna 
and Rao 2019; Challa et al. 2020; Dong et al. 2020). The effects of seasonality are preva-
lent in the gold market (Ball et  al. 1982; Ma 1986; Lucey and Tully 2006; Wang et  al. 
2019; Xiao and Maillebuau 2020) and are attributed to the Halloween effect (Bouman 
and Jacobsen 2002; Zhang and Jacobsen 2013; Pariyaprasert and Boonchuaymetta 2018; 
Schmidbauer and Rosch 2018), the calendar effect (Jain 2019), the festival season in 
India (Source: World Gold Council report), hours of daylight (Kamstra et al. 2003), and 
the autumn effect (Baur 2013).

Behavioural issues such as investor sentiment play an important role in gold prices 
(Aggarwal and Lucey 2007). Investment in gold has always been of great sentimental 
value to Indians due to cultural relevance and its objectification as a secure financial 
investment. Consequently, India ranks second largest in private gold holdings (Source: 
NITI Aayog report). The position of a major consumer is strengthened when the domes-
tic economic need is linked with the international market for efficient price discovery 
and risk management. The presence of an established spot market provides members 
in the Indian value chain an opportunity to offset price risk through the futures market. 
The gold futures market allows investors to take positions by paying small initial mar-
gins, yielding higher returns, and the difference can be invested in risk-free government 
bonds. This additional incentive to invest in returns with zero risk, is possible when 
holding a portfolio containing the gold futures contract, unlike with equity investments 
and gold Exchange-Traded Funds (ETFs). The role of gold as a stabilizing force in the 
financial system during market shocks (Baur and McDermott 2010, 2016) highlights the 
need to investigate the volatility properties of the asset. Understanding and explaining 
the behavior of commodity volatility is imperative as it is useful in designing optimal 
hedging strategies for derivatives such as futures and options (French et al. 1987; Chou 
1988; Kocaarslan et al. 2017; Shakil et al. 2018; Mo et al. 2018). Analyzing the residu-
als after fitting an ARIMA model may suggest the need for volatility models (Ping et al. 
2013; Todorova 2017) and volatility forecasting to aid investment decisions (Samouil-
han and Shannon 2008; Thupayagale 2010; Kumar 2014; Mukherjee and Goswami 2017; 
Emenogu et al. 2020).

In India, trading in gold futures began in 2003 and the derivative contract was initially 
listed in the Multi Commodity Exchange of India (MCX) and launched under the com-
modity derivatives segment in the National Stock Exchange (NSE) and Bombay Stock 
Exchange (BSE) in 2018. Therefore, MCX accounts for 95% of the trade. The spot price 
on the MCX for the gold contracts is arrived at from polling a panel of representatives 
from the value chain of the physical market, with ex-polling conducted twice in a day 
(12.15 pm to 12.45 pm and 4.00 pm to 4.30 pm). The price is ex-Ahmedabad, which is 
based on the location of delivery, and on the lower tax structure, although the latter has 
become irrelevant after the imposition of the Goods and Service Tax (GST) in 2017. The 
price excludes GST and any other additional tax.

The trade volumes in gold futures fell to half and have remained stagnant in the last 
five years. This is due to the imposition of the Commodities Transaction Tax (CTT) of 
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0.01% in the 2013–2014 Union Budget. While the imposition of a transaction tax on the 
commodities futures market reduces speculative trading, it may not be able to reduce 
price volatility in futures or spot markets (Edwards 1993). In the Indian context, it is 
observed that the transaction tax will be a burden on the operators in the commodity 
market and act as a deterrent of entry to hedgers who may choose to shift to illegal plat-
forms (Pavaskar and Ghosh 2008). The liquidity in the Indian commodity derivatives 
market started recovering in the first half of 2018–2019 from a steady decline during 
2015–2018. A report published in the last quarter of FY 2019–2020 showed that returns 
from Indian gold funds were up 27% in the last one year, and up 11.93% in the last three 
years (Source: The Economic Times) This evidence suggests that investment in Indian 
gold investment products is a good portfolio diversification option and investment 
analysts and fund managers may be tempted to allocate more than the prudential 10%. 
Therefore, our study is aimed to assist fund managers by modelling the volatility using 
time series forecasting models used in the estimation of Value at Risk (VaR), which is a 
measure of risk of loss for investments.

From the above introduction about the Indian gold market, we see the importance 
of finding suitable methods of analyzing this time series and the impact of seasonality, 
intervention, volatility, and forecasting. Thus, Sect. 2 will introduce seasonal time series 
models, an intervention test, and methods for describing non-constant variances. Sec-
tion 3 discusses forecast performance of different time series methods, and Sect. 4 pro-
vides concluding remarks.

Modeling methodology
In this paper, we use a time series approach to build a statistical model on a nonho-
mogeneous, nonstationary time series after taking a proper degree of differencing and 
variance stabilizing transformations. In our preliminary analysis, we plot the time series, 
autocorrelation function and partial autocorrelation function for the monthly data to 
observe the presence of seasonality. Based on the results of our preliminary analysis, we 
construct models to accommodate the effects of the seasonality and intervention pre-
sent in the series. However, for forecasting comparison and inference, we use only those 
models whose parameters are statistically significant. Further, the error distribution for 
the proposed model with non-constant variance is also examined and the results are 
tabulated.

The objective of this paper is to compare methods used to forecast future prices and 
to suggest the optimal method which is useful for practitioners. To obtain meaningful 
results through prediction, modelling the historical evolution of the series through time 
is imperative. Therefore, we use a time series approach to incorporate the distinctive fea-
tures of this data series into model building.

Let Zt be a sequence denoting the monthly time series under analysis. The data used 
is the closing price of the derivative contract titled Multi Commodity Exchange of India 
Gold Commodity Future Continuation 1 (RIC: MAUc1) and is obtained from Thomson 
Reuters Eikon platform for 14 years from January 2005 to January 2019. It is a time series 
of closing price considering the rollover of the contracts on the fifth day of the contract 
expiry month. The trading unit is 1 kg, and the quotation value is 10 g. The data has been 
converted into a monthly series. So, the time unit t, used in this analysis is months. The 
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currency denomination used to represent the closing price is the Indian Rupee. The whole 
data set is from January 2005 (t = 1) to January 2019 (t = 169) as shown in Fig. 1. We will use 
the first 156 observations for modeling analysis and the remaining observations for forecast 
comparison.

From Fig. 1, we see that the monthly data has an increasing trend. However, we are inter-
ested in analyzing if the seasonal pattern observed in the gold spot market is evident in the 
gold futures market, and in non-stationarity of the price series. We plot the autocorrela-
tion and partial autocorrelation functions of the seasonally differenced monthly series to 
confirm our claim on seasonality. The effect of seasonality is evident with seasonal period, 
s = 12, in the plots shown below in Fig. 2.

Subsequently, we carry out the well-known augmented Dickey-Fuller (ADF) test (Dickey 
et al. 1984) to investigate the presence of a unit root in a seasonal time series. The result is 
given in Table 1, with p-values less than 0.05 indicating both regular differencing and sea-
sonal differencing are needed.

A good time series modelling method is the well-known Box-Jenkins multiplicative sea-
sonal ARIMA model (p, d, q)× (P, D, Q)s

where (i) φp(B) and θq(B) are the regular autoregressive and moving average polynomi-
als of order p and q respectively,  �P

(
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 and �Q
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Fig. 1  Plot of the monthly price series, Zt

Fig. 2  Plot of autocorrelation and partial autocorrelation of seasonally differenced gold futures price series

Table 1  Unit root test P-values for gold futures price series

Series name Original First difference Seasonal difference

Gold futures, Zt 0.9242  < 0.01  < 0.01
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and moving average polynomials of orders P and Q respectively, the sub index s refers to 
the seasonal period; (ii)

where µ is the mean of the stationary Zt; and (iii) at is assumed to be the sequence of 
independent normally distributed random variables with zero mean and constant vari-
ance σ 2

a .

A simple way to find whether a series has a constant variance is to check the plot of resid-
ual squares after a preliminary model fitting. The following Fig. 3 of the residual squares 
after a preliminary ARIMA model fitting clearly shows the variance is not constant.

There are two approaches to solve the non-constant variance problem: The first approach 
is the power transformation.

introduced by Box and Cox (1964), where in practice the value of � is often chosen from 
the set {1, 0.5, 0, − 0.5, − 1} as the one that yields a model with the minimum Akaike 
Information Criterion (AIC) and/or Bayesian Information Criterion (BIC).

The other approach is the one first proposed by (Bollersev 1986), where Eq. (1) is rewrit-
ten as

and we have the more general error process

where et are i.i.d random variables with zero mean and variance one, independent of 
past realizations of nt−i,

and the roots of (1− φ1B− . . .− φrB
r) = 0 are outside the unit circle. To guarantee 

σ 2
t  > 0, we assume that θ0 > 0 and that φi and θj are nonnegative. The model in (4) with the 
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Fig. 3  Plot of the residual squares of model in Eq. (11) from preliminary model fitting
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property in (5) is known as the generalized autoregressive conditional heteroscedasticity 
(GARCH) model of order (r, s) and is denoted by GARCH (r, s) (Wei 2006) (Chapter 15).

We will now illustrate the two approaches in the following subsections.

The power transformation approach

In this subsection, we apply the power transformation function given in Eq. (2) to stabi-
lize the non-constant error variance. Based on the minimum AIC and/or BIC given in 
Table 2 obtained from a SAS program, it suggests a square root transformation of the 
series for a constant variance.

A seasonal ARIMA model for the square root transformed series

After regular and seasonal differencing, the autocorrelation and partial autocorrelation 
plots of the transformed series shown in Fig.  4 suggests a seasonal ARIMA model of 
order (3, 1). The model can then be written as follows

where (1) t ranges from 1 to 156, (2) s = 12, 24, 36, (3) B is the backshift operator, (4) at 
is assumed to be a sequence of independent normally distributed random variables with 
zero mean and constant variance σ 2

a .
The parameter estimates of the coefficients to the above fitted model are obtained. 

After removing the non-significant seasonal autoregressive coefficients associated with 
B12 and B24 , the obtained model is:

(6)
(

1−�1B
12 −�2B

24 −�3B
36
)

(1− B)
(

1− B12
)

√

Zt =
(

1−�1B
12
)

at ,

Table 2  Power transformation for Zt

� Log likelihood Root mean square 
error (RMSE)

Akaike information 
criterion, (AIC)

Bayesian 
information 
criterion, (BIC)

1.0 − 1263.81 1,534,533.01 2539.62 2557.92

0.5 − 1249.57 1,517,748.87 2511.14 2529.44

0.0 − 1249.58 1,591,506.86 2511.17 2529.46

− 0.5 − 1266.58 1,387,536.15 2545.17 2563.47

− 1.0 − 1299.56 1,320,672.06 2611.11 2629.41

Fig. 4  Plot of autocorrelation and partial autocorrelation of transformed and seasonally differenced gold 
futures price series
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and σ̂ 2
a  = 7.246. The residual autocorrelations and partial autocorrelations shown in 

Fig. 5 indicate the adequacy of the model.

Check intervention on square root transformed series

Intervention analysis is a useful technique to study the effect of an external event that 
causes a level shift in the time series (Box and Tiao 1975). In our study, we will check the 
effect of the tax known as CTT on the series, which is represented as a step function and 
included in the model. In this section, the impact of CTT on the transformed series is 
examined.

The model with the intervention is:

where (1) ωo represents the initial impact of CTT which is also felt during the period 
after introduction, (2) the effect of intervention represented by It is expected to produce 
a step change from March 2013, which is the time of announcement of the tax and is 
denoted by t = 100 in our dataset

and (3) at is assumed to be a sequence of independent normally distributed random var-
iables with zero mean and variance one.

The estimation result is given below:

with all parameters being significant except the one pertaining to the intervention varia-
ble and coefficients of the seasonal autoregressive operators B12,B24 and σ̂ 2

a  = 7.221. The 
residual autocorrelations and partial autocorrelations indicate the adequacy of the 
model. From the estimates of model fitting, we see that the effect from intervention is 
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Fig. 5  The plot of autocorrelation and partial autocorrelation of residuals from model in Eq. (7)
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negative but not statistically significant for a significance level of 5% or for any of the 
commonly used significance levels, since its p-value = P 

(

Z < −1.5916
2.5279

)

 = 0.2645, and the 

commonly used level at the final conclusion is 5%. Therefore, we omit the variable for tax 
intervention It , and use Eq. (7) as our final chosen model for the square root transformed 
series.

An ARIMA/GARCH modelling approach

In this section, after fitting a time series model for the gold future prices, we will fit an 
ARCH/GARCH model to model its error variance. We refer readers to existing litera-
ture that uses similar methods of analysis and discusses the reliability of results obtained 
through econometric software (McCullough and Vinod 1999; McCullough and Renfro 
2000).

A seasonal ARIMA model fitting

As indicated earlier, in order to determine whether the series has a constant variance, we 
preliminarily fitted an ARIMA (0, 1, 0)× (3,1,1)12  model to the data set, which is based 
on its plot of autocorrelation and partial autocorrelation of the regularly and seasonally 
differenced series. The exact model form is given below:

where (1) t ranges from 1 to 156, (2) B is the backshift operator, (3) nt is assumed to be 
a sequence of independent normally distributed random variables with zero mean and 
non-constant variance, and both regular and seasonal differencing is order 1 with sea-
sonal period of 12.

The parameter estimates of the coefficients to the above fitted model are obtained and 
after removing the non-significant seasonal autoregressive coefficients associated with 
B12 and B24, the obtained model is:

The time dependent error variance will be discussed later.

A seasonal ARIMA model with intervention

In this subsection, we will check the effect of a CTT on the regular and seasonally differ-
enced series. The model with the intervention is:

where nt is assumed to be a sequence of independent normally distributed random vari-
ables with zero mean and non-constant variance and the definitions of other terms are 
the same as those in (8).

The parameter estimates of the coefficients are obtained and it is observed that the 
seasonal autoregressive coefficients associated with B12 and B24 are not significant and 
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)
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(
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)
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(
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)
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(0.0913)

B12

)
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(12)Zt = ωoIt +
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hence they are omitted, and the parameters are re-estimated. The model in (12) with re-
estimated parameters is:

with all parameters except the one pertaining to intervention variable being significant 
and the time dependent error variance will be discussed later. The residual autocorrela-
tions and partial autocorrelations indicate the adequacy of the model.

From the estimates of model fitting, it is evident that the negative signs of the inter-
vention parameter estimates show that the introduction of CTT reduced the gold 
futures prices but not quite significantly. The estimates of the intervention variable are 
not statistically significant, since its p value = P 

(

Z < −437.8838
737.7356

)

 = 0.2764, for the com-

monly used 5% significance level. Therefore, we omit the intervention and simply use 
Eq. (11) in the further analysis.

Volatility models for nt

Here, we apply the general framework discussed at the beginning of this section to the 
squared residuals obtained from fitting the model given in Eq.  (11). The autocorrela-
tion and partial autocorrelation plots of the squared residuals of the model in Eq. (11) as 
shown in Fig. 6 suggest fitting a seasonal ARCH (2) model, with seasonal period s = 12.

Based on the highest significant spike at lag 24 in the plot of the partial autocorrelation 
function, a seasonal ARCH (2) model with seasonal period 12 is fitted on the squared 
residuals of the model in Eq. (11).

The parameter estimates of the seasonal ARCH (2) model are obtained and after 
removing the non-significant seasonal autoregressive coefficient associated with B12 the 
obtained model is:

where et is assumed to be a sequence of independent normally distributed random vari-
ables with zero mean and variance one.

(13)Zt = −437.8838
(737.7356)

It +

(

1+ 0.7310
(0.0918)

B12

)

(1− B)
(

1− B12
)

(

1+ 0.2623
(0.0889)

B36

)nt ,

nt = σt et ,

(14)σ 2
t = 0.4343

(0.0724)
n2t−24,

Fig. 6  The plot of autocorrelation and partial autocorrelation of the squared residuals from model in Eq. (11)
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So, for the gold futures prices, we have a seasonal ARIMA-GARCH model with its 
estimation results given below.

Forecasts from price models and their performance
The models from Eqs. (7) and (15) are used to forecast future values. The l-step ahead 
forecasts are calculated from the time origin t = 156 as follows.

The l- step ahead forecast equation for the model in Eq. (7) is

where Yt = 
√
Zt  and at is the white noise series of independent N (0, σ 2

a) random 
variables.

The l- step ahead forecast equation for the model in Eq. (15) is

For comparison, the l-step ahead forecasts from Eq. (16) are converted to the degree 
of the original series by raising the values to the power 2. This conversion also raises the 
value of the standard deviation by the power 2 and is used in calculating forecast error 
variances and the associated forecast limits to be discussed in Sect. 3.2 below.

The predicted future price values are compared with the actual values of the closing 
price of the derivative and the forecast errors are calculated as the difference between 
the actual values and the forecast values as follows.

where n is the forecast origin, and l is the lead time of the forecasts from the same origin. 
Further, the forecast measures are calculated to ascertain the model which provides bet-
ter forecasts. The comparison is usually based on the following summary statistics, mean 
square error (MSE) and mean absolute percentage error (MAPE), which are the most 
popular measures for forecast accuracy and consequently used in model selection. MSE 
is scale dependent and MAPE is scale independent.

(15)
(

1+ 0.2651
(0.0885)

B36

)

(1− B)
(

1− B12
)

Zt =
(

1+ 0.7280
(0.0913)
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)

nt ,

nt = σt et ,

σ 2
t = 0.4343

(0.0724)
n2t−24.

(16)

Ŷ156(l) = Ŷ156(l − 1)+ Ŷ156(l − 12)− Ŷ156(l − 13)− 0.2591Ŷ156(l − 36)

+ 0.2591Ŷ156(l − 37)+ 0.2591Ŷ156(l − 48)− 0.2591Ŷ156(l − 49)

+ E
(

a156+l |Y156,Y155, . . .
)

+ 0.7455E
(

a156+l−12|Y156,Y155, . . .
)

,

(17)

Ẑ156(l) = Ẑ156(l − 1)+ Ẑ156(l − 12)− Ẑ156(l − 13)− 0.2651Ẑ156(l − 36)

+ 0.2651Ẑ156(l − 37)+ 0.2651Ẑ156(l − 48)

− 0.2651Ẑ156(l − 49)+ E
(

n156+l |Z156,Z155, . . .
)

− 0.7280E
(

n156+l−12|Z156,Z155, . . .
)

.

(18)el = Zn+l − Ẑn(l),
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Comparisons of forecast values

The l-step ahead forecasts of Model (7) through Eq.  (16) and Model (15) through 
Eq. (17) are computed. For comparison, forecast values and forecast errors are tabulated 
in Table 3 below.

It is evident that between the fitted models in Eqs. (7) and (15), the forecasts from the 
model in Eq. (7) are closer to the actual values than those from the model in Eq. (15) in 
eleven out of thirteen cases. The forecast performance measures for the fitted models 
can further be illustrated using the summary statistics in Table 4.

The forecast measures between both models are coherent. The values of errors are 
lower for the model in Eq. (7) than the errors for the model in Eq. (15). This indicates a 
higher forecasting accuracy for model in Eq. (7), implying that it slightly outperforms the 
model in Eq. (15) in terms of forecast accuracy.

Comparisons of forecast limits

In time series modeling, we check the efficacy of our proposed model and its relevance 
to theory by forecasting. This, therefore, is an important application of time series analy-
sis. In our study, we also want to investigate their associated forecast limits for the fore-
casts from both models.

When models in Eqs. (7) and (15) are used to compute forecasts using time series soft-
ware like SAS or R, we can also calculate their associated forecast limits. For compari-
son, we have calculated the 95% forecast limits and the associated lengths of intervals 

Table 3  Comparison of actual values and forecast values between models (7) and (15) and their 
associated forecast errors

Lead time (Months) Actual value (Rs.) Forecast from 
model in (7)

Forecast error Forecast from 
model in (15)

Forecast error

Jan 2018 29,634.09 28,912.17 721.92 28,888.65 745.44

Feb 2018 30,392.9 30,007.37 385.53 29,938.32 454.58

Mar 2018 30,454.24 30,014.46 439.78 29,904.09 550.15

Apr 2018 31,113.81 29,635.16 1478.65 29,529.89 1583.92

May 2018 31,152.26 29,515.09 1637.17 29,361.16 1791.1

June 2018 30,845.57 29,803.44 1042.13 29,647.88 1197.69

July 2018 30,101.95 30,114.03 − 12.08 29,937.36 164.59

Aug 2018 29,710.23 31,150.51 − 1440.28 30,935.40 − 1225.17

Sept 2018 30,563.3 31,498.75 − 935.45 31,236.43 − 673.13

Oct 2018 31,659.86 30,959.01 700.85 30,662.91 996.95

Nov 2018 30,948.64 31,199.12 − 250.48 30,838.18 110.46

Dec 2018 31,412.55 30,666.13 746.42 30,252.24 1160.31

Jan 2019 32,067.91 30,892.56 1175.35 30,453.99 1613.92

Table 4  Forecast performance measures between models (7) and (15)

Forecast performance measure Model in (7) Model in (15)

Mean square error, MSE 942,935.2 1,165,745

Mean absolute percentage error, MAPE 2.73 3.05
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between upper and lower limits. The plots of the forecast limits along with predicted 
future values are given in Fig. 7, and the values are presented in Table 5.

Concluding remarks
This paper employs time series models to examine the gold futures market in India tak-
ing into account the seasonality prevalent in this market and the implementation of a 
new tax scheme, namely CTT.

The estimation results show that the parsimonious forecasting models without 
intervention variable provide a better fit to the gold futures data. It is observed that 
the coefficient of the intervention variable is negative, but the results from the anal-
ysis show that the parameter estimates of the intervention variable are not statisti-
cally significant. Therefore, the forecasts carried out in this study do not include the 
intervention variable. The decrease in price trend observed in Fig. 1 after 2013, shows 
the lack of financial literacy among the market participants with regard to the new 
tax regime that offers an income tax benefit and that the market was dominated by 
speculative traders. For the futures market to work, both hedgers and speculators are 
needed, and both play a crucial role. This highlights the need for stringent monitor-
ing to avoid manipulation in futures markets. It also calls for the need to organize 

Fig. 7  The plot of 95% Forecast limits for predicted future values for model in Eq. (7) and model in Eq. (15)

Table 5.  95% Forecast limits for predicted future values for model in Eq. (7) and model in Eq. (15)

Lead time 
(months)

95% forecast limits for the model in Eq. (7) 95% forecast limits for the model in Eq. (15)

Lower 
limit

Predicted 
value

Upper 
limit

Length of 
interval

Lower 
limit

Predicted 
value

Upper 
limit

Length of 
interval

Jan 2018 27,145.07 28,912.17 30,734.98 3589.91 27,338.53 28,888.65 30,438.78 3100.25

Feb 2018 27,477.24 30,007.37 32,648.92 5171.68 27,746.25 29,938.32 32,130.39 4384.14

Mar 2018 26,930.74 30,014.46 33,265.29 6334.55 27,219.42 29,904.09 32,588.76 5369.34

Apr 2018 26,112.55 29,635.16 33,380.58 7268.03 26,429.93 29,529.89 32,629.85 6199.92

May 2018 25,599.67 29,515.09 33,709.02 8109.35 25,895.32 29,361.16 32,826.99 6931.67

June 2018 25,507.25 29,803.44 34,433.83 8926.58 25,851.27 29,647.88 33,444.50 7593.23

July 2018 25,463.04 30,114.03 35,154.92 9691.88 25,836.55 29,937.36 34,038.16 8201.61

Aug 2018 26,104.41 31,150.51 36,642.22 10,537.81 26,551.46 30,935.40 35,319.33 8767.87

Sept 2018 26,129.74 31,498.75 37,369.05 11,239.31 26,586.57 31,236.43 35,886.28 9299.71

Oct 2018 25,364.85 30,959.01 37,110.16 11,745.31 25,761.54 30,662.91 35,564.28 9802.74

Nov 2018 25,322.34 31,199.12 37,688.58 12,366.24 25,697.59 30,838.18 35,978.78 10,281.19

Dec 2018 24,597.68 30,666.13 37,402.98 12,805.3 24,883.07 30,252.24 35,621.41 10,738.34

Jan 2019 24,435.55 30,892.56 38,105.71 13,670.16 24,734.05 30,453.99 36,173.94 11,439.89
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awareness programs advocating investment alternatives and their benefits. A recent 
empirical study on an emerging market shows how speculative capital movement is 
monitored to improve efficiency in the financial markets (Chao et al. 2019).

Market sentiments also play a major role in the Indian context, mainly due to the 
sentimental attachment to the underlying asset. Since India is a price taker due to 
the absence of domestic mining the fluctuations in gold spot price are to a greater 
extent influenced by macroeconomic variables. The world gold price is derived from 
the London price fix. China follows a similar benchmarking methodology to deciding 
the price, known as the Shanghai price fix or the Shanghai gold benchmark. In India, 
the Indian Bullion Jewelers Association (IBJA) publishes daily price for gold. How-
ever, there is a lack of transparency due to the absence of a regulatory framework to 
effectuate the Indian price fix or benchmark price for gold in the domestic currency 
(Indian rupees) for as low a denomination as one gram or ten grams of gold and calls 
to attention the need for an independent organization to oversee commercial gold 
trade.

In Table  3, we observe that according to the model in Eq.  (7) and the model in 
Eq.  (15), the price forecasts are increasing for first nine months, but are decreasing 
for next four months based on model in (15), however, the results from model in (7) 
is increasing in lead time = 10, 11 and subsequently decreases. The forecasts from the 
model in Eq. (15) suggests that the Indian gold futures market does not work in tan-
dem with the gold spot market, suggesting the presence of “reverse autumn effect” in 
the gold futures market. This shows that the anomaly present in the spot market is 
not likely to be found in the derivative market. Therefore, gold futures is an effective 
hedge and an attractive investment option to investors who might want to include 
gold in their portfolio to hedge against the volatility in the spot market in case of a 
long position and also earn short sale profits due to prices moving in opposite direc-
tions in different markets. There may also be short windows for arbitrage due to the 
delay in convergence of basis (difference between spot and futures prices) due to mar-
ket frictions. It is observed that the trade in the gold futures market has increased 
over the first quarter in 2018.

Since all actual values are contained in the 95% forecast limits, the forecasts from the 
fitted models suggest that the future values of the gold futures contract can be predicted 
from historical values with a certain degree of accuracy. Consequently, they can be used 
by fund managers and active investors to re-adjust their portfolio allocations.

The method used for determining the power transformation was carried out using 
SAS and the rest of the analysis in our study was carried out using R Studio software. 
The code for the same is available upon request to the authors.
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